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Abstract
Physics engines, originally developed to simulate physical and mechanical processes in modern video games, are increas-
ingly used as a scientific computational platform in many disciplines due to their high computational efficiency. This study 
explores the feasibility of using an open-source physics engine, Project Chrono, to simulate direct shear tests. This study 
develops a series of pre-processing, servo-controlling, and post-processing functions in Project Chrono to generate soil 
specimens with designed packing densities, perform direct shear tests, and output simulation results including stress–strain 
relations, fabrics, and force chains. To determine inter-particle contact forces, typical DEM codes use soft contact models, 
while most physics engines use hard contact models. The hard contact model enables physics engines to use large time steps 
in iterations without affecting the numerical stability and simulation accuracy, which remarkably reduces simulation time 
compared with typical DEM codes. Based on systematical comparisons between simulation results of two contact models, 
this study demonstrates that the hard contact model can yield the same direct shear test results observed in soft contact model 
simulations, but is ten times faster than the soft contact model for simulating the same number of particles. This study may 
provide DEM modelers with the physics engine as one more option for soil behavior simulation.
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1  Introduction

The direct shear test is a simple laboratory test that divides 
the specimen into upper and lower parts and shears the 
specimen by pushing the lower part horizontally with a ver-
tical load applied on top of the specimen. Direct shear tests 
are one of the most popular laboratory tests in geotechnical 
engineering to determine the strength parameters of soils.

Recently, numerical simulation methods, especially the 
discrete element method (DEM), have been developed rap-
idly and widely applied in modeling soil tests [1, 2]. Com-
pared to actual laboratory tests, DEM can explicitly simulate 

individual particles and their interactions, as well as obtain 
microscope particle behavior including particle velocity, 
particle rotation, and inter-particle contact force, which is 
intractable to measure in actual experiments [3].

The inter-particle contact model is the key to reproduce 
granular soil behavior. Typical DEM codes, such as Itasca 
PFC 2D/3D [4], LIGGGHTS [5], and YADE [6], use a soft 
contact model, originally proposed by Cundall [7–11]. Soft 
contact model allows overlap between contacting particles, 
and the amount of overlap determines the normal and fric-
tional forces based on a force–displacement law. The key 
input contact parameters of the soft contact model include 
normal stiffness, shear stiffness, and friction coefficient. To 
yield small amounts of overlap compared to particle size, 
the normal and shear stiffnesses are usually set at very high 
values. Therefore, the time step size in the computation must 
be small to yield a small elastic rebound at each iteration 
to ensure numerical stability, which significantly increases 
simulation time when simulating a large number of particles.

In the area of computer science, simulations of rigid bod-
ies and their interactions are important for video games and 
computer-animated films. Therefore, a physics-based simu-
lation platform, physics engine, was developed to perform 
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such simulations. For example, in Angry Birds game, col-
lisions among birds, pigs, and blocks are simulated by a 
physics engine, called Box2D [12].

Physics engines primarily focus on simulation speed 
and stability to offer video game players an immersive and 
realistic gaming experience. Recently, with the rapid devel-
opment of the computer gaming and movie industry, the 
accuracy, computational speed, and functionalities of phys-
ics engine techniques have been significantly improved, and 
have started to be used as a scientific computational platform 
in various disciplines, including geotechnical engineering 
[13], robotic control [14, 15], crowd simulation [16], bio-
medical engineering [17, 18], autonomous vehicle research 
[19], virtual and augmented reality [20], and psychological 
research [21].

Different from DEM codes, most physics engines use 
a hard contact model to compute contact forces. The hard 
contact model does not allow overlap between contacting 
particles. The velocities before collision are used to compute 
the velocities after collision. Then the Newton–Euler laws 
of motion are used to update the positions and orientations 
of the two particles and compute the contact force. The time 
step size used in the hard contact model can be large com-
pared to the soft contact model without the risk of numerical 
instability. This reduces simulation times, especially when 
simulating many particles. Therefore, the physics engine 
provides a fast simulation speed so that players have real-
time gaming experience [22, 23].

Effectiveness of DEM results depend on the number of 
particles used in the simulations. However, due to the limita-
tions of available computational capability, the number of 
particles is usually reduced significantly at the cost of the 
effectiveness and accuracy of simulations [24]. The father of 
DEM, Cundall [24] optimistically predicted that the advance 
of computer hardware will enable DEM to simulate large-
scale engineering problems and realistic soil and rock within 
20 years. However, 20 years have passed. There is still a 
long way to go toward Cundall’s wish. Therefore, if physics 
engines and hard contact model are proven effective and 
accurate for simulating granular soils, physics engines may 
be an excellent discrete element simulator due to their high 
computational efficiency.

The objective of this study is to evaluate the effectiveness 
and accuracy of physics engine techniques and hard contact 
models for simulating direct shear tests. A physics engine, 
called Project Chrono [25], is used in this study. Project 
Chrono is a physics-based modeling and simulation infra-
structure implemented in C++, and it has been applied in 
multiple fields for performing scientific simulations, includ-
ing robotics [26], vehicle dynamics [27], finite element anal-
ysis [28], and granular flows [29]. Project Chrono supports 
both soft and hard contact models, allowing comparisons of 
two contact models on the same platform. Therefore, it is 

selected as the simulation platform. Specifically, this paper 
addresses the following two questions.

First, physics engines were initially developed for com-
puter gaming. Therefore, these techniques do not provide 
pre-processing, servo-control, and post-processing func-
tions for discrete element simulations. Therefore, this paper 
develops a series of functions that are embedded in Project 
Chrono, allowing Project Chrono to perform discrete ele-
ment simulations of granular soils.

Second, this paper systematically compares theoretical 
formations, input parameters, numerical stability, computa-
tional speeds, and simulation results of hard and soft contact 
models for simulating direct shear tests. These comparisons 
help to evaluate the effectiveness and accuracy of hard con-
tact model for simulating the shear behavior of granular 
materials.

We want to emphasize that the goal of this paper is not 
to use physics engines to replace any existing DEM codes 
such as PFC, LIGGGHTS, and Yade, or any other DEM 
codes. These existing codes are representing state-of-the-
art platforms for DEM studies and applications. Our goal is 
to provide DEM modelers with physics engine as one more 
option that they may consider using when they are simulat-
ing granular materials.

2 � Process flow of physics engine technique

The overall simulation flow is shown in Fig. 1. This study 
develops a series of functions embedded into Project Chrono 
allowing for performing direct shear simulations. The pre-
processing functions are developed for creating specimens. 
Users can specify the size and the void ratio of specimens. 
The developed functions can automatically pack the par-
ticles to the target void ratio and size. Then, the specimen 
is input into the servo-control functions developed by this 
study to perform direct shear test simulations. Users can 
specify the shear speed, maximum shear displacement, and 
normal force.

The simulations are performed by the core computational 
functions in Project Chrono by a time-step procedure like 
DEM. First, it runs a collision detection program based on 
sweep and prune algorithm [30] to search the contacting 
particles. The details of sweep and prune algorithm can 
be found in He and Zheng [13] and Tracy et al. [30]. The 
contact forces between particles are computed based on 
contact models. Project Chrono includes both hard and soft 
contact models for users, which are compared in the next 
section. Then, linear and angular velocities of particles are 
updated based on contact forces based on Newton’s second 
law. Finally, the positions and orientations of particles are 
updated based on Euler integration.
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To output the mechanical parameters for analysis, post-
processing and visualization functions are developed by this 
study. These functions are integrated into the computational 
functions in Project Chrono to store stress, strain, fabric, par-
ticle positions, particle rotations, and particle contact forces 
at each time step. Then, visualization functions are used to 
plot these mechanical parameters such as three-dimensional 
(3D) rose diagram of contact normals, 3D particle velocity 
fields, 3D particle rotation fields, and force chains.

2.1 � Basic physics law of particle motion

Particle motions in both soft and hard contact models obey 
Newton’s second law. Particle motions consist of linear and 
angular movements as shown in Fig. 2. Based on Newton’s 
second law, linear and angular movements can be described 
as:

where F, m, and a are the force applied on the particle, the 
mass, and the linear acceleration of the particle; and M, I, 
and β are the moment applied on the particle, the moment 
of inertia, and the angular acceleration of the particle, 
respectively.

The linear and angular velocities, as well as the displace-
ment and rotation of particle, are computed iteratively. For 
example, in a semi-implicit Euler scheme, at time t, the lin-
ear and angular velocities can be computed as:

where Δt is the time step size used in the computation. 
Based on linear and angular velocities, the displacement 
and rotation of the particle at any time t can be computed as:

where xt and θt are the displacement and rotation of the 
object at time t.

2.2 � Formation of soft contact model

Many soft contact models have been developed as reviewed 
by Horabik and Molenda [31]. The basic concept of these 
soft contact models is essentially the same. The particle 
overlaps at contacts, and the magnitudes of contact forces 
are determined by the time-variant overlapping amount.

The soft contact model in Project Chrono is the Hertzian 
model, which has been widely used in DEM codes. The Hertz-
ian model may be an analogy with a nonlinear spring-dashpot 
system. The spring represents the elastic contact force, and 
the dashpot governs the damping effect. For two particles 
in contact, the elastic force is positively correlated with the 
inter-particle overlap, and the damping force is determined by 

(1)F = ma

(2)M = I�

(3)vt+Δt = vt + aΔt = vt +
FtΔt

m

(4)�t+Δt = �t + �Δt = �t +
MtΔt

I

(5)xt+Δt = xt + vt+ΔtΔt

(6)�t+Δt = �t + �t+ΔtΔt

Fig. 1   Simulation flow of direct shear test using physics engine tech-
niques
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the damping ratio and the relative velocity. For example, two 
particles i and j are in contact in Fig. 3a, b, the inter-particle 
normal and tangential components of contact forces fn and fs 
can be determined as:

where Reff is the effective radius of curvature of two contact-
ing particles; δ is the magnitude of overlap; kn and ks are the 
normal and tangential stiffness constants; dn and ds are the 
normal and tangential overlap vectors at the contact point; 
γn and γs are the normal and tangential damping coefficients; 
meff is the effective mass of two contacting particles; and vn 
and vs are the normal and tangential components of rela-
tive velocity at the contact point, respectively. Assuming 
the masses of two contacting particles are mi and mj, the 
effective mass meff and effective radius of curvature Reff can 
be determined as:

The relative velocity v and its normal and tangential com-
ponents vn and vs can be computed as:

(7)f n =
√
Reff�(kndn − �nmeffvn)

(8)f s =
√
Reff�(−ksds − �smeffvs)

(9)meff =
mimj

mi + mj

(10)Reff =
RiRj

Ri + Rj

.

(11)v = (vj + �j × rj) − (vi + �i × ri)

(12)vn = (v ⋅ n)n

Fig. 2   Illustration of particle 
movements following Newton’s 
second law

Fig. 3   The schematic of soft contact model
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where vi and vj are the linear velocities of particles i and j; 
ωi and ωj are the angular velocities of particles i and j; ri 
and rj are the vectors pointing from the centers of masses 
of particles i and j to the contact point; and n is the contact 
normal vector. Then, the normal and tangential overlapping 
vectors dn and ds can be determined as:

where δ is the degree of overlap, t0 is the time at the begin-
ning of contact, and t is the current time.

The tangential contact force fs can be determined using 
Coulomb’s law of friction (stick–slip condition) as shown 
in Fig. 3b:

where μ is the friction coefficient. For low shear forces 
(|fs| < μ|fn|), there is no relative motion between two parti-
cles (stick). For high shear forces (|fs| = μ|fn|), there is relative 
motion between two particles (slip).

When simulating a particle assembly, the soft contact 
force of every contact point is computed separately and 
explicitly, with its own overlap distance and previous rela-
tive velocities. Thus, the soft contact model is easy to imple-
ment, and the computational cost for a single step is rela-
tively low. However, the stiffness constants kn and ks must 
be set at high values and time step size Δt must be set at a 
small value in order to yield small amounts of overlapping 
compared to object size and to ensure computational stabil-
ity and accuracy. This significantly increases computational 
time when simulating a large number of soil particles.

2.3 � Formation of hard contact model

In the hard contact model, the contact forces are determined 
by satisfying two constraints: the normal component of con-
tact force prevents the overlap between contacting objects, 
while the tangential component of contact force satisfies 
Coulomb friction law.

The Φ is the distance between two contacting particles 
i and j as shown in Fig. 4a. When Φ > 0 (or particles i and 
j are separated), there is no normal contact force between 
particles i and j. When Φ = 0 (or particles i and j are contact-
ing), there might be a normal contact force fn at the contact 

(13)vs = v − vn

(14)dn = �n

(15)ds =

t

∫
t0

vsdt −

⎛
⎜⎜⎝
n ⋅

t

∫
t0

vsdt

⎞
⎟⎟⎠
n

(16)||f s|| =
{ ||f s|| if |f s| < 𝜇|f n|

𝜇|f n| if |f s| ≥ 𝜇|f n|

point for preventing the penetration. This is called Signorini 
unilateral contact condition.

Assuming s1 and s2 are two unit vectors perpendicular to 
each other on the shear plane as shown in Fig. 4b, the tan-
gential contact force fs = fs1 + fs2 can be determined by the 
Coulomb friction law, which can be mathematically written 
as:

Equation (17) shows the upper limit of the magnitude of 
fs in Coulomb friction law. Equation (18) means that fs and 
vs are collinear in the opposite direction. Equation (19) 
shows that the stick–slip condition: if |vs| > 0, a relative slid-
ing motion occurs between two contacting particles and 

(17)
√

f 2
s1
+ f 2

s2
≤ �|f n|

(18)(f s1 + f s2) ⋅ vs = −

√
f 2
s1
+ f 2

s2
|vs|

(19)|vs|
(
�|f n| −

√
f 2
s1
+ f 2

s2

)
= 0.

Fig. 4   The schematic of hard contact model
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(
�|f n| −

√
f 2
s1
+ f 2

s2

)
= 0 ; if |vs| = 0, no sliding motion 

o c c u r s  b e t we e n  t wo  c o n t a c t i n g  p a r t i c l e s (
�|f n| −

√
f 2
s1
+ f 2

s2

)
≥ 0 . This can be also mathematically 

written as:

In this case, the set of possible friction forces is two-
dimensional resulting in a mathematically complicated prob-
lem. Then, the maximum dissipation principle is applied 
to solve such a complication problem [32]. According to 
the maximum dissipation principle, with the normal contact 
force fn, the friction force fs is the one that maximizes the 
rate of energy dissipation |vs|·|fs|. Since fs and vs are collinear 
in the opposite direction, the maximum dissipation principle 
minimizes vs·fs. Thus, the calculation of fs1 and fs2 becomes 
an optimization problem as:

When simulating a particle assembly, hard contact forces 
at all the contact points are computed simultaneously using 
Eqs.  (17)–(21) to satisfy the equilibrium of the particle 
system, forming a nonlinear complementarity problem. 
Nowadays, there are various types of solvers to solve com-
plementarity problems, for example, Project Chrono uses 
a differential variational inequality (DVI) method to solve 
such problems [32]. Unlike the soft contact model, the hard 
contact model needs contact forces of all contact points to 
be solved simultaneously. Therefore, the computational cost 
for a single step in hard contact simulations is higher than 
the computational cost in soft contact simulations. Also, the 
problem is nonlinear, so it has to be solved implicitly, mak-
ing the implementation more difficult than the soft contact 
model. However, the time step size used in the hard con-
tact model can be large compared to the soft contact model 
without the risk of numerical instability. Therefore, less 
iterations are required for conducting a simulation, which 
reduces simulation time, especially when simulating a large 
number of particles.

3 � Direct shear test simulations

In this paper, direct shear tests were simulated in Project 
Chrono with both soft and hard contact models. A total of 
10,000 spheres with a radius of 2.5 mm were used in the 
simulation. The specimens were prepared at dense and loose 
conditions by setting the inter-particle friction coefficient 

(20)

|vs| ≥ 0,(
�|f n| −

√
f 2
s1
+ f 2

s2

)
≥ 0, |vs|

(
�|f n| −

√
f 2
s1
+ f 2

s2

)
= 0.

(21)
(�f s1�, �f s2�) = argmin√

x2+y2≤��f n�
vs(xs1 + ys2).

μ of spheres as 0 (dense) and 1 (loose) initially. Then, the 
spheres rain fell into the direct shear box with a cross sec-
tion of 10 cm × 10 cm and the top plate was added on the 
top of the specimen. The specimens were consolidated under 
the normal stress of 100 kPa. After the system reached its 
stable state, the heights of dense and loose specimens were 
10.3 cm and 11.7 cm, respectively. The void ratios of dense 
and loose specimens were 0.58 and 0.73, respectively. Fig-
ure 5a shows the dense specimen after consolidation. The 
actual direct shear specimen typically has a dimension 
of 10 cm × 10 cm × 6 cm. In this research, we designed a 
cubic direct shear specimen. The purpose is to minimize the 

Fig. 5   The direct shear simulation setups for a dense specimen: a 
after consolidation; b after shear
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boundary effects on shear band formation and development 
as shown in Fig. 5b.

In the shear stage, the friction coefficient μ of spheres was 
set as 0.1. Based on Cui and O’Sullivan [33] and O’Sullivan 
et al. [34], the μ of chrome steel balls was approximately 0.1. 
Therefore, this value was also used in this study. We also 
used μ = 0.2 and 0.3 to investigate the relationships between 
μ and shear strength. Then, the specimens were sheared 
using a speed of 0.024 mm/min following ASTM D3080 
[35] until the horizontal displacement reached 10 mm as 
shown in Fig. 5b. Both soft and hard contact models were 
used in simulations and simulation parameters are shown in 
Table 1. The simulations are performed on a desktop with 

an Intel Xeon E5-1620 3.6 GHz 8-Core CPU, 16 GB mem-
ory, and a NVIDIA Quadro K620 GPU with 2 GB graphic 
memory.

4 � Simulation result analysis

4.1 � Time step size and simulation speeds

Time step size (Δt) is critical for yielding valid simulation 
results. A large time step size can expedite the simulation 
but may affect the simulation accuracy and stability. In both 
soft and hard contact models, an excessively large time step 
may cause penetration between contacting particles or erro-
neously large post-collision velocities, resulting in explosive 
effects as shown in Fig. 6a. The simulated explosive effects 
in Fig. 6a are based on soft contact model. The hard contact 
model results in the same effects using large time step, so it 
is not shown. This section evaluates the maximum allowable 
time step size (Δtmax) as a function of particle stiffnesses (E).

To determine Δtmax, we enlarge the time step by 10 times 
and run the simulation each time, until the explosive effect 
occurs in the simulation. Then, the largest time step size 
which still keeps the simulation stable is defined as Δtmax. 
To investigate the effects of E values on Δtmax in the soft 
contact model, the Δtmax values for different E values were 
determined as shown in Fig. 6b. Expectedly, larger E val-
ues result in smaller Δtmax values in the soft contact model. 
However, in the hard contact model, Δtmax does not depend 
on particle stiffness because particles are perfectly rigid or 
E is infinite large, so the Δtmax can be set as a large value 
regardless of particle stiffness as shown in Fig. 6b.

Table 1   Simulation parameters of soft and hard contact models

Parameters Soft contact model Hard 
contact 
model

Ball density (kg/m3) 7850
Friction coefficient, μ 0.1 (dense and loose); 0.2, 0.3 

(only dense)
Young’s modulus, E (Pa) 4 × 109 –
Poisson’s ratio 0.27 –
Normal contact stiffness, kn (N/m) 1012 –
Tangential contact stiffness, kt 

(N/m)
8 × 1011 –

Normal damping coefficient, γn 
(s−1)

40 –

Tangential damping coefficient, γt 
(s−1)

20 –

Restitution coefficient – 0.87
Time step size, Δt (s) 10−5 10−3

Fig. 6   The maximum allowable time step size in simulations: a explosive effect of particle assembly when using an excessively large time step 
and soft contact model; b the maximum allowable time step sizes for hard and soft contact models
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The computational load and time increase as the increas-
ing number of particles in the specimen. The numbers of 
spheres in the soil specimen were set as 100, 500, 1000, 
5000, 10,000, and the sizes of spheres were adjusted to 
maintain approximately the same dimensions of specimens 
(10 cm in length × 10 cm in width × 10 cm in height). Simu-
lations were repeated using both soft and hard contact mod-
els, and their time costs were compared. The Δt = 10−3 s was 
used in the hard contact model, and Δt = 10−5 s was used in 
the soft contact model.

The computational time for a single iteration step using 
the different numbers of spheres is shown in Fig. 7a. For 
completing one iteration step, the computational time in the 
soft contact model is faster than the computational time in 
the hard contact model by about one order of magnitude. 
However, the time step in the soft contact model must be 
small. Therefore, more time steps are required for complet-
ing the simulation. The time step in the hard contact model 
can be large and less time steps are required for completing 
the simulation. Therefore, it is observed that the total com-
putational time for the hard contact model is approximately 
ten times shorter than the soft contact model in Fig. 7b.

4.2 � Stress–strain behavior

The global shear strain εs is defined as:

where dh is horizontal displacement of shear box, and L is 
the length of shear box.

The relationship between the ratio of shear force F to 
normal force N (F/N) versus global shear strain εs is shown 
in Fig. 8a, b. The relationship between vertical displacement 

(22)�s =
dh

L

(dv) and εs is shown in Fig. 8c, d. Both hard and soft contact 
models capture contraction and dilation behavior of loose 
and dense granular soils under shear. They both yield the 
same residual strength.

The mobilized friction angle ϕ can be calculated as:

The peak friction angles (ϕp) of hard and soft contact 
models are compared in Table 2. The agreement is remark-
able. The maximum divergence is within 2°.

The dilation angle ψ can be calculated as:

Relationships between ψ and εs are shown in Fig. 8e, f. 
The peak dilation angles (ψp) of all the simulations agree 
well in Table 2. The maximum divergence is within 2°.

4.3 � Particle motion

4.3.1 � Particle displacement

The displacement fields of all the particles at both dense and 
loose specimens using both hard and soft contact models 
are shown in Fig. 9. Each arrow represents the displace-
ment vector of a particle. The color as well as the length of 
bar represents the magnitude of the displacement. In both 
loose and dense simulations, particles in the lower half of 
the direct shear box move right along with the direct shear 
box. In the upper half of the shear box, most particles moved 
downwards in loose specimens (contraction) and upwards 
in dense specimens (dilation). The displacement fields are 
visually the same between hard and software contact models.

(23)� = arctan
(
F

N

)
.

(24)� = arctan

(
Δdv

Δdh

)
.

Fig. 7   Comparisons of single step time cost and total time cost between hard and soft contact models
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Particle horizontal displacements as a function of particle 
vertical position are shown in Fig. 10. The vertical position 
of the upper surface of the lower half direct shear box is con-
sidered as zero in the vertical axis. In both loose and dense 

conditions, the horizontal displacements of particles in the 
upper and lower zones are tightly strained, while the displace-
ments in the middle shear zone distribute among the entire 
horizontal axis. The middle shear zones can be considered as 

Fig. 8   Simulated stress–strain behavior using hard and soft contact 
models: a, c, e evolutions of force ratios, vertical displacements, and 
dilation angles for loose and dense specimens at μ = 0.1; b, d, f evolu-

tions of force ratios, vertical displacements, and dilation angles differ-
ent μ values at dense condition
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shear bands. Both soft and hard contact models yield the same 
shear band between − 2 and 2 cm in the vertical direction.

4.3.2 � Instant velocity

The instant velocities of both dense and loose specimens when 
εs = 5% in both soft and hard contact models are shown in 
Fig. 11. Each arrow represents the velocity vector of a particle. 
The direction of the bar represents the direction of the velocity, 
and the color represents the magnitude of the velocity, or the 
speed. In both soft and hard contact models, in the upper half 
of the shear box, the velocities of most particles point upwards 
in dense specimens and downwards in loose specimens. In 
addition, the speeds are larger in the lower half direct shear 
box than in the upper box in all cases. The instant velocities of 
particles computed by both hard and soft contact models are 
visually the same as shown in Fig. 11.

4.4 � Particle rotation

The particle rotations can be quantified in the form of qua-
ternion. Assuming an object has a rotation θ about a rotation 
axis u = [ux, uy, uz], where ux, uy, uz are the components of u 
along x, y, and z axes as shown in Fig. 12, a quaternion Q can 
be defined to represent the rotation of a particle:

Thus, with quaternion Q obtained by simulations, rotation 
θ can be calculated as:

Particle rotations in the dense specimen using soft and 
hard contact models are shown in Fig. 13a, b. Particle rota-
tions in the loose specimen using both contact models are 
shown in Fig. 13c, d. Most particles with larger rotations 
highly concentrate in the middle of the shear box (shear 
band), due to significant colliding and rubbing in this region. 
The previously identified shear band (− 2 cm and 2 cm) 
in Fig. 10 is also superimposed in Fig. 13. As shown, the 
majority of particle rotation occurs within the shear band.

Figure 14a, b shows the average rotation (θmean) values of 
all the particles, as well as of the particles in the shear bands 
in dense and loose specimens, respectively. In both dense 
and loose specimens, the θmean of the hard contact model 
is approximately twice larger than the θmean of the soft con-
tact model. In addition, both hard and soft contact models 
demonstrate that the θmean of particles in the shear band is 
approximately twice larger than the θmean of all the particles.

4.5 � Fabric analysis

Soil specimen fabric can be quantified by scalar parameters 
(such as coordination number, contact index, the average 
branch vector length, etc.) and directional parameters (such 
as spatial distributions of particle long axes, contact nor-
mals, branch vectors, etc.) [36, 37]. The coordination num-
ber and spatial distribution of contact normals are widely 
used for analyzing fabric evolution in DEM simulations, 
and therefore these parameters in both contact models are 
obtained and compared in this study.

4.5.1 � Coordination number

The coordination number (CN) is quantified as the average 
number of contacts of a single particle in a granular system. 
Larger CN means stronger fabric formed in granular soils. 
If the total number of particles is Np in the soil specimen 
and the total number of contacts is Nc, the CN is defined as:

(25)Q =
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.

Table 2   Comparisons of peak friction angles and dilation angles 
between hard and soft contact models

Parameters Hard contact model Soft 
contact 
model

ϕp (°)
 Loose
  μ = 0.096 28.2 26.5

 Dense
  μ = 0.096 33.9 32.4
  μ = 0.2 42.0 41.7
  μ = 0.3 44.6 45.8

ψp (°)
 Loose
  μ = 0.096 − 0.1 − 0.4

 Dense
  μ = 0.096 13.2 14.0
  μ = 0.2 17.5 17.4
  μ = 0.3 20.2 20.7
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The CNs of all the particles at loose and dense specimens 
using hard and soft contact models with μ = 0.1 are shown in 
Fig. 15a. The CNs of the particles in the shear band identi-
fied in Fig. 10 are shown in Fig. 15b. In dense specimens, 
CN values decrease with the shearing process in both con-
tact models. In loose specimens, CN values increase with the 
shearing process. This is because dense soil specimens dilate 
when they are sheared, while loose soil specimens become 
denser during the shearing process.

The CNs of dense specimens with μ = 0.1, 0.2 and 0.3 
are plotted in Fig. 15c and the CNs of the particles in the 
shear band are shown in Fig. 15d. Larger μ leads to low 
CN no matter what contact model is used. This is because 
larger μ causes larger dilation, looser specimen, and there-
fore, smaller CN.

The same trends of CNs are captured by both soft 
and hard contact models for all the particles or only the 

particles in the shear band. However, the hard contact 
model yields larger CNs values than the soft contact 
model. Therefore, more contacts are generated in simula-
tions using the hard contact model.

4.5.2 � Contact normal

Contact normals are vectors representing the normal direc-
tions of contact forces on contact points in a soil specimen. 
The spatial distribution of contact normals can be plotted 
as a 3D rose diagram as shown in Fig. 16c–j. Each bar 
represents the frequency of contact normals in this direc-
tion in the 3D space.

Kanatani [38] showed that the rose diagram can be 
quantified by a density function f(n):

Fig. 9   Particle displacement 
vectors using soft and hard 
contact models with μ = 0.1 at 
εs = 10%
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where ni is the component of contact normal in axis i, and 
Dij and Dijkl are the second order deviatoric tensor, and the 
fourth order deviatoric tensors, respectively:

where δij is the Kronecker delta function:

and φij and φijkl are second order and fourth order fabric 
tensors, respectively:

(28)f (n) =
1

2�

(
1 + Dijninj + Dijklninjnknl

)
(i, j = 1, 2, 3)

(29)Dij =
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3
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)
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1 i = j

0 i ≠ j

where Nc is the total number of contact normals in the soil.
The contact normals for plotting the rose diagram are also 

used to determine density function based on Eqs. (28)–(33), 
which is also plotted in Fig. 16c–j. The density function is 
essentially the best fitting surface of the 3D rose diagrams. 
Both 3D rose diagram and density function illustrate the 
preferred direction of contact normals, but 3D rose dia-
gram may be easier for visual observation of the preferred 
direction.

Figure 16c–f plots 3D rose diagrams and density func-
tions for all the contact normals. After the consolidation 

(32)�ij =
1

Nc

Nc∑
m=1

nm
i
nm
j

(33)�ijkl =
1

Nc

Nc∑
m=1

nm
i
nm
j
nm
k
nm
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Fig. 10   Particle horizontal displacement versus vertical position using soft and hard contact models with μ = 0.1 at εs = 10%
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as shown in Fig. 14a, the isotropic fabric is observed due 
to confining and normal stresses from the direct shear box 
as shown in Fig. 16c, e. After the shear stage as shown 
in Fig. 16b, the resistant force along the diagonal direc-
tion of the specimen mobilizes more contact normals in 
this direction. Therefore, the 3D rose diagrams are skewed 
diagonally, exhibiting an anisotropic fabric as shown in 
Fig. 16d, f. Both hard and soft contact models determine 

similar rose diagrams and densities functions for all the 
contact normals.

Figure 16g–j plots 3D rose diagrams and density func-
tions for contact normals in the shear band. After consoli-
dation, the preferred vertical direction is observed as shown 
in Fig. 16g, i. After shear, the stronger preferred diagonal 
direction is observed for contact normals in the shear band 
as shown in Fig. 16i, j. Both hard and soft contact models 

Fig. 11   Instant velocity vectors using soft and hard contact models with μ = 0.1 at εs = 10%
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determine similar rose diagrams and densities functions for 
the contact normals in the shear band.

The second-order fabric tensor φij is a 3-by-3 matrix. 
Three principal values (eigenvalues) of the fabric tensor are 
φ1, φ2, and φ3, which are commonly used for advanced geo-
technical analysis, such as development anisotropic constitu-
tive models and quantification of fabric anisotropy [39–43]. 
To measure the degree of fabric anisotropy, Barreto and 
O’Sullivan [44] proposed a generalized octahedral fabric 
factor based on φ1, φ2, and φ3 values:

The evolutions of Ψ of contact normals in dense and 
loose specimens using hard and soft contact models with 
μ = 0.1 are shown in Fig. 17a. The evolutions of Ψ of contact 
normals in the shear band identified in Fig. 10 are shown 
in Fig. 17b. Larger Ψ values and therefore stronger fabric 
anisotropy are observed for contact normals in shear bands.

The evolutions of Ψ of contact normals in dense speci-
mens with μ = 0.1, 0.2 and 0.3 are plotted in Fig. 17c and 
evolutions of Ψ of contact normals in the shear band are 
shown in Fig. 17d. Larger μ leads to larger Ψ values and 
stronger fabric anisotropy.

Similar trends of Ψ are captured by both soft and hard 
contact models for all the particles or only the particles in 
the shear band. However, the soft contact model yields larger 
Ψ values and therefore stronger fabric anisotropy than the 
hard contact model.

4.6 � Force chains

Force chains are a key feature of DEM for visualizing the 
heterogeneity of granular systems under external loads. 

(34)

� =
1√
2

��
�1 − �2

�2
+
�
�1 − �3

�2
+
�
�2 − �3

�2�0.5
.

Force chains allowed DEM researchers to directly observe 
micro inter-particle force transmission and link micro- and 
macro-mechanical behavior of granular soils. This study 
developed functions that can be embedded into Project 
Chrono to plot force chains. Figure 18 shows the chain 
forces in both contact models with different shear strains. 
Each bar represents an inter-particle contact force. The 
color and size of the bar represent the magnitude of the 
force, and the direction of the bar represents the direction 
of the contact force.

After consolidation (εs = 0) in Fig. 18a, b, the direc-
tions of inter-particle contact forces are randomly distrib-
uted for both contact models. The magnitudes of contact 
forces are approximately the same. After the shearing 
stage (εs = 10%) in Fig. 18c, d, more inter-particle contact 
forces in diagonal direction are mobilized. According to 
Fig. 18, the hard contact model can generate similar force 
chains as the soft contact model.

5 � Conclusion

Physics engine techniques utilize a hard contact model, 
which can accelerate DEM simulations compared with the 
soft contact model which is typically used in DEM codes. 
To address the limitations of physics engine that lack pre-
processing, servo-controlling, and post-processing func-
tions for DEM simulations, this paper developed a series 
of functions that can be embedded into Project Chrono, 
allowing Project Chrono to perform direct shear simula-
tions. Then, this study compared the formations and simu-
lation results of hard and soft contact models based on the 
improved Project Chrono platform.

This study showed that when simulating the same 
number of spheres, the speed of the hard contact model is 
approximately ten times faster than the speed of the soft 
contact model. The direct shear simulation results demon-
strated that the hard contact model successfully captured 
key parameters of the macro shear behavior of granular 
soils including peak and residual shear strength, and maxi-
mum dilatancy. Hard and soft contact models generated 
the same microparticle-level behavior under shear such 
as the displacement field, speed, shear band, and particle 
rotations.

The similar trends of fabric simulations were observed 
for hard and soft contact models. However, the hard con-
tact model yielded larger CNs and smaller Ψ than the soft 
contact model. Both contact models computed the visually 
same force chains.

θ

z

y

u x

ux
uy

uz

Fig. 12   Illustration of particle rotation
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Fig. 13   Particle rotations using soft and hard contact models with μ = 0.1 at εs = 10%
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Fig. 14   Average particle rotations for all the particles and particles in shear bands using hard and soft contact models in a dense specimen and b 
loose specimen
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Fig. 15   The evolutions of coordination numbers
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Fig. 16   Rose diagrams and 
density functions of contact 
normals before and after shear 
using hard and soft contact 
models with μ = 0.1
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Fig. 17   The evolution of generalized octahedral fabric factors
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