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Abstract—The vast infrastructure development, gas flow
(GF) dynamics, and complex interdependence of gas with
electric power networks call for advanced computational
tools. Solving the equations relating gas injections to pres-
sures and pipeline flows lies at the heart of natural gas
network (NGN) operation, yet existing solvers that require
careful initialization and uniqueness has been an open
question. In this context, this article considers the nonlin-
ear steady-state version of the GF problem. It first estab-
lishes that the solution to the GF problem is unique under
arbitrary NGN topologies, compressor types, and sets of
specifications. For GF setups where pressure is specified
on a single (reference) node and compressors do not ap-
pear in cycles, the GF task is posed as n convex minimiza-
tion. To handle more general setups, a GF solver relying
on a mixed-integer quadratically constrained quadratic pro-
gram (MI-QCQP) is also devised. This solver can be used
for any GF setup at any NGN. It introduces binary variables
to capture flow directions, relaxes the pressure drop equa-
tions to quadratic inequality constraints, and uses a care-
fully selected objective to promote the exactness of this
relaxation. The relaxation is probably exact in NGNs with
nonoverlapping cycles and a single fixed-pressure node.
The solver handles efficiently the involved bilinear terms
through McCormick linearization. Numerical tests validate
our claims, demonstrate that the MI-QCQP solver scales
well, and that the relaxation is exact even when the suffi-
cient conditions are violated, such as in NGNs with over-
lapping cycles and multiple fixed-pressure nodes.

Index Terms—Convex relaxation, energy function mini-
mization, gas flow (GF) equations, McCormick linearization,
uniqueness.

I. INTRODUCTION

NATURAL gas has served as a critical energy source for
decades, mainly for heating and electric power genera-

tion [1]. Thanks to the higher ramping capabilities of gas-fired
generators, electric power system operators could achieve higher
penetration of uncertain and intermittent renewable generation.
In addition, the discovery of substantial new supplies of natural
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gas in the U.S. has led to a new thrust in the development of
gas-centered technologies and analytical tools [2].

Natural gas produced at gas pits and refineries is primarily
transported to customer locations via a continent-wide network
of pipelines [1]. The safe, reliable, and economical transporta-
tion of gas across these networks is ensured by gas system
operators [3]. Considering the scale of natural gas networks
(NGNs), and their coupling with electric power grids, a plethora
of analytical and computational challenges can be envisaged.
Stand-alone and gas-electric coupled versions of network ex-
pansion planning, optimal scheduling, least-cost procurement,
and security analysis are examples of problems that have gained
increasing research interest; see [3]–[7]. These problems aim at
optimizing varying objectives while respecting network limita-
tions and gas flow (GF) physics.

The flow of natural gas on pipelines is governed by partial
differential equations, which under steady-state assumptions,
yield nonlinear equations relating pressures and GFs [8]. These
equations reveal that the pressure drops along a pipe in the
direction of flow due to friction. However, minimum pressure
needs to be maintained at consumer nodes to satisfy gas con-
tracts. Therefore, compressors are placed on selected pipelines
to increase the pressure at their output based on a typically
multiplicative [1], and rarely additive law [9]. Operators need
to solve the set of nonlinear equations governing GF in an
NGN [10]: For each node, the operator fixes the gas pressure or
gas injection rate to specified values. Given also the compression
ratios, the GF task aims at finding the injections and pressures
at all nodes, as well as the GFs on all pipes. While solving the
GF task is central for numerous NGN operations, it is hard to do
so even under steady-state and balanced conditions for nontree
networks [1].

The GF task is usually handled by the Newton–Raphson
(NR)-based solvers. However, their convergence can be sensi-
tive to initialization [11]. A semidefinite program (SDP)-based
GF solver attaining a higher success probability than the NR
scheme is developed in [10]. Nevertheless, the SDP-based solver
fails to solve the GF problem if the network state is far from
the states considered in designing the solver. The necessity
of proper initialization may be avoided for simpler networks
without compressors as the flows and pressures may be found as
optimal primal–dual solutions of a convex minimization [12].
Nevertheless, for practical meshed NGNs with compressors,
an initialization-independent GF solver is still a research pur-
suit [8]. Setting scalability aside, if one uses a nonlinear solver
for the GF task, the uniqueness of a solution becomes critical.
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Papers [9] and [13] prove the uniqueness of a GF solution for
NGNs with additive compressors.

The contribution of this work is on four fronts. First,
Section III establishes that the nonlinear steady-state GF equa-
tions enjoy a unique solution even with multiplicative com-
pressors. Building on [8] where uniqueness was shown for GF
setups with a single fixed-pressure node, here uniqueness is
nontrivially generalized to setups with multiple fixed-pressure
nodes. Second, Section IV reformulates the GF task as convex
minimization. The obtained solver can handle GF setups with a
single fixed-pressure node and compressors not on cycles. Third,
Section V expands the analytical claims for the mixed-integer
quadratically constrained quadratic program (MI-QCQP) GF
solver of [8]. Different from the convex minimization approach,
this solver applies to any GF setup and any network. The
MI-QCQP solver introduces binary variables to capture flow
directions, relaxes the nonlinear GF equations to quadratic in-
equalities, and uses a carefully selected objective to promote the
exactness of the relaxation. The relaxation is provably exact in
NGNs with nonoverlapping cycles and a single fixed-pressure
node. This significantly extends the claim of [8], where exact-
ness was proved for nonoverlapping cycles and a single fixed-
pressure node, but did not allow for compressors in cycles. Hav-
ing compressors in cycles is a typical arrangement, e.g., when
two compressors are connected in parallel. Fourth, to accelerate
the MI-QCQP solver, the bilinear terms involved are handled
through McCormick linearization. Numerical tests on meshed
networks with overlapping cycles and multiple fixed-pressure
nodes demonstrate that the MI-QCQP solver finds the unique
GF solution even when the assumed sufficient conditions are
violated.

II. GF PROBLEM

An NGN can be represented by a directed graph G = (N ,P).
The nodes in the graph represent points of gas supply, demand,
or network junctions. The edges are directed, and represent
pipelines or compressors. Nodes are indexed by n ∈ N :=
{1, . . . , N} and edges by � ∈ P := {1, . . . , P}. Each edge � =
(m,n) is assigned a direction from the origin node m to the
destination node n. If (m,n) ∈ P , then (n,m) /∈ P . For edges
corresponding to pipes, this direction is selected arbitrarily. For
edges denoting compressors, the direction coincides with the
direction of GF since compressors allow only unidirectional flow
of gas.

For each node n ∈ N , let qn be the gas injection rate from
node n to the NGN. By convention, the gas injection qn is pos-
itive for gas source nodes, negative for demand nodes, and zero
for junction nodes. Vector q ∈ RN collects the gas injections
across all nodes.

For each edge � = (m,n) ∈ P , let φ� denote its GF rate. By
convention, the flow φ� is positive if gas flows from node m to
n; and negative, otherwise. The conservation of mass at each
node n ∈ N dictates that

qn =
∑

�:(n,k)∈P
φ� −

∑
�:(k,n)∈P

φ�. (1)

Under steady-state conditions, the input and output flows on
a pipe are identical, and so gas injections are balanced at all
times, that is

∑N
n=1 qn = 0. Because of this, from the N linear

equations in (1), only (N − 1) are linearly independent.
The topology of the NGN is captured by its edge-node inci-

dence matrix A ∈ RP×N with entries

A�, k :=

⎧⎪⎨
⎪⎩
+1, k = m

−1, k = n

0, otherwise

∀� = (m,n) ∈ P.

Using A, (1) can be compactly expressed as

A�φ = q (2)

where vector φ ∈ RP stacks the flows φ�s along all edges.
For medium- and high-pressure networks, the GFs on

pipelines relate to nodal pressures through a set of nonlinear
partial differential equations [14], [15]. These equations model
the GF dynamics evolving across time and spatially along
the pipeline length. However, simplifying assumptions such
as ignoring friction, geographical tilt, variations in ambient
temperature, and time-varying gas injections, yield the popular
steady-state Weymouth equation [16]. If ψn > 0 denotes the
squared gas pressure at node n ∈ N , the pressure drop across
pipeline � = (m,n) ∈ P is given by

ψm − ψn = a� sign(φ�)φ
2
� (3a)

ψn ≥ 0 (3b)

where parameter a� > 0 depends on the physical properties of
the pipeline [14]. The function sign(x) returns +1 if x > 0; −1
if x < 0; and 0 if x = 0. The absolute value in (3a) signifies that
pressure drops along the direction of flow. In particular, the drop
in squared pressures is proportional to the squared flow. We will
henceforth refer to ψm as pressure rather than squared pressure
for brevity. Let us collect all ψns in ψ ∈ RN .

To enable the desired flow of gas in an NGN while maintaining
pressures within acceptable limits, system operators install com-
pressors at selected pipelines. A pipeline hosting a compressor
can be modeled by an ideal compressor that increases the gas
pressure, followed by a lossy pipeline that incurs a pressure drop
per (3). Apparently, the GFs on the two edges are identical. Let
the subset of edges hosting ideal compressors be Pa ⊂ P . The
edges inPa are also referred to as active pipelines. The pressures
across an active pipeline or compressor � = (m,n) ∈ Pa are
related as

ψn = α�ψm (4a)

φ� ≥ 0 (4b)

where α� > 0 is the multiplicative compression factor for com-
pressor �. The unidirectional flow permitted for a compressor
is enforced by (4b). The remaining edges, that is, the edges not
hosting ideal compressors, constitute the set P̄a := P \ Pa and
abide by (3) instead of (4).

In an NGN, a node r ∈ N is selected as a reference node. Its
pressure is kept fixed. Given ψr, if the nodal pressures ψ are
known, the flows φ can be readily computed; and vice versa.
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This fact follows immediately from (3) and (4), and is itemized
as the following lemma to be used in subsequent arguments.

Lemma 1: Given a reference pressure ψr for some r ∈ N ,
a pair (φ,ψ) satisfying (3) and (4) is uniquely characterized by
either φ or ψ.

The task of finding φ or ψ given a combination of nodal
injections and pressures constitutes the GF problem. Oftentimes,
gas supply nodes are tuned to maintain a fixed pressure while
injecting variable amounts of gas to meet the prescribed pressure
under variable demands [3], [17]. Let set Nψ ⊂ N consist of all
nodes with fixed pressures ψns. The reference node r belongs to
Nψ by definition. Its complement set Nq := N \Nψ consists
of all nodes with fixed injections qns. Then, the GF problem can
be formally stated now.

Definition 1: Given pressures ψn for n ∈ Nψ , injections
qn for n ∈ Nq , the ratios α� for all compressors � ∈ Pa, and the
friction parameters a� for all lossy pipes � ∈ P̄a, the GF problem
aims at finding the triplet (ψ,φ,q) satisfying the GF equations
(2)–(4).

The GF task involves N − 1 + P equations over N − 1 + P
unknowns. It can be posed as the feasibility problem

find {q,φ,ψ} (G1)

s.t. (2)− (4)

given {qn}n∈Nq and {ψn}n∈Nψ .

Albeit (2) and (4) are linear, the piecewise quadratic Wey-
mouth equation in (3) is nonconvex while the requirement
{φ� ≥ 0}�∈Pa further complicates the task. The GF problem
is typically solved using the NR’s method, yet its convergence
depends on the initialization [10], [11], [17]. Commercially
available software require careful manual tuning by the gas
network operator personnel, though that could be attributed to
more detailed models of NGN components.

A popular rendition of the GF problem considers the reference
node as the only fixed-pressure node, and all other nodes as
fixed-injection nodes [8], [10], [18]. For this rendition, solving
the GF problem becomes trivial for a tree network by inverting
(2) and using Lemma 1. However, for a meshed NGN, solving
the GF problem remains nontrivial. Before developing new GF
solvers, the following section establishes that the GF problem
in (G1) enjoys a unique solution.

III. UNIQUENESS OF THE GF SOLUTION

We commence with the uniqueness of the GF task under the
setup of a single fixed-pressure node, proved in [8, Th. 1].

Theorem 1 (see [8]): If Nψ = {r} and Nq = N \ {r}, the
GF problem (G1) has a unique solution, if feasible.

Although the single fixed-pressure setup has been studied
widely, setups with multiple fixed-pressure nodes are of critical
interest too. This is because gas is typically injected at supplier
sites using a controller that maintains constant pressure, rather
than a constant rate. To address this need, this section builds on
Theorem 1 and establishes the uniqueness of the steady-state
GF equations for any (Nψ,Nq) setup. Before doing so, let us
briefly review some graph theory preliminaries.

A directed graph G = (N ,P) is connected if there exists a
sequence of adjacent edges between any two nodes. All graphs
considered in this work are assumed to be connected. A sequence
of adjacent edges between nodes m and n constitutes a path
Pmn ⊂ P . The directionality assigned to pathPmn is fromm to
n. Note that nodesm andn could be connected by multiple paths.
Thus, with slight abuse in notation, pathPmn shall represent any
arbitrary path between m and n, unless additional conditions
are provided. For path Pmn, we can define an indicator vector
πmn ∈ {0, 1}P with �th entry

πmn� :=

⎧⎪⎨
⎪⎩
0, if edge � /∈ Pmn
+1, if direction of � agrees with path direction

−1, otherwise.

A cycle is a sequence of adjacent edges (without edge or node
repetition) that starts and ends at the same node. With a slight
abuse of terminology, the statement “cycle C contains node i”
will mean that there exists an edge in C that is incident to node i.
For any cycle C, we can select an arbitrary direction and define
its indicator vector nC with the �th entry

nC� =

⎧⎪⎨
⎪⎩
0, if edge � /∈ C
+1, if direction of � agrees with cycle direction

−1, otherwise.

A tree is a connected graph with no cycles.
After the graph-theoretic preliminaries, we proceed with the

uniqueness of the GF solution for the general GF setup. This
proof builds upon the ensuing two lemmas, which are proved in
the Appendix.

Lemma 2: Consider path Pmn along edges {�1, . . . , �k}
with indicator πmn. For fixed pressures ψm and ψn, if flow
vectors φ and φ′ with φ �= φ′ satisfy (3) and (4), they cannot
satisfy

sign(φ′ − φ)	 πmn > 0 or (5a)

sign(φ′ − φ)	 πmn < 0 (5b)

where the strict inequalities are understood entrywise.
To get some intuition, suppose that πmn takes the value

of +1 for edges {�1, . . . , �k}, and 0 for the remaining edges.
According to Lemma 2, if two pairs (φ,ψ) and (φ,′ψ′) satisfy
(3) and (4) with ψm = ψ′

m and ψn = ψ′
n, then the flows along

Pmn cannot uniformly increase from φ to φ′. In other words,
φ′� > φ� cannot occur simultaneously for all � ∈ Pmn. Flows
cannot uniformly decrease either (φ′� < φ� for all � ∈ Pmn).
This holds merely because the pressure drop across a pipe
decreases monotonically with GF, and compressors perform a
linear scaling [cf., (3) and (4)].

The following lemma describes an interesting effect on how
GFs get redistributed when gas injections change.

Lemma 3: Consider two pairs (q,φ) and (q,′ φ′) satisfying
(2). If q �= q′, there exists a path Pmn between nodes m and n
such that

sign(φ′ − φ)	 πmn > 0 (6a)

q′m > qm and q′n < qn (6b)

where πmn is the indicator vector for Pmn.
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Lemma 3 predicates that if gas injections change, there exists a
path: 1) along which flows increase uniformly, 2) the source node
of the path has increased injection, and 3) the destination node
has decreased injection. Lemma 3 has been established in [9]
via mathematical induction; see the Appendix for an alternative
perhaps more intuitive proof.

Using Theorem 1 and Lemmas 2 and 3, we next prove the
uniqueness of the GF task under the general setup.

Theorem 2: The GF problem (G1) has a unique solution, if
feasible.

Proof: Proving by contradiction, assume (q,φ,ψ) and
(q,′ φ,′ψ′) are two distinct solutions of (G1). Consider the GF
setup where |Nψ| > 1; the special case of |Nψ| = 1 is covered
by Theorem 1. If q �= q′, then Lemma 3 implies that there exists
a pathPmn with indicator vectorπmn satisfying (6a). Moreover,
it holds that q′m > qm and q′n < qn from (6b). By definition, gas
injections qi are fixed for all nodes i ∈ Nq . Therefore, nodes
m and n cannot be fixed-injection nodes. They have to be
fixed-pressure nodes belonging to Nψ , implying ψm = ψ′

m and
ψn = ψn. However, with the pressures at nodes m and n fixed,
the inequality (6a) contradicts Lemma 2. Hence, the assumption
of unequal injections is refuted, implying q = q′.

Given q and the reference pressureψr, Theorem 1 asserts that
there is unique triplet (q,φ,ψ) satisfying the GF equations.
Since q = q′, the triplets (q,φ,ψ) and (q,′ φ,′ψ′) have to
coincide. �

The uniqueness claim of Theorem 2 is fairly general since it
applies to any NGN topology and any GF setup with a single
or multiple fixed-pressure nodes. Having established unique-
ness, the following two sections develop a suite of GF solvers:
Section IV builds upon an existing convex solver for GF setups
with a single fixed-pressure node and no compressors. We de-
velop an unconstrained convex solver as well as an extension
that handles compressors on nonoverlapping cycles. Section V
adopts a convex relaxation and puts forth an MI-QCQP to handle
more general GF setups. The relaxation is provably exact for
NGNs with a single fixed-pressure node and nonoverlapping
cycles. Nonetheless, numerical tests demonstrate that this MI-
QCQP succeeds in finding the unique GF solution in NGNs with
multiple fixed-pressure nodes and overlapping cycles as long as
compressors are not on overlapping cycles.

IV. ENERGY FUNCTION MINIMIZATION

This section studies the GF task for the special case of
|Nψ| = 1. In an NGN without compressors, the GF task is posed
as a convex minimization. The approach can be extended to
networks having compressors, but not on cycles.

A. Existing Constrained Energy Function
Based GF Solver

Consider solving the GF task for a single fixed-pressure node
(the reference node r) and in an NGN without compressors. This
task boils down to solving (2) and (3). As shown in [12], the GFs
φ for this GF setup can be found as the minimizer of the convex

minimization

min
φ

∑
�∈P

a�
3
|φ�|3 (7a)

s.t. A�φ = q. (7b)

This can be readily verified by the first-order optimality con-
ditions of (7). In addition, the pressures ψ can be recovered
from the optimal Lagrange multipliers ξ ∈ RN associated with
constraint (7b): If ξ is shifted by a constant so that its rth
entry equals ψr, the remaining entries of this shifted ξ equal ψ.
Problem (7) can be reformulated as a second-order cone program
or tackled via dual decomposition; see [19].

B. Novel Unconstrained Energy Function
Based GF Solver

Rather than solving (7) over φ, here we show that one can
alternatively find the GF solution via an unconstrained convex
minimization over ψ as

min
ψ

2

3

∑
(m,n)∈P

|ψm − ψn|
3
2

√
amn

− q�ψ. (8)

The convexity of this objective function follows from compo-
sition rules. Since this function is convex and differentiable, its
unconstrained minimization is equivalent to nulling its gradient
vector. Setting the nth entry of this gradient to zero reveals that
the minimizer ψ∗ of (8) satisfies

∑
�=(m,n)∈P

sign(a�� ψ
∗)

√
|a�� ψ∗|
a�

= qn (9)

where a�� is the �th row of matrix A. Equation (9) is equivalent
to eliminating the flows φ from (2) and (3). As with (7), the
ambiguity in pressures could be handled by shifting ψ∗ by
a constant, so that ψ∗

r agrees with the given pressure at the
reference node r. Once pressures ψ∗ have been determined,
flows can be found using Lemma 1.

Remark 1: In the absence of compressors and when
|Nψ| = 1, the GF task becomes structurally similar to the water
flow problem in water distribution networks without pumps [19].
Therefore, the (un)constrained energy function minimization ap-
proaches of (7) and (8) apply to the GF and water flow problems
alike. For water networks, the decomposition technique of [19]
extends (7) and (8) to water network setups with |Nψ| = 1 and
pumps, but pumps cannot lie on cycles. A similar technique
can be used to solve the GF problem with compressors not on
cycles and |Nψ| = 1. The only modification needed relates to ac-
counting for the multiplicative pressure law in gas compressors
[cf., (4a)] vis-à-vis the additive pressure law of water pumps.
Additionally, the decomposition algorithm may be extended to
accommodate compressors on nonoverlapping cycles using the
flow-recovery procedure provided later as Algorithm 1. Since
carrying over this decomposition technique from the water flow
to the GF context is straightforward and due to space limitations,
it is not presented here.
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To handle GF setups with |Nψ| > 1 and/or NGNs with com-
pressors in loops, a convex relaxation of the Weymouth equation
is pursued in the following section.

V. MI-QCQP RELAXATION

The minimization approaches of (7) and (8) provide compu-
tationally efficient methods to solve the GF problem, but exhibit
the following three limitations:

1) they cannot handle multiple fixed-pressure nodes (|Nψ|
> 1);

2) cannot handle compressors on cycles;
3) cannot be extended to optimal GF formulations (e.g.,

along the lines of [20]).
To overcome these limitations, this section presents an MI-

QCQP-based solver that is applicable to any GF setup.

A. Problem Reformulation

The nonconvexity of (G1) is due to the Weymouth equation
in (3a). The piecewise quadratic equalities can be relaxed to
convex inequality constraints: The pressure drop along a lossy
pipe � = (m,n) ∈ P̄a is relaxed to the following conditions:

1) ψm − ψn ≥ a�φ
2
� for φ� ≥ 0;

2) ψn − ψm ≥ a�φ
2
� for φ� ≤ 0.

The two cases can be differentiated using a binary variable
x� capturing the direction of flow φ�. The relaxed pressure drop
equations can be compactly written as

(2x� − 1)ψm + (1− 2x�)ψn ≥ a�φ
2
�

where x� = 1 corresponds to φ� ≥ 0, and x� = 0 to φ� ≤ 0.
Despite the relaxation, the bilinear terms x�ψm make the afore-
mentioned constraint nonconvex.

The McCormick linearization, popular for approximating
multilinear terms by their linear convex envelopes, can be used
to handle these bilinear terms [21]. For the special case of
bilinear terms involving at least one binary term, the McCormick
linearization becomes exact. In fact, it is related to the so-termed
big-M trick, but instead of using a single arbitrarily large value
for M , it selects different values for M that are specialized per
product of variables, which could potentially reduce the running
time of mixed-integer programming solvers. Let us briefly re-
view the linearization. Consider the constraint z�n = x�ψn, for
which x� ∈ {0, 1} and ψn ∈ [ψ

m
, ψn]. This constraint can be

equivalently expressed via four linear inequalities

x�ψn ≤ z�n ≤ x�ψn (10a)

ψn + (x� − 1)ψn ≤ z�n ≤ ψn + (x� − 1)ψ
n
. (10b)

To verify the exactness, observe that when x� = 1, constraint
(10b) yields z�n = ψn and (10a) holds trivially. When x� = 0,
constraint (10a) enforces z�n = 0 and (10b) holds trivially.
Hence, the constraints in (10) ensure that z�n = x�ψn.

To arrive at an MI-QCQP relaxation of (G1), for all lossy
pipes � ∈ P̄a, the pressure drop constraint of (3a) is replaced by
(10) and

2z�m − 2z�n + ψn − ψm ≥ a�φ
2
� (11a)

− φ�(1− x�) ≤ φ� ≤ φ�x� (11b)

where φ� is an upper bound on |φ�|. Constraint (11a) represents
the relaxed Weymouth equation, and constraint (11b) defines
x� = sign(φ�). Similar relaxations have been previously used
in [4], [8], and [22]; see Section VI for a detailed comparison.

When solving the GF problem with the Weymouth equations
relaxed, the obtained solution is useful only if the relaxation is
exact, that is when (11a) holds with equality for all �. To render
the relaxation provably exact, we convert the feasibility problem
(G1) to the MI-QCQP minimization

min r(ψ) (G2)

over q,φ,ψ,x

s.t. (2), (4), (10), (11).

The optimization variable x stacks {x�}�∈P̄a , and the objective
function is judiciously selected as

r(ψ) :=
∑

(m,n)∈P̄a
(m,n)/∈SaC

|ψm − ψn|

where SaC is the set of cycles with compressors. These cycles
will be also termed as active cycles. The cost r(ψ) sums up
the absolute pressure differences across all lossy pipes not in
active cycles. Despite the nonconvexity of (G2) due to the binary
variables, this minimization can be handled for moderately sized
networks thanks to the advancements in mixed-integer second-
order cone solvers. The computational performance of (G2) is
further corroborated by our tests. The following section provides
network conditions under which the exactness of (G2) can be
guaranteed analytically. The tests in Section VII demonstrate
numerically that solving (G2) renders the relaxation exact for a
much broader class of networks.

For solving tasks such as (G1), NR-based or fixed-point itera-
tion solvers are often preferred as opposed to optimization-based
solvers due to computational superiority. However, in addition to
guaranteeing convergence irrespective of initialization, problem
(G2) can also be used as follows.

1) Infeasibility: As a relaxation of (G1), (G2) can be used to
screen infeasible GF instances; see Section VII for tests.
Such screening is of practical use as suggested in [23].

2) Initialization: Problem (G2) could be terminated before
reaching optimality to yield initializations for NR solvers,
hence combining the benefits of both approaches.

3) Optimal GF: The cost of (G2) could be useful as a
penalty term that can be added to optimization prob-
lems [19], [20]. However, guaranteeing exact relaxation
for such problems would need further analysis.

B. Exactness of the Relaxation

The relaxation in (G2) will be analytically shown to be exact
under the following network conditions.

Condition 1: The GF setup has a single fixed-pressure node,
that is |Nψ| = 1.

Condition 2: Each edge of the NGN belongs to at most one
cycle.

Condition 3: The NGN does not exhibit circulation of gas,
that is, nc 	 φ �> 0 and nc 	 φ �< 0 for every cycle C.
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Under Condition 1, the nodal injections are fixed a priori
and the GF task aims at finding the associated (ψ,φ). Albeit
Definition 1 considered the GF task with multiple fixed-pressure
nodes, the setup of a single fixed-pressure node is commonly
met; see [8], [10], [18], and [24]. Regarding Condition 2,
although it may seem restrictive at the outset, it is satisfied by
several practical gas networks [25]. For Condition 3, a circu-
lation occurs when gas flows around a cycle along the same
direction. It is easy to verify that gas cannot circulate in a cycle
without compressors since the incurred pressure drops along the
cycle will all be in the same direction and thus cannot sum up
to zero. In cycles with compressors, gas circulation can occur
though it would cause an undesirable loss of energy. However,
the tests of Section VII demonstrate that the relaxation in (G2)
is exact even in setups where the sufficient Conditions 1–3 are
all violated.

The next exactness claim applies to the GF setup with known
injections. From Lemma 1, we know that solving the GF task is
equivalent to finding the correct flowsφ. The next result provides
conditions under which (G2) yields flowsφwith partially correct
entries. An algorithm to retrieve the entireφ and thus eventually
solve (G1) is presented afterward.

Theorem 3: Let φ be the unique flow vector solving (G1),
and φ′ the flow vector minimizing (G2). Under Cond. 1–3, it
holds φ′� = φ� for all edges � not belonging to active cycles.

Theorem 3 establishes that the only possible mismatches
between φ′ and φ occur only at the edges lying on cycles with
compressors. Then, if there are no cycles with compressors, the
GF problem is solved correctly; see also [8, Th. 2].

Corollary 1: Under Conditions 1 and 2, for an NGN without
compressors in cycles, the minimizer of (G2) solves (G1) as well.

Corollary 1 identifies a setup where (G2) is equivalent to solv-
ing (G1). Nonetheless, if there are no compressors in cycles, one
would prefer tackling (G1) using the solvers of Section IV. This
is because running the decomposition technique discussed in
Remark 1 and solving (7) are simpler than solving the MI-QCQP
of (G2).

C. Recovering the GF Solution

Returning to the general setup, we next provide a procedure
to retrieve the solution φ of (G1) given a minimizer φ′ of (G2).
From Theorem 3, vector φ′ needs to be corrected only at the
entries corresponding to edges in active cycles. To this end,
we first put forth an algorithm to correct the flows within a
single active cycle, and then delineate the steps to systematically
correct the flows for all active cycles of the network.

Consider an active cycle C withNC nodes. Let ψ0 be a known
pressure on node 0 ∈ C, and φ′

C be the NC-length subvector of
φ′ collecting the flows on C. Similarly, let nC be the NC-length
subvector of the indicator vector for cycle C. The following
lemma explains how φC can be recovered from φ′

C .
Lemma 4: Given a known pressure ψ0, and flows φ′

C on
active cycle C obtained from (G2), Algorithm 1 determines the
corrected GFs φC such that the relaxed Weymouth equations in
(11) are satisfied with equality.

Proof: Because φ and φ′ both satisfy (2), it follows that
(φ− φ′) ∈ null(A�). Since there are no overlapping cycles,

we have that φC = φ′
C + λCnC for some λC ∈ R. To recover

φC , we next provide a method for finding λC .
Suppose one is given a λ ∈ R. Given pressure ψ0 and the

candidate flow vectorφ′
C + λnC , one can calculate the pressures

along C sequentially using (3a) and (4a). Upon completing the
cycle, the pressure at node 0 ∈ C will be evaluated to the value
of ψ̂0(λ). The value ψ̂0(λ) may not be equal to ψ0. Note that for
λ > λC , it holds that

sign(φ′
C − φC + λnC)	 nC = sign ((λ − λC)nC)	 nC > 0.

Using the above along with the argument used in the proof of
Lemma 2, it can be shown that ψ̂0(λ) < ψ0. In a similar fashion,
if λ < λC , then ψ̂0(λ) > ψ0. Therefore, the function ψ̂0(λ)− ψ0

is monotonic in λ, and ψ̂0(λ) = ψ0 if and only if λ = λC . Thanks
to this monotonicity, one can find λC iteratively using bisection,
tabulated as Algorithm 1.

Lemma 4 shows that φC can be recovered from ψ0 and φ′
C

using a bisection technique on λ. The limits for the search space
[λ, λ] of λ can be found using engineering constraints on GFs.
In fact, these limits can be tightened since the entries of φ′

C and
φC(λ) = φ

′
C + λnC corresponding to any compressor in C must

have the same sign due to (4b).
We next provide the steps to find the correct GF solution using

the flow φ′ obtained from (G2).
T1) Select a spanning tree T of the NGN graph G rooted at

the reference node r.
T2) Starting from node r, traverse T via a depth-first search.
T3) If a node n does not belong to an active cycle of G,

calculate its pressure as follows: If the edge connecting
node n to its parent node in T is a lossy pipe, use (3a);
else, if this edge is a compressor, use (4a).

T4) If a node n belongs to an active cycle C, check if the
flows in cycle C have been corrected. If the flows are
already corrected or if i is the first node in C that is
encountered, compute the nodal pressure as in step T3).
Else, pass the pressure at the parent node of i (which is
also in C) along with the noncorrected flow subvector
φ′

C to Algorithm 1 and obtain the corrected flows on C.
T5) Continue until all nodes in T have been traversed.

VI. COMPARISON TO PRIOR WORK

This article puts forth three novel components: c1) proving
the uniqueness of the GF problem solution under steady-state
conditions; c2) proposing GF solvers based on the energy func-
tion minimization; and c3) devising a provably exact MI-QCQP
relaxation. These components are next contrasted to existing
related works:

c1) Uniqueness: For an NGN with no compressors, the GF
solution may be found as a minimizer of (7); see [12] and [23].
A linearization technique has also been put forth to accelerate
solving (7) [23]. Papers [9] and [13] broaden the uniqueness
claim for NGNs with additive compressors of constant gain.
These works formulate strictly convex problems that yield a GF
solution; hence proving uniqueness by convexity. However, gas
compressors are oftentimes multiplicative, so that the previous
uniqueness claims do not carry over. In our work [8], uniqueness
was proved for multiplicative compressors under any network
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topology, but with a single fixed-pressure node. Theorem 2
generalizes all past claims for NGNs with multiplicative com-
pressors, any topology, and an arbitrary number of fixed-pressure
nodes.

c2) Energy function minimization: Problem (7) dates back
to [12], and has since been used for solving the GF task; verify-
ing the feasibility and uniqueness of a GF instance [23]; and
initializing optimization problems. However, its applicability
was limited to NGNs without compressors. As explained in
Remark 1, this work suggests using (7) to handle NGNs with
compressors on nonoverlapping cycles. We also present the
unconstrained energy function formulation of (8).

c3) MI-QCQP relaxation of GF: The key difficulty in solv-
ing (optimal) GF problems stems from the nonlinear Wey-
mouth equation. A disjunctive convex relaxation of this equation
was found to be efficient in [4] and [22]. Numerous studies
have thereon employed similar convex relaxations; see [5], [7],
and [26]. Unfortunately, it is hard to guarantee the exactness
of these relaxations. An effective heuristic is to fix the binary
variables involved to the values obtained by the convex relax-
ation and handle the resultant nonconvex nonlinear program
through a general solver [4], [5]. A gas-electric flow problem
was solved in [26], wherein a cost function was proposed that
was numerically found useful toward attaining exact relaxation.
Unlike previous works, the MI-QCQP formulation of Section V
provides theoretical guarantees for exact relaxation, while ex-
panding the claims of [8]. The GF solver developed in [8] was
applicable to NGNs with compressors not on cycles. However,
in this work, the cost function of (G2) is meticulously designed
to ensure that correct flows are obtained outside active cycles.
Additionally, Algorithm 1 is developed to enable flow correction
on active cycles efficiently. Although the GF problem is intrin-
sically simpler than the optimal gas (and possible electric) flow
problem considered in prior works, this article lays a foundation
toward analytical guarantees for exact relaxation. It has been
recently shown that exact relaxation of network flow optimiza-
tion problems may be guaranteed using a convex penalty [27].
It is worth mentioning that a related MI-QCQP formulation of

Fig. 1. Top: Modified Belgian NGN. Bottom: GasLib-40 network with
red edges representing compressors.

the water flow problem in [19], can also provably yield an exact
convex relaxation for the optimal water flow task [20].

VII. NUMERICAL TESTS

The proposed GF solver based on the relaxed MI-QCQP (G2)
and Algorithm 1 was tested on the modified Belgian benchmark
NGN and the GasLib-40 NGN of Fig. 1. Starting with the
Belgian NGN, the pipe coefficients and compressor ratios were
derived based on the nodal pressures and edge flows reported
in [12]. The network contains three compressors, which are
modeled as ideal compressors followed by lossy pipes. Problem
(G2) was solved using the MATLAB-based optimization tool-
box YALMIP using CPLEX as the MI-QCQP solver [28], [29].
All tests were conducted on a 2.7-GHz Intel Core i5 computer
with 8 GB RAM.

As a model validation step, we first tested the (G2) solver
on the original Belgian network, which is a tree, except for one
cycle formed by parallel compressors (see Fig. 1). The pressure
at node 1 was treated as a reference. The flow values obtained
from (G2) agreed with those of [12] for all edges except for the
edges along the active cycle. Similarly, the pressures agreed for
all nodes other than node 20. Therefore, the pressure at node 19
and the flows on edges (19, 21), (19, 22), (20, 21), (20, 22) were
passed to Algorithm 1 for correction. The final result was found
to coincide with [12].

The Belgian network was subsequently augmented by addi-
tional pipelines (see Fig. 1). The resulting modified network
has overlapping cycles, thus violating Condition 2 required in
Theorem 3. To get reasonable friction coefficients, for every
added line (m,n), the coefficient amn was set equal to the
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Fig. 2. Inexactness gap attained by (G2) followed by Algorithm 1 over
random feasible instances of the GF problem.

sum of a′�s along the m− n path, yielding a2,5 = 0.1936,
a10,14 = 0.0439, a7,12 = 0.0419. We kept the reference pres-
sure at node 1 and the compression ratios constant as in [12],
and drew 1500 random gas injections q. To construct these
samples, we perturbed the benchmark injectionsq0 that lie in the
range [−15.61, 22.01] by a standardized normal deviation. The
injection at node 20 was set to the negative sum of the remaining
injections to get 1�q = 0 for all samples.

Using the modified meshed Belgian NGN of Fig. 1 and the
random gas injections, we tested the exactness of (G2) and the
performance of Algorithm 1. Not all of the random injections
were feasible for the GF problem – some violated (4b) or (3b).
Problem (G2) was infeasible for 876 out of the 1,500 random
instances. Since (G2) is a relaxation of (G1), these instances
are apparently infeasible for (G1) too. The performance of (G2)
and Algorithm 1 was tested on the remaining 624 gas injection
instances. To evaluate the success of (G2) in solving (G1), we
calculated the inexactness gap G defined as

G := max
(m,n)∈P̄a

|ψm − ψn| − amnφ
2
mn

amnφ2mn
≥ 0

for the pressures and flows obtained by (G2) and Algorithm 1.
The ranked inexactness gap for the feasible GF instances is

shown by the first curve in Fig. 2. The gap was less than 10−3 for
more than 97% of the feasible instances, while the maximum gap
over all instances was 0.009. This corroborates that the proposed
solver performs well even when Condition 2 is not met. Fig. 3
shows the running time for solving (G2) and Algorithm 1 over
the 624 feasible instances. The average (median) running time
was 0.96 s (0.89 s).

Considering Condition 1, we used the fixed pressure at node 1
and the pressures obtained at node 7 for the feasible GF in-
stances, we solved (G2) again. Although the hypothesis of
Theorem 3 does not hold anymore, the inexactness gap was
found to be less than 10−3 for more than 94% of the instances;
see the second curve in Fig. 2. Thus, the tests reveal that the
novel solver successfully finds the GF solution even when the
sufficient Conditions 1 and 2 are violated. However, Condition 3
prohibiting gas circulations could not be violated for the Belgian
NGN because the only active cycle in this NGN has parallel
compressors, hence avoiding circulations from (4b). We next

Fig. 3. Running time for (G2) and Algorithm 1 over random feasible
GF instances.

deal with GF instances on the GasLib-40 network, wherein a
circulation could potentially occur.

GasLib-40 roughly represents a part of the German gas trans-
port network [30]. The network exhibits 40 nodes, 39 pipes,
and 6 compressors [see Fig. 1 (bottom)]. The pipe dimensions,
roughness coefficients, and a nominal demand vector q0 were
derived from [30]. The goals for conducting additional tests on
GasLib-40 include the following conditions:

1) evaluating our solvers on a realistic setup;
2) testing our MI-QCQP when Condition 3 is violated;
3) benchmarking the performance of our solvers against the

NR-based solver.
We next briefly introduce the NR-based solver used

for benchmarking. Given an injection q, compressor ra-
tios α�s and reference pressure ψ1 stack the unknowns as
y = [φ1, . . . , φL, ψ2, . . . , ψN ]�. Define the equality constraints
(2), (3a), and (4a) collectively as g(y) = 0. Given an initial
estimate y0, the NR-based solver would iterate as

yt+1 = yt − μ[J(yt)]
−1g(yt)

where t is the iteration count, matrix J(yt) is the Jacobian of
g(y) evaluated at yt, and μ a step size. A solution y� obtained
on the convergence of NR updates would be deemed feasible if
the inequalities (3b) and (4b) are satisfied. Since the NR updates
target at attaining g(y) = 0, the performance evaluation criteria
for our results would be ‖g(y)‖2 in lieu of the inexactness
gap G.

In the first set of tests on GasLib-40, we generated 500 gas
injection instances q by scaling the entries of q0 independently,
by random factors chosen uniformly on [0.75,1.25]. The pres-
sure at node 1 was set to 50 bar and its injection was set to
the negative sum of other nodes for all instances. Next, the
compression ratios for the six compressors were drawn uni-
formly within [1, 2]. All 500 instances were solved using three
approaches: a1) the MI-QCQP and Algorithm 1; a2) NR with
flows initialized at (A�)†q, and all pressures initialized at ψ1;
and a3) NR with flows and pressures initialized at the solution of
MI-QCQP and Algorithm 1. The stopping criteria for NR were
set to ‖g(y)‖2 < 10−3, subject to a maximum iteration count
of 50. The step size for both initialization scenarios was kept
as μ = 1. The MI-QCQP deemed five out of the 500 instances
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Fig. 4. Accuracy measure ‖g(y)‖2 for GF solutions obtained by MI-
QCQP in (G2) followed by Algorithm 1, and GF solutions found by the
NR iterations for different initializations.

as infeasible and the performance criteria ‖g(y)‖2 was found
to lie in [0.005,0.183] with the median at 0.009. To compare
to the index of the inexactness gap, the range for G for the
495 feasible cases was [8 · 10−5, 6 · 10−2]. Thus, the MI-QCQP
alongside Algorithm 1 was successful in finding the GF solution
for all 495 instances. Interestingly, 474 of the 495 feasible GF
instances exhibit circulations, and hence violate Condition 3.
Thus, the numerical results empirically demonstrate that the
developed MI-QCQP alongside Algorithm 1 successfully solves
the GF problem even when the conditions of Theorem 3 are vi-
olated. The NR solver, if initialized at the solution of MI-QCQP
improves the solution accuracy, resulting in ‖g(y�)‖2 within
1.2 · 10−4 − 0.13. For the five instances deemed infeasible by
MI-QCQP, the NR solver was initialized at all zero flows and
pressures; all five instances failed to converge. Surprisingly,
when the NR solver was initialized with (A�)†q as flows and
ψ′
0s as pressures, all 500 instances failed to converge. The

nonconvergence of the NR solver is however alleviated when
μ was reduced as discussed next.

A second set of tests were conducted on the GasLib-40 NGN
with 500 random injections and compressor ratios generated as
described earlier. The MI-QCQP solver deemed seven of the
500 instances as infeasible. All 500 instances were then solved
with the NR-based solver with flows initialized at (A�)†q and
pressures at ψ1, and μ was set to μ = 0.9. A steep decline in
‖g(yt)‖2 was observed in the first few (roughly 10) iterations,
while the tolerance of 10−3 was not attained within the 50
iterations limit. However, if the NR solver is initialized at the
solution of MI-QCQP and Algorithm 1, the convergence criteria
of 10−3 were attained at an average of 7.8 iterations. The values
of ‖g(y)‖2 attained by three solution techniques a1)–a3) are
shown in Fig. 4. The results suggest that the accuracy of the
MI-QCQP solver is better than that of a2), which is a prudent
initialization. However, if the NR-based solver is warm-started
with the solution of MI-QCQP, an order of magnitude improve-
ment in accuracy is observed. On the computational front, the
MI-QCQP solver alongside Algorithm 1 is efficient with the
median solving time of 1.52 s. However, as anticipated, the NR
solvers have superior performance with median solving time of
0.17 s. Finally, inspecting the seven instances deemed infeasible
by the MI-QCQP solver, the solution obtained by a2) indicates

Fig. 5. Nomenclature for nodes and edges along Pmn.

violation of (4b), demonstrating the merit of the proposed MI-
QCQP toward certifying infeasibility of GF instances.

VIII. CONCLUSION

Exploiting recent results from graph theory and convex relax-
ations, this article provides a fresh perspective on the steady-state
GF problem. The uniqueness of the GF solution has been estab-
lished in a generalized setting for arbitrary NGN topologies,
multiplicative compressors and multiple fixed-pressure nodes.
Granted that the GF solution is unique, constrained and uncon-
strained versions of convex energy function minimization-based
GF solvers have been proposed. These solvers can efficiently
solve any GF task instance with a single fixed-pressure node
and networks with compressors not on cycles. To expand the
scope, an MI-QCQP GF solver had been also proposed rely-
ing on a convex relaxation of the Weymouth equation. The
relaxation has been shown to be exact under specific network
conditions. Numerical tests reveal that the developed MI-QCQP
solver succeeds in finding the unique GF solution even when the
needed conditions are violated. The success of the MI-QCQP
relaxation is attributed to a judiciously designed objective. The
developed approach sets forth an analytical platform for ensuring
exact relaxation. Evaluating the performance of the developed
approach for various optimal GF tasks constitutes an interesting
research direction.

APPENDIX

Proof of Lemma 2: For an edge �i ∈ Pmn, let us name the
incident node closer tom asmi, and the other node asmi+1, as
shown in Fig. 5.

Let ψ and ψ′ be the pressure vectors corresponding to φ and
φ′. Since pressures ψm and ψn are fixed, it follows ψm = ψ′

m

and ψn = ψ′
n. Proving by contradiction, suppose (5a) holds.

If that is the case, first it will be shown that ψ′
mi

− ψ′
mi+1

>
ψmi − ψmi+1

for every lossy pipe �i ∈ Pmn.
Suppose that sign(φ′ − φ) · πmn > 0. Let us denote the

right-hand side (RHS) of (3a) by w(φ�). It is evident that w(φ�)
is monotonically increasing in φ�. Hence, for any lossy pipe
�i ∈ Pmn, it holds

0
a
< πmn�i sign(φ′�i − φ�i)

b
= πmn�i sign(w(φ′�i)− w(φ�i))

c
= sign(πmn�i ) sign(w(φ′�i)− w(φ�i))

d
= sign(πmn�i w(φ′�i)− πmn�i w(φ�i))

e
= sign((ψ′

mi
− ψ′

mi+1
)− (ψmi − ψmi+1

)) (12)

where (a) holds by hypothesis, (b) stems from the monotonicity
of w(φ�), (c) holds because πmn�i ∈ {0, 1,−1}, (d) holds from
the property of sign by definition, and (e) from the definition of
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Fig. 6. Augmented NGN graph.

πmn and (3a). The inequality (12) implies

ψ′
mi

− ψ′
mi+1

> ψmi − ψmi+1
. (13)

Let us now apply (13) and (4a) for the edges �1 to �k along
Pmn. For the fixed-pressure node m, we have ψm = ψ′

m. If
�1 is a lossy pipe, we get ψ′

m2
< ψm2

from (13); otherwise
ψ′
m2

= ψm2
from (4a). Similarly, we can show that ψ′

m3
≤

ψm3
, where the equality holds only if both �1 and �2 are

compressors. However, this is practically impossible as every
compressor is modeled as an ideal compressor followed by a
lossy pipe, necessitating ψ′

m3
< ψm3

. Continuing the process
for all edges alongPmn yieldsψ′

n < ψn, which contradicts with
node n being a fixed-pressure node. Similarly, the assumption
sign(φ′ − φ) · πmn < 0 leads to a contradiction by yielding
ψ′
n > ψn. �

Proof of Lemma 3: Given the two pairs (q,φ) and (q,′ φ′)
satisfying (2) and q �= q′, let us define φ̃ := φ′ − φ and
q̃ := q′ − q. By applying (2) on (q,φ) and (q,′ φ′), and taking
the difference, we get

A�φ̃ = q̃. (14)

Since 1 ∈ null(A), premultiplying (14) by 1� provides

1�q̃ = 0. (15)

From (14) and (15), the pair (q̃, φ̃) qualifies as a set of balanced
gas injections. By definition of (q̃, φ̃), proving (6) is equivalent
to showing there exists a path Pmn for which

φ̃	 πmn > 0 (16a)

q̃m > 0 and q̃n < 0. (16b)

To prove the existence of such a path, we use the ensuing result
based on [31, Th. 8.8]. �

Lemma 5 (see [31]): Given a graph with injection q at node
s, demand q at node t, and zero injections at all other nodes,
there exists an s–t path with flow directions along the path from
s to t:

Lemma 5 considers a single-source single-destination net-
work flow setup. We transform our problem to this setup through
the following steps (see also Fig. 6):

1) The nodes of graph G are partitioned into the subset with
positive N+ : {n ∈ N : q̃n > 0}; negative N− : {n ∈

Fig. 7. Four possible scenarios for a cycle with noncirculating GF. The
arrows represent the actual GF directions.

N : q̃n < 0}; and zero injections N0 : {n ∈ N : q̃n =
0}. Because q̃ �= 0, the sets N+ and N− are nonempty.

2) Augment G by adding nodes s and t.
3) All nodes in N+ are connected to node s, and all nodes

in N− are connected to node t.
4) The injections in N+ are lumped in node s by setting the

flows φ̃sn = q̃n for alln ∈ N+. Similarly, the demands in
N− are lumped in node t by setting the flows φ̃nt = −q̃n
for all n ∈ N−.

Applying Lemma 5 on this augmented graph, there exists a
path Pst with flow directions from s to t. For any such path
Pst, eliminate the first and last edges to get a path Pmn with
m ∈ N+ and n ∈ N−. Claim (16b) follows by construction. We
next show (16a): For each edge � ∈ Pmn, it was shown that
the direction of φ̃� is along the path Pmn. If πmn� = +1, the
direction of edge � agrees with the direction of Pmn. Since φ̃� is
along Pmn, then φ̃� > 0. If πmn� = −1, the direction of edge �
is opposite to the direction of Pmn. Since φ̃� is along Pmn, then
φ̃� < 0. Either way, it holds that φ̃�πmn� > 0 for all � ∈ Pmn,
which proves (6a).

Proof of Theorem 3: Before proving the main result, we
will need two preliminary results. �

Lemma 6: For a lossy pipe � = (m,n) not on an active
cycle, if the triplet (ψm, ψn, φ�) satisfies (11), then the triplet
(ψm + δ, ψn + δ, φ�) also satisfies (11) for any finite δ.

Lemma 6 follows directly from the fact that (11) involves
pressure differences rather than pressures.

Lemma 7: Consider an active cycle C0 and index its nodes
as {0, . . . , k}. Given a fixed pressure ψ0 and flows {φ�}�∈C0
satisfying Condition 3 and (4b), there exists a set of pressures
{ψi}ki=1 satisfying (11) and (4a).

Proof: From Condition 3 and the fact that a compressor is
modeled as an ideal compressor followed by a lossy pipe, it is
not hard to see that there must exist a node k ∈ C0 that leads to
one of the four flow scenarios shown in Fig. 7.

Proving by construction, we will next define pressures
{ψi}ki=1 such that (11) and (4a) are satisfied for all edges in C0.
Traversing the paths 0 → k1 and 0 → k2, one can recursively
define pressures for all nodes usingψ0 and flows {φ�}�∈C0 based
on the exact Weymouth equation (3) and (4a). The pressures on
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the remaining nodes of C0 can be defined for the four scenarios
of Fig. 7 as follows:

(a)ψk := min{ψk1 − ak1kφ
2
k1k

, ψk2 − ak2kφ
2
k2k

}

(b)ψk := max{ψk1 + akk1φ
2
kk1

, ψk2 + akk2φ
2
kk2

}

(c)ψk := max

{
ψk1 + ak′1k1φ

2
k′1k1

αkk′1
,
ψk2 + ak′2k2φ

2
k′2k2

αkk′2

}

ψk′1 := αkk′1ψk, ψk′2 := αkk′2ψk

(d)ψk := max

{
ψk1 + ak′1k1φ

2
k′1k1

αkk′1
, ψk2 + akk2φ

2
kk2

}

ψk′1 := αkk′1ψk.

To see that the constructed pressures satisfy (11), take, for
example, scenario (a). Applying (11) along the edges (k1, k)
and (k2, k) yield that ψk should satisfy ψk ≤ ψk1 − ak1kφ

2
k1k

and ψk ≤ ψk2 − ak2kφ
2
k2k

. This is indeed the case by selecting
ψk as the minimum of the two RHS. Similar reasoning applies
to the other scenarios. �

Proceeding with the proof of Theorem 3, let (φ,ψ) be the
unique solution to (G1), and (φ,′ψ′) a minimizer of (G2).
Proving by contradiction, assume that there exists an edge �
not belonging to an active cycle, such that φ′� �= φ�. Recall that
the set of all active cycles is denoted by SaC . Since both flow
vectors satisfy (2), their difference n := φ− φ′ must lie in
the nullspace of A�. The nullspace of A� is spanned by the
indicator vectors for all fundamental cycles in the gas network
graph [32, Corollary 14.2.3]. Therefore, the entries of n related
to edges not on a cycle must be zero. Since by hypothesis � /∈ SaC ,
edge � should belong to one of the cycles in SC \ SaC . This
nonactive cycle will be henceforth termed C.

The rest of the proof is organized in three parts: Part I
constructs a flow vector φ̂ that satisfies (2) and (4b). Part II
shows there exists a ψ̂ so that the pair (φ̂, ψ̂) is feasible for
(G2). Part III shows that (φ̂, ψ̂) attains a smaller objective for
(G2), thus contradicting the optimality of (φ,′ψ′).

Part I: Define the flow vector φ̂ as

φ̂� :=

⎧⎪⎨
⎪⎩
φ�, � ∈ C
φ�, � belongs to any active cycle

φ�,
′ otherwise.

(17)

By construction, vector φ̂ satisfies

φ′ − φ̂ = λnC + na (18)

where nC is the indicator vector for cycle C, the constant λ is
nonzero, and vector na ∈ null(A�) can have nonzero entries
only for edges in active cycles. Since φ′ satisfies constraint (2)
andA�nC = A�na = 0, thenA�φ̂ = A�φ′ = q. This proves
that φ̂ satisfies (2). Note that φ̂ is constructed by selecting entries
from φ and φ′. Granted both φ and φ′ satisfy (4b), vector φ̂
trivially satisfies (4b) too.

Part II: We will delineate the steps for constructing a vector
of pressures ψ̂ such that (φ̂, ψ̂) is feasible for (G2). Let us select
a spanning tree T of the NGN graph G rooted at the reference
r. We shall define the pressures ψ̂ns while traversing T via

depth-first search. In such a traversal, the following three cases
may be identified on arriving at any node n.

Case 1: Node n is neither in C nor on an active cycle. Let
n− 1 be the parent node of n in T and define

ψ̂n :=

{
αn−1,nψ̂n−1, if (n− 1, n) ∈ Pa
ψ̂n−1 + (ψ′

n − ψ′
n−1), if (n− 1, n) ∈ P̄a.

Since the edge (n− 1, n) is not in C ∪ SaC , we have φ̂n−1,n =
φ′n−1,n from (17). Therefore, if (n− 1, n) is a lossy pipe,

Lemma 6 ensures that the defined pressure ψ̂n satisfies (11).
Moreover, if (n− 1, n) is a compressor, constraint (4a) is satis-
fied trivially by definition.

Case 2: Node n is in C. If n is the first node in C to be
visited, define ψ̂n as in Case 1. Then, define the pressures for
the remaining nodes i ∈ C as ψ̂i := ψi + (ψ̂n − ψn). Note from
(17) that the flows along C are assigned from φ, the pair (φ,ψ)
satisfies (3) and hence the relaxed Weymouth (11) as well. The
constructed pressures ψ̂is for i ∈ C are simply a shifted version
of the pressures ψis. Therefore, the pressures ψ̂is satisfy (11)
from Lemma 6. Mark all nodes in C as traversed and continue.

Case 3: Node n is in an active cycle Ca. If n is the first node in
Ca to be traversed, define the ψ̂n as in Case 1. Then, define the
pressure for the remaining nodes i ∈ Ca using Lemma 7. Mark
all nodes in Ca as traversed and continue.

Since the constructed pressures satisfy (11) and (4a), the pair
(φ̂, ψ̂) is feasible for (G2). Observe that the pressure drop across
lossy pipes not in C is ψ̂m − ψ̂n = ψ′

m − ψ′
n for Case 1; and

ψ̂m − ψ̂n = ψm − ψn for lossy pipes in C under Case 2. This
fact is imperative for the ensuing Part III.

Part III: We will next show that r(ψ′) > r(ψ̂) to contradict
the optimality of ψ′. Note that the objective r(ψ) in (G2) sums
up the absolute pressure differences along lossy pipes, but not
on active cycles. Since by construction these differences have
changed only along C, we get

r(ψ′)− r(ψ̂) =
∑

(m,n)∈C
|ψ′
m − ψ′

n| − |ψ̂m − ψ̂n|. (19)

As the pressure differences depend on flows, we next compare
the entries of φ̂ and φ′ along C using (18). Since the edge
directions are assigned arbitrarily, assume wlog that φ̂mn ≥ 0
for all (m,n) ∈ C. Given nC and (18), one can find the value of
λ. If λ < 0, reverse the reference direction for cycle C to get a
positive λ. Because of this, we can assume λ > 0.

Recall that nC ∈ {0,±1}P . Partition the set of edges in C
into mutually exclusive sets P̂+ and P̂− based on positive and
negative entries of nC , respectively. From (18), it follows

0 ≤ φ̂� < φ′� ∀� ∈ P̂+. (20)

Summing up the pressure drops along C for ψ̂ should be zero.
Since the pressure drops along C are positive for the edges in
P̂+, and negative along the edges in P̂−, it holds that∑

(m,n)∈P̂+

(ψ̂m − ψ̂n) =
∑

(m,n)∈P̂−

(ψ̂m − ψ̂n)

⇒
∑

(m,n)∈C
|ψ̂m − ψ̂n| = 2

∑
(m,n)∈P̂+

(ψ̂m − ψ̂n) (21)
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where the absolute value is trivial since φ̂mn ≥ 0 for all
(m,n) ∈ C.

Drawing similar relations on ψ′, define the set P′
+ ⊂ C con-

taining any edge (m,n) ∈ C such that the flow φ′mn is along the
direction of nC . Using the same argument as in (21) for ψ′, we
obtain ∑

(m,n)∈C
|ψ′
m − ψ′

n| = 2
∑

(m,n)∈P′
+

(ψ′
m − ψ′

n). (22)

Because the flows in φ̂ for the edges in P̂+ are aligned with nC
andφ′� > φ̂� for these edges from (20), it follows that P̂+ ⊆ P′

+.
Using the latter in (22), we get

2
∑

(m,n)∈P̂+

(ψ′
m − ψ′

n) ≤ 2
∑

(m,n)∈P′
+

(ψ′
m − ψ′

n)

=
∑

(m,n)∈C
|ψ′
m − ψ′

n|. (23)

For every edge � = (m,n) ∈ P̂+, it holds that

ψ̂m − ψ̂n
(a)
= a�φ̂

2
�

(b)
< a�φ

′2
�

(c)

≤ ψ′
m − ψ′

n (24)

where (a) comes from the definition of pressures in Case 2
of Part II, (b) descends from φ′� > φ̂� > 0, and (c) from (11).
Summing (24) over all � ∈ P̂+ and multiplying by 2 gives

2
∑

(m,n)∈P̂+

(ψ̂m − ψ̂n) < 2
∑

(m,n)∈P̂+

(ψ′
m − ψ′

n)

⇒
∑

(m,n)∈C
|ψ̂m − ψ̂n| <

∑
(m,n)∈C

|ψ′
m − ψ′

n|

where the inequality stems from (22) and (23). From (19),
the latter implies that r(ψ′) > r(ψ̂), hence contradicting the
optimality of ψ′. �
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