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Abstract
Three-dimensional imaging techniques, such as X-ray computed tomography, have been used to scan realistic particle

geometries. However, these techniques are labor intensive, time-consuming, and costly to obtain a large number of

particles. Therefore, it is desirable if computers can be taught to generate realistic particles based on given morphological

properties. This paper develops a particle generation technique by integrating spherical harmonics and probability func-

tions. This technique only requires morphological information from one particle to generate a large number of particles and

eliminates the need for scanning many particles for particle generation. The spherical harmonics coefficients of this particle

are analog of the morphological gene. The probability function is used to add variances to spherical harmonics coefficients

to simulate gene mutation. A dimensionless factor is developed to control degrees of gene mutation. The effectiveness and

accuracy of the proposed technique are verified by particle shape descriptors computed by the computational geometry

techniques.
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1 Introduction

Particle shape profoundly affects the engineering behavior

of coarse-grained soils. Experimental studies have shown

that angular and elongated particles exhibit larger values of

index void ratios, internal friction, dilatancy, constant

volume friction angle, compressibility, and small-strain

modulus than rounded and spherical soils [1–14]. With the

development of computer modeling in geotechnical engi-

neering, the discrete element method (DEM) has become a

popular method to investigate the relationship between

micro-level particle morphology and macro-mechanical

behavior of granular soils. However, the typical DEM uses

spherical approximations rather than the actual particle

shapes to simulate individual particles, which cannot pro-

vide adequately accurate insight into the mechanical

behavior of granular soils consisting of non-spherical par-

ticles [15, 16].

Three-dimensional (3D) imaging techniques have con-

siderably advanced in the last two decades, which have

been used by geotechnical engineers to scan three-dimen-

sional (3D) realistic particle geometries for DEM simula-

tions and other analytical research. Therefore, many 3D

imaging techniques have been used in geotechnical engi-

neering, such as X-ray computed tomography (X-ray CT)

[17–23], laser scanning technique [24–26], optical inter-

ferometer [27, 28], stereophotography [29–31], and struc-

tured light technique [32].

X-ray computed tomography (CT) is an ideal technique

to scan 3D particle geometries. However, the sizes of soil

specimens for X-ray CT scans are typically approximately

12 mm in diameter and 24 mm in height [17–22]. There-

fore, scanning a sufficient amount of soil particles for

performing a triaxial test simulation (diameter = 50 mm,

height = 100 mm) requires approximately 70 scans. In

addition, analyzing X-ray CT images to separate air and

solid particles requires extensive image processing skills

and demanding computational efforts. Therefore, it is not

efficient to perform many X-ray CT scans. A more feasible
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approach to generate realistic particles is to do one, or

several of X-ray CT scans to obtain shape characteriza-

tions, and then use these characteristics to generate as

many particles as necessary for DEM simulations [33].

Many algorithms have been developed to generate

realistic particles. Most of these algorithms were based on

spherical harmonics techniques. For example, Grigoriu

et al. [34] made early attempts to use spherical harmonics

techniques to generate realistic aggregates for concrete. Liu

et al. [23] combined spherical harmonics with random field

theory for sand particle generations. Zhou et al. [35]

combined spherical harmonics and principal component

analysis to generate realistic particles. Wei et al. [36]

combined spherical harmonics with fractal dimension to

generate realistic particles. Su and Yan [37] combined

spherical harmonic with multivariate random vector tech-

niques to generate realistic particles. These excellent works

enabled computers to generate realistic particles for DEM

simulations and other mechanical analysis.

These existing studies aimed to generate random parti-

cles but with similar morphology to a target soil particle.

The spherical harmonics technique was used to analyze a

large number of particles from a granular soil to extract

morphological properties. Then, the morphological prop-

erty was used to generate as many particles as necessary.

This research aimed to clone a single particle. This was

challenging because only limited morphological property

from a single particle was available. This research

addressed this issue by developing a novel probability-

based spherical harmonics technique. The spherical har-

monics coefficients were extracted from the particle

geometry to identify the morphological property, which is

analog of the ‘‘morphological gene’’ of this particle. Then,

the probability function was used to add variances to

spherical harmonics coefficients to create ‘‘gene mutation’’

to morphological gene, which enabled a computer to gen-

erate random morphological variances in the generated

particles to create different particle shapes. A dimension-

less factor was defined to control the degree of gene

mutation. Users can tune the controlling factor to deter-

mine the morphological variation of generated particles

against the original particle.

The proposed probability-based spherical harmonics

technique was simple, effective, and versatile. This tech-

nique generated particle based on the morphological

property of single particle and eliminated the need for

scanning many particles for particle generation.

This paper starts with an introduction to two-dimen-

sional (2D) curve representation by the Fourier series as a

simple version of the 3D surface representation by spher-

ical harmonics. Then, this paper integrates spherical har-

monics and probability function to develop the probability-

based spherical harmonics techniques for generating

realistic particles. A series of computational geometry

techniques are introduced in this paper to determine par-

ticle shape descriptors as a measure of morphological

variances. Finally, the effectiveness and accuracy of the

proposed technique are validated by comparing particle

shapes between generated particles and original particles.

2 Fourier series for representing a 2D curve

Fourier series can be used to represent the 2D curves

[38, 39]. Therefore, the perimeter of a 2D particle can be

represented by Fourier series f(t), using sines and cosines

functions:

fnðtÞ ¼
a0

2
þ
XN

n¼1
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2pt
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� �
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2pt
T

� �� �
ð1Þ
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For example, Fig. 1 illustrates different representations

of a rectangle by Fourier series:

fnðtÞ ¼
4

p
cosðx0tÞ �

1

3
cosð3x0tÞ þ

1

5
cosð5x0tÞ þ � � �

�

þð�1Þ
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2 cosðn � x0tÞ þ � � �

i
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where x0 ¼ 2p=T is the angular velocity and n is fre-

quency. No sines bases in this function since the rectangle

is axial symmetry by y axis (amplitude direction). There-

fore, terms with even n values equal zero. As the n in-

creasing, the higher frequency terms are included in

f(t) function, so the reconstructed rectangle by f(t) is closer

to the original rectangle as shown in Fig. 1.

Figure 2 shows the Fourier expansion of Eq. (3) in the

time domain, frequency domain, and phase spectrum. Each

term in Eq. 3 represents a cosine curve at different fre-

quency n values and different amplitudes as shown in

Fig. 2. The superposition of all the cosine curves on the

time domain represents the original rectangle shape. The

shape in the time domain can be projected onto frequency

domain, which defines the relationship between frequency

n and amplitude. The time domain image can also be

projected onto the phase plane. Each red dot on the phase

spectrum indicates the position of first wave crest at dif-

ferent n values. In this example, lengths of bars at even n

Computational Particle Mechanics

123



value in phase spectrum equal to zero, while lengths of bars

at odd n values in phase spectrum equal to p (we defined

the range of phase spectrum in a range of ð�p; p�).
In summary, the time domain, frequency domain, and

phase spectrum solely determine a curve, which ensures the

uniqueness of the Fourier series. Therefore, a 2D shape,

such as the soil particle perimeter, can be expressed by

either a time domain image or a frequency domain image

with spectrum, as shown in Fig. 2.

Fig. 1 Fourier series for

representing a rectangle

Fig. 2 Fourier expansion in

time domain, frequency domain,

and phase spectrum
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3 Spherical harmonics for representing a 3D
surface

Using the same concept as the Fourier series for repre-

senting 2D curves, spherical harmonics can be used to

represent 3D surfaces. Fourier series uses a set of sine and

cosine functions to represent 2D curves, while the spherical

harmonics use a set of orthogonal spherical harmonics

functions Ym
n to represent a closed 3D geometry. A soil

particle with a closed 3D surface can be represented by the

spherical harmonics coefficients cmn and spherical har-

monics functions Ym
n ðh;uÞ:

rðh;uÞ ¼
X1

0

Xn

m¼�n

cmn Y
m
n ðh;uÞ ð4Þ

where rðh;uÞ(h 2 ½0;p�, u 2 ½0; 2p�) is coordinates of

points on particle surface in the spherical coordinate sys-

tem. The n and m are the degree and order of spherical

harmonics, respectively. The base functions Ym
n ðh;uÞ can

be determined as:

Ym
n ðh;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðn� mÞ!

4pðnþ mÞ!

s

Pm
n cosðhÞeimu ð5Þ

where Pm
n is the Legendre function. The Legendre function

can be expanded by Rodrigues’s formula:

Pm
n ðxÞ ¼ ð1� x2Þ mj j=2 � d

mj j

dx mj j
1

2nn!
� d

n

dxn
ðx2 � 1Þn

� �
: ð6Þ

Figure 3a illustrates the Ym
n ðh;uÞ for n = 0, 1, and 2.

Figure 3b illustrates the cmn for n = 0, 1, and 2. The

spherical harmonics coefficients cmn are unique for a parti-

cle. As shown in Fig. 3b, the zero degree of spherical

harmonics coefficient c00 determines the volume of the

particle; the first degree of spherical harmonics coefficients

(n = 1), including c11, c
�1
1 , and c01, determines the spatial

displacement of the particle relative to origin, and the

second degree of spherical harmonics coefficients (n = 2),

including c�2
2 , c22, c

0
2, c

�1
2 , and c12, stores morphological

properties of the particle. Despite not displaying in Fig. 3b,

the larger degrees of spherical harmonics coefficients

(n[ 2) also store morphological properties of the particle.

Naturally, the increase in n in spherical harmonics will

contain more detailed morphological properties of the

particle, so the reconstructed particle will be closer to the

original particle. However, high degrees will significantly

increase computational loads. Researchers [36, 40, 41]

have found that n = 15 provides satisfactory accuracy for

particle representation and generation. Therefore, n = 15

was also used in this study.

The spherical harmonics coefficients cmn are a complex

number:

cmn ¼ amn þ bmn � i ð7Þ

where amn and bmn are the real and imaginary parts,

respectively. Therefore, cmn can be determined as a vector in

the complex plane consisting of the real axis and imagery

axes. For example, nine cmn values for the first two degrees

in Fig. 3b are plotted in the complex plane in Fig. 4a. The

spatial displacement of the particle is not useful for char-

acterizing particle shape. Therefore, the coefficients of c11,

c�1
1 , and c01 are set as zeros in this study for simplicity. Due

to c�m
n ¼ ð�1Þm � ðcmn Þ

�
where the ‘‘*’’ means conjugate

transposition, c�2
2 and c22 are symmetric about the imagi-

nary axis; c�1
2 and c12 are symmetric about the real axis; and

c02 is on the real axis as shown in Fig. 4a.

The second norm of cmn determines the amplitude of

spherical harmonics at different degree Ln:

Ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

m¼�n

cmn
		 		2

s

ðn ¼ 0; 1; 2; . . .; 15Þ: ð8Þ

For example, L0 and L2 can be expanded as:

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
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 ð9Þ
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The L0 represents the volume of the particle. To remove

the influence of particle volume, all the Ln were divided by

L0:

Ln

L0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
m¼�n cmn

		 		2
q

L0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
m¼�n ½ðamn Þ

2 þ ðbmn Þ
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q
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¼
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Xn
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" #vuut ¼
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ccmn

		 		2
r

:
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Then, normalized spherical harmonics coefficients, ccmn ,
were developed by this study by eliminating the effects of

particle volume based on Eq. (11)

ccmn ¼ camn þ cbmn � i ð12Þ

where camn and cbmn are normalized real and imaginary parts

as shown in Fig. 4b:

camn ¼ amn
L0

ð13Þ

cbmn ¼ bmn
L0

: ð14Þ
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A soil particle is shown in the inset of Fig. 5a. Spherical

harmonics coefficients cmn of this particle were determined

based on Eqs. (4), (5), and (6). The degree n was set as 15.

Therefore, a total of 256 spherical harmonics coefficients

cmn were computed. These cmn values were complex numbers

based on Eq. (7). Therefore, the 256 real part amn values are

plotted in Fig. 5a, and the 256 imaginary part bmn values are

plotted in Fig. 5b.

Then, the volume of the particle L0 is computed as 8.8

based on Eq. (10), which was used to normalize spherical

harmonics coefficients cmn to eliminate the effects of vol-

ume. The normalized real and imagery parts camn and cbmn
were determined based on Eqs. (13) and (14) as shown in

Fig. 5c, d. The camn and cbmn values stored the morphological

properties of the particle in the inset of Fig. 5a, and they

are independent of each other. Therefore, camn and cbmn
essentially determined morphological gene of this paper.

Fig. 3 Expansion of spherical harmonics for the first two degrees
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4 Integrate spherical harmonics
and probability density function
for particle generation

The morphology information of a particle was preserved in

camn and cbmn values. These two values were used to fit

probability functions enm. Then, the enm functions were used

to generate new camn and cbmn values, which essentially cre-

ated the morphological gene mutation. The new camn and cbmn
values can be input into Eq. (12) to generate normalized

spherical harmonics coefficients ccmn . Then, the ccmn values

were used in Eqs. (4), (5), and (6) to generate new parti-

cles. The new particles had similar morphological charac-

teristics as the original particles, which will be validated by

shape descriptors. It should be noted that the volume of all

the generated particles is one. Users can scale up or scale

down the generated particles base on the actual particle

sizes.

Many probability distributions can be used in this study

to generate particles, and different probability functions

affect morphological gene mutations and therefore shapes

of generated particles This study uses two types of prob-

ability distributions for illustration: Gaussian distribution

and uniform distribution. Both distributions have simple

parameters, which are easy to use and control. Specially,

we found that by using the Gaussian distribution, the par-

ticle shape descriptors of generated particles were also

following Gaussian distributions as will be shown shortly

(Figs. 11, 12, 13, 14, 15).

To control the degree of gene mutation, a dimensionless

factor g was introduced. The new camn and cbmn values were

determined as g� enm. Five scanned particles in Fig. 6 are

used to illustrate the idea.

The uniform distributions U(�g camn , g camn ) and U(�g
cbmn , g cbmn ) were used to create gene mutation. The camn was

randomly selected from the range of -camn to camn . The cbmn
was randomly selected from the range of -cbmn to cbmn . The g
values were set as 0.1, 0.3, 0.5, 0.7, and 1.0. The generated

particle shapes are shown in Fig. 6. Then, the Gaussian

distributions, N(camn , g camn ) and N(cbmn , g cbmn ), were used to

camn and cbmn values. The expectations were camn and cbmn ,
respectively, and the standard deviation was the absolute

values of damn


 

 and dbmn



 

. The g values were set as 0.1, 0.3,

0.5, 0.7, and 1.0. The generated particle shapes are shown

in Fig. 6.

As the g increases, larger variations of camn and cbmn values

were produced by probability functions, leading to a larger

morphological gene mutation. Therefore, particles gener-

ated by using larger g values showed larger morphological

diversities against the original particles. The next question

is how to measure the morphological similarity/diversity

between the original particle and generated particles. We

introduced particle shape descriptors as a measure.

5 Particle shape characterizations based
on computational geometry

In this study, six commonly used shape descriptors in

Table 1 were used to measure morphological similar-

ity/divergence between generated particles and the original

particles. Computations of these shape descriptors needed

determining principal dimensions (d1, d2, and d3), volume

(V), surface area (As), minimum circumscribed sphere,

maximum inscribed sphere, and 3D convex hull. A series

of computational geometry techniques were developed by

Fig. 4 The first two degrees of spherical harmonic coefficients in the complex plane
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this study to analyze 3D particle geometries to determine

these parameters.

The 3D particle geometries are represented as triangular

face tessellations in computer graphics as shown in Fig. 7a,

b. The surface area of a given particle can be determined by

the sum of the areas of all the triangular faces. A small

tetrahedron is formed by connecting three vertices to the

particle’s centroid (O) as shown in Fig. 7b, and the volume

of this tetrahedron is computed. The volume of the 3D

particle (V) can then be determined by the sum of the

volumes of all such tetrahedrons.

The length (d1), width (d2), and thickness (d3) of a given

particle geometry can be determined by a principal com-

ponent analysis (PCA) [20]. For a 3D image consisting of a

Fig. 5 The spherical harmonic coefficients and normalized spherical harmonic coefficients for a soil particle
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point cloud, PCA can identify the largest variance of the

point cloud in 3D space, which is called the first principal

component. The length of the first principal component is

the length (d1) of a 3D particle. Subsequently, PCA

Fig. 6 Integrated spherical harmonics and probability distributions for particle generation

Table 1 Definitions of six shape descriptors

Descriptor Formula Note Reference

Convexity

(solidity)
Cx ¼ V

Vc
The ratio of the volume of the particle (V) to the volume of the minimum convex hull

circumscribing the particle (Vc)

Altuhafi et al.

[42]

Circularity C ¼ 6Vffiffiffi
A3s
p

q The ratio of the volume of the particle (V) to the volume of the sphere having the same surface

area (As) as the particle

Altuhafi et al.

[42]

Intercept

sphericity
SI ¼

ffiffiffiffiffiffiffi
d2d3
d2
1

3

q
The cubic root of ratio of the product of the width of the particle (d2) and the thickness of the

particle (d3) to the square of the length of the particle (d1)

Krumbein and

Sloss [43]

Area

sphericity
SA ¼ V

Vcir
The ratio of the volume of the particle (V) to the volume of the smallest circumscribed sphere

(Vcir)

Riley [44]

Diameter

sphericity
SD ¼ De

Dcir
The ratio of the diameter of a sphere having the same volume as the particle (De) to the diameter

of the minimum circumscribed sphere (Dcir)

Wadell [45]

Perimeter

sphericity
SP ¼ Ae

As
The ratio of the surface area of the sphere having the same volume as the particle (Ae) to the real

surface area of the particle (As)

Altuhafi et al.

[42]
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identifies the second largest variance, the second principal

component, which is perpendicular to the first principal

component, is the width (d2) of the particle. The third

principal component is perpendicular to both first and

second principal components and identifies the thickness

(d3) of the particle. Figure 7c illustrates the results of a

PCA analysis on a particle and shows the identified d1, d2,

and d3 for the particle.

The computational processes of determining the mini-

mum circumscribed sphere and the 3D convex hull of a

particle are illustrated in Fig. 8. A 2D particle is used to

illustrate the concept. Points on this 2D particle boundary

are shown in Fig. 8a. The minimum number of points

bounding all points of the particle boundary in Fig. 8a is

found as shown in Fig. 8b. This is essentially the convex

hull of this particle. The same concept was used to deter-

mine the convex hull of a 3D particle as shown in Fig. 8e.

In Fig. 8b, the distance between Point 1 and Point 5 is

the longest connection among points constructing the

convex hull. In the first step, a trial circle is identified using

Fig. 7 Computational geometry techniques for determining surface area, volume, length, width, and thickness of a 3D particle

Fig. 8 Computational geometry techniques for determining convex hull and minimum circumscribed sphere of a 3D particle
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Point 1 and Point 5 as the diameter in Fig. 8c. However, in

this case, Point 4 is not included in the trial circle. In the

second step, Points 1, 5, and 4 are used to fit a trial circle. If

all the other points are within this trial circle, this is a

minimum circumscribing circle. If not, the point which lies

furthest outside of the trial circle is added, and a new trial

circle is found using any two or three of the four points.

The procedure is repeated until no point lies outside the

trial circle. This yields the minimum circumscribing circle

for the original set of points, as shown in Fig. 8d. The

above computational process can be also applied to the 3D

point cloud to identify the minimum circumscribed sphere

as shown in Fig. 8f.

The maximum inscribing sphere can be determined

using a 3D Euclidean transformation. For each point inside

the particle in Fig. 9a, the minimum distance to the particle

surface is computed, which forms a 3D Euclidean distance

map, as shown in Fig. 9b. The maximum distance value in

the 3D Euclidean distance map identifies the radius of the

maximum inscribed sphere of the particle. The coordinates

of the maximum distance value identify the center of the

maximum inscribed sphere of the particle. The computed

maximum inscribed sphere is superimposed within the

particle in Fig. 9c.

6 Generating realistic particles based
on limited morphological information

Many natural sands consist of particles having similar

morphological properties because these particles have the

same geological formation process. Therefore, the pro-

posed technique can be potentially used to reproduce a soil

specimen by analyzing one particle. For example, 4000

particles are randomly selected from Ottawa sand. These

particles were filled into a cylinder and scanned by high-

resolution X-ray computed tomography (X-ray CT) with a

spatial resolution of 12 lm/voxel. The improved watershed

analysis technique developed by Sun et al. [20] was used to

process the X-ray CT volumetric images and identify

individual particles. The result is shown in Fig. 10a. Six of

the 4000 particles are zoomed in Fig. 10b.

We chose particle #5 in Fig. 10b as the base particle to

generate new particles. Then, this selected particle was

analyzed by spherical harmonics to determine its mor-

phological gene (i.e., camn and cbmn values). Based on the

morphological gene, the Gaussian distribution with g ¼ 0:5

was used to generate new camn and cbmn values to create gene

mutation. The new camn and cbmn values were used to generate

4000 particles based on Eqs. (4), (5), (6), and (14). For

example, 50 generated particles are shown in Fig. 10c. The

newly generated particles are visually close to the original

Ottawa sand particles in Fig. 10a, b.

The computational geometry algorithm was used to

determine shape descriptors for the original and generated

particles as shown in Fig. 11. Particle shape distributions of

original and generated particles generally agree with each

other. However, as expected, they are not exactly over-

lapping with each other because, in natural soils, the par-

ticles shapes have some shape variations that may not be

fully captured by the morphological gene of a single

particle.

To evaluate the divergence of particle shape distribu-

tions of original and generated particles, a statistical

approach, T test [46], is introduced. The T test computes a

Z value based on standard deviations (r) and means (l) of
two distributions:

Z ¼ ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

p ð15Þ

where l1 and l2 are means of two distributions and r1 and
r2 are standard deviations of two distributions. For

Fig. 9 Computational geometry techniques for determining the maximum inscribed sphere of a 3D particle
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example, based on the SA distribution of the original par-

ticles in Fig. 11d, the l1 and r1 can be computed as 0.8046

and 0.0820, respectively. Based on the SA distribution of

the generated particles in Fig. 11d, the l2 and r2 can be

computed as 0.8422 and 0.0913, respectively. Therefore,

the Z is computed as 0.307 as shown in Fig. 11d. The same

Fig. 10 Comparisons between original Ottawa sand particles scanned by X-ray CT and the generated particles by probability-based spherical

harmonics
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procedure is used to compute the Z values of the remaining

five shape descriptors as shown in Fig. 11. If the Z value is

smaller than 1.96, the two distributions are sufficiently

close with a confidence level of 95% [46]. All the

computed Z values are within 1.96 in Fig. 11, so the pro-

posed particle generation technique can effectively repro-

duce the particle shape characteristics of original soils.

Fig. 11 Comparison between particle shape distributions of original

and generated Ottawa sand particles. The original particle shape

distributions are computed by analyzing 4000 Ottawa sand particles

scanned by X-ray CT. Then, one Ottawa sand particle is used to

generate 4000 new particles using the proposed particle clone method.

The divergence of particle shape distributions of generated and

original particles is evaluated by the T test
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7 Analysis of the controlling factor g

The controlling factor g is key for governing variability and
accuracy of generated particles. Large g values generate

large morphological variation in the generated particles.

This section investigates effects of g values on the mor-

phological diversities in generated particles.

A total of 214 particles were selected from ten soils with

disparate origins, including river alluvium, volcanic sands,

colluvium, slags, crushed limestone, crushed concrete, and

glass spheres. Each type contains around 21 particles in a

range of 1.00 mm (#18 sieve) and 2.83 mm (#7 sieve).

To generate 3D particle geometries, a high-resolution

X-ray CT is used because the X-ray CT can penetrate soil

particles and capture 3D geometries of all the particles at

once. Other techniques, such as the 3D laser scanner, can

Fig. 12 Comparisons between original 214 sand particles scanned by X-ray CT and the generated particles by probability-based spherical

harmonics
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also be used to scan 3D particle geometries. However, the

3D laser scan must scan particles one by one and signifi-

cant efforts would be required to perform 214 scans.

All the 214 particles were filled into a cylinder and

scanned by high-resolution X-ray CT with a spatial reso-

lution of 12 lm/voxel. Therefore, the 1.00 mm particle

approximately has a length of 83 voxels, which is sufficient

for delineating particle geometries. Therefore, we decided

to scan all the 214 particles at once. The improved

watershed analysis technique developed by Sun et al. [20]

was used to process the X-ray CT volumetric images and

identify individual particles. The result is shown in

Fig. 12a.

Each of the scanned particles was analyzed to determine

its morphological gene (i.e., camn and cbmn values). Based on

the morphological gene, the Gaussian distribution with

different g values was used to generate new camn and cbmn
values and generate new particles based on Eqs. (4), (5),

Fig. 13 Comparisons between original particles #1 and the generated particles by spherical harmonics
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(6), and (14). Five g values of 0.1, 0.3, 0.5, 0.7, and 1.0

were used. A total of 500 particles are generated for each g
value for each particle. Some of the original particles and

generated particles are compared in Fig. 12b, c. They are

visually close to each other.

The computational geometry technique is used to ana-

lyze the particle geometries and determine the particle

shape descriptors of the original and generated particles.

For example, Fig. 13a shows an original particle. A total of

500 particles are generated using g ¼ 0:3, and seven of

them are shown in Fig. 13b–h. The distributions of shape

descriptors of the 500 generated particles are shown in

Fig. 13i–n. For example, Fig. 13i shows the convexity

distribution of generated 500 particles, which follows

Gaussian distribution with a mean convexity l of 0.975 and

a standard deviation r of 0.007. The convexity of the

original particle is 0.978. The same comparisons were

made for other three particles (g ¼ 0:3) as shown in

Fig. 14 Comparisons between original particles #2 and the generated particles by spherical harmonics

Computational Particle Mechanics

123



Figs. 14, 15 and 16. The computed particle shape

descriptors of generated particles are all following Gaus-

sian distribution. For each shape descriptor, the mean value

(l) of generated particles agrees with the value of the

original particle.

Particle shape descriptors of generated particles follow

Gaussian distributions, so the standard deviation r of par-

ticle shape descriptors could be used to quantify the

morphological variation in the generated particles. It is

expected that large g values would provide large r values

and therefore large morphological variations in the gener-

ated particles.

As discussed before, for each g value, 500 particles are

generated by cloning a particle. Therefore, for each g
value, a total of 107,000 particles are generated by cloning

the scanned 214 particles. For each shape descriptor, the

Fig. 15 Comparisons between original particles #3 and the generated particles by spherical harmonics
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standard deviations of these 107,000 particles are analyzed

and the average standard deviation r is determined. The

relationship between the average standard deviation r
values and different g values is shown in Fig. 17a–f.

Apparently, as increasing g values, larger r values are

observed in the generated particles, resulting in larger

morphological variances.

Users can use Fig. 17 to select appropriate g values

based on specific problems. For example, the manufactured

sands, such as Ottawa sands, crushed limestone, and slag,

typically contain particles having a narrow range of particle

shapes. The small g values can be used to generate particles
for these sands. However, the typical natural sands contain

particles having a wide range of particle shapes. The large

g values can be used to generate particles for these sands.

To future validate the proposed algorithm, the particle

shape distributions of generated 107,000 particles using

g ¼ 0:3 are determined as shown in Fig. 18. The particle

Fig. 16 Comparisons between original particles #4 and the generated particles by spherical harmonics
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shape distributions of original 214 particles scanned by

X-ray CT are also shown in Fig. 18. The T test is used to

evaluate the divergence of particle shape distributions of

original and generated particles following Eq. 15. The

computed Z values are also shown in Fig. 18. As discussed

before, if the Z value is smaller than 1.96, the two distri-

butions are sufficiently close with a confidence level of

95%. All the computed Z values are within 1.96 in Fig. 18,

so the proposed particle generation technique can effec-

tively reproduce the particle shape characteristics of orig-

inal soils.

8 Conclusions

In this paper, a probability-based spherical harmonics

technique was developed. This technique can generate

realistic particles based on limited morphological infor-

mation. This technique analyzed a single particle and

extracted spherical harmonics coefficients (camn and cbmn
values), which are analog with the morphological gene of

the particle. These camn and cbmn values were used to deter-

mine the probability distribution, such as Gaussian and

Fig. 17 Effects of g values on morphological variation ranges of generated particles
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uniform distributions. The probability distributions were

used to determine new camn and cbmn values, which were the

analog of gene mutation. The new camn and cbmn values were

used to generate 3D particle geometries with the same

Fig. 18 Comparison between particle shape distributions of original

and generated particles. The original particle shape distributions are

computed by analyzing 214 particles scanned by X-ray CT. The

generated 107,000 particles at g ¼ 0:3 were analyzed to determine

particle distribution of generated particles. The divergence of particle

shape distributions of generated and original particles is evaluated by

the T test
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morphological properties as the original particles. A con-

trolling factor g was developed to tune degrees of gene

mutation. Large g generated particles with a large mor-

phological variance against the original particle.

The morphological variances between generated and

original particles were quantified by six commonly used

particle shape descriptors, including convexity (or solid-

ity), circularity, aspect ratio, area sphericity, diameter

sphericity, and perimeter sphericity. A series of computa-

tional geometry algorithms were developed by this

research to analyze 3D particle geometries to determine

these shape descriptors.

This study used X-ray CT to scan 4000 Ottawa sand

particles. Then, one of the scanned particles was randomly

selected to generate 4000 particles. The particle shape

distributions of original and generated particle agreed well

with each other. This validates the effectiveness of the

proposed probability-based spherical harmonics.

A total of 214 particles with various shapes were scan-

ned by X-ray CT. For each particle, the morphological

gene is extracted. Based on the morphological gene, the

Gaussian distribution with different g values was used to

generate new particles. Five g values of 0.1, 0.3, 0.5, 0.7,

and 1.0 were used. The original and generated particles

were analyzed by computational geometry techniques to

determine their shape descriptors. The dimensionless factor

g controls the morphological variances of the generated

particles. By using the Gaussian probability distribution,

the particle shape distributions of generated particles are

also following Gaussian distribution. Therefore, the stan-

dard deviation r is used to quantify the morphological

variation of generated particles. The relationship between r
and g is explored. This study may facilitate to generate

realistic particle geometries for discrete element method

and geo-mechanical analysis for understanding macro-

engineering behavior of granular soils.
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