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On the Flow Problem in Water Distribution
Networks: Uniqueness and Solvers

Manish Kumar Singh

Abstract—Increasing concerns on the security and qual-
ity of water distribution systems (WDS), call for compu-
tational tools with performance guarantees. To this end,
this work revisits the physical laws governing water flow
(WF) and provides a hierarchy of solvers of complementary
value. Given the water injection or pressure at each WDS
node, finding the WFs within pipes and pumps along with
the pressures at all WDS nodes, constitutes the WF prob-
lem. The latter entails solving a set of (nhon)-linear equa-
tions. We extend uniqueness claims on the solution to the
WF equations in setups with multiple fixed-pressure nodes
and detailed pump models. For networks without pumps,
the WF solution is already known to be the minimizer of
a convex function. The latter approach is extended to net-
works with pumps but not in cycles, through a stitching al-
gorithm. For networks with nonoverlapping cycles, a prov-
ably exact convex relaxation of the pressure drop equations
yields a mixed-integer quadratically constrained quadratic
program (MI-QCQP) solver. A hybrid scheme combining the
MI-QCQP with the stitching algorithm can handle a WDS
with overlapping cycles, but without pumps on them. Each
solver is guaranteed to converge regardless of initializa-
tion, as numerically validated on a benchmark WDS.

Index Terms—Convex relaxation, graph reduction,
second-order cone program (SOCP), uniqueness, water
flow (WF) equations.

[. INTRODUCTION

ATER distribution systems (WDSs) serve as a critical
W infrastructure across the world. The direct dependence
of human lives on the availability of water has motivated re-
search on the security, resiliency, and quality of water supply
systems [1], [2]. The high cost of installation for different WDS
components renders long-term network planning an important
problem [3], [4]. Furthermore, the relatively expensive operation
of a WDS is primarily attributed to the electricity cost for
running pumps to properly circulate water [5]. Thus, optimal
pump scheduling for the daily operation of a WDS is a per-
tinent research problem [6]-[9]. An inevitable component of
the aforementioned computational problems is satisfying the

Manuscript received March 31, 2020; revised July 31, 2020; accepted
September 17, 2020. Date of publication October 6, 2020; date of
current version February 26, 2021. This work was supported by the U.S.
National Science Foundation under Grant 1711587. Recommended by
Associate Editor A. Sun. (Corresponding author: Vassilis Kekatos.)

The authors are with the Bradley Department of Electrical and Com-
puter Engineering, Virginia Tech, Blacksburg, VA 24061 USA (e-mail:
manishks@vt.edu; kekatos@vt.edu).

Digital Object Identifier 10.1109/TCNS.2020.3029150

, Graduate Student Member, IEEE, and Vassilis Kekatos

, Senior Member, IEEE

physical laws governing water flow (WF). Mathematically, the
WEF equations consist of a set of linear equations ensuring mass
conservation, along with a set of nonlinear equations arising
from energy and momentum conservation [10].

Solving the WF equations constitutes the WF problem. Specif-
ically, given water demand at all nodes, the standard WF task
aims at finding the WFs within all pipes and the pressures
at all nodes complying with the WF equations. Despite being
nonlinear, these equations enjoy a unique solution for networks
with a single fixed-pressure node and when the pressure added
by pumps is approximated as constant [11]. Modern rendi-
tions of the WF problem may incorporate pumps, valves, and
pressure-based demands [12], [13]. Either way, handling the
nonlinear equations stemming from the conservation of energy
and momentum remains as the core challenge [10].

Existing WF solvers update iteratively a set of WF variables,
which could be the pipe flows, loop flows, nodal pressures,
or combinations thereof [14]. These solvers can be broadly
classified into those relying on successive linear approximations,
and those relying on a Newton—Raphson type of update [10].
For example, the WF solver in [15] constitutes a fixed-point
iteration and belongs to the former class, whereas EPANET
(perhaps the most widely used WF solver) to the latter [13]. In
fact, most of the schemes within each class have been shown to
be equivalent to each other upon a (non)-linear transformation of
variables [10],[14]. To cope with the problem of dimensionality,
different preprocessing, partitioning, and reformulations have
been reported in [16]-[18].

The aforesaid solvers exhibit two major shortcomings. First,
their convergence and rate of convergence depend critically
on initialization. For example, it has been numerically demon-
strated that EPANET fails to find a WF solution for some practi-
cal water networks [19], [20]. Nonetheless, proper initialization
may be challenging when dealing with stochastic planning or
risk analysis, where the WF task has to be solved repeatedly
and under varying demands [17]. As a second shortcoming,
the existing solvers do not naturally extend to optimal WF
(OWF) formulations. Therefore, most OWF efforts resort to
linear approximations, nonlinear local optimization, or slow
zero-order algorithms building on an independent WF solver
such as EPANET (see [1]). Such OWF approaches lack scala-
bility and/or optimality guarantees.

The contribution of this work is in two fronts. After a brief
modeling of water networks (see Section II), this work first
generalizes the uniqueness of the WF solution to WDS setups
with multiple fixed-pressure nodes and more practical pump
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Energy Function
Minim. (EFM)
(Sections IV.A)
pumps in EFM + Stitching
cycles? Algorithm
(Section IV.B)
No
DS with overlapping MIQP
(Section V)
pumps in over- hio MIQP + Stitching
lapping cycles? Algorithm
(Section VI)
l Yes
MIQP + Stitching | No analytical
Algorithm claims

Fig. 1. Given a WDS, this flowchart suggests the most suitable WF
solver based on its analytical guarantees and computational complexity.

models with flow-dependent pressure gains. Second, it puts forth
asuite of solvers that can provably recover the WF solution under
different network setups (see also Fig. 1) as follows.
i) In networks without pumps, it is already known that the
WF solution can be recovered as the minimizer of a con-
vex problem [11]. Sections IV-A devises second-order
cone program (SOCP)- and dual decomposition-based
solvers, whereas Section IV-C applies them to other
pressure drop laws.

ii) This energy function-based approach is extended to net-
works where pumps do not lie on cycles through the
stitching algorithm of Section IV-B.

iii) In networks with no overlapping cycles, the mixed-
integer quadratically constrained quadratic program (MI-
QCQP) of Section V can find the WF solution.

iv) A hybrid procedure combining the stitching algorithm
and the MI-QCQP solver handles networks having over-
lapping cycles, but without pumps on them (see Sec-
tion VI).

These novel solvers not only operate under different network
configurations, but constitute a hierarchy: Solver ii) builds on
i), and solver iv) builds on ii) and iii). Numerical tests on
benchmark networks evaluate the correctness and running times
for i) and iii), and validate them against the EPANET solver (see
Section VII).

Regarding notation, lower (upper) case boldface letters denote
column vectors (matrices). Calligraphic symbols are reserved
for sets. The vectors of all zeros, all ones, and the nth canonical

vector are denoted, respectively, by 0, 1, and e,,, whereas their
dimension will be clear from the context. The symbol ' stands
for transposition.

Il. WDS MODELING

A WDS can be represented by a directed graph G := (N, P).
Its nodes are indexed by n € A/ := {1,..., N} and correspond
to water reservoirs, tanks, and points of water demand. Let d,,
be the rate of water injected into the WDS from node n. For
reservoirs apparently d,, > 0; for nodes with water consumers
d, < 0; tanks may be filling or emptying; and d,, = 0 for
junction nodes.

The edges in set P with cardinality P := |P| are associated
with pipes and pumps. The directed edge p = (m, n) € P mod-
els the water pipe between nodes m and n. Its WF is denoted by
fmn or f, depending on the context. If water flows from node
m to n, then f,,,, > 0; otherwise, f,,, < 0.

Conservation of WF dictates that for all n € N
dn = Z fnk: - Z fkn~
k:(n,k)eP k:(k,n)eP

The connectivity of the WDS is captured by the edge-node
incidence matrix A € R”*Y with entries

+1, k=m
Apr=9-1, k=n Vp=(m,n) P (1)
0, otherwise.

Given A and upon stacking flows and injections, respectively, in
f € R” and d € RV, the conservation of WF across the WDS
can be compactly expressed as

ATf=d. (2)

The operation of WDS is also governed by pressures. Water
pressure is surrogated by pressure head, defined as the equivalent
height of a water column in meters, which exerts the surrogated
pressure at its bottom. The pressure heads at all WDS nodes
are measured with respect to a common geographical elevation
level. The pressure head (henceforth pressure) at node n is
denoted by h,,. Moreover, the pressure h,. at a reservoir node
r € N typically serves as the pressure of reference.

With water flowing in a pipe, pressure drops along the di-
rection of flow due to friction. The pressure drop across pipe
(m,n) € P is described by the Darcy—Weisbach law [21]

hm - hn = Cmn Sgn(fmn)fygnn (3)

where the constant c,,,,, depends on pipe dimensions [8], and the
sign function is defined as

+1, >0
sgn(z) := 0, =0
-1, z<0.

The pressures at all nodes are collected in vector h € RY.

To maintain pressures at desirable levels, water utilities use
pumps on specific pipes. Let P, C P be the subset of pipes
hosting a pump. The pipes in P, can be considered lossless; this
is without loss of generality since a pump can be modeled by
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an ideal pump followed by a short pipe. The remaining edges
form the subset P, := P \ Py, and correspond to lossy pipes
governed by (3). When pump p = (m,n) € P, is running, it
adds pressure g,,,, > 0 so that

hn - hm = 9mn-

As detailed below, the pressure added by a pump decreases with
the WF through the pump [22], [23]. Moreover, for variable
speed pumps, the pressure added increases with the pump speed.
The exact relation is provided by manufacturers in the form of
pump operation curves, and are oftentimes approximated with
quadratic curve fits [7], [22], [23]. In detail, the pressure added
by pump p = (m, n) is modeled as

gmn(fmn7 wmn) = )\mnfgan + anwmnfmn + anwznn (4)

where w,y,,, is the pump speed, and A, < 0, fiynn > 0, and
Vmn > 0 are known pump parameters [7]. When pump (m, n)
is running, its flow has to be maintained within the range
Soun < foan < fmn due to engineering limitations [21].
Whereas the speed for fixed-speed pumps is constant; for
variable-speed pumps, it is controlled by the operator. Either
way, for a WF task, the speed of every pump is given; otherwise,
the problem would become underdetermined. Given its speed
WY ., the pressure added by pump (m, n) is

mn?

®)
where fimn = fmnwY,, and Uy := Vipn (WD, )?. Because the
pump parameters satisfy 2X,,, fmn + tmnWmn < 0 over the
operating range of pump speeds wy,,,, the pressure gain due to
any pump is a strictly decreasing function of the WF in the range
f, fimn). This observation is instrumental in establishing the
uniqueness of the WF solution in Section III.

When pump p = (m,n) € P, is not running, water can flow
freely in either direction through a bypass valve [22]. Because
bypass valve sections are typically short, one can ignore the
pressure drop along them to get h,, = h,, and g, = 0. In this
case, the WDS graph can be reduced by removing pipe p and
node n, and connecting to node m the edges previously incident
to n. Alternatively, the valve can be modeled as a short lossy
pipe, whose pressure drop is governed by (3).

Valves constitute a vital component for WF control. They can
be modeled by an ON/OFF switch, a linear pressure-reducing
model, a flow-dependent nonlinear model, or a flow control
model [7], [13]. Under the typical operational setup, the valve
at the reference node regulates pressure, whereas the valves at
the remaining reservoirs and tanks regulate flows.

Summarizing this section, a WDS operating point is described
by the triplet (d, f, h) satisfying the WF equations of (2), (3),
and (5). This work deals with the uniqueness of a WF solution
and efficient solvers for finding this solution.

I1l. UNIQUENESS OF WF SOLUTION

Different from the OWF problem where tanks and pumps are
scheduled over a time horizon, the WF task aims at solving the
WF equations given the water injections d. As such, it constitutes

a key component of WDS operation and planning. The WF
problem is formally stated next.

Definition 1: Given: i) water injections d; ii) the statuses and
speeds {wy,y, } for all pumps (m,n) € P,; and iii) the pressure
h.. at the reference node r € N; the WF task aims at finding the
flows f and pressures h satisfying (2), (3), and (5).

The WF task involves N 4+ P — 1 equationsover N + P — 1
unknowns. The water balance in (2) yields N — 1 linearly inde-
pendent equations. In addition, the pressure drops across lossy
pipes [cf., (3)], and the pressure gains due to pumps [cf., (5)]
provide P nonlinear equations.

According to Definition 1, both f and h are unknown. Nev-
ertheless, to find a triplet (d, f, h) that satisfies (2), (3), and (5),
it suffices to find either f or h. To see this, note that if f is
known, then h can be calculated from (3)—(5) and h,.. On the
other hand, if h is known, the flows f can be found thanks to the
monotonicity of (3) and the monotonicity of (5) in [f o Fmnl-
In a nutshell, solving the WF task amounts to finding either f
or h. Because this simple observation is used throughout our
analysis, it is summarized as a lemma.

Lemma 1: Given d, a triplet (d, f, h) satisfying (2), (3), and
(5) is uniquely characterized by f or h.

The WF task can be posed as the feasibility problem

find {f,h}
s.t0 (2), (3), (5).

Since (3)—(5) are quadratic equalities, problem (W1) is non-
convex. For a tree WDS graph G (for which P = N — 1), the
edge—node incidence matrix A has N — 1 linearly independent
rows [24]. Then, the flows f can be found uniquely from (2), and
the WF task is readily solved according to Lemma 1. However,
handling the WF task in a loopy G containing pumps remains
nontrivial. Naturally, analyzing the uniqueness of a WF solution
is a critical task. Fiigenschuh and Humpola[11] established the
uniqueness of a WF solution under the assumption that the
pressure gain added by a pump is constant. The next claim
extends this uniqueness result regardless of the structure of G
and to the more detailed pump model of (5).

Theorem 1:1f the WF equations are feasible for some d, they
feature a unique solution.

Proof: Proving by contradiction, assume (h, f) and (h, f) are
two distinct solutions of (W1). Since the two flow vectors f and
f satisfy (2), the vector n := f — f lies in the nullspace of AT,
that is A"n = 0. Then, it follows that:

(W1)

n'A(h—h)=0. (6)

Let us decompose n into its positive and negative entries as
n=n; —n_, where n; > 0 and n_ > 0. Plugging this de-
composition into (6) yields

n| (Ah-Ah) =n’ (Ah- Ah). (7)

Recall from (3) that the pressure drop across a lossy pipe is
monotonically increasing in flow. Similarly, the pressure added
by a pump described by (5) is monotonically decreasing in flow.
In other words, the pressure drop along a pump is monotonically

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 10,2021 at 14:23:30 UTC from IEEE Xplore. Restrictions apply.



SINGH AND KEKATOS: ON THE FLOW PROBLEM IN WATER DISTRIBUTION NETWORKS: UNIQUENESS AND SOLVERS 465

increasing in flow. Hence, for each edge p € P
a;fl > a;h if and only if fp > fp (8)

where a is the pth row of matrix A.

Consider the pth entry of vector n. If fp > fp.thenny , >0
and n_ , = 0 by definition of n and n_. Then, edge p con-
tributes to the left-hand side (LHS) of (7). The monotonicity in
(8) entails that a) (h —h) > 0 and so n , -a] (h —h) > 0.
The latter holds for all edges contributing to the LHS of (8), so
that

nj (Ah-Ah) >0,

On the other hand, if fp < fp,thenng , =0and n_, > 0.
Then, edge p contributes to the right-hand side (RHS) of (8). The
monotonicity in (8) entails n_ , - a; (h —h) < 0. Applying the
claim over all edges participating in the RHS of (8) provides

n’ (Afl - Ah) <0.

The signs of the LHS and RHS contradict the equality in (7),
thus proving the claim. |

Regarding the pressure drop law of (3), the Hazen—Williams
equation is sometimes used wherein the flow f,,,, is raised to the
exponent of 1.852. This exponent is different from the exponent
of 2 in the Darcy—Weisbach equation (see, for example, [15]).
While the Darcy—Weisbach equation is a theoretical formula, the
Hazen—Williams equation is based on curve fitting of experimen-
tal data [4]. Either way, the uniqueness argument of Theorem 1
holds for any positive exponent on the WF f,,,,, involved in the
pressure drop equation of (3).

The WF problem posed in Definition 1 follows the most
traditional setup pursued in WF literature [11], [25], [26]. How-
ever, with multiple sources feeding a WDS, an alternate form
of WF becomes pertinent. Specifically, multiple supply nodes
may operate as fixed-pressure nodes while the remaining nodes
act as fixed-injection nodes [27]. The ensuing result extends the
uniqueness of a WF solution to this more general setting.

Proposition 1: Given: i) pressures h; for 7 in a subset of nodes
N, C N;ii)injections d; foralli € N\ N, ; andiii) the statuses
and speeds for all pumps; the set of equations (2), (3), and (5)
has at most one solution.

Proof outline: Consider two pairs (d, f) and (d,’ f’) satisfy-
ing (2). If d = d’, the uniqueness of the WF solution follows
from Theorem 1. Otherwise, [28, Lemma 3] dictates that there
exists a path P,,,, between fixed-pressure nodes m and n, along
which the flows in f differ from those in f’ in a consistent direc-
tion, i.e., either f,, > f, or f,, < f, foralledgesp € P,,,,. How-
ever, in that case, the monotonicity argument used in (8) would
entail for the respective pressures h,, — hy, # hl, — h!,, which
contradicts the hypothesis of m and n being fixed-pressure
nodes. ]

Having established the uniqueness of the WF solution, the
ensuing sections develop a suite of WF solvers of complemen-
tary value: Each solver finds provably the WF solution under
different network setups. The devised solvers exhibit different
complexity, yet none of them requires a proper initialization.
Fig. 1 summarizes the particular WDS setups each solver can

handle, and serves as a roadmap for the following sections. The
solvers developed in this work are for the WF task as posed in
Definition 1, whereas WF solvers for the setting considered in
Proposition 1 are beyond the scope of this work.

V. ENERGY FUNCTION-BASED WF SOLVERS

For a WDS without pumps, the WF task simplifies to solving
(2)-(3). These equations are structurally similar to the equations
governing the flows and pressures in a natural gas network under
steady-state conditions [28], [29]. Collins et al. [25] found the
solution to the nonlinear WF equations in networks without
pumps as the minimizers of a convex energy function (see
also [26] and [30] for counterparts in gas networks). Upon briefly
reviewing these reformulations, this section expands their scope
to WDS with no pumps in cycles and other pressure drop laws
(see roadmap of Fig. 1).

A. Finding the WF Solution in WDS Without Pumps

In the absence of pumps, the WF problem (W1) has been
posed as a constrained minimization over f [25].

Lemma 2 (see[25]): In a WDS without pumps (P = P,), the
vector of WFs f satisfying (2)-(3) can be found as the unique
minimizer of the convex minimization problem

o1

min 2> eplfl’ (92)
peEP

sto ATf=d. (9b)

Moreover, if £ is the vector of optimal Lagrange multipliers
corresponding to (9b), then the nodal pressures are provided by
h=(I-1el)¢ + h,1.

The claim follows from the optimality conditions of (9). The
strict convexity of (9a) shows that the WF solution is unique in
networks without pumps. This claim has also been established
using a contraction argument in [15]. Theorem 1 and Propo-
sition 1 generalize this uniqueness claim to networks having
pumps and multiple fixed-pressure nodes.

We next present two ways for handling (9): a second-order
cone program (SOCP) reformulation, and a dual decomposition
approach. It is known that £,-norms can be handled using a
hierarchy of second-order cone (SOC) constraints (see [31,
eq. (11)]). In the context of WDS, a more compact hierarchy
of SOCs was originally put forth in [6] to handle the cubic
powers of (9a) involved in an OWF problem. Adopting the latter
reformulation, the minimizer of (9) can be found by solving the

SOCP
1
min = Z Cplyp (10a)
{fpvavypvtp} 3 peP
sto ATf=d. (10b)
—wp < fp Swp Vp (10c)
wy < yp, Yo < wpt) Vp. (10d)

The fact that the f,s minimizing (9) and (10) coincide can
be established by showing that the solution of (10) satisfies
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wy = |fpls yp = w2 = f2, and t, = w} = [f,|* for all p € P
(see also [6] and[7] for details). Each constraint in (10d) is a
rotated SOC [31].

Alternatively, problem (9) can be tackled via dual decompo-
sition: During its kth iteration, the primal variable f is updated
by minimizing the Lagrangian function L(f; & k ) evaluated at the
latest estimate of dual variables £*. The latter problem decouples
across pipes and enjoys a closed-form solution as

lag €|

Cp|fp|3 T
3 Cp

fy! = argmin T fa)€h = san(ay €")
For a step size i > 0, the dual variables are updated as
gl i=gF 4 (d— ATERY).

Again for WDS without pumps, the WF task can alternatively
be posed as an unconstrained minimization over h [25]

m}in% Z

(m,n)eP

|hm - hn‘%
\/ Cmn

The objective of (11) is convex (by composition rules) and
differentiable. The nth entry of its gradient g, (h) is

>

p=(m,n)eP

—d'h. (11)

|a, b

(gu(h)],, = e —dy,.

sgn(a; h)

Setting this gradient equal to zero yields the WF equations after
eliminating f from (2)-(3). The ambiguity in pressures can be
waived by shifting the minimizer of (11) to match the reference
pressure /... Once the pressures h are found, the flow vector f
can be retrieved by Lemma 1. Problem (11) is amenable to any
first-order method for unconstrained optimization, such as the
gradient descent iterations h**! := h* — yg, (h*) for a step
size j1 > 0 or accelerated variants.

B. Extension to WDS With No Pumps in Cycles

Since problems (9) and (11) cannot handle water networks
with pumps, this section extends their applicability to networks
with pumps, but not on cycles. This is accomplished by adopting
the reduction technique of [32] to build what we term stitching
algorithm as follows.

1) Remove the edges of G corresponding to pumps P,. The
obtained graph contains |P,| 4+ 1 disconnected compo-
nents G. forc =1,...,|P,| + 1.

2) Replace each component G, by a supernode, and con-
nect the supernodes using the edges in P, to create the
supergraph G'. Graph G’ features a tree structure.

3) Find the total water injection per supernode G... Since G’
is a tree, the WFs on P, can be found readily.

4) If the flow along pump (m, n) € P, is fun, modify the
injections at nodes m and n as cim = dyy — fimn and cin =

5) Solve (9) per connected component G, to find the WFs at
all lossy pipes.

6) Having acquired vector f, the pressure vector h can be
found from Lemma 1.

In S5), rather than solving the constrained minimization of
(9), one could use its unconstrained counterpart of (11). Steps
S1)-S4) are still needed to find a meaningful water injection
vector per component G.. Once a pressure vector has been
found per component, the pressures must be revised as follows:
The pressures within the component containing the reference
node, say component Gy, are kept unaltered. Consider a pump
running from node m € G; tonode n € Gs. Using the flow f,,,
computed in step S3), the pressure gain gpn = Grnn (Frn; Wi )
can be found from (5). Having found £,,, by solving (11) in Gy,
the pressure at node n can be computed as h,, = Ay, + gmn-
If the pressure at node n recovered by solving (11) in G is
ﬁn, then all pressures within G5 should be shifted by h,, — ﬁn.
The process is repeated for all components to recover the entire
pressure vector h.

C. Handling the Hazen-Williams Pressure Drop Law

The aforementioned WF solvers can be modified to handle
the Hazen—Williams in lieu of the Darcy—Weisbach pressure
drop equations. Recall that according to the Hazen—Williams
pressure drop law, the exponent of | f,,,,| in (3) changes from 2
to p = 1.852. To handle this, problem (9) is generalized to

, 1

min == > el fl" (12)
peP

sto ATf=d (12b)

where the exponent p depends on the pressure drop law and
could vary per pipe. Problem (12) remains convex for p > 0.

Even though the SOCP model of (10) cannot be used to solve
(12), a different SOCP reformulation can be derived as long as
pis rational (see [31, pp. 12—13] for details). Moreover, the dual
decomposition updates of Section IV-A can be adapted to solve
(12). Similarly, the unconstrained minimization of (11) can be
modified to

| — B 7
— P
min Pm—Tnl ~ _d'h. 13
h p+1 Z clle (13)

(m,n)eP

Heed that the energy function-based solvers for (W1) can-
not handle the WF setups with multiple fixed-pressure nodes
described under Proposition 1. This is because energy function-
based solvers do not take reference pressure as an input to the
problem. Rather, the obtained pressures are shifted a posteriori
to agree with a given fixed pressure. For a single fixed-pressure
node, the applicability of our WF solvers can be broadened
to WDS with pumps in cycles. To do so, we next pursue an
MI-QCQP solver. Unlike the energy function-based WF solvers
of this section, the MI-QCQP solver of Section V applies only
to the Darcy—Weisbach equation; its possible extension to the
Hazen—Williams pressure drop law goes beyond the scope of
this work.

V. MI-QCQP WF SOLVER

This section presents an MI-QCQP relaxation of (W1) along
with sufficient conditions for its exactness.
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A. Problem Reformulation

The nonconvexity of the WF problem (W1) is due to the
quadratic equality constraints of (3) and (5). Adopting the con-
vex relaxation approach of [6] and[7], the pressure drop along
pipe (m,n) € P, is relaxed from (3) to

D hyy = hy > Cmnf?nn for fmn > 0; or

2) oy — by, > Cmnfyzn,n for fmn <0.
To handle the two cases, let us introduce a binary variable
Zmn capturing the flow direction on pipe (m,n). By using the

so-termed big- M trick, the two cases can be modeled as

~M(1 = 2Zmn) < frn < Mamy (14a)
M1 = Zpn) < hom = B — Conn £, (14b)
B = by + Conn f2, < M, (14c)
Tnn € {0,1}. (14d)

The same MI-QCQP model has been also advocated for handling
the pressure drop equations along the pipelines in natural gas
networks (see, e.g.,[28], [33], and[34]). Constraint (14a) implies
that z,,,, = sgn(fmn). If ., = 1, the convex quadratic con-
straint in (14b) is activated, whereas constraint (14c) becomes
trivial. The claim reverses for z,,, = 0. Depending on the
value x,,,, if either (14b) or (14c) is satisfied with equality,
the relaxation is deemed as exact. If that happens for all lossy
pipes, the feasible set of (14) has captured the original nonconvex
constraints in (3).

Similarly, the pressure added by pump (m, n) € P, is relaxed
from (5) to

which is a convex constraint since A, < 0. Again, if the
inequality in (15) is satisfied with equality for all pumps, the
relaxation of (5) to (15) is deemed as exact.

One may now try solving the feasibility problem in (W1) by
replacing (3)—(5) by (14)-(15). If all the relaxed constraints are
satisfied with equality, the relaxation is exact. Unfortunately, toy
numerical tests can verify that such relaxation is inexact even for
simple water networks. To favor exact relaxations, we convert
the feasibility to a minimization problem with a judiciously
selected cost. We pose the MI-QCQP

in s(h
;fll;gS()

s.to (2), (14), (15)

(W2)

where the binary vector x contains all {:177,,,n}(m,n)€73a, and the
cost is defined as

s(h) = Z [hm —

(m,n)eP,

hn‘ - Z (hn - hm)-

(m,n)eP,

The cost sums up the absolute pressure drops across lossy pipes
minus the pressure gains added by pumps. This is in contrast
to the MI-QCQP of [29] that recovers a gas flow solution,
whose penalty did not include compressors. It will be shown
in Section V-B that the MI-QCQP formulation (W?2) guarantees
exactness under realistic network conditions.

Problem (W2) is nonconvex due to the binary variables x.
Given the advancements in MI-QCQP solvers, this minimization
can be handled for moderately sized networks. Recall that every
lossy pipe is associated with one binary and one continuous
optimization variable. To accelerate the computations, we next
provide a simple preprocessing step to determine the flows in all
edges not belonging to a cycle.

Lemma 3: Let f be the unique flow solution of (W1), and
consider any vector f satisfying A "f = d. For any edge (m, n)
not belonging to a cycle, it holds that fmn = fmn-

Proof: Consider the minimum-norm solution f, := (A")’d
to the linear system of (2), where (A ") is the pseudoinverse of
AT, Any other solution of (2) can be expressed as f = fy + n
for some vector n € null(A ).

The space null(A'") can be represented using the cycles of
graph G as explained next. For cycle C in G, select an arbitrary
direction and define its indicator vector ng € R” as

0, ifedgepé¢C
+1,
-1

nep = if the directions of p and C coincide

otherwise.

)

We are particularly interested in a set of fundamental cycles
defined as follows [24]: In graph G = (N, P), select a spanning
tree 7. Every edge p € P\ T along with some edges of 7 form
a cycle. The cycles formed using all edges in P\ T comprise
the set L7 of fundamental cycles. In general, a graph may have
multiple spanning trees, making the set of fundamental cycles
nonunique.

A key property of fundamental cycles is that the space
null(A ") is spanned by the indicator vectors for any set of
fundamental cycles [24, Corollary 14.2.3]. Therefore, the vector
nin f = f; + n can be decomposed as

n— E Qply

lelr

(16)

where ny is the indicator vector for cycle £ and oy € R V/.

Consider the pth entry of n. If edge p € P does not belong
to any cycle, then it does not belong to any fundamental cycle.
Then, ng ), = 0forall{ € L1, and n, = 0follows from (16). To
conclude, if edge p does not belong to a cycle, then all solutions
f of (2) agree in their pth entry. |

Lemma 3 ensures that for weakly meshed WDS, the number
of variables in (W2) can be reduced markedly. Moreover, the
flow on any edge not belonging to a cycle coincides with the
related entry of the minimum-norm solution to (2).

B. Exactness of the Relaxation

The next result provides conditions under which a minimizer
of (W2) satisfies (14)-(15) with equality.

Theorem 2:In a WDS where no edge (m,n) € P belongs to
more than one cycle, a minimizer of (W2) minimizes (W1) as
well, if (W1) is feasible.

Theorem 2 (shown in the appendix) asserts that the MI-QCQP
relaxation of (W1) to (W2) is exact in water networks with
nonoverlapping cycles, that is, cycles sharing no edges. The
claim holds regardless of water demand or the presence of
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(14 =-2

Fig. 2. Pathological WDS for which the relaxation of (W2) is inexact.

pumps. This is in contrast to the exactness claims of [29],
where compressors were not allowed on cycles. Although the
assumptions of Theorem 2 may not always hold, the numerical
tests of Section VII indicate the relaxation is exact and (W2)
solves (W1) for practical WDS with overlapping cycles.

The condition of Theorem 2 cannot be relaxed analytically:
One could construct pathological WDS with overlapping cycles
that render the relaxation of (W2) inexact. To present such a
counterexample, consider the 4-node and 5-pipe WDS of Fig. 2.
The coefficients c,,,,s are shown on the respective pipes. Nodes
2 and 4 host water demands, and the reference node 1 supplies
water at the reference pressure of hy = 10. The edge (1,3)
belongs to two cycles and hence the condition of Theorem 2 is
violated. The minimizer of (W2) satisfies the relaxed constraint
(14) with strict inequality. The pressures at nodes 1 and 3 were
found to differ by h; — hs = 3.435, whereas the frictional drop
was c13f; = 0.014. This WDS though is characterized by a
strong disparity of pipe coefficients. For a WDS with limited
variations in pipe dimensions and material, such disparity is not
anticipated in practice. Similar to the example of Fig. 2, one can
construct setups with multiple fixed-pressure nodes for which
the MI-QCQP relaxation is inexact.

Since the WDS of Fig. 2 does not host pumps, the solution
to the previous WF problem was eventually found via (9). This
motivates us to exploit the ability of the energy function-based
approach to handle overlapping cycles alongside the merit of the
MI-QCQPrelaxation to handle pumps in cycles. To solve the WF
problem for a broader class of WDS network topologies, a hybrid
solver is deferred to Section VI. Before that, the formulation of
(W2) is contrasted to prior work.

C. Comparison to Prior Work and Extensions

The proposed WF solver involves following three ingredients:
I1) replacing (3) by the MIQP model of (14);
12) replacing (4) by the convex constraint of (15);
13) solving (W2) in lieu of (W1).

The key contribution of this section is I3), since //) and
12) have appeared before: Research works in [6]-[7] and [35]
considered the OWF problem assuming known flow directions
(say fmn > 0 for all pipes), and relaxed (3) to [cf., (14)]

B — B = Cn s frn > 0. (17)

Regarding pumps, research works in [6]-[7] and [35] considered
only variable-speed pumps. Moreover, each pump speed wy,, is

limited within 0 < wy,,, < @y, which may be unrealistic since
pumps come with positive lower speed bounds. Substituting this
speed range into the monotonic formula of (5) yields the convex
quadratic constraint

(18)

2 — —2
hp — b, < )\mnfmn + ,Umnwmnfmn + VmnWon -

Heed that the actual speed w,,,,, has been eliminated from (18).
Nevertheless, once an OWF minimizer is found [and so a triplet
(R, By frnn ) satisfying (18)], the speed w;y,,, making (18) an
equality can be readily recovered [6].

Research works in [6]-[7] aimed at minimizing the en-
ergy losses across pipes. Ignoring the details of geograph-
ical elevation and electricity prices, their cost simplified to
> (m.n)eP, Cmn f3 .- Thanks to its form, minimizing this cost
subject to (17)-(18) renders the relaxation in (17) numerically
exact. This was also analytically shown granted the simplifying
assumptions as follows:

al) no pumps on cycles;

a2) known flow directions;

a3) if anode is fed by more than one pipes, all of them have
to be equipped with valves;

a4) no fixed-speed pumps.

Research work in [35] considered the joint scheduling of WDS
and electric power distribution networks. Since the exactness
of (17) is not promoted by the cost anymore, a feasible point
pursuit-based approach is applied to find a stationary point
satisfying (17) with equality.

From the preceding review, it is evident that albeit a relaxation
of (3) is convenient, its exactness is not always guaranteed.
While some OWF instances feature exactness [6]—[7], others call
for additional measures [35]. We shall next address the natural
question: Q7) Can one use one of the aforesaid OWF solvers
to solve the WF task? Numerical tests on WF instances even in
simple WDS demonstrate that the approaches of [6]-[7] and [35]
fail to solve (W1), that is the convex relaxation is not exact.
This is because even if an instance of (W1) satisfies all other
conditions needed for each one of these solvers, the common
assumption a4) is violated since pump speeds are fixed for (W1).

One may reverse question Q7) and pose Q2) Can the de-
veloped WF solvers be used toward solving OWF tasks? One
could identify two possible uses. First, the proposed tools can
be used instead of EPANET in existing zero-order OWF al-
gorithms that rely on a WF solver. Second, the success of the
proposed penalized relaxation could be adopted in OWF tasks.
For example, our previous work [8] deals with optimal pump
scheduling under dynamic electricity pricing. This OWF task
handles unknown flow directions and is relaxed to an MI-SOCP
after gon (frnn;wl,,) in (5) is approximated as constant. The
relaxation is provably exact under certain conditions and after
adding a penalty to the cost of the MI-SOCP. The relaxation is
numerically exact under a broader range of WDS conditions.
Interestingly, the penalty that worked for [8] does not work for
the WF task studied here. For this reason, this work put forth
the penalty s(h) in (W2) and took a totally different route for
establishing exactness. The sufficient conditions for exactness of
Theorem 2 are significantly simpler compared to those in prior
works on OWF.
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dy = ds + Jone, a N

Fig. 3. Top: A WDS with pumps in nonoverlapping cycles. Bottom:
Connected components after removing cycles C; and Co that carry
pumps.

VI. HYBRID WF SOLVER

The hybrid WF solver relaxes the assumption of nonoverlap-
ping cycles of Theorem 2 to the following condition.

Assumption 1: The water network has no pumps in overlap-
ping cycles.

The assumption permits overlapping cycles, but these par-
ticular cycles should carry no pumps. For a network satisfying
Assumption 1, the WF task can be solved through the following
steps illustrated also in Fig. 3.

T1) Any cycle C with pumps is nonoverlapping. Thus, for
any node n belonging to C, following two cases arise.
i) Node n belongs only to cycle C (node 3 of C1); or
ii) Node n belongs to other cycle(s) C’ as well; yet C and
C' share no edge (e.g., node 4 of Cy).

Then, reduce graph G to G’ through the following steps.
1) If for acycle C having pumps, all nodes do not be-
long to any other cycle, replace C by a supernode

ne.
2) If for a cycle C having pumps, node n belongs
to other cycle(s), identify the edges (n1,n) and

(n,n2), which belong to C. These two edges
belong to no other cycles as C is nonoverlapping.
Split the node n into n and n’ connected by a
lossless edge (n,n’), such that all edges in G other
than (nq,n) and (n, ny) that were incident on n
are now incident on n’. After repeating this step
for all nodes in C that belong to multiple cycles,
replace C by a supernode nc.
This process ensures that in G" all supernodes and the
pumps left out from G do not appear on cycles.
T2) Use Lemma 3 to compute the WFs on the edges (m, n¢)
incident to supernodes n¢s in G'.
T3) Foreachedge (m, n¢) in G', modify the injection at node
mas dp, = dp, — fmnc-
T4) Partition G’ into a set of connected components G. by
removing the supernodes and their incident edges. Each
G. has known injections and bears no pumps in cycles.
T5) Use the stitching algorithm of Section IV-B per compo-
nent G.. to find the flows within G...
T6) Each supernode n¢ is split back to the cycle C itreplaced.
If the edge (m, n¢) of G’ corresponded to edge (m, n)
of G, modify the injection at node n € C as dp = dp +
Frune:
T7) Solve (W2) per cycle C to find the WFs on C.
T8) Given vector f, find the pressure vector h using
Lemma 1.

Let us apply the previous steps on the 23-node and 28-pipe
water network of Fig. 3. There are two cycles carrying pumps,
marked as C; and Cy. Node 4 of cycle C; belongs to multiple
cycles and hence it is split in 4 and 4’. Next, removing C; and
C, along with the edges that connect these cycles with the rest
of the graph results in the connected subgraphs Gi, Go, and G
shown on the bottom of Fig. 3. The demands on boundary nodes
are modified as per steps 73) and 76). The edge flows within
each connected component are subsequently found by solving
(9). The flows on C; and Cy are finally found by (W2).

This WDS setup could not be handled by the energy function-
based approach of Section IV alone due to the presence of
pumps on cycles C; and Cs. The convex relaxation of Section V
alone is not guaranteed to succeed either, due to the presence of
overlapping cycles. Combining the merits of each method and
leveraging Lemma 3, this hybrid method can handle successfully
this WDS setup.

VIl. NUMERICAL TESTS

The new WF solvers were evaluated under the different net-
work configurations of Fig. 1. First, the new WF solvers were
evaluated on the EPANET Example Network-2 representing a
water network from Cherry Hills, CT, USA, shown in Fig. 4 [2].
This network consists of P = 40 pipes, N = 34 demand nodes,
one tank, and one pump station. We modified the network by
representing the pump station as a reservoir with pressure 100 ft
connected to a fixed-speed pump. All nodes were assumed at
the same elevation. The pipe friction coefficients c,,,s and base
demand vector d were derived from the EPANET benchmark.
Note that the WDS in Fig. 4 has overlapping cycles but the
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Pump Station

Fig. 4. EPANET Example Network-2 of a WDS from Cherry Hills, CT,
USA [2].
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Fig. 5. WFs obtained by the EPANET solver, the energy function

minimization of (9), and the MI-QCQP of (W2) for the WDS of Fig. 4.

pump is not in a loop. Thus, it qualifies for being solved using
the energy function method alongside the stitching algorithm of
Section IV-B.

We tested whether the proposed solvers yield the same so-
Iution as EPANET. For this purpose, we obtained WF solu-
tions using the constrained energy function minimization of
(9) and the MI-QCQP of (W2). Problem (9) was solved using
the closed-form dual decomposition steps of Section IV-A for
w= 10~* within 20000 iterations. The MI-QCQP in (W2) was
solved using the MATLAB-based toolbox YALMIP along with
the mixed-integer solver CPLEX [36], [37]. All tests were run on
a 2.7 GHz Intel Core i5 computer with 8 GB RAM. The flows
obtained by the two solvers were very close to the EPANET
solution, as illustrated in Fig. 5. EPANET uses more detailed
flow models, e.g., the coefficient c,,,, in (3) depends weekly on
flow fi,,. The 20 000 iterations for the primal-dual updates of
(9) were completed within 4.5 s, and the running time of the
MI-QCQP (W2) was 1.6 s.

We next evaluated the performance of the MI-QCQP-based
solver of (W2) in finding the correct WF solution, when the con-
ditions of Theorem 2 are not satisfied. Specifically, the network
of Fig. 4 has overlapping cycles. To represent various demand
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Fig. 6. Top: Maximum inexactness gap attained by (W2) over 100
random WF instances. Bottom: Running time for (W2) over random WF
instances.
r=1 2 3 11 {2 13
4 5 6 7 14 15 16 17
10 9 8 20 19 18
Fig. 7. Benchmark 20-node WDS derived from the WDS of [8].

levels, we generated 100 random WF instances by scaling the
benchmark demand d by a scalar uniformly drawn from [0,1.5].
Given a minimizer of (W2), we defined the inexactness over
lossy pipe (m, 1) as | Ay, — hn| — Con f2,,,- Foreachrun of (W2)
with a random input, the ranked maximum inexactness gap over
all lossy pipes is displayed in Fig. 6 (top). Despite violating the
conditions of Theorem 2, the inexactness gap was small for all
random tests. Computationally, the running time of (W2) over
the 100 instances is a median value of only 1.68 s [see Fig. 6
(bottom)].

Our WF solvers were subsequently tested on the 20-node
synthetic network of Fig. 7 and under different demands. The
WDS of Fig. 7 was created by combining two copies of the
popular 10-node WDS representing the modified Arava Val-
ley network from Israel (see [8] and [22] for network data).
The additional pipes (1,2), (7,14), and (8,20) have the same
dimensions as pipes (4,5), (5,6), and (6,8), respectively. These
were added to generate different network conditions. The pa-
rameters for all the pumps were derived by scaling the pump
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Fig. 8. Maximum inexactness gap attained by (W2) over 100 random

WF instances for configurations C-i) and C-ii) of the WDS of Fig. 7.

parameters of [7] by 0.25, and were set t0 (A, Bnn, Vmn) =
(—2.735-1075,0.0129, 55.83).

The performance of (W2) was tested for two network con-
figurations derived from the WDS of Fig. 7: C-i) pipe (4,10)
removed; and C-ii) pipe (8,20) removed. Note that configuration
C-i) has pumps in nonoverlapping cycle along side other over-
lapping cycles not hosting pumps. Thus, the WF problem for C-i)
can provably be solved using the hybrid WF solver of Section VI.
Moreover, configuration C-ii) has pumps in overlapping cycles
and thus cannot be provably solved even by the hybrid WF solver.
However, we numerically tried (W2) in solving 100 random WF
instances for both C-i) and C-ii).

The 100 random WF instances were generated by fixing
pressure h; = 10 m and drawing the remaining pressures in-
dependently as Gaussian random variables of mean 10 m and
variance 2 m?, or N/(10, 2). The ON/OFFstatuses of pumps were
drawn as independent Bernoulli random variables with mean of
0.5. The flow for on pumps was drawn with uniform probability
on the allowable pump flow [250,1500] m? /hr. For OFF pumps,
flows were drawn from A (0, 200). The pressure added by pumps
was then calculated using (5). For pump (m,n), the receiving
node pressure was updated as h,, := h,, + gmn. The WF in all
lossy pipes was calculated from the so obtained pressures and
(3). Once the complete flow vector was obtained, the injections
were computed from (21). The obtained vector of injections,
pump ON/OFF status, and pressure h; served as a feasible input
for the WF task. Similarly 100 feasible random WF instances
were generated for configuration C-ii), and solved using (W2).
The maximum time for solving (W2) was set to 1 minin CPLEX.

The WF task for both configurations was solved within a
1-min deadline for 98 out of the 100 random instances with the
average time being 1.01 and 1.06 s for C-i) and C-ii), respec-
tively. The ranked maximum inexactness gap over all lossy pipes
for C-i) and C-ii) is shown in Fig. 8. Although the conditions
of Theorem 2 were not satisfied by either configuration, the
maximum inexactness obtained was less than 102 for 74 and
92 out of the 98 instances of C-i) and C-ii that were solved. For
the two cases where the MI-QCQP failed to converge within the
1-min deadline, we modified the big-M parameter value from
M = 300to M = 80. The result was that the two instances were
solved in 0.13 and 0.82 s with the inexactness gap being less than
107°.
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Fig. 9.  Top: Maximum inexactness gap for random WF instances with
all pumps of Fig. 7 running. Bottom: Running times for random WF
instances.

To evaluate whether the status of the pumps has any significant
effect on runtime, we conducted the previous tests on the WDS
of Fig. 7 with all the pumps running. The inexactness gap and
running times were found similar to the tests with pump statuses
randomly chosen. Interestingly, the inexactness gap and running
times for the new tests did not show significant differences from
the tests with random pump statuses (see Fig. 9). In total, 99
out of the 100 random WF instances were solved within the
1-min deadline with a median running time of 0.75 s. Thus, the
MI-QCQP (W2) is in general a powerful WF solver for various
network configurations.

VIIl. CONCLUSION

Using recent tools from graph theory, convex relaxations, en-
ergy function-based approaches, and mixed-integer programing,
this work has provided a fresh perspective on the physical laws
governing water distribution networks. It has been established
that the WF problem admits a unique solution even in networks
with multiple fixed-pressure nodes and flow-dependent pump
models. This WF solution can be provably recovered via a
hierarchical stack of WF solvers suitable for different network
configurations. Radial networks can be handled by simple con-
vex minimization tasks, whereas networks with cycles call for
more elaborate MI-QCQP-based solvers. Nevertheless, numer-
ical tests demonstrate that even the MI-QCQP approach scales
well for moderately-sized networks. The MI-QCQP solvers have
been derived upon a convex relaxation of the pressure drop
equation followed by an objective penalization, an approach
that sparked a parallel line of research on the OWF problem [8].
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Network configurations hosting pumps on overlapping cycles
remain to be a challenging case.

APPENDIX
PROOF OF THEOREM 2

Proof: The cost of (W2) can be written as

S(h, f) = Z (hm - hn) Sgn(fmn)'

(m,n)eP

To express pressure differences along the flow direction in a
compact manner, define the P x N edge—node incidence matrix
A(f): Its dependence on f signifies that the directionality of each
edge coincides with the flow directions in f. Therefore, if the pth
row of A(f) is associated with pipe p = (m, n), then its (p, k)
entry is

- Sgn2(fmn) +sgn(fmn) +1, k=m
Api(f) = sgnQ(fmn) —sgn(fmn) — 1, k=n
0, otherwise.

For zero flows (sgn( fimn) = 0), the default pipe direction (m, n)
is selected without loss of generality.

Based on A(f), the pressure differences along the direction
of flows can be written as A (f)h, and so

s(h;f) = 1TA(f)h. (19)

If (W1) is feasible, denote its unique solution by (f, h). Since
the base directionality of the WDS graph G is arbitrary, let it
coincide with the WF directions of f. Using this convention, it
follows that f > 0 and A(f) is identical to the base incidence
matrix A. Next, proving by contradiction, suppose (f,h) is a
minimizer of (W2), which is not feasible for (W1). Since both
f and f satisfy (2) for A = A(f), there exists a nonzero vector
n € null(AT) such that

f=f+n (20)

As shown in (16), vector n can be expressed in terms of a set L
of fundamental cycles using the flow directions of A.. To simplify
notation, let us define A := A(f). Since every edge is assumed
to belong to at most one cycle, the set of fundamental cycles is
unique irrespective of the spanning tree 7 selected. Therefore,
the set of fundamental cycles in fact contains all cycles in the
graph, implying L1 = L.

Building on (16), consider a decomposition of n as a weighted
sum of indicator vectors nys. If there exists a cycle ¢, for
which oy < 0, then one can reverse the direction of cycle ¢ and
substitute (c, ny) in (16) with (—ay, —ny). Hence, it can be
assumed that oy > 0 for all £ € £ without loss of generality.

Each vector n, can be decomposed as n, = n, — n, , where
n; := max{n,,0} and n, := max{—n,, 0}. Because every
edge belongs to at most one cycle, it holds that

1:2n2‘+2n2+n0

el lel

@

where the pth entry of vector n® is 1 if edge p does not belong
to any cycle; and 0, otherwise. Using (21) in (19), the objective

function of (W2) becomes

s(hif) = > (n/)"Ah+> (n;)"Ah+ (n°)"Ah. (22)

lel lel

Albeit s(h; f) will be evaluated for different pairs (h; f), the
vectors ngs remain unchanged and depend on A.. Based on (16)
and (22), we will next show that s(h; f) < s(h;f). To do so, we
consider the three terms of (22) separately.

First summand of (22).: Recall nj_is a binary vector, and the
base graph directionality is such that f > 0. Consider the entries
of f and f for the edges p related to n, = 1. If n;[, = 1, then
fo=fp»+au> f, > 0. In that case, if edge p = (m,n) and
relates to a lossy pipe, we get

(ilm - iLn) Sgn(fp) > Cpfg > Cppr = (ﬁm - Bn) Sgn(fp)

(23)
where the first inequality stems from constraint (14) of (W2); the
second one from f;, > f, > 0; and the equality from constraint
(3) of (W1).

If edge p = (m, n) relates to a pump, we can also show

(ilm - ﬁn) Sgn(fp) 2 _gp(fp) 2 _gp(fp)
= (hm — hn) sgn(fp). (24)

Consider cycle £ and sum up the LHS and RHS of (23) or (24)

for all p with n;, = 1 to get
(nf)"Ah > (n/)"Ah (25)

where the inequality is strict if oy # 0. Summing (25) over all
cycles provides

> (f)"Ah > (nf)"Ah

Lel Lel

(26)

with strict inequality arising from the fact that not all css can be
zero for a nonzero n.

Second summand of (22).: As explained earlier, if an =1,
then f, = f, + ¢ > f, >0 so f, remains positive. On the
other hand, if n, , = 1, then fp = fp —ay < fp In the latter
case, the flow fp has decreased, and its sign may have been re-
versed to negative. Since all fps are positive, the flow reversals in
fps can be modeled as A = SA, where matrix S := dg(sgn(f))
is diagonal with the signs of f on its main diagonal. Since the
vectors nys form a basis for null(A "), it holds that A 'n, = 0
and so

(n/)"'Ah = (n,)" Ah. (27)
Similar properties hold for n, := Sny. To see this, the vector
ny belongs to null(A ") since
ATflg = ATSng = ATng =0.
Therefore, we also get that
(87)"Ah = (f;)"Ah (28)
where 71} := max{fiy, 0} and fi, := max{—1n,,0}.
By definition of ng, if ng, = 1, then Sy, , = 1 and 7, = 1.
However, if ng, = —1, then S, , = +1 or S, , = —1 depend-
ing on the sign of f,, and so 7, = 1 or 7y, = —1. It therefore
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follows that:

nj < ﬁj (29a)
n, >n,. (29b)
Back to the /th term of the second summand in (22)
TAE Y TR O T AT
(n;) Ah > (n,) Ah = (n;) Ah
@ TiE D TAR © T AT
> (n;) Ah > (n/) Ah = (n,) Ah (30)

where (a) stems from (29b), (b) from (28), (¢) from (29a), (d)
from (25), and (e) from (27). Summing (30) over £ € L

Z(HZ)TAB > Z(HZ)TAB

lel lel

€Y

where the strict inequality stems from that argument (d) in (30)
is strict for ay # 0, and not all ays can be zero.

Third summand of (22).: The third summand sums up the
pressure differences along the direction of flow for all edges not
lying in any cycle. If edge p = (m, n) belongs to this case (i.e.,
ng = 1), then fp = fp and so as in (23), we get

(iLm - Bn) Sgn(fp) > Cpf;% = Cpfg = (Bm - Bn) Sgn(fp)‘

Summing up over all edges with ng = 1 yields

(%) "Ah > (n°)" Ah. (32)

Adding (25), (31), and (32) by parts gives s(fl; f') > s(i, f;)
This contradicts that (f, h) is a minimizer of (W2) since (f, h)
is feasible for (W2). |
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