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Abstract

Redox transformations of nitrogen (N) play a critical role in determining its speciation and biological availability, thus
defining the magnitude and extent of productivity in many ecosystems. A range of important nitrogen transformations often
co-occur in regions hosting other redox-active elements, including sulfur, iron, and manganese (Mn), especially along sharp
redox gradients within aquatic sediments. This proximity in “redox real estate” produces conditions under which multi-
element interactions and coupled cycling are thermodynamically favored. While previous work has reported anoxic nitrifica-
tion linked to the presence of manganese (Mn) oxides in sediments, a clear connection between the cycling of Mn and N has
remained elusive. Soluble Mn(III), which is stabilized via ligand-complexation, has recently been shown to represent the dom-
inant dissolved Mn species in many environments. Here, we examined the reactivity of ligand-stabilized Mn(III) with nitrite,
using natural abundance stable nitrogen and oxygen isotopes to explore reaction dynamics under a range of conditions. Oxi-
dation of nitrite to nitrate by Mn(III)-pyrophosphate proceeded abiotically under both oxygen replete and nitrogen-purged
conditions. Kinetics and isotope systematics of this reaction were measured over a range of pH (5-8), with reaction rates
decreasing with increasing pH. Under all treatments, an inverse kinetic isotope effect of —19.9 + 0.7%0 was observed for
N, remarkably similar to previously documented fractionation by nitrite-oxidizing organisms. Experiments using '*O-
labeled water confirmed that the source of the additional oxygen atom was from water. These findings suggest that nitrite
oxidation in environments hosting abundant ligand-bound Mn(III), including porewaters, estuaries, and coastal waters,
may be facilitated in part by abiotic reactions with Mn, even under functionally anoxic conditions.
© 2020 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

As a primary nutrient for sustaining life, nitrogen (N)
and the processes governing its transformations have long
been a topic of interest. The N cycle is also intricately
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tic environments, including carbon, oxygen, phosphorous,
sulfur, iron, and manganese (Mn) (Burgin et al., 2011;
Gruber and Galloway, 2008; Melton et al., 2014). While
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the cycling of nitrogen has traditionally been attributed to
microbially-mediated transformations, recent studies have
highlighted abiotic processes as likely important and under-
studied aspects of nitrogen cycling under some conditions
(Cavazos et al., 2018; Doane, 2017; Heil et al., 2016;
Stanton et al., 2018; Zhu-Barker et al., 2015).

Redox interactions between Mn and N in sediments
have been the focus of previous studies, however, their
importance in global cycling is still poorly understood
(Doane, 2017; Zhu-Barker et al., 2015). For example,
Luther et al. (1997) showed in laboratory and field studies
that reactions between ammonia (NH3) and Mn(IILIV)
(oxy)(hydr)oxides (hereinafter Mn oxides) in sediments
could act to “short circuit” the nitrogen cycle by providing
a direct pathway to the formation of dinitrogen gas
(2NH; + 3MnO, + 6H" — 3Mn*" + N, + 6H,0). Subse-
quent work also found indirect evidence for anoxic nitrifica-
tion coupled to reduction of Mn oxides to Mn(Il)
(Anschutz et al., 2000; Hulth et al., 1999). In contrast, how-
ever, targeted studies using incubations amended with
I5NHJ failed to find conclusive evidence that reactions
between ammonia and manganese were occurring in a
Mn oxide rich continental basin sediment (Thamdrup and
Dalsgaard, 2000). More recent field studies have suggested
that the specific geochemical conditions, including the con-
centration and age of the Mn oxides, are key factors con-
trolling the efficacy of Mn oxide catalyzed anaerobic
nitrification (Bartlett et al., 2007, 2008), or that reactions
may only occur in presence of colloidal Mn oxides or more
reactive Mn(III) species (Luther and Popp, 2002; Lin and
Taillefert, 2014).

While many biogeochemical models of Mn in sediments
include only soluble Mn(II) and solid Mn(IILIV) oxides,
soluble Mn(III) can be stabilized via complexation by
ligands and has been recently shown to represent the dom-
inant dissolved Mn species in many environments (Madison
et al., 2013; Oldham et al., 2015). With a reduction poten-
tial close to that of molecular oxygen (Luther et al., 1997,
Luther III, 2010), Mn(III)-ligand (Mn(III)-L) complexes
have the capacity to be potent and important environmen-
tal oxidants. For instance, Mn(III)-L complexes can
directly oxidize carbon, ferrous iron, and sulfide (Kostka
et al., 1995). Ultimately, the extent to which Mn(III)-L
complexes interact with other redox-active elements and
molecules will depend on the specific ligand and subsequent
strength of Mn(III) complexation. While the composition
of Mn(III) ligands in natural systems is presently unknown,
a diversity of ligand compositions and complex strengths
has been predicted, ranging from weaker ligands such as
pyrophosphate to complex humics with strong ligand moi-
eties (Yakushev et al., 2009; Oldham et al., 2015, 2017a).

The role of Mn(IIl) in Mn-N redox interactions is a
potentially important component in the biogeochemical
cycles of both elements that has not been fully addressed
by previous studies (Luther et al., 1997, 2018). One major
challenge to studying coupled cycling reactions is determin-
ing the importance of a single process from a range of
potential biotic and abiotic reactions occurring in the envi-
ronment. Stable isotope studies of nitrogen and oxygen
have proven to be powerful tools in decoupling complex

processes in the nitrogen cycle across a range of environ-
ments and contexts (Kendall et al., 2007; Casciotti, 2016).
The abundance ratio of the two stable isotopes of N (N
and '°N) as well as O (°0 and '%0) can vary as the result
of isotope fractionation during processes including enzy-
matic or chemical reactions. As specific reactions may yield
unique isotopic fractionation patterns, measurements of
isotope ratios can be used to disentangle complex processes
in the environment (Granger and Wankel, 2016). Hence, a
focus of this study is to characterize the isotopic fractiona-
tion of specific reactions in order to identify abiotic, anoxic
nitrite oxidation by ligand-stabilized Mn(I1I). Here we
hypothesize that Mn(IlI) is a viable and environmentally
relevant oxidant of nitrite (NO3) in aquatic systems. We
present a series of experiments describing one such poten-
tially important reaction between Mn(III) and NO5, and
provide the first examination of the stable N and O isotope
dynamics captured by the reaction.

2. METHODS
2.1. Experimental Overview

Aspects of the reaction between Mn(III) and NO; were
targeted through a variety of experimental approaches.
Specifically, experiments were conducted to evaluate 1)
the influence of reactant concentrations and pH on the
reaction kinetic expression, 2) the kinetic nitrogen isotope
effect of NO; oxidation by measurement of reactant and
product isotopic compositions over reaction progress, 3)
the influence of dissolved O, on reaction rates by varying
solution and headspace composition, 4) the possible role
of chemically catalyzed equilibrium (or back-reaction)
between NO5 and reaction products (by use of NO3 with
an elevated 8'°N), and 5) the source of O atoms in reaction
product NOj3 (by use of '®0-labeled water).

2.2. Preparation of solutions

Manganese(III)-pyrophosphate (Mn(III)-PP) solutions
were prepared as previously described (Madison et al.,
2011). A 5 mM solution of sodium pyrophosphate was pre-
pared in de-oxygenated milliQ water and the pH adjusted
to 7.0 using 6 M hydrochloric acid (HCl). Manganese
(IIT)-acetate salt was added to form a clear pink Mn(III)-
PP solution (approximately 1 mM) which was subsequently
filtered (0.45 um) to remove any incidental particulate Mn
oxides formed via disproportionation. The pH of Mn
(II1)-PP was adjusted by addition of 6 M HCI before filter
sterilization (0.2 pm). Additional solutions of Mn(III)-PP
were prepared in '®O-labeled water. Solid Mn oxides in
the form of buserite were prepared as described previously
(Mandernack et al., 1995). Sodium nitrite and sodium
nitrate solutions (10 mM) were prepared in milliQ water
and sterilized by autoclaving. Solutions of '#O-labeled
nitrite were prepared by equilibrating solutions of auto-
claved nitrite in '8O-labeled water in a 50 °C oven for 7
days (Buchwald and Casciotti, 2013). All experiments were
initiated in 160 mL serum bottles by the addition of 1 mL of
10 mM nitrite to 100 mL of ~1 mM Mn(III)-PP in excess
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pyrophosphate, giving a starting nitrite concentration of
~100 pM. Subsamples were collected over time by remov-
ing 3 mL of solution with a sterile syringe and replacing
the headspace with air or N, gas depending on the experi-
mental treatment. The presence of Mn(III)-PP complex
was found to interfere with nitrite and nitrate concentration
measurements and was thus removed prior to analysis by
precipitation of all Mn as Mn oxides by the addition of
10 pL of 6 M NaOH, followed by filtration of Mn precipi-
tate (0.2 um) and neutralization by addition of HCI.

2.3. Chemical speciation

Concentrations of nitrate plus nitrite were measured
using chemiluminescent NOy detection (Teledyne, T200)
after reduction in hot acidic vanadyl sulfate solution
(Braman and Hendrix, 1989). Nitrite concentrations were
monitored using Griess reagent (Pai et al., 1990), and
nitrate concentration estimated by difference. Samples were
diluted 10-fold with milliQ water to a final volume of 3 mL,
treated with 60 pL sulfanilamide (SAN) and 60 pL N-(1-
Naphthyl)ethylenediamine (NED) and measured for absor-
bance at 543 nm. Mn(III) concentrations were measured
using the leucoberbelin blue method referenced to a stan-
dard curve of potassium permanganate and adjusted to
account for the oxidation state offset (Jones et al., 2019;
Krumbein and Altman, 1973).

2.4. Isotopic measurements

Isotopic ratios (°N/'N, 30/!°0) are reported using
standard  delta notation where 8'"°N = [(’Ryumpie/
BRaz.atm) — 1) #1000] and R = "N/'N and where
6180 = [(lsRsample/lgRVSMOW) - 1) * 1000] and lgR =
180/1°0. Isotopic composition of nitrite was measured after
conversion of 20-30 nmol to nitrous oxide (N,O) using the
azide method (Mcllvin and Altabet, 2005) in 20 mL crimp-
sealed headspace vials. Nitrate N and O isotopes were
measured using the denitrifier method (Casciotti et al.,
2002; Sigman et al., 2001) to convert samples to nitrous
oxide after removal of nitrite by sulfamic acid addition
(Granger and Sigman, 2009). The resulting N,O was then
purified and trapped on a modified TraceGas (IsoPrime,
Inc.) purge and trap system coupled with a Gilson autosam-
pler before isotopic analysis on an isotope ratio mass spec-
trometer (IRMS) (IsoPrime 100, Elementar Inc.). Isotope
reference materials for nitrate (USGS 32, USGS 34, USGS
35) or nitrite (WILIS 10, WILIS 11 and WILIS 20) were
run before and after samples at 3 different sizes to normal-
ize reported isotope values and correct for variations in
sample size and any instrument drift. Values of USGS 32,
USGS 34, and USGS 35 are +180, —1.8, and +2.7%c for
3'°N and +25.4, —27.8, and +56.8%o for §'%0, respectively
(Brand et al., 2009). Inter-laboratory comparisons set the
values of WILIS 10, WILIS 11, and WILIS 20 at —1.7,
+57.1, and —7.8%o for §'°N and +13.2, +8.6 and +47.6%o
for 8'%0 (Wankel et al., 2017). Typical reproducibility is
+0.2%0 for both 8'°N and 8'®0 using the azide method
and =£0.2%o for 8'°N and +0.5%o for 8'30 using the denitri-
fier method. Here we adopt the isotope notation convention

wherein reactions resulting in products with a preference
for lighter isotopes are indicated by a ‘normal’ isotope effect
with a positive sign; thus, a negative sign indicates an
inverse isotope effect.

3. RESULTS
3.1. Concentrations of nitrite and nitrate

Nitrite (100 uM) was reacted with Mn(III)-PP (~1 mM)
under a headspace of air over a period of 11 days at three
pH treatments (pH =5.0, 5.7, 6.5) with four replicates.
Over the course of the experiment, nitrite concentrations
were monitored and found to decrease to undetectable
levels (<1 pM) by the end of the experiment, with higher
pH treatments reacting more slowly (Fig. 1a). At the con-
clusion of the experiment, concentrations of nitrate pro-
duced were 1:1 with nitrite consumed (not shown).
Parallel controls without pyrophosphate or Mn(III)-PP
showed no loss of nitrite during the experiment.

3.2. Isotopic fractionation

Nitrite 8'°N values universally decreased from their
starting value during the course of the reaction in relation
with the proportion of nitrite consumed (8'°N of starting
nitrite: —2.3%o0). Oxygen isotope ratios showed no statistical
difference between starting and ending values. Calculation
of the N isotope effect of nitrite oxidation by Mn(III)-PP
( 15 ENO20x,MnIII) assuming closed-system Rayleigh
dynamics (Mariotti et al., 1981) yielded lssNozoqunm
values of —19.140.5%0 for pH=15.0 (r*=0.997) and
Beno2ox v = —18.2 £ 0.4%0 for pH =5.7 (1> =0.997)
in initial experiments. Nitrogen isotope effects were also cal-
culated during a subset of reaction kinetics experiments
described below and ranged from —19.24+0.4%0 to
—20.6 + 0.2%o (Fig. 1b; Table 1).

3.3. Reaction Kkinetics

Two experiments were conducted in order to determine
the reaction kinetics and order with respect to Mn(I11)-PP
and nitrite. The isolation method was used, in which initial
concentration of one reagent was varied while other vari-
ables were held constant. Solutions of varying Mn(III)-PP
concentration were prepared by v/v dilution of an approx-
imately 1 mM solution with 5SmM pyrophosphate. All
experiments were run with air as the headspace at
pH = 5.0 (Table 1).

To determine the role of pH in the kinetics of reaction,
incubations were conducted at pH = 5.0, 5.7, and 6.5. Solu-
tion pH was buffered by excess pyrophosphate with pH sta-
bility confirmed by measurement at the conclusion of the
experiment. Solid oxides were added to minimize influence
of Mn(III)-PP loss during the reaction (additional Mn(III)-
PP complex will form in the presence of excess Mn oxides
and pyrophosphate ligand). An additional control with
Mn oxides and no pyrophosphate ligand displayed no reac-
tivity with nitrite.
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Fig. 1. Nitrite concentration vs. time (a) and closed-system Rayleigh distillation of 5'°N-NO5 (b). Data points represent the average of four
replicates with standard deviations smaller than the symbols. Higher pH treatments reacted more slowly and no measureable change in nitrite
was observed in a no Mn addition control. Slopes of In([NO3 ) vs. ln(”R) were used to calculate 15£NXR,MnIII, but are plotted here as In(f) vs.

1000In(’° R/ Ry).

Table 1

Summary of isotope effects for nitrite oxidation by Mn(III)-PP (ISSNXR, Mn(II))-

pH Mn(II1)-PP (uM) NO5 (uM) Headspace NO5 (uM) Benxr, Mn (%o)

5.0 1000 100 Air - —-19.1 + 0.5
5.7 1000 100 Air - -18.2 + 0.4
5.0 1000 100 Air - -20.3 + 0.3
5.0 900 100 Air - -20.2 + 0.3
5.0 800 100 Air - -19.9 + 0.3
5.0 700 100 Air - -20.1 + 0.4
5.0 600 100 Air - —20.1 + 0.4
5.0 500 100 Air - -19.6 + 0.5
5.0 1000 50 Air - -19.8 + 0.3
5.0 1000 75 Air - -20.6 + 0.2
5.0 1000 100 Air - -19.6 + 0.5
5.0 1000 125 Air - -19.9 + 0.2
5.0 1000 150 Air - -20.2 + 0.2
5.0 1000 175 Air - -19.9 + 0.2
5.0 1000 100 N,-purged - —-19.8 + 0.3
5.0 1000 100 Air - -20.1 + 0.1
5.0 1000 100 Air 10 -19.6 + 0.6
5.0 1000 100 Air 100 —~19.4 + 0.3
5.7 1000 100 Air 10 -19.2 + 0.4
5.7 1000 100 Air 100 —-20.5 + 0.2

Using the balanced reaction (Eq. (1)), a general rate law
(Eq. (2)) was written to derive the rate of reaction. Concen-
trations in Eq. (2) represent the total concentration of each
reactant. For simplicity of notation, [NO5] also includes
any nitrous acid (HNO,) present.

NO, ™~ +2Mn(I1I)-PP+ H,0 — NO; ~ +2Mn?** +2PP +2H* (1)

d[NO; .

% = k[Mn(111)PP)" [NO; |"[H ] (2)
d[NO5 d[Mn(lII)FP]  d[NO;]|

a -2 dt dt (3)

where a, b, ¢ represent the order of the reaction with respect
to Mn(IIT)-PP, NO5 , and H™, respectively, and & is the rate

rate =

constant. When [Mn(III)-PP] is varied while pH and [NO5 ]
held constant Eq. (2) simplifies to:

rate = kopg 1 [Mn(III )PP 4)
where
kops1 = kINO3 " [H]® (5)

Using the instantaneous rate method Eq. (4) can be
rewritten as:

log (rateiys) = 10g (kops,1) + alog([Mn(III)PP,,]) (6)
where rate;, is the instantaneous rate and [Mn(III)PP,,] is

the initial concentration of Mn(III)-PP. Thus, the slope
(a) of log([Mn(IlI)PP,] vs. log(rate;,) indicated a 2nd
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order reaction with respect to Mn(III)-PP (a =1.95 +0.1;
Fig. 2a).

Similarly, when [NO5 ]is varied and [Mn(I1I)-PP] is held
constant Eq. (2) can be written as:

rate = kobs,z[NOZ’]b (7)
with
kopss = k[Mn(1II)PP)"[H*] (8)

As above this can be expressed as:

log (rate;,) = log (koss2) + blog([NO5 |, ) 9)

The slope (b) of log([NO; |, ) vs. log (rate;,) gave a value
of 1.03 £0.04, indicating the reaction is 1st order with
respect to NO5 (Fig. 2b).

To determine the role of pH, reactions were conducted in
the presence of excess Mn oxides and pyrophosphate, to min-
imize any changes in the concentration of Mn(III)-PP. Thus,
assuming constant [Mn(III)-PP], kinetics appeared pseudo-
first order with respect to nitrite and rate constants were
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calculated from the slope of time vs. In([NO;]) (Fig. 2c).
As above the rate expression was simplified:

rate = k3 [H'] (10)
with
Fos = KM PPY (VO | (i)

Using the pseudo-first order rate constants derived as
described above:

log (rate) = log (kops3) + clog([H']) (12)

Eq. (12) was solved for the slopec, indicating the reac-
tion is 1st order with respect to concentration of protons
(Fig. 2d; ¢ =0.96 £ 0.01). The overall rate expression is
thus:

dINO;
% = k[Mn(LII)PP)’[NO; | [H™) (13)
This rate expression can also be simplified as:
dINO;
% = k[Mn(lII)PP)’[HNO,]K,, (14)
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Fig. 2. Log(rate) vs. log([Mn(III)-PP] (a), log([NO3]) (b), and —log([H"]) (d). Log([NO3]) vs. time (c) at pH = 5, 5.7, 6.5 in the presence of
excess Mn(III)-PP displays pseudo-first order kinetics with respect to nitrite. Slope of linear regression represents the order of reaction with
respect to that reactant, thus the reaction is second order in Mn(III)-PP and first order in NO5 and H™.
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Where K, represents the acid dissociation constant of
nitrous acid. Thus we conclude the reactant is HNO,,
rather than NO5.

3.4. Reaction rates

Based on observed changes in concentrations over time
for experiments at pH=15.0, 5.7, and 6.5 (starting
NO; = 100 uM and Mn(III)-PP = 1000 pM, four repli-
cates), nitrite reduction rates of 518 £ 16.8, 108 £ 4.8,
and 21.6+24pM d~! were calculated, respectively
(Table 2). Additional incubation experiments were performed
with the same starting concentration of Mn(III)-PP at pH 7
and 8 using isotopically labeled '>’NO3 to determine the reac-
tion rates at pH values relevant to the marine system (Beman
et al, 2013; Ward, 2011). Unlabeled nitrite (9 mM),
I5N-nitrite (1 mM), and unlabeled nitrate (4 mM) were pre-
mixed and aliquotted into bottles as described above and then
sampled over 3 months to track accumulation of >N in the
NO3 pool over time. Under these reaction conditions rates
of nitrite oxidation by Mn(III)-PP at pH 7 and 8 were
5.8+ 1.3 and 3.9+ 0.6 uM d !, respectively (Table 2).

3.5. Effect of dissolved oxygen

To determine the potential role of oxygen in the oxida-
tion of nitrite to nitrate by Mn(III)-PP, two parallel incuba-
tions were conducted either with a headspace of laboratory
air or after vigorously purging with N, gas for 15 minutes
to substantially reduce the amount of dissolved oxygen.
Experiments were run at pH 5 and sampled over 4 days.
No significant difference in reaction rates was found
between the oxic and Nj-sparged treatments (Table 1,
Fig. 3). Similarly, the observed N isotope fractionation
was unaltered by oxygen level (p = 0.28).

3.6. Potential reversibility of reaction

To test the possibility of reaction reversibility, experi-
ments were run with the addition of nitrate having an ele-
vated 8'°N value (USGS 32, 8'°N = +180%c). Two
treatments contained an additional 10 uM (10% of nitrite
added) and 100 uM (100% of nitrite added) nitrate at the
beginning of each experiment at two pH values
(pH = 5.0, 5.5). Sub-samples were collected over a period
of 8 days. Again, no observed change in 158N020X’Mnm
was noted among treatments receiving high 8'°N-NOj3 in
comparison to previous experiments receiving no NO3
amendment (Table 1).

Table 2
Rates of nitrite oxidation and rate constants, pH = 5.0-8.0.
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Fig. 3. Time course of nitrite concentration at pH=5. No
significant difference in rate was observed between air and N,-
purged headspace treatments. A control treatment with no Mn
addition showed no significant decrease in nitrite.

3.7. Source of additional oxygen atom

In order to determine the source of the additional oxy-
gen atom in nitrate, an experiment using '*O-labeled water
was performed. Two '®O-labeled water samples having
3'80 values of approximately +18%0 and +40%o were pre-
pared by dilution from a stock solution (~+5000%0), with
an unlabeled water sample with 8'%0 ~ —5%. used as a
third condition. As nitrite oxygen isotopes equilibrate with
water quickly at the pH conditions of our experiments
(Casciotti et al., 2007), 80.labeled nitrite stock solutions
were also prepared as described above in an aliquot of each
labeled water sample. As the result of equilibrium isotope
fractionation between NO, and H,O, fully equilibrated
nitrite has a 8'%0 value ~14%o higher than its surrounding
water (Buchwald and Casciotti, 2013; Casciotti et al., 2007).
Average starting values of 5'%0-NO5 were +11, +32, and
+54%o after equilibration with '*O-labeled water.

Five treatments (8'30yqier = —5%0, +18%0, +40%o oxic,
3180 = —5%0 Ny-sparged, oxic no Mn control) were run
at three pH conditions (pH = 5.0, 5.7, 6.5) and subsampled
over 17 days. Samples of nitrite and nitrate were analyzed
for 8'80. No differences in rates or 5'0 values were found

Nitrite oxidation rate

Rate constant (k)

pH M d! puM 2 hr!

5.0 518.4 + 16.8 2.16E—07 + 7.00E—09
5.7 108 + 4.8 4.50E—08 + 2.00E-09
6.5 21.6 + 24 9.00E—09 + 1.00E—09
7.0 5.8 + 1.3 2.40E—11 + 5.38E—10
8.0 3.9 + 0.6 1.62E—11 + 2.33E-10
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between 5'*0-NO3 produced under oxic or N,-sparged
conditions (p=0.59). The slope of &'%0-H,O vs.
5'%0-NO3 was very close to 1 under all three pH condi-
tions, indicating water was the source of the third O-atom
in nitrate (Fig. 4; Table 3). Examination of the y-intercept
of these data also allows calculation of the kinetic
isotope effect associated with incorporation of the O atom
from water ("% po0), which was determined to be
+20.3 4 1.5%o.

4. DISCUSSION

Environmental transformations of nitrogen play a fun-
damental role in determining its fate as a nutrient and con-
taminant across ecosystems. While the framework for these
processes is complex, it is widely understood that micro-
bially driven reactions comprise the large majority of these
transformations. Nevertheless, there also exists an array of
abiotic transformations that may contribute to the complex
framework of environmental nitrogen transformations
under some conditions (Doane, 2017; Heil et al., 2016;
Luther, 2010; Luther et al., 2018; Zhu-Barker et al.,
2015). Among these are redox reactions involving com-
monly abundant transition metals, especially Mn and Fe
(Buchwald et al., 2016; Cavazos et al., 2018; Doane, 2017;
Grabb et al., 2017; Heil et al., 2015; Stanton et al., 2018;
Zhu-Barker et al., 2015). Here we demonstrate that ligand
bound Mn(III) can serve as an important oxidant of nitrite,
producing nitrate under environmentally relevant condi-
tions and independent of molecular oxygen concentrations.
We further present our stable isotopic interrogation of this
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Fig. 4. §'%0-NO7 produced from NO3 equilibrated with different
80-labeled H,O samples. Slopes of best-fit lines were indistin-
guishable from a 1:1 line for all three pH treatments. Intercepts of
the linear regressions were used for calculation of an overall kinetic
isotope effect for incorporation of O from water (lssk,mo) as
shown in Table 3.

process, shedding light on source O atoms and associated
kinetic isotope effects, and discuss its possible relevance in
environmental N cycling.

4.1. Mn(III) is an effective oxidant of NO3 - with possible
environmental relevance

Foremost, our results demonstrate that ligand bound
Mn(III) is an effective oxidant of nitrite under the condi-
tions evaluated including circumneutral pH and modestly
elevated concentrations. While Mn is present in the envi-
ronment in three oxidation states (II, III, and IV), most
studies exploring the oxidative potential of oxidized Mn
on the N cycle have only examined the reactivity of Mn
oxide minerals, thus overlooking the possible influence of
dissolved, oxidized Mn (Bartlett, 1981; Nelson et al.,
2002; Stone and Morgan, 1984). Additionally, Mn oxide
minerals may vary widely in structure, oxidation state,
and reactivity (Post, 1999). To the best of our knowledge,
the potential relevance of Mn to nitrite oxidation has only
been examined in two previous studies, both involving
solid-phase Mn oxides (Bartlett, 1981; Luther and Popp,
2002). Bartlett (1981) first observed abiotic oxidation of
nitrite to nitrate in sterilized soils upon addition of Mn oxi-
des, while Luther and Popp (Luther and Popp, 2002) more
formally evaluated the kinetics of nitrite oxidation by col-
loidal Mn oxides. In contrast to these solid Mn oxide
phases, ligand bound Mn(III) forms have recently been
shown to comprise the majority of dissolved Mn across a
range of aquatic systems (Kostka et al., 1995; Madison
et al., 2011; Oldham et al., 2017a, 2015). These Mn(III)-L
complexes have been shown to easily pass through conven-
tional filtration (0.2-0.45 pm) (Kostka et al., 1995; Luther
and Popp, 2002; Wilczak et al., 1993) and ultrafiltration
(0.02 pm) (Oldham et al., 2017a, 2017b), suggesting that
previous studies assuming that all dissolved Mn was present
as Mn(II) may have overlooked an important and reactive
fraction of soluble Mn. Indeed our experimental results
demonstrate that Mn(III)-L complexes are viable oxidants
of nitrite under conditions of environmental relevance.

4.2. Reaction rate

Over the range of conditions we evaluated, observed
rates of Mn(III)-L induced nitrite oxidation ranged from
3.9uM d~! up to 518.4 uM d~! over pH values from 8.0
to 5.0, respectively (Table 2). While direct comparison with
other studies of nitrite oxidation by bacterial cultures or in
aqueous environments is not straightforward, to a first
order, our observed rates are similar to those reported in
a wide variety of studies. For example, recently reported
rates of aerobic nitrite oxidation by axenic cultures of
nitrite-oxidizing Nitrobacter and Nitrospira bacteria yielded
half saturation constants (Km) of 49-544 uyM and 9-
27 uM, and V. values of 64-164 and 18-48 umol mg pro-
tein ! hr™!, respectively (Nowka et al., 2015). Under our
experimental conditions (all other factors being equal), a
nitrite-oxidizer cell density corresponding to hypothetical
protein concentration of 100 pg/L, would yield initial nitrite
oxidation rates of 17-500 uM d~' — similar in magnitude to
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Table 3
Results from '30-labeled water experiments.

Slope Intercept
pH 3'%0-H,0 (%o) Headspace 3'%0 (NO5 vs NO3) B Ho0 (%o)
5.0 =5 Air 0.95 4 0.03 (r* = 0.988) +20.5+0.8
5.0 18 Air
5.0 40 Air
5.0 -5 N,-purged
5.7 -5 Air 0.94 +0.02 (r* = 0.991) +20.2+£0.8
5.7 18 Air
5.7 40 Air
5.7 -5 N,-purged
6.5 =5 Air 0.97 & 0.03 (r* = 0.992) +22.5+0.4
6.5 18 Air
6.5 40 Air
6.5 -5 N,-purged

the initial Mn(III)-L induced rates we observed at pH 5.0
and 5.7 of 518 pM d~! and 108 pM d~!, respectively.

Rates of nitrite oxidation in aqueous environments, of
course, are much lower than those observed in bacterial cul-
tures or lab experiments, and are therefore commonly mea-
sured by addition of '’NO3 and measured accumulation of
>NO3 with time (Ward, 2011). In particular, much effort
has focused on characterization of nitrite oxidation rates
in oxygen deficient hotspots of nitrogen transformation in
the global ocean — yielding values ranging from 0 to
~600nM d~! (Beman et al., 2013; Bristow et al., 2016;
Lupschultz et al., 1990; Peng et al., 2015; Sun et al., 2017;
Ward et al., 1989). Other studied environments include
coastal environments, open ocean, estuaries, and coral
reefs, also typically exhibit rates ranging from ~0 up to sev-
eral hundred nM d ™! (Bianchi et al., 1997; Dore and Karl,
1996; Heiss and Fulweiler, 2016). While microbial nitrite
oxidation is generally considered to be an aerobic process,
under oxygen-restricted conditions, the anaerobic oxidation
of ammonium (anammox) is also known to oxidize NO; to
NO3 at stoichiometry of ~0.19 moles of NO3 produced per
mole of NHJ oxidized (Jetten et al., 1999; Kartal et al.,
2011; Strous et al., 2006). Extrapolating from measured
anammox rates in oceanic oxygen deficient zones (ODZs)
and groundwaters suggests that environmental anammox
based nitrite oxidation rates may range from <1 nM d~!
up to 70nM d~! (Dalsgaard et al., 2005; Kuypers et al.,
2003; Lam et al., 2007; Moore et al., 2011).

Turning to the only previously reported rates of Mn
induced nitrite oxidation, Luther and Popp (2002) reported
a rate constant (k) of 493 M~! min~! at pH = 5.00 for reac-
tion of NO; with “polymeric” (colloidal) Mn oxides. Thus,
relative to rates we observe in our experiment, at [MnO,]
=1mM and [NO5]= 100 uM, the predicted rate of NO3
formation would be several orders of magnitude greater
than rates we observed. Nevertheless, Mn oxides, including
colloids, will be considerably lower than 1 mM in most
environments, and could be less reactive due to surface
adsorbates and/or co-precipitates. Further, Mn(III)-L and
Mn oxides are oftentimes decoupled spatially. For instance,
along redoxclines in stratified systems, Mn(III)-L span a
wide redox gradient, while Mn oxides have a distinct peak

in their distribution along the gradient (Dijkstra et al.,
2018; Trouwborst et al., 2006; Yakushev et al., 2009,
2007). In any regards, predicted rates of nitrite oxidation
by Mn(III)-L are similar in magnitude to biological rates
described above. For example, under conditions that might
typify porewaters close to an estuarine sediment-water
interface (pH 6.5, [NO5]= 10 uM, [Mn(III)-PP] = 80 uM)
an estimate of 14nM d~! would be feasible (Madison
et al., 2013). This result suggests that abiotic nitrite oxida-
tion by Mn(III)-L complexes may be competitive with cor-
responding microbial processes, particularly at pH <7
(Table 4). When taken together with the previously demon-
strated potential for Mn oxides to also oxidize nitrite, Mn
may therefore represent an important and currently under-
appreciated oxidant of nitrite within some ecosystems.

4.3. Stable isotope dynamics

Nitrite does not readily accumulate in most aquatic
environments, with concentrations rarely reported above
more than a few uM. Nevertheless, as with other reactive
intermediates, its low concentrations reflect its high reactiv-
ity and fluxes involving nitrite can be high. As a conse-
quence of these low ambient levels, nitrite has only
recently been interrogated by stable isotope analyses. As
both a reductive and oxidative intermediate of several

Table 4
Theoretical rates of nitrite oxidation under environmentally
relevant conditions.

[Mn(III)PP] [NO3z ] Oxidation Rate
pH M M nM d!
6.0 10 10 0.6
6.0 50 10 14.2
6.0 100 10 56.9
6.5 10 10 0.2
6.5 50 10 5.4
6.5 100 10 21.6
7.0 10 10 5.8E—04
7.0 50 10 1.4E-02
7.0 100 10 5.8E—02
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transformation processes, the nitrogen and oxygen isotope
dynamics of nitrite are often complex and reflect multiple
processes (Buchwald and Casciotti, 2013; Buchwald et al.,
2018; Casciotti, 2016; Casciotti et al., 2011). Thus, there still
remains much to be learned from gaining an improved
understanding of the systematics that govern its natural iso-
topic composition across environments in particular those
with strong redox variations.

Our experiments yielded a number of insights that shed
light on the nature of the reaction examined. First, abiotic
nitrite oxidation by Mn(I1I)-PP yielded an average inverse
nitrogen isotope effect ( ISSNOZOX,MnIII) of —19.9 &+ 0.7%o
across all experiments. No significant differences in this N
isotope effect were observed between experiments, indicat-
ing that both pH (p = 0.59) and O, (p = 0.28) did not influ-
ence N isotopic fractionation. While inverse isotope effects
are not commonly observed, it is notable that biological
nitrite oxidation has also been shown to exhibit this same
dynamic. In a study of Nitrococcus mobilis, Casciotti
(2009) first demonstrated this isotope behavior, suggesting
that the lower zero point energy for the transition state of
the N isotopologue over the '°N isotopologue for the
N-O bond forming reaction favored the net transition of
>N into the product pool — thereby yielding a unique '°N
depletion of the reactant nitrite pool over the course of
the reaction. A similar dynamic has been demonstrated
with anaerobic NO; oxidation by anammox bacteria
(Brunner et al., 2013; Kobayashi et al., 2019). This inverse
isotope effect has since been invoked to explain large differ-
ences in 3'°N of NO3 and NO3 in oxygen deficient zones of
the oceans (up to ~40%c) (Bourbonnais et al., 2015;
Casciotti and Mcllvin, 2007; Gaye et al., 2013; Peters
et al., 2018), and in ocean sediment porewaters reported
as high as 54%o (Buchwald et al., 2018). Thus, the nitrogen
isotope signature imparted by abiotic Mn-catalyzed oxida-
tion of NO; to NOj3 appears similar in direction and mag-
nitude to biological nitrite oxidation. Our study falls within
the range of reported biological isotope effects for nitrite
oxidation (—12.8%¢ to —45.3%c) (Casciotti, 2009;
Kobayashi et al., 2019) with differences in magnitude likely
resulting from differences in bond strengths in transition
states.

Second, our results also indicate no significant variation
in the observed values of lsaNOZOX,Mnm, despite substantial
differences in reaction rates among experimental conditions.
Additionally, our evaluation of whether the unique inverse
isotope effect might be explained by chemically catalyzed
isotopic equilibrium between NO; and NOj3 confirmed
that no backwards isotopic transfer occurred during the
reaction. Had any sort of nitrogen isotope equilibrium
occurred during the reaction, in-growth of >N from labeled
NO3 (added prior to experimental initiation) back into the
reactant nitrite pool would have impacted the observed
kinetic isotope effect. As such, our results suggest that the
reaction proceeds in a single, irreversible step.

Third, no changes in reaction rate (p = 0.74) or ISSNOZOX)
mar  (p=0.28) were observed whether the reaction
occurred under oxygen-saturated or oxygen-depleted (N,-
sparged) conditions, illustrating that the oxidation of nitrite
to nitrate by Mn(III)-pyrophosphate is effectively agnostic

to oxygen and occurs under hypoxic conditions. A similar
observation was also previously reported during soil incu-
bations of soils and synthetic Mn oxides, in which no differ-
ences in reaction extent or stoichiometry were observed
between vessels open to air and those purged with N, or
CO; (Bartlett, 1981).

The 5'%0 of the product nitrate derives from both reac-
tant nitrite and the addition of a third O atom. Our exper-
iments conducted in '®O-labeled water reveal the origin of
this O atom - clearly deriving from water. By pre-
equilibrating reactant NO, with waters having different
5'%0 compositions, we observed a near 1:1 relationship
between the experimental waters and the newly added oxy-
gen (Fig. 4). Luther and Popp (2002) postulated that this
additional O atom might derive from Mn oxide, due to bal-
ancing of loss of two protons in the reaction. Although the
formation of Mn oxide particles was not observed in our
study, transient formation of Mn oxides via Mn(III) dispro-
portionation is possible. However, if Mn-bound oxygen (or
even O,) had been the source of the third oxygen atom, then
the regression of 3801120 vs. 8% 003 (Fig. 4) would yield a
slope of ~0.66, as the contribution of the third additional O
atom would have the same 3'30 value in all treatments
(while the other two atoms from NO3 were in equilibrium
with water). In all cases, the near 1:1 slope unequivocally
reflects incorporation of O atoms from water during forma-
tion of nitrate.

In contrast to the behavior of N isotopes in this system,
nitrite O isotopes quickly equilibrate with the ambient
water oxygen isotopes at the pH of our experiments
(Buchwald and Casciotti, 2013; Casciotti et al., 2007).
Resulting from this rapid oxygen isotope equilibration of
NO;3 with ambient H,O at our experimental pH conditions,
no differences between starting and ending 5'%0 of NO3
were observed. This complete oxygen isotope equilibration
between nitrite and water allows us to determine the isotope
effect associated with the incorporation of hydration shell
water-oxygen into nitrate. Following derivations by
Buchwald and Casciotti (2010), we calculate an overall
kinetic isotope effect for incorporation of O from water
Bemo = 120.3 & 1.5%0. As with the inverse N isotope
effect, the isotope effect associated with incorporation of
an O atom from water during Mn(III)-induced nitrite oxi-
dation to nitrate is also analogous to the comparable iso-
tope effect observed in nitrite oxidizing bacteria of +12.8
to +18.2%0 (Buchwald and Casciotti, 2010; Hollocher,
1984). Thus, abiotic NO5 oxidation by Mn(III) could con-
ceivably operate in parallel to biological nitrite oxidation
with no impact on the expected isotope dynamics of reac-
tant NO> or product NO3.

4.4. Coupling of Mn and N cycling in the environment

Despite the favorable thermodynamic conditions for
reactions coupling Mn and N transformations, and the
commonly overlapping zonation of Mn and N species in
redox transition regimes, direct evidence for the occurrence
of these reactions in the environment remains limited. Cou-
pled redox reactions between N and Mn species have been
proposed by a number of previous studies using a range of
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approaches (Aigle et al., 2017; Anschutz et al., 2000; Hulth
et al., 1999; Lin and Taillefert, 2014; Luther and Popp,
2002; Luther et al., 1997; Mortimer et al., 2004;
Thamdrup and Dalsgaard, 2000). Notably, Luther and col-
leagues (Luther et al., 1997, 2018; Luther, 2010) highlighted
the thermodynamic favorability of reactions between Mn
and N over a range of environmentally relevant conditions.
Indeed, these thermodynamically favorable reactions have
justified the search for microbial mediation of coupled
Mn/N reactions. Studies of soils, freshwater lakes, marine
sediments, and even wastewater treatment operations have
variably reported either the presence or absence of evidence
for redox interactions of Mn and N (Anschutz et al., 2000;
Bartlett et al., 2007; Dhakar and Burdige, 1996; Fernandes
et al., 2015; Heil et al., 2015; Hulth et al., 1999; Lin and
Taillefert, 2014; Luther et al., 1997, Mortimer et al., 2002;
Swathi et al., 2017; Thamdrup and Dalsgaard, 2000). Nev-
ertheless, while the apparent energetic yields of many Mn/
N redox couples would appear to easily support microbial
metabolisms, little evidence exists implicating any direct
involvement in support of metabolic energy conservation.

Our data provide some intriguing insight into possible
environmental links, specifically that soluble Mn(III)-
ligands may readily oxidize NO5 to NO3 — an abiotic ana-
log of the second step in bacterial nitrification — without the
notable requirement of molecular oxygen. Indeed, several
studies have concluded that so-called ‘anoxic nitrification’
may be important in marine and estuarine sediments
(Anschutz et al., 2000; Bartlett et al., 2008; Hulth et al.,
1999; Luther et al., 1997; Mortimer et al., 2004, 2002), with
at least one study providing evidence for Mn-linked abiotic
nitrification in soils (Bartlett, 1981). If important, anoxic
nitrification could provide an important link and N loss
term without a requirement of molecular oxygen. Most N
loss (as N») in soils and aquatic sediments is attributed to
denitrification or anaerobic ammonium oxidation (anam-
mox), both proceeding under low O, conditions and requir-
ing oxidized forms of N as electron acceptors (e.g., NO3 or
NO3). In general, production and delivery of these electron
acceptors is linked to the activity of aerobic nitrifying
organisms. Hence, a process by which N is oxidized in the
absence of molecular oxygen could represent an important
shunt in the N cycle.

A number of previous studies have highlighted the
apparent occurrence of oxidative nitrogen cycling under
anoxic conditions — with associated implications for
involvement of Mn (Lin and Taillefert, 2014; Luther
et al., 1997). For example, several studies examining highly
resolved porewater profiles noted accumulation of NOj3 at
depths below what would be expected from diffusion alone,
speculating that Mn oxides must play a role as environmen-
tal oxidant of reduced N in the absence of dissolved oxygen
(Anschutz et al., 2000; Bartlett et al., 2008; Hulth et al.,
2005; Mortimer et al., 2004). Other studies have used exper-
imental amendments in sediment incubations of marine
sediments — specifically, looking for responses of systemic
nitrogen cycling to increased availability of Mn oxides —
mostly focused on reactivity of solid phase Mn (I1I/1V) oxi-
des (Bartlett et al., 2007; Lin and Taillefert, 2014). Accumu-
lation of NO3 and/or NO;3 has been reported from anoxic

lab incubations of Mn-rich surface sediments and sediments
amended with various Mn oxides (Bartlett et al., 2007;
Hulth et al., 1999). While it was suggested that differences
in Mn mineral structure (e.g., phase, defects, composition,
see Luther et al., 2018) could underlie variability among dif-
ferent environmental systems in results, it is unclear
whether products of Mn reduction, which could include
Mn(III)-ligand bound forms, may have played a role in
the observed dynamics.

Interestingly, evidence for the oxidative ‘recycling’ of
NO; back to NOj3 in low oxygen systems has been mount-
ing, in both marine and terrestrial systems (Casciotti, 2016;
Granger and Wankel, 2016). In low oxygen marine systems,
including oxygen deficient zones (ODZs) and porewaters,
nitrate N and O isotope data have consistently required
substantial re-oxidative fluxes of NO5 to NOj3, albeit under
low O, conditions (Buchwald et al., 2018; Casciotti and
Mcllvin, 2007; Gaye et al., 2013; Sigman et al., 2005).
The mechanism of this apparently large back-flux has
remained enigmatic. Intriguingly, '’N-label rate measure-
ments of nitrite oxidation in these systems have also indi-
cated nitrite oxidation under very low O, (Babbin et al.,
2020; Beman et al., 2013; Fussel et al., 2012; Sun et al.,
2017), although some preservation approaches may induce
potential artifacts (Ostrom et al., 2016). In parallel to these
observational studies, multi-process multi-isotope modeling
studies have also consistently concluded that substantial
conversion of NO5; to NO3 under anoxic conditions is
needed to explain dynamics observed in redox transition
zones of ODZs, marine porewaters, and groundwater
(Buchwald et al., 2018; Casciotti, 2016; Granger and
Wankel, 2016). While our data cannot directly implicate
the occurrence of abiotic N transformations in the environ-
ment, it is intriguing to consider the possible role of Mn
(II)-L in driving some of this purported NO, oxidation
under low oxygen conditions. In freshwater systems, where
pH is often < 7 and levels of dissolved metals are elevated, a
possible role for Mn-based NO; oxidation seems particu-
larly feasible. In the absence of O,, this mechanism provides
an abiotic avenue for active NO, reoxidation — promoting
coupled biotic/abiotic cycling between NO3 and NO;3 as
suggested by modeling studies (Granger and Wankel,
2016). Reports of anoxic nitrification in soils and sediments
may also reflect such a unique biotic/abiotic coupling. In
comparison, marine redox transition zones exhibit higher
pH and lower levels of dissolved metals (Kondo and
Moffett, 2015; Landing and Bruland, 1987; Lewis and
Landing, 1991; Lewis and Luther, 2000; Moffett et al.,
2007; Nameroff et al., 2002). Under these conditions, oxida-
tion of NO, by Mn(III)-L is likely to be much slower. Spe-
ciation of Mn (including Mn(III)) in ODZs has not been
widely examined, with only a few studies examining coinci-
dent N cycling features. Notably, Mn(III) was implicated as
a controlling factor in fluxes of phosphorus within the
redoxcline of the Black Sea through formation of Mn
(IIT)-pyrophosphate complexes with proposed concentra-
tions of ca. 50 nM within the suboxic zone (Dijkstra
et al., 2018). Additionally Trouwborst et al. (2006) reported
Mn(III)-L concentrations in the Black Sea up to 5 puM.
Interestingly, reported maxima in dissolved Mn in the
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Arabian Sea ODZ were always highly correlated with sec-
ondary nitrite maxima (Lewis and Luther, 2000) — a zone
coinciding with active NO3 turnover in the absence of oxy-
gen (Beman et al., 2013; Fissel et al., 2012; Sun et al.,
2017). Future examination of such interactions seems duly
warranted.

5. SUMMARY

We demonstrate that a Mn(III)-L complex can facilitate
abiotic NO; oxidation under a wide range of environment
conditions relevant to freshwater, marine, and sedimentary
environments. We characterized the kinetics and N- and O-
stable isotope systematics of Mn(III)-PP reaction with
nitrite. The overall reaction is second order with respect
to Mn(III)-PP, and first order with respect to both nitrite
and H'. An inverse nitrogen isotope effect of —19.9
=+ 0.7%0 was observed between the product nitrate and the
reactant nitrite. While inverse isotope effects such as the
one we measured here are not common in kinetically-
controlled reactions, it is similar in direction and magnitude
to its biological analog in nitrification. The overall similar-
ity in reaction rates and stable isotope effects of nitrite oxi-
dation by Mn(IIl)-L complexes and by biologically-
mediated nitrification demands further consideration of
the relative importance of abiotic processes involving Mn
(III)-L complexes in local nitrogen cycling.

Intriguingly, Mn(III)-PP oxidation of NO; is insensitive
to O, levels, occurring under functionally anoxic conditions
(e.g., no detectable O,) and raising the possibility of an abi-
otic analog to nitrification under oxygen-depleted condi-
tions. Although Mn has long been implicated as an
important player in suboxic and anoxic redox transforma-
tions, the consideration of Mn(III)-L complexes offers an
additional avenue of inquiry that provides a greater mech-
anistic understanding for N-redox cycling in functionally
anoxic environments and environments in which redox gra-
dients facilitate interactions between Mn- and N- species of
intermediate valence. Although Mn(III)-L complexes are
widespread in natural waters, there is very little known
about the diversity of Mn-binding ligands, including their
composition, origin, and binding strength. These are all
critical factors in ultimately determining the environmental
conditions under which Mn(III)-L complexes facilitate N
redox reactions. In any case, interactions between Mn
(IIT)-L complexes and nitrite are a potentially critical miss-
ing link in understanding local nitrogen budgets, the ulti-
mate fate of these two important electron acceptors, and
the energetic limits of life in the absence of oxygen.
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