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Abstract

Three-dimensional imaging techniques, such as X-ray computed tomography, have been used to scan realistic particle
geometries. However, these techniques are labor intensive, time-consuming, and costly to obtain a large number of
particles. Therefore, it is desirable if computers can be taught to generate realistic particles based on given morphological
properties. This paper develops a particle generation technique by integrating spherical harmonics and probability func-
tions. This technique only requires morphological information from one particle to generate a large number of particles and
eliminates the need for scanning many particles for particle generation. The spherical harmonics coefficients of this particle
are analog of the morphological gene. The probability function is used to add variances to spherical harmonics coefficients
to simulate gene mutation. A dimensionless factor is developed to control degrees of gene mutation. The effectiveness and
accuracy of the proposed technique are verified by particle shape descriptors computed by the computational geometry

techniques.

Keywords Realistic particle generation - Spherical harmonics - Probability function - Morphological properties

1 Introduction

Particle shape profoundly affects the engineering behavior
of coarse-grained soils. Experimental studies have shown
that angular and elongated particles exhibit larger values of
index void ratios, internal friction, dilatancy, constant
volume friction angle, compressibility, and small-strain
modulus than rounded and spherical soils [1-14]. With the
development of computer modeling in geotechnical engi-
neering, the discrete element method (DEM) has become a
popular method to investigate the relationship between
micro-level particle morphology and macro-mechanical
behavior of granular soils. However, the typical DEM uses
spherical approximations rather than the actual particle
shapes to simulate individual particles, which cannot pro-
vide adequately accurate insight into the mechanical
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behavior of granular soils consisting of non-spherical par-
ticles [15, 16].

Three-dimensional (3D) imaging techniques have con-
siderably advanced in the last two decades, which have
been used by geotechnical engineers to scan three-dimen-
sional (3D) realistic particle geometries for DEM simula-
tions and other analytical research. Therefore, many 3D
imaging techniques have been used in geotechnical engi-
neering, such as X-ray computed tomography (X-ray CT)
[17-23], laser scanning technique [24-26], optical inter-
ferometer [27, 28], stereophotography [29-31], and struc-
tured light technique [32].

X-ray computed tomography (CT) is an ideal technique
to scan 3D particle geometries. However, the sizes of soil
specimens for X-ray CT scans are typically approximately
12 mm in diameter and 24 mm in height [17-22]. There-
fore, scanning a sufficient amount of soil particles for
performing a triaxial test simulation (diameter = 50 mm,
height = 100 mm) requires approximately 70 scans. In
addition, analyzing X-ray CT images to separate air and
solid particles requires extensive image processing skills
and demanding computational efforts. Therefore, it is not
efficient to perform many X-ray CT scans. A more feasible
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approach to generate realistic particles is to do one, or
several of X-ray CT scans to obtain shape characteriza-
tions, and then use these characteristics to generate as
many particles as necessary for DEM simulations [33].

Many algorithms have been developed to generate
realistic particles. Most of these algorithms were based on
spherical harmonics techniques. For example, Grigoriu
et al. [34] made early attempts to use spherical harmonics
techniques to generate realistic aggregates for concrete. Liu
et al. [23] combined spherical harmonics with random field
theory for sand particle generations. Zhou et al. [35]
combined spherical harmonics and principal component
analysis to generate realistic particles. Wei et al. [36]
combined spherical harmonics with fractal dimension to
generate realistic particles. Su and Yan [37] combined
spherical harmonic with multivariate random vector tech-
niques to generate realistic particles. These excellent works
enabled computers to generate realistic particles for DEM
simulations and other mechanical analysis.

These existing studies aimed to generate random parti-
cles but with similar morphology to a target soil particle.
The spherical harmonics technique was used to analyze a
large number of particles from a granular soil to extract
morphological properties. Then, the morphological prop-
erty was used to generate as many particles as necessary.
This research aimed to clone a single particle. This was
challenging because only limited morphological property
from a single particle was available. This research
addressed this issue by developing a novel probability-
based spherical harmonics technique. The spherical har-
monics coefficients were extracted from the particle
geometry to identify the morphological property, which is
analog of the “morphological gene” of this particle. Then,
the probability function was used to add variances to
spherical harmonics coefficients to create “gene mutation”
to morphological gene, which enabled a computer to gen-
erate random morphological variances in the generated
particles to create different particle shapes. A dimension-
less factor was defined to control the degree of gene
mutation. Users can tune the controlling factor to deter-
mine the morphological variation of generated particles
against the original particle.

The proposed probability-based spherical harmonics
technique was simple, effective, and versatile. This tech-
nique generated particle based on the morphological
property of single particle and eliminated the need for
scanning many particles for particle generation.

This paper starts with an introduction to two-dimen-
sional (2D) curve representation by the Fourier series as a
simple version of the 3D surface representation by spher-
ical harmonics. Then, this paper integrates spherical har-
monics and probability function to develop the probability-
based spherical harmonics techniques for generating
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realistic particles. A series of computational geometry
techniques are introduced in this paper to determine par-
ticle shape descriptors as a measure of morphological
variances. Finally, the effectiveness and accuracy of the
proposed technique are validated by comparing particle
shapes between generated particles and original particles.

2 Fourier series for representing a 2D curve

Fourier series can be used to represent the 2D curves
[38, 39]. Therefore, the perimeter of a 2D particle can be
represented by Fourier series f(), using sines and cosines
functions:

£.(0) —“2°+HZN1: (ancos<2Tm> +bnsin<2Tm>) (1)

where T is the period of the function; ¢ is time; and a,, b,
are the Fourier coefficients,

a, = %/f(t) cos (271[ %) dx
T

b, = %/f(t) sin<2m;) dx.
T

For example, Fig. 1 illustrates different representations
of a rectangle by Fourier series:

(2)

4 1 1
fu(®) = . {cos(wot) - gcos(3a)ot) + gcos(Sa)ot) +o-
n—1

+(—1)7 cos(n - wot) + - - }
(3)

where wo =27/T is the angular velocity and n is fre-
quency. No sines bases in this function since the rectangle
is axial symmetry by y axis (amplitude direction). There-
fore, terms with even n values equal zero. As the n in-
creasing, the higher frequency terms are included in
S(t) function, so the reconstructed rectangle by f(¥) is closer
to the original rectangle as shown in Fig. 1.

Figure 2 shows the Fourier expansion of Eq. (3) in the
time domain, frequency domain, and phase spectrum. Each
term in Eq. 3 represents a cosine curve at different fre-
quency n values and different amplitudes as shown in
Fig. 2. The superposition of all the cosine curves on the
time domain represents the original rectangle shape. The
shape in the time domain can be projected onto frequency
domain, which defines the relationship between frequency
n and amplitude. The time domain image can also be
projected onto the phase plane. Each red dot on the phase
spectrum indicates the position of first wave crest at dif-
ferent n values. In this example, lengths of bars at even n
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value in phase spectrum equal to zero, while lengths of bars ~ uniqueness of the Fourier series. Therefore, a 2D shape,

at odd n values in phase spectrum equal to = (we defined  such as the soil particle perimeter, can be expressed by

the range of phase spectrum in a range of (—mn, 7]). either a time domain image or a frequency domain image
In summary, the time domain, frequency domain, and  with spectrum, as shown in Fig. 2.

phase spectrum solely determine a curve, which ensures the
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3 Spherical harmonics for representing a 3D
surface

Using the same concept as the Fourier series for repre-
senting 2D curves, spherical harmonics can be used to
represent 3D surfaces. Fourier series uses a set of sine and
cosine functions to represent 2D curves, while the spherical
harmonics use a set of orthogonal spherical harmonics
functions Y)" to represent a closed 3D geometry. A soil
particle with a closed 3D surface can be represented by the
spherical harmonics coefficients ¢! and spherical har-
monics functions Y (0, ¢):

r(0.0) =% Y &r(0,9) (4)

0 m=-n
where r(0, )0 € [0,7], ¢ €[0,2xn]) is coordinates of
points on particle surface in the spherical coordinate sys-
tem. The n and m are the degree and order of spherical
harmonics, respectively. The base functions Y*(0, ¢) can
be determined as:

(2n + l)(n _ m)' m img
mPn cos(f)e (5)

Y0, 0) =
where P} is the Legendre function. The Legendre function
can be expanded by Rodrigues’s formula:

1 a

|m]
P = (- LD L L] @

2mn! dx”

Figure 3a illustrates the Y/"(0,¢) for n =0, 1, and 2.
Figure 3b illustrates the ¢} for n =0, 1, and 2. The
spherical harmonics coefficients ¢] are unique for a parti-
cle. As shown in Fig. 3b, the zero degree of spherical
harmonics coefficient cg determines the volume of the
particle; the first degree of spherical harmonics coefficients
(n = 1), including ¢!, ¢;!, and ¢, determines the spatial
displacement of the particle relative to origin, and the
second degree of spherical harmonics coefficients (n = 2),
including ¢ 2, c%, cg, ¢y 1 and cé, stores morphological
properties of the particle. Despite not displaying in Fig. 3b,
the larger degrees of spherical harmonics coefficients
(n > 2) also store morphological properties of the particle.
Naturally, the increase in n in spherical harmonics will
contain more detailed morphological properties of the
particle, so the reconstructed particle will be closer to the
original particle. However, high degrees will significantly
increase computational loads. Researchers [36, 40, 41]
have found that n = 15 provides satisfactory accuracy for
particle representation and generation. Therefore, n = 15
was also used in this study.

The spherical harmonics coefficients ¢’ are a complex
number:
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¢, = dy + b (7)

where a and D) are the real and imaginary parts,
respectively. Therefore, ¢’ can be determined as a vector in
the complex plane consisting of the real axis and imagery
axes. For example, nine ¢ values for the first two degrees
in Fig. 3b are plotted in the complex plane in Fig. 4a. The
spatial displacement of the particle is not useful for char-
acterizing particle shape. Therefore, the coefficients of ¢},
cr!, and ¢! are set as zeros in this study for simplicity. Due
to ¢;” = (—1)"-(c")" where the “*” means conjugate
transposition, ¢, and ¢3 are symmetric about the imagi-
nary axis; ¢; ! and ¢} are symmetric about the real axis; and
¢ is on the real axis as shown in Fig. 4a.

The second norm of ¢]' determines the amplitude of

spherical harmonics at different degree L,:

n
Li= ) > [len|]* (n=0,1,2,..
m=—n

For example, Ly and L, can be expanded as:

., 15). (8)

c81*=la| 9)

l@:

L= /e P+ s P+ ISP+ b P+ 3P
(@2 + (672 + (a1 + (63" + (@) + (ah)? + (b1 + (@) + (B3)°.

(10)
The L, represents the volume of the particle. To remove
the influence of particle volume, all the L, were divided by
Lo:
n 2 n m\2 m\2
Lo Vel S ) + o))
L Lo Lo

- ) )] - e
(1)

Then, normalized spherical harmonics coefficients, E;?
were developed by this study by eliminating the effects of
particle volume based on Eq. (11)

a=ay by (12)

where ¢ and b are normalized real and imaginary parts
as shown in Fig. 4b:

— am

an =1L 13
7= (13)

. pm

bm =2 14
P =7 (14)
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Fig. 3 Expansion of spherical harmonics for the first two degrees

A soil particle is shown in the inset of Fig. 5a. Spherical
harmonics coefficients ¢} of this particle were determined
based on Egs. (4), (5), and (6). The degree n was set as 15.
Therefore, a total of 256 spherical harmonics coefficients
¢ were computed. These ¢} values were complex numbers
based on Eq. (7). Therefore, the 256 real part a; values are
plotted in Fig. 5a, and the 256 imaginary part b} values are
plotted in Fig. 5b.

Then, the volume of the particle Ly is computed as 8.8
based on Eq. (10), which was used to normalize spherical
harmonics coefficients ¢ to eliminate the effects of vol-
ume. The normalized real and imagery parts 5,? and Bn’;
were determined based on Egs. (13) and (14) as shown in
Fig. 5c, d. The @ and 5’,? values stored the morphological
properties of the particle in the inset of Fig. 5a, and they
are independent of each other. Therefore, a” and En%
essentially determined morphological gene of this paper.
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Fig. 4 The first two degrees of spherical harmonic coefficients in the complex plane

4 Integrate spherical harmonics
and probability density function
for particle generation

The morphology information of a particle was preserved in

a” and b" values. These two values were used to fit
probability functions &),. Then, the &), functions were used

to generate new « and b values, which essentially cre-

ated the morphological gene mutation. The new (/lna and l/)f
values can be input into Eq. (12) to generate normalized
spherical harmonics coefficients ¢. Then, the ¢’ values
were used in Egs. (4), (5), and (6) to generate new parti-
cles. The new particles had similar morphological charac-
teristics as the original particles, which will be validated by
shape descriptors. It should be noted that the volume of all
the generated particles is one. Users can scale up or scale
down the generated particles base on the actual particle
sizes.

Many probability distributions can be used in this study
to generate particles, and different probability functions
affect morphological gene mutations and therefore shapes
of generated particles This study uses two types of prob-
ability distributions for illustration: Gaussian distribution
and uniform distribution. Both distributions have simple
parameters, which are easy to use and control. Specially,
we found that by using the Gaussian distribution, the par-
ticle shape descriptors of generated particles were also
following Gaussian distributions as will be shown shortly
(Figs. 11, 12, 13, 14, 15).

To control the degree of gene mutation, a dimensionless
factor 1 was introduced. The new @ and Z;; values were
determined as 5 x &),. Five scanned particles in Fig. 6 are
used to illustrate the idea.

@ Springer

The uniform distributions U(—n En’z, n c/zf) and U(—n
b, i b") were used to create gene mutation. The @ was
randomly selected from the range of —a” to a”. The b

was randomly selected from the range of —Bf to En’; The n
values were set as 0.1, 0.3, 0.5, 0.7, and 1.0. The generated
particle shapes are shown in Fig. 6. Then, the Gaussian

distributions, N(a, n a) and N(b™, n b™), were used to
am and b values. The expectations were g and b7,
respectively, and the standard deviation was the absolute

values of |a”| and |b7|. The n values were set as 0.1, 0.3,
0.5, 0.7, and 1.0. The generated particle shapes are shown
in Fig. 6.

As the 7 increases, larger variations of 5{? and Ef values
were produced by probability functions, leading to a larger
morphological gene mutation. Therefore, particles gener-
ated by using larger » values showed larger morphological
diversities against the original particles. The next question
is how to measure the morphological similarity/diversity
between the original particle and generated particles. We
introduced particle shape descriptors as a measure.

5 Particle shape characterizations based
on computational geometry

In this study, six commonly used shape descriptors in
Table 1 were used to measure morphological similar-
ity/divergence between generated particles and the original
particles. Computations of these shape descriptors needed
determining principal dimensions (d;, d, and d3), volume
(V), surface area (Ag), minimum circumscribed sphere,
maximum inscribed sphere, and 3D convex hull. A series
of computational geometry techniques were developed by
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Fig. 5 The spherical harmonic coefficients and normalized spherical harmonic coefficients for a soil particle

this study to analyze 3D particle geometries to determine
these parameters.

The 3D particle geometries are represented as triangular
face tessellations in computer graphics as shown in Fig. 7a,
b. The surface area of a given particle can be determined by
the sum of the areas of all the triangular faces. A small
tetrahedron is formed by connecting three vertices to the

particle’s centroid (O) as shown in Fig. 7b, and the volume
of this tetrahedron is computed. The volume of the 3D
particle (V) can then be determined by the sum of the
volumes of all such tetrahedrons.

The length (d;), width (d,), and thickness (d3) of a given
particle geometry can be determined by a principal com-
ponent analysis (PCA) [20]. For a 3D image consisting of a
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Fig. 6 Integrated spherical harmonics and probability distributions for particle generation

Table 1 Definitions of six shape descriptors

Descriptor Formula Note Reference

Convexity C, = Vl The ratio of the volume of the particle (V) to the volume of the minimum convex hull Altuhafi et al.
(solidity) ¢ circumscribing the particle (V) [42]

Circularity C =9 The ratio of the volume of the particle (V) to the volume of the sphere having the same surface Altuhafi et al.

\/E area (Ay) as the particle [42]

Intercept 5 = ¢fadb The cubic root of ratio of the product of the width of the particle (d,) and the thickness of the Krumbein and
sphericity a4 particle (ds) to the square of the length of the particle (d;) Sloss [43]

Area SA = VY The ratio of the volume of the particle (V) to the volume of the smallest circumscribed sphere Riley [44]
sphericity (Veir)

Diameter Sp = I%e The ratio of the diameter of a sphere having the same volume as the particle (D,) to the diameter Wadell [45]
sphericity “ of the minimum circumscribed sphere (D;,)

Perimeter Sp = % The ratio of the surface area of the sphere having the same volume as the particle (A,) to the real ~Altuhafi et al.
sphericity ' surface area of the particle (Ay) [42]

point cloud, PCA can identify the largest variance of the = component. The length of the first principal component is
point cloud in 3D space, which is called the first principal ~ the length (d;) of a 3D particle. Subsequently, PCA
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Fig. 7 Computational geometry techniques for determining surface area, volume, length, width, and thickness of a 3D particle

identifies the second largest variance, the second principal
component, which is perpendicular to the first principal
component, is the width (d,) of the particle. The third
principal component is perpendicular to both first and
second principal components and identifies the thickness
(d;) of the particle. Figure 7c illustrates the results of a
PCA analysis on a particle and shows the identified d;, d>,
and d; for the particle.

The computational processes of determining the mini-
mum circumscribed sphere and the 3D convex hull of a

o o O (]
° o
° o
o o
o o
o o
o
o
o ©o

/

Convex hull

(e)

particle are illustrated in Fig. 8. A 2D particle is used to
illustrate the concept. Points on this 2D particle boundary
are shown in Fig. 8a. The minimum number of points
bounding all points of the particle boundary in Fig. 8a is
found as shown in Fig. 8b. This is essentially the convex
hull of this particle. The same concept was used to deter-
mine the convex hull of a 3D particle as shown in Fig. 8e.

In Fig. 8b, the distance between Point 1 and Point 5 is
the longest connection among points constructing the
convex hull. In the first step, a trial circle is identified using

Fig. 8 Computational geometry techniques for determining convex hull and minimum circumscribed sphere of a 3D particle
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Point 1 and Point 5 as the diameter in Fig. 8c. However, in
this case, Point 4 is not included in the trial circle. In the
second step, Points 1, 5, and 4 are used to fit a trial circle. If
all the other points are within this trial circle, this is a
minimum circumscribing circle. If not, the point which lies
furthest outside of the trial circle is added, and a new trial
circle is found using any two or three of the four points.
The procedure is repeated until no point lies outside the
trial circle. This yields the minimum circumscribing circle
for the original set of points, as shown in Fig. 8d. The
above computational process can be also applied to the 3D
point cloud to identify the minimum circumscribed sphere
as shown in Fig. 8f.

The maximum inscribing sphere can be determined
using a 3D Euclidean transformation. For each point inside
the particle in Fig. 9a, the minimum distance to the particle
surface is computed, which forms a 3D Euclidean distance
map, as shown in Fig. 9b. The maximum distance value in
the 3D Euclidean distance map identifies the radius of the
maximum inscribed sphere of the particle. The coordinates
of the maximum distance value identify the center of the
maximum inscribed sphere of the particle. The computed
maximum inscribed sphere is superimposed within the
particle in Fig. 9c.

6 Generating realistic particles based
on limited morphological information

Many natural sands consist of particles having similar
morphological properties because these particles have the
same geological formation process. Therefore, the pro-
posed technique can be potentially used to reproduce a soil
specimen by analyzing one particle. For example, 4000
particles are randomly selected from Ottawa sand. These
particles were filled into a cylinder and scanned by high-
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O N kmﬁ\\

(a) (b)
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. =)
e 10
5 =0
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resolution X-ray computed tomography (X-ray CT) with a
spatial resolution of 12 pm/voxel. The improved watershed
analysis technique developed by Sun et al. [20] was used to
process the X-ray CT volumetric images and identify
individual particles. The result is shown in Fig. 10a. Six of
the 4000 particles are zoomed in Fig. 10b.

We chose particle #5 in Fig. 10b as the base particle to
generate new particles. Then, this selected particle was
analyzed by spherical harmonics to determine its mor-

phological gene (i.e., (/1,? and 5{? values). Based on the
morphological gene, the Gaussian distribution with n = 0.5

was used to generate new a and b values to create gene

mutation. The new 5;? and I;n’z values were used to generate
4000 particles based on Egs. (4), (5), (6), and (14). For
example, 50 generated particles are shown in Fig. 10c. The
newly generated particles are visually close to the original
Ottawa sand particles in Fig. 10a, b.

The computational geometry algorithm was used to
determine shape descriptors for the original and generated
particles as shown in Fig. 11. Particle shape distributions of
original and generated particles generally agree with each
other. However, as expected, they are not exactly over-
lapping with each other because, in natural soils, the par-
ticles shapes have some shape variations that may not be
fully captured by the morphological gene of a single
particle.

To evaluate the divergence of particle shape distribu-
tions of original and generated particles, a statistical
approach, T test [46], is introduced. The T test computes a
Z value based on standard deviations (¢) and means (u) of
two distributions:

( _

where p; and u, are means of two distributions and ¢; and
0, are standard deviations of two distributions. For

Fig. 9 Computational geometry techniques for determining the maximum inscribed sphere of a 3D particle

@ Springer



Computational Particle Mechanics

#1 #3
#4 #6

#5
(a) Ottawa sand specimen (b) Six particles selected from scanned
scanned by X-ray CT Ottawa sand specimen

(c) 50 generated Ottawa sand particles by
probability-based spherical harmonics

Fig. 10 Comparisons between original Ottawa sand particles scanned by X-ray CT and the generated particles by probability-based spherical
harmonics

example, based on the S, distribution of the original par-  the generated particles in Fig. 11d, the u, and o, can be
ticles in Fig. 11d, the y; and o can be computed as 0.8046 ~ computed as 0.8422 and 0.0913, respectively. Therefore,
and 0.0820, respectively. Based on the S, distribution of  the Z is computed as 0.307 as shown in Fig. 11d. The same
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Fig. 11 Comparison between particle shape distributions of original
and generated Ottawa sand particles. The original particle shape
distributions are computed by analyzing 4000 Ottawa sand particles
scanned by X-ray CT. Then, one Ottawa sand particle is used to

procedure is used to compute the Z values of the remaining
five shape descriptors as shown in Fig. 11. If the Z value is
smaller than 1.96, the two distributions are sufficiently
close with a confidence level of 95% [46]. All the
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generate 4000 new particles using the proposed particle clone method.
The divergence of particle shape distributions of generated and
original particles is evaluated by the T test

computed Z values are within 1.96 in Fig. 11, so the pro-
posed particle generation technique can effectively repro-
duce the particle shape characteristics of original soils.
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(a) 3D particles scanned by X-
ray CT

COCOU

(b) Fifteen examples of scanned particles

(c) Fifteen examples of generated particles

Fig. 12 Comparisons between original 214 sand particles scanned by X-ray CT and the generated particles by probability-based spherical

harmonics
7 Analysis of the controlling factor 5

The controlling factor 7 is key for governing variability and
accuracy of generated particles. Large n values generate
large morphological variation in the generated particles.
This section investigates effects of 5 values on the mor-
phological diversities in generated particles.

A total of 214 particles were selected from ten soils with
disparate origins, including river alluvium, volcanic sands,
colluvium, slags, crushed limestone, crushed concrete, and
glass spheres. Each type contains around 21 particles in a
range of 1.00 mm (#18 sieve) and 2.83 mm (#7 sieve).

To generate 3D particle geometries, a high-resolution
X-ray CT is used because the X-ray CT can penetrate soil
particles and capture 3D geometries of all the particles at
once. Other techniques, such as the 3D laser scanner, can
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Fig. 13 Comparisons between original particles #1 and the generated particles by spherical harmonics

also be used to scan 3D particle geometries. However, the
3D laser scan must scan particles one by one and signifi-
cant efforts would be required to perform 214 scans.

All the 214 particles were filled into a cylinder and
scanned by high-resolution X-ray CT with a spatial reso-
lution of 12 pm/voxel. Therefore, the 1.00 mm particle
approximately has a length of 83 voxels, which is sufficient
for delineating particle geometries. Therefore, we decided
to scan all the 214 particles at once. The improved

@ Springer

watershed analysis technique developed by Sun et al. [20]
was used to process the X-ray CT volumetric images and
identify individual particles. The result is shown in
Fig. 12a.

Each of the scanned particles was analyzed to determine
its morphological gene (i.e., 5;7 and l;n’; values). Based on
the morphological gene, the Gaussian distribution with

different # values was used to generate new (/1,1a and l/yf
values and generate new particles based on Egs. (4), (5),
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Fig. 14 Comparisons between original particles #2 and the generated particles by spherical harmonics

(6), and (14). Five 5 values of 0.1, 0.3, 0.5, 0.7, and 1.0
were used. A total of 500 particles are generated for each 5
value for each particle. Some of the original particles and
generated particles are compared in Fig. 12b, c. They are
visually close to each other.

The computational geometry technique is used to ana-
lyze the particle geometries and determine the particle
shape descriptors of the original and generated particles.
For example, Fig. 13a shows an original particle. A total of

500 particles are generated using # = 0.3, and seven of
them are shown in Fig. 13b-h. The distributions of shape
descriptors of the 500 generated particles are shown in
Fig. 13i-n. For example, Fig. 13i shows the convexity
distribution of generated 500 particles, which follows
Gaussian distribution with a mean convexity u of 0.975 and
a standard deviation ¢ of 0.007. The convexity of the
original particle is 0.978. The same comparisons were
made for other three particles (7 =0.3) as shown in

@ Springer
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Fig. 15 Comparisons between original particles #3 and the generated particles by spherical harmonics

Figs. 14, 15 and 16. The computed particle shape
descriptors of generated particles are all following Gaus-
sian distribution. For each shape descriptor, the mean value
() of generated particles agrees with the value of the
original particle.

Particle shape descriptors of generated particles follow
Gaussian distributions, so the standard deviation ¢ of par-
ticle shape descriptors could be used to quantify the

@ Springer

morphological variation in the generated particles. It is
expected that large n values would provide large ¢ values
and therefore large morphological variations in the gener-
ated particles.

As discussed before, for each #n value, 500 particles are
generated by cloning a particle. Therefore, for each 7
value, a total of 107,000 particles are generated by cloning
the scanned 214 particles. For each shape descriptor, the
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Fig. 16 Comparisons between original particles #4 and the generated particles by spherical harmonics

standard deviations of these 107,000 particles are analyzed
and the average standard deviation ¢ is determined. The
relationship between the average standard deviation o
values and different # values is shown in Fig. 17a—f.
Apparently, as increasing # values, larger o values are
observed in the generated particles, resulting in larger
morphological variances.

Users can use Fig. 17 to select appropriate 1 values
based on specific problems. For example, the manufactured

sands, such as Ottawa sands, crushed limestone, and slag,
typically contain particles having a narrow range of particle
shapes. The small # values can be used to generate particles
for these sands. However, the typical natural sands contain
particles having a wide range of particle shapes. The large
n values can be used to generate particles for these sands.

To future validate the proposed algorithm, the particle
shape distributions of generated 107,000 particles using
n = 0.3 are determined as shown in Fig. 18. The particle
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Fig. 17 Effects of 5 values on morphological variation ranges of generated particles

shape distributions of original 214 particles scanned by
X-ray CT are also shown in Fig. 18. The T test is used to
evaluate the divergence of particle shape distributions of
original and generated particles following Eq. 15. The
computed Z values are also shown in Fig. 18. As discussed
before, if the Z value is smaller than 1.96, the two distri-
butions are sufficiently close with a confidence level of
95%. All the computed Z values are within 1.96 in Fig. 18,
so the proposed particle generation technique can effec-
tively reproduce the particle shape characteristics of orig-
inal soils.
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8 Conclusions

In this paper, a probability-based spherical harmonics
technique was developed. This technique can generate
realistic particles based on limited morphological infor-
mation. This technique analyzed a single particle and

extracted spherical harmonics coefficients (a” and Ej’?
values), which are analog with the morphological gene of
the particle. These Enﬁ and B,@ values were used to deter-
mine the probability distribution, such as Gaussian and
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Fig. 18 Comparison between particle shape distributions of original
and generated particles. The original particle shape distributions are
computed by analyzing 214 particles scanned by X-ray CT. The
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used to determine new @ and b values, which were the
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particle distribution of generated particles. The divergence of particle
shape distributions of generated and original particles is evaluated by
the T test

analog of gene mutation. The new @ and b values were
used to generate 3D particle geometries with the same
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morphological properties as the original particles. A con-
trolling factor n was developed to tune degrees of gene
mutation. Large 1 generated particles with a large mor-
phological variance against the original particle.

The morphological variances between generated and
original particles were quantified by six commonly used
particle shape descriptors, including convexity (or solid-
ity), circularity, aspect ratio, area sphericity, diameter
sphericity, and perimeter sphericity. A series of computa-
tional geometry algorithms were developed by this
research to analyze 3D particle geometries to determine
these shape descriptors.

This study used X-ray CT to scan 4000 Ottawa sand
particles. Then, one of the scanned particles was randomly
selected to generate 4000 particles. The particle shape
distributions of original and generated particle agreed well
with each other. This validates the effectiveness of the
proposed probability-based spherical harmonics.

A total of 214 particles with various shapes were scan-
ned by X-ray CT. For each particle, the morphological
gene is extracted. Based on the morphological gene, the
Gaussian distribution with different # values was used to
generate new particles. Five 5 values of 0.1, 0.3, 0.5, 0.7,
and 1.0 were used. The original and generated particles
were analyzed by computational geometry techniques to
determine their shape descriptors. The dimensionless factor
n controls the morphological variances of the generated
particles. By using the Gaussian probability distribution,
the particle shape distributions of generated particles are
also following Gaussian distribution. Therefore, the stan-
dard deviation ¢ is used to quantify the morphological
variation of generated particles. The relationship between o
and # is explored. This study may facilitate to generate
realistic particle geometries for discrete element method
and geo-mechanical analysis for understanding macro-
engineering behavior of granular soils.
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