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Abstract

We consider disordered Hamiltonians given by the Laplace operator subject to arbitrary random self-
adjoint singular perturbations supported on random discrete subsets of the real line. Under minimal as-
sumptions on the type of disorder, we prove the following dichotomy: Either every realization of the random
operator has purely absolutely continuous spectrum or spectral and exponential dynamical localization hold.
In particular, we establish Anderson localization for Schrodinger operators with Bernoulli-type random sin-
gular potential and singular density.
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1. Introduction
1.1. Overview

The spectral theory of Schrodinger operators with singular potentials, originally motivated by
the Kronig—Penney model from solid state physics, has been of interest since at least 1961 when
Berezin and Faddeev [4] gave a mathematically rigorous treatment of —A + ¢§, where ¢ is a real
parameter and § denotes a Dirac delta distribution. An illuminating discussion of this subject
together with historical remarks and relevant references can be found in the classical monograph
[2].

The main focus of this paper is on Anderson localization for random Hamiltonians with ar-
bitrary point interactions under minimal assumptions on the randomness. The first relevant work
in this direction is due to Delyon, Simon, and Souillard [12]. They established spectral localiza-
tion for —A + ZjeZ Lj(@)8(x — j), where {A;};cz is a sequence of independent identically
distributed random variables whose common distribution has a sufficiently regular nontrivial ab-
solutely continuous part. More recently, Hislop, Kirsch, and Krishna [17], [18] proved Anderson
localization (in suitable energy regions) and studied eigenvalue statistics for the same model
in dimensions d = 1, 2, 3. Localization and zero-measure spectrum for closely related quantum
graph models were established in [9,10].

The principal achievement of this paper is twofold. First, we cover arbitrary (as discussed
in [22, Section 3.4]) self-adjoint second order differential operators with coefficients supported
on a discrete set {¢;};cz. Similar to the Kronig-Penney model, these operators are realized via
self-adjoint vertex conditions imposed at every #;. Second, we make no assumptions on the reg-
ularity of the common probability distribution of i.i.d. random variables in question, contrary to
all previously considered Kronig—Penney type random models. Such a level of generality is es-
sential in several random quantum graph models where the random variables take integer values
representing geometric characteristics of graphs, e.g., the number of edges, cf. [10].

The main ingredient of the proof is the fact that the Lyapunov exponent is positive away from
a discrete set of exceptional energies, which we establish in Theorem 2.2. It is worth noting that
the underlying one-step transfer matrix takes a rather general form given by a product of the
monodromy matrix of the free Hamiltonian and an arbitrary SL(2, R) matrix, see (2.2). The
latter describes the general self-adjoint vertex condition mentioned above, which takes the form
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u(t?) u(t;)
[u’(zlf)] = B, [u,(t/j_)} , BjeSL2,R). (1.1)

Having established positivity of Lyapunov exponents, we proceed with the proof of localization
following [5] and its continuum versions [6,10]; see Theorem 3.1.

1.2. Main result

To begin, we discuss self-adjoint realizations of the Laplace operator subject to singular per-
turbations supported on a uniformly discrete set of vertices

{tj}jeZ CR, il‘lf(lj.H - lj) > 0. (1.2)
JEZ

Let Hpin be the operator acting in L%(R) and given by

Hminu := _u//’ u € dom(Hmin),

dom(Huin) := {u € H*R) : u(ti) =u'(7) =0, j e},

where H ZR) = jezH 2(t j»tj+1) denotes the direct sum of Sobolev spaces. This operator is
symmetric and has infinite deficiency indices. Its adjoint Hpyax := H,  is given by

Hupaxtt := —u", u € dom(Hpay) = H>(R),

see [2, Section II1.2.1]. All self-adjoint extensions H of Hpi, (automatically satisfying Hpin C
H = H* C Hpax) can be described by means of vertex conditions imposed at every ¢;. Define

///triv:{([(l) ?],eie[(l) ?D‘Ge[o,zn)},

_ 0 €[0,27),
Mo = ([é ﬂ,ew[)‘f ’g])‘{a,ﬁ,y,a}cR, , (1.3)
al—yB=1

0 O
%sepi={<|:g gi|,|:w Z])‘{x,y,w,z}c]R},
M= '//connu<jlsep-

Then by [1, Theorem 1] (see also [3,8,22,25]) the operator H = (Hmax) [dom(s) is a self-adjoint
extension of Hp;, if and only if there exists a sequence

{(Aj, Bj)}jez C M, (1.4)

such that dom(H) = {u € ﬁz(R) : u satisfies (1.5)}

u(t?) ut) |
A |:u’(ljj+):| =5 [u’({,)} ek (12

106



D. Damanik, J. Fillman, M. Helman et al. Journal of Differential Equations 282 (2021) 104—126

The main goal of this paper is to show that a random choice of vertex conditions (1.4), (1.5)
leads to Anderson localization unless the vertex matrices are drawn in such a way that the result-
ing Hamiltonians are all unitarily equivalent to an operator with periodic coefficients, in which
case the resultant operators all have purely absolutely continuous spectrum.

The location of vertices supplies another source of randomness in our model. We assume
that the distance £; between #;_ and f; is random. To facilitate this, for a sequence {¢;};cz C
(0, 00), we denote g := 0 and

L,

oL (1.6)

tj = ]chll E(])( ]2
_Zk;]ur]gk, J<

Hypothesis 1.1. Fix L™ > L™ > 0. Suppose that o/ C [L™, LT x .# is a bounded set. Let [i
be an arbitrary probability measure on </ and let (2, 1) := (<, ﬁ)Z.

For a sequence

let H, denote the self-adjoint extension of Hp, corresponding to the discrete set of vertices
{tj}jez given by (1.6) and the boundary conditions (1.5).

Theorem 1.2. Assume Hypothesis 1.1. (i) Suppose that there exist

(€1, (A1, B1)), (€2, (A2, B2)) € supp i

such that one of the following holds

@ G # b, A=Ay =D, B1 ¢ {” 110 €[0,2m)),
(b) Aj=Ay=10, B ¢{e“YB,:0€[0,2m)},
(c) (AlaBl)e'///sep

Then H,, possesses a basis of exponentially decaying eigenfunctions for j-almost every w € Q.
Furthermore, there exist a set Q* C Q with u(2*) = 1 and a discrete set ® C R such that for
every compact interval I € R\ D, every p > 0 and every compact set K C R,

<00, we ¥,

sup |1X17 s (e ™ o, o

t>0

where x1(H,) denotes the spectral projection corresponding to 1, and | X |P denotes the operator
of multiplication by the function f(x) :=|x|?.

(ii) If the assumptions of part (1) are not satisfied then H,, has purely absolutely continuous
spectrum for every w € Q.

Remark 1.3.

1. Part (ii) of Theorem 1.2 followg from general arguments. For example, if every (¢, (A, B)) €
supp i1 satisfies A =1, B = eI, for some 6 € [0, 2m), then all realizations of H, will be
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unitarily equivalent to the free Laplacian, and hence will exhibit purely absolutely continuous
spectrum. Similarly, if there exist £ > 0 and B € SL(2, R) such that all elements of supp ik
are of the form (¢, (I, ¢ B)) for some 6, then every realization of H, will be unitarily
equivalent to an operator with periodic point interactions and again the desired localization
fails.

In particular, we want to point out that Part (i) is optimal in the sense that any amount of
randomness that pushes one outside the periodic case will produce spectral and dynamical
localization.

2. In the third case of Theorem 1.2.(i) (that is, when supp it N .#ep # ¥), H,, decouples into
an infinite direct sum of operators on finite intervals (u-almost surely). These operators
have compact resolvents by general arguments, so the associated spectra are pure point with
compactly supported (hence exponentially decaying) eigenfunctions. Moreover, in this case
one has ® = (/.

3. The set ® arises as the complement of the set on which one can verify the hypotheses of
Furstenberg’s theorem. In particular, © contains the set of energies at which the Lyapunov
exponent vanishes. In general, dynamical localization only holds away from energies in D,
which is why it is necessary to project to a compact interval that does not intersect © in
the statement of dynamical localization. In particular, one may have delocalization effects as
soon as ® is nonempty, if one does not project away from . Compare [13, Theorem 1]; see
also [11,20].

4. The three hypotheses on i in part (i) should be viewed as “single-site conditions”. In par-
ticular, once the support of the distribution generating the random point interactions is large
enough that one sees two triples satisfying (a) or (b), or a single triple satisfying (c), then the
localization result will hold true. These assumptions are precisely what is needed to ensure
that the closed subgroup of SL(2, R) generated by the possible transfer matrices satisfies
the hypotheses of Furstenberg’s theorem at all energies away from a discrete set. The main
theorem of [6] explains how to deduce this conclusion from relatively simple inputs involv-
ing the commutator and traces of the transfer matrices; Section 2 explains how to derive the
hypotheses needed to apply [6, Theorem 2.1] from the assumptions of part (i).

Let us point out that this result yields localization for several physically relevant Hamiltonians.
Let {a} ez be a sequence of independent identically distributed random variables taking at least

two distinct values in a bounded subset of R. Define A(x) :=>_ jez @ j8(x — j), and introduce
formally self-adjoint differential expressions

t5:=—D*+ A, tp:=—D.(14 A)Dy, 16 := (iD, + A)* — A?,

(the indices S, D, G stand for Schrodinger, density, gauge correspondingly, see [1]). As was
shown in [22] these differential expressions may be realized as self-adjoint extensions of Hpin
corresponding to £; =1 (i.e. t; = j) and the following vertex matrices

1 0 1 0
mmn=((y 2114 %)
w5 1 7)
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2+ictj

1 0 i 0
6~ (Aj, Bj) = |:0 1:|, (;a] 2-+iaj
2—iDlj

The first and the second cases satisfy the assumptions of Theorem 1.2 part (i), the third case
satisfies the assumptions of Theorem 1.2 part (ii). Hence, the first two operators exhibit Anderson
localization, while the third operator has purely absolutely continuous spectrum.

Another relevant application is to Anderson localization for the Kirchhoff Laplacian on ran-
dom radial trees discussed in [10], [19]. In this case the Hamiltonian is determined by the

following matrices,
1 0 Bji O
(A,;',Bj)=<[0 1][\{‘_/_/ L})
VB VBj

where {o;} C R, {8} C N are sequences of i.i.d. random variables taking at least two distinct
values in a bounded subset of R. Anderson localization for this model was proved in [10] and also
follows from Theorem 1.2. Yet another interesting application is given by Schrodinger operators
with §’ potentials which correspond to the following choice of matrices

arsp=([3 118 %))

We are grateful to the anonymous referee for a careful reading of the manuscript and helpful
suggestions.

Acknowledgments

2. Ergodic setup and positive Lyapunov exponents
In this section we assume Hypothesis 1.1 with the additional restriction
of C[L™,LT] x {Ih} x SL(2,R). 2.1

We will explain in the beginning of Section 3 that it is enough to prove Theorem 1.2 assuming

2.1).
2.1. Ergodic setup

Let us discuss the eigenvalue problem Hu = Eu, where H is a self-adjoint extension of Hp;,
corresponding to a fixed set of vertices (1.2) and vertex conditions (1.5) with {(A}, Bj)} ez
satisfying

Aj:]g, BjeSL(Z,]R{), jGZ.

Consider the differential equation —f” = Ef subject to f € H>(tj,tj+1), j € Z and vertex
conditions (1.1). The solution f satisfies
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f(tf)} P [f(rtp] .
o | = ME@ By | L T e,
[f(tf) PRI )

where the mapping M : &7 — SL(2, R)” is defined by

2.2)

sinﬁé
ME(E,B):zB[ cos v/EX VE }

E
—\/Esin \/EE CcoS \/EE

We note that the entries of ME (¢, B) are well-defined analytic functions of E € C.
Define M£ : @ — SL(2,R) by M (w) := ME(w;). Let T denote the left shift acting on
and define the skew product

(T,MF): Q@ xR> > Q xR?, (T, M%) (w,v) = (Tw, ME (0)v).
We denote the n-step transfer matrix by
0
ME () = ]_[ ME(T"w)=ME(T" ') - ME(Tw)ME (), neN,

r=n—1

and note that the iterates over the skew product are given by (T, M Eyn — (", M,F ). One has

[u(tj)} ZMf(a))[u(OJr)} foralln € Z

u' (1) u' (0h)

whenever u € H2 (R) satisfies —u” = Eu and the vertex conditions from (1.1) corresponding to
H,,. The Lyapunov exponent is defined by

o1

L(E):= lim —/logHMf(w)H du(w).

n—-oon
Q

By Kingman’s Subadditive Ergodic Theorem we have

L(E) = lim Fy(w, E),

for p-almost every w, where F,(w, E) := %log ||M,‘,E (w)|l. Let us point out that there is also a
natural continuum cocycle which satisfies

—E u@F) T [uG™)
My (@) [u’<0+)} = [u/(m}

5 By (2.1) the second component of all elements of < is I. Consequently, slightly abusing notation, we may view
elements of .27 as ordered doubles (¢, B) rather than ordered triples.
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in the event that u solves —u” = Eu and satisfies the vertex conditions corresponding to H,. By
a simple application of Birkhoff’s ergodic theorem, the Lyapunov exponent for this cocycle is
related to that of the discrete cocycle via

L(E)=1¢-L(E),
where € := || 7 Ldii(€, B) denotes the 1i-expected value of the length.
2.2. Positivity of Lyapunov exponents
Hypothesis 2.1. Assume Hypothesis 1.1 with
of C[L™,LT] x {h} x SL2,R).
Suppose that there exist By, By € SL(2,R), £1,£, €[L™, L7 such that

(€1, By) # (€2, £B3), and Bj # I, for some j =1,2, 2.3)
(j, b, Bj) €esuppit, j=1,2.

The main assertion of this subsection is that the Lyapunov exponent is positive away from a
discrete set of exceptional energies.

Theorem 2.2. Assume Hypothesis 2.1. Then there is a discrete set © C R with the property that
L(E) > 0 forevery E € R\ 2.

To begin, we address the key technical fact that will be utilized in the proof of Theorem 2.2.
Given (£j, b, Bj) e &/, j=1,2,and E € C, define

G(E) =G((£1, B1), (€2, B2), E) = [ME(EL By), M (£, Bz)]

to be the commutator of the two matrices ME(EJ-, Bj), j =1,2. In view of [6], the key ob-
struction to positive exponents away from a discrete set of energies is everywhere vanishing of
G.

Theorem 2.3. Given ({;, I, B}) € @/, one has G(({1, By), ({2, By), E) =0 forall E € C ifand
only if at least one of the following statements is true:

L1 =45 and By € {By, — B3}
{B1, B2} C{hh, — D2}

The following lemma will be helpful in the proof of Theorem 2.3.
Lemma24.]fP,Q,R,SeRwithR>0,S > 0and
lim P cos(Sw)sin(Rw) + Q cos(Rw) sin(Sw) =0, 24)
w—00
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then either P = Q =0o0or R= S (and P + Q =0). In particular, if (2.4) holds true, then

P cos(Sw) sin(Rw) + Q cos(Rw) sin(Sw) = 0 for all w.
Proof. Since P cos(Sw)sin(Rw) + Q cos(Rw) sin(Sw) =: f(w) is an almost-periodic function
of w, if (2.4) holds, then f vanishes identically. To see this, note that if | f(y)| = é > 0 for some

y € R and p is a §/2-almost period of f, then | f(y + kp)| = /2 forall k € Z.
Thus, we assume f =0 and that P, Q # 0. Since f(/S) =0, we arrive at

Psin(tR/S)=0.

Since P # 0, this yields sin(r R/S) = 0, hence R/S € Z. Interchanging the roles of R and S
implies S/R € Z as well. Since S, R > 0, this forces R = S and hence P + Q =0aswell. O

With Lemma 2.4 in hand, we prove Theorem 2.3.

Proof of Theorem 2.3. Givent € [0,7),b>0,£ >0, g €R, and E € C, introduce w = JVE,
and define the matrices

ro= [t 0] par=[g 0] so=[) ]

sin(f)  cos(r) |

and

_ [ cos(fw) sin(fw)/w
T(w,6) = | —wsin(fw)  cos(fw) i| '

Consider the matrix given by
M(t, b,L,q,w)y=R(t)DD)S(q)T (w, £).
For brevity, we introduce
A=1[0,7) x (0,00) x (0,00) x R
fgr the parameter space; given o = (¢, b, €, q) € A, we abuse notation a bit and write M (o, w) for
M(t,b,£,q,w). Since B; € SL(2,R), the Iwasawa decomposition (see, e.g. [23]) implies there
exist#;, bj, and g; such thaterj := (t;,b;, ¢, q;) € Aand B; = £R(t;) D(b;)S(q,), and hence

M(aj, w) = :I:ME(EJ-, Bj). It is enough to assume the representation B; = R(¢;)D(b;)S(q;)
and prove that one of

¢y =4, and B| = B>, 2.5)
Bi=By=1 2.6)

holds.
If either (2.5) or (2.6) holds, then a straightforward calculation reveals that G(E) = 0. Con-
versely, assume that G = 0; in particular, G;,1 = 0.
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Case 1. €1 = {£,. In this case, we denote £ := £ = {5.
Case 1.1. t1, £, #0.
Since sinty, sint, # 0, after making the substitutions x; = cot(¢;) and z = £w, we obtain

b1by 2 2 _ coszsinzg
0= ——F——G|1=Acos"z+ Bsin“z+ Czcoszsing + D———,
sin(#1) sin(#) z

where

A=bl—b3+qix1 — qx2
B =qix2 — qax1 + (b3 — bHx1x2

X2 — X1

14
D= @< (b%b% + qw]2> (x1 —x2) + (b%éh - b%m) ( +X1X2))-

C =

Since the set of functions {cos2 z,sin%z, 2 sin(2z), 77!

we have A = B = C = D =0, and thus we arrive at

sin(2z)} is linearly independent over C,

0=">01 — b3 + q1x1 — q2x2 2.7)

0= —qax1 + q1x2 — bix1xa + b3xixa 2.8)

(e (2.9)
¢

0=¢( (8303 +n1a2) (1 —x2) + (B2 — b ) (1 +x1:2)) (2.10)

From (2.9), we obtain x| = x2 =: x, which implies #| =1, =: ¢, since ¢; € (0, 7). Plugging this
into (2.7) and (2.8), we have that 0 = b7 — b3 + x(q1 — ¢2) and 0 = x(q1 — g2) — x>(b} — b).
Subtracting these two equations gives 0 = b% — b% + xz(b% - b%) = (b% - b%)(l + x2). Since
1+ x2 > 0, we obtain that b% = b%, and hence b; = by =: b since by, by > 0. Plugging these
relations into (2.10) and using £ > 0, we obtain

0="0b(g2 — g1)(1 +x7),
implying q1 = q». Thus, we have shown that (71, b1, 1) = (2, b2, g2), as desired.
Case 1.2. Exactly one ¢; vanishes.
Without loss of generality, assume #; = 0 and #, # 0; in particular sin#; = 0 and sin#, # 0.

Since the assumption 1 = 0, £, # 0 implies By # B and By # I>, we aim to show that G =0 is
impossible in this case. Using the same substitutions as before, we get

biby 2 .2 , coszsinz
— G11=Acos"z+ Bsin“z+4 Czcoszsing + D———
sintp b4

3
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where

A=q
B=—(q2+ (b7 —b3)x2)
C=—1/¢

D=t (b%b% +q192 + (biga — bgch)m)
Since C =0 is clearly impossible, we see that G, ; cannot vanish identically in this case.
Case13.t1 =1, =0.
Substituting w = z/1, we get

. coszsinz
b1b,G11=B sm2z +D——m—,
Z

where B = b% — b% and D = E(b%qz — b%ql). Thus, if G, =0, we obtain B = D =0, implying
b1 = by and g1 = ¢ as before.

Case 2. 01 # 0>
Case 2.1. t1, 1, #0.
Substituting x; = cot(t;), we have

b1by

1 1
——Gi(w)=Aw) + —Bw)+ —C(w)=0 (2.11)
wsinty sinty w w

where

A(w) = xpcos(£jw) sin(€rw) — x1 sin(£jw) cos(£rw)
B(w) =sin(¢1w) sin(€2w) (x2(q1 — b1x1) — x1(q2 — b3x2))
+ cos(€1w) cos(baw)(qix1 — qaxa + b — b3)
C(w) = (b} +q1x1)(q2 — byx2) cos(€1w) sin(L2w)
— (q1 — bix1) (b3 + qax2) sin(€1w) cos(Lrw).
Since B(w) and C(w) are bounded functions, (2.11) implies limy— o A(w) = 0. Applying
Lemma 2.4 and recalling that £; # ¢, we must have A(w) =0, x; = xp = 0, and hence

ty =ty = 5. Thus, appealing to boundedness of C(w) as before and using (2.11) again, we
arrive at B(w) = 0. Since x| = x» = 0, this implies

(b3 — b3) cos(£1w) cos(Law) =0,

114



D. Damanik, J. Fillman, M. Helman et al. Journal of Differential Equations 282 (2021) 104—126

so b1 = by =: b (since both are positive). Since A and B vanish identically, appealing to (2.11)
one more time gives us C(w) = 0. Consequently,

g2 cos(£1w) sin(frw) — g1 sin(€jw) cos(Crw) = 0.

From Lemma 2.4 (using ¢ # ¢, again), we have g1 = g2 =0.

At this point, we have 1} =t = % b1 = by, q1 = g2 = 0. Substituting all of this into the
relation G2 1 = 0, we see that the expression (b? — w?) sin(w (€] — £»)) vanishes for all w, which
contradicts £ # €.

Case 2.2. Exactly one #; vanishes.

Substituting #; = 0 and x, = cott,, we get

b1b;
wsinty

1 1
Gii=Dw)+ —E(w)+ —F(w),
w w
where

D(w) = —sin(£jw) cos({rw)
E(w) = g1 cos(£1w) cos(£aw) — sin(£w) sin(Law) (x2(b? — b3) + ¢2)
F(w) = b3 (b3 + q2x2) sin(¢1w) cos(baw) + q1(q2 — b3x2) cos(£1w) sin(brw).

As before, if G1,; vanishes identically, then, since the functions E(w) and F(w) are bounded,
we get lim,,_, o D(w) =0, hence D vanishes identically (by Lemma 2.4), a contradiction.

Case23.t1 =1, =0.

Substituting #; =, = 0, we get

1
b1brG11 = J(w) + EK(U)) =0
where

J(w) = (b3 — b?) sin(£1w) sin(aw)
K(w) = b%qg sin(£;w) cos(frw) — b%ql cos(£yw) sin(£rw).
As before, K (w) is a bounded function, so limy,_, », J (w) = 0. Arguing as in previous cases, we
have b; = b =: b and J(w) = 0. Consequently, K (w) =0, so Lemma 2.4 yields g; = g2 =0.
Substituting b =b; = by, t1 =t2 =0, and g; = g2 =0 into G2; =0, we arrive at

(1 —bHwsin(w(; — £2)) =0

Since £1 # £,, we must have by = by = 1. Therefore (¢1, b1, q1) = (2, b2, g2) = (0, 1, 0), which
implies By = By = I, just like we wanted. O
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We are now in a position to prove the Theorem 2.2.

Proof of Theorem 2.2. It is enough to check the conditions of [6, Theorem 2.1] with A(z) :=
MZ(£y, By) and B(z) := MZ*(£;, By). First, both functions are real analytic, tr A(z), tr B(z) are
non-constant, and z € R whenever tr A(z), tr B(z) € [—2, 2]. Then we need to show that for some
z0 € C one has

[M0 (L1, B1), M (L2, By)] #0.

By Assumption (2.3), neither (2.5) nor (2.6) holds and hence Theorem 2.3 implies the desired
result. O

3. Proof of Theorem 1.2

First, we note that the boundary conditions corresponding to the elements of ./, decouple
the operator H and hence lead to localization for somewhat trivial reasons. Specifically, assume
that the sequence in (1.4) contains a subsequence

. . _ | M Vi 0 0
{(Ajks B,lk)}kEZ - {[ 0 O ] ) [w]k ij ] }kEZ C «%Seps

Jx = £oo, k — Fo0.

Then

H =P Hiji jis1»
keZ

where the operator Hf, ,) is given by

H[m,n] = _d2/dx2’ H[m,n] : dom(H[m,n]) C Lz(tm» th) —> Lz(tm, 1)

R u satisfies (1.5) m < j <n (3.1)
dom(Hipm.n) = {u € H*(ty, 1y) : wuu(th) + zmu'(15) =0
xpu(ty) + yu'(6,7) =0

Since Hj, ») has compact resolvent, the operator H possesses a basis of compactly supported
(hence, exponentially decaying) eigenfunctions and has pure point spectrum.

By Remark 1.3.(2) it is enough to prove Theorem 1.2 (i) assuming (2.1), that is, supp i N
Msep =9 and 6 =0 in (1.3). This is accomplished in the following theorem.

Theorem 3.1. Assume Hypothesis 2.1 and recall © from Theorem 2.2. Then there exists a set
Q C @ with n(2) = 1 such that for every compact interval I C R \ © and every w € Q2 the
following assertions hold:
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() For every generalized eigenvalue® E € I of the operator H,, one has

.1 . 1
L(E)= lim —log ||MnE(a))|| = lim —Ilog ||M,f(a))||. 3.2)
n—-oon n——0o0 |n|

(i) The spectral subspace ran(x;(H,)) admits a basis of exponentially decaying eigenfunctions.
(iii) Given § € (0, 1) and a normalized eigenfunction

feker(H, —E),E€l, [flixm) =1
there exist { =¢(f) € Z, Cy,5 > 0, Cs > 0 such that
1) < Cy 5e 1og(E1+1) ,=(1=DLE)x=¢| 1 e R (3.3)
@iv) For every p > 0 and every compact set K C R one has

sup [ 1X17 1 (Hoye ™ |
t>0

<0
LXR)

Let us briefly comment on part (i) and its relationship to Theorem 2.2. First, Theorem 2.2
shows that L(E) > 0 for all £ € R\ ®, where © is a discrete set. By the multiplicative ergodic
theorem, one then gets (3.2) for every E and a full-measure set of w € €2, where the full-measure
set in question depends on E. However, since the set of E in question is uncountable, one cannot
simply intersect the E-dependent full-measure sets to get the conclusion that, for a.e. w and
every E, one has (3.2). In fact, the statement just formulated is false [16]. Thus, the passage from
Theorem 2.2 is nontrivial and requires some care. See [5] for a more detailed discussion of the
subtleties here.

Proof of Theorem 3.1. Our argument closely follows the proof of [10, Theorem 3.11] which
in turn stems from that of [5, Theorem 1.2]. Throughout the rest of the proof, f < g denotes
f < C(«, Ig with some constant C (7, I) > 0 depending only on </ and 1.

We begin with a few preliminaries that we will use to define Q. As was discussed in [10,
Section 3.3], Theorem 2.2 yields a Large Deviation Theorem, [5, Theorem 3.1], which in turn
implies the following two facts:

e For every 0 < ¢ < 1, there exists a full-measure set 21(g) € Q with the following property:
For every w € Q1(¢), there is ny = n(w, &) such that

2-1
1 "< log IME(T " w) ||
L(E) = 30— (3.4)

n
s=0

forall Eec I, €Z,andn > max(log% (¢ + 1), ny), see [5, Proposition 5.2].

e For every 0 < ¢ < 1, there exists a full measure set 22(¢) such that for every w € 2> (¢), there
is np = ny (e, w) such that

6 A generalized eigenvalue is an energy E admitting a linearly bounded solution, that is, a solution, u, satisfying (3.9).
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1 E i
;log M, (T w)|| < L(E) + ¢ (3.5)
forany o € Z and n > max(log2(|§o| + 1), n»), see [5, Corollary 5.3]. In particular, this yields
1 e
pyw:forall E €, limsup —log||M, ()| < L(E); =1.
n—oo N
In order to prove Part (i), we will show that

1
liminf — log | ME (w)|| > L(E)
.- n—oo n

Ui w : =1. 3.6)

for all generalized eigenvalues E € I

To that end, we first note a version of [10, Theorem 3.10]’ concerning the elimination of double
resonances. Denote the Neumann restriction of H,, to [f,,, t,] by H[m’n](a)).8 For ¢ € (0, 1) and
N € N, define

thereexist E€ 1, ¢ € Z4,

K > rnax{logz(é‘ +1),N}, 0O< N, Np < K? such that:
|Fn(T" e w, E)| < L(E) —¢

and ||(Hi—n, 5y (T @) — E)7!|

for some m € {K,2K}, K10 r
where K := | K'°¢K |

Dy(e) = w e 3.7)

2
<K7

and Q3(¢) := Q2 \ limsup Dy (¢); then one has u(23(¢)) = 1. Define the set

N—o00
N 3
Q= ﬂ ﬂszj(s),
O<e<x j=I

where

L.
X = 3 EéIIlL(E).

Note that  has full measure, since £2;(¢) has full measure and is monotone in &.

Proof of Part (1). Fix o = {{;, (I, Bj)} ez € 2 and a generalized eigenvalue E € I of H,,.
Then in order to establish (3.6) it is enough to check

1
liminf — log | ME (w)|| > L(E). (3.8)
n—oo n

7 The proof of this fact for the model in question is almost identical to that of [10, Theorem 3.10].
8 Cf. (3.1) with wyy =%, =0, Zim = yn = 1.
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Now, let u denote a generalized eigenfunction corresponding to the generalized eigenvalue E
and the operator H,,. That is,

—u" =Eu,
for some C, > 0, max{|u’(z‘]¢)|, |u(t]¢)|} <C,(1+1j), forall j €Z, (3.9

and u satisfies the vertex conditions (1.5) for all j € Z.

We now follow the blueprint of [10]. Given 0 < ¢ < x, the primary goal is to show that
1
—log ||Mf (w)|| = L(E) — 6¢, for all sufficiently large . (3.10)
n

Given ¢ € Z, define’
K (N) = max {[log?(1g] + D1, n1.n2,m3, N}, G.11)

where N € N will be determined later,'” n; and n; are as discussed near (3.4) and (3.5) (respec-
tively), and n3 = n3(w, ¢) is the minimal integer such that

w € 2\ Dj(e) for every j > n3. (3.12)

Step 1. There exists N = N(C,) > 0 such that for all K > K(N), there exist integers m| €
[ — K°, ¢l ma €[¢, ¢ + K] such that

1ty ) < 27, (1 )] < 2K (3.13)
for j=1,2.
Proof. Using (3.4) withn = K3 and ¢ :=¢ — K° we get

3
log [ ME,(T¢HK )|

L(E) — e <e
for some s =: 51 € [-K®, —K3]1N Z. Thus,
3
exp(L(E) — &)K?) < [ M5 (T*H K w)|| (3.14)

Likewise, using (3.4) with n = K3, we obtain (3.14) for some s, € [0, K°—11nZ. Fixing such
an 57, we introduce « and 8 via

[, B]:= ¢ +523K>, ¢ + (52 + DK3], mp = V ; ﬁJ .

9 In the arguments that follow, ¢ will correspond to the center of localization.
10 Specifically, N will depend solely on Cy, so, if all generalized eigenfunctions are bounded, then N may be chosen
independently of u.
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We will show that this choice of my gives (3.13) with j = 2. The proof for j = 1 relies on (3.14)
with s = 57 and is completely analogous. Our argument is based on a representation of u in terms
of its boundary values u(z,), u (tﬂ_ ) and special solutions satisfying specific boundary conditions
chosen based on which entry of the matrix

Bg1M§3(T“w) (3.15)

dominates its norm.

Thus, there are four cases; we will consider one case and note that the other cases are com-
pletely similar. The reader may also consult [10] to see what modifications one should make in
the other three cases.

To that end, let m;; denote the ij entry of (3.15), and suppose ||B/3_1MI€3(T°‘a))|| <4myy].
In this case, we choose ¥4 to satisfy the interior vertex conditions as well as the boundary
conditions

Vi) =1, Yiltg) =0, yL (1) =0, y_(1)) =1,

and observe that

(W (W, ) = WL ()] = [Y— 5] = Im1] > 0. (3.16)

By (3.16), ¥_ and v are linearly independent, so we may write

Vi (t,,)

YVt
vl (td) *

V()

u(ty,) =u'(1;) u(ty) (3.17)

Next, we estimate the right-hand side of (3.17). Putting together (3.14) and (3.16), we obtain

1By ' ME,(T*w)|

4
N Mg (Tew)| (3.18)
4By

WL D = [—(g)] = Imu| =

> exp((L(E) — e)K?).
Next, (3.9) implies

max {|u/(t;)|, |u(tl;)}| < Cu(K® + V5.

Next, apply (3.5) with {o =¢ +sK3andn = LKT3J, and select N so that LKT3J > logz(g“ +s5K?)
to get

1 1
V()] < ’<M B MEs (1K) [OM

2

: (3.19)
<exp (E(L(E) + £)K3> .
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Similarly, for N sufficiently large, we get

_ 1 3
[V ()| Sexp <§(L(E)+5)K ) (3.20)

Putting together (3.17), (3.18), (3.19), and (3.20), we have
1
()] <2C(K° + eV E)exp <—§(L(E) — 35)1{3) <e 2K,

where the final inequality holds for N = N (C,, &7) sufficiently large. Similarly,

- —2K?
' (1)) < e 257,

follows by replacing u(tnjz) (respectively, ¥+ (t,;z)) by u’ (t,;z) (respectively, ¥/, (t,;z)) in (3.17),
and [1,0]T by [0, 1]7 in both (3.19) and (3.20). O

Step 2. If lu(z )| = 1 for some T € R, let { be the largest integer for which tr < t. If lu(z )| =1
for some v € R, let { be the largest integer for which t; < t. Let m1, my be as in Step 1. Then

— 2
I CHmy a1 @) = EY M B(L200, 0y = €5 (3.21)
Proof. There exists a K-independent interval J C (#;, #; 1) such that

1/2 < |u(x)| forall x € J. (3.22)

Suppose that ¥4 satisfies —¢ = Ey4 in (4, , tn,), the interior vertex conditions in the interval
(tm, > tm,) and

Vo) =1, YL (65) =0, Yi(t,) =1, ¥.(2,,) =0.
Then one has

I+ M "t~ ﬂ
ulx)=u (tml)W(I//_i_,w_) +u (th)W(llf—i-,w—)’

Integrating over J, using (3.22) and (3.13) we infer

X € (t;, l‘{.,.]).

m<|“/(t;§.)|fj|w+(x”dx fjll/f_(x)|dx,
2 W, ) W, )
:e,2K2f1|W+(x)|dx _2K? f] |- (x)|dx

W v W vl

Thus, without loss we may assume

+ |u (2,

K207 _ [ - (x)|dx
4 T IWEL Yo
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Since ¥4 (y) = cos(v E(y — tm,)), ¥ € (tmy—1, Im,] we have

Yi(y) 21/2, y € (tmy — 05 tmy s

for a suitable K -independent constant p > 0 which is sufficiently small. Combining the previous
two inequalities we get

tmz

e2K2|J|p</ V- () [P+ ()

dxdy.
8 Wyl

tmy—p J

Let G, [m;,my1(x, ) denote the Green function of Hj;,;, m,](®), then

V- ()4 ()
G V) =—"——"""",x€J, Y€ ({tmy, — P, tmy)-
w,lmy,m2] (X, y) W (e, ) X Y € (tmy — 05 Imy)
Denoting
@1 1= X SIgn(y W (W, =)y 2 5= Xty —potmy)
we get

[{(&1, (H[ml,mz](a)) - E)_1¢2>L2(tml ,tm2)|

||¢1 ”Lz(tml i) ||¢2||L2(10,;m)

K2

e X

-1
< ”(H[ml,mz](a)) - E) ”B(Lz(t’"l’t'"z))’
for sufficiently large N in (3.11). O
Step 3. Choose ¢ as in the previous step. For a suitable N = N (C,), we have
1 E e
—log M, (T* )|l = L(E) — 6¢, (3.23)
n
forevery K > K(N) and every K1 4+ K10 <n <K, where K is as in (3.7).
Proof. By (3.12) and (3.21), we have
1 _
— log [| M (T w)|| > L(E) — ¢, foreach j=1,2andall K'Y <r<XK.
J

This input suffices to apply the Avalanche Principle [15] to deduce (3.23). Consult [5,
(6.17)—(6.18)] for details. O
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Since the intervals in Step 3 cover a half-line, we deduce (3.10), which immediately implies
(3.8), which in turn yields (3.2).

Proof of Part (ii). By Part (i) and Osceledets’ Theorem, every generalized eigenvalue of H,,
is an eigenvalue whose corresponding eigenfunctions decay exponentially at the rate dictated by
the Lyapunov exponent.

Next, we note that

(Hy, —1)~' € B(L>(R), L*(R)).

Indeed, assume that u € dom(H,,), —u” —iu = f € L>(R). Then by Sobolev inequalities (see,
e.g., [7, Corollary 4.2.10], [21, IV.1.2]) we get

1 .
||u||L°°(tj,tj+1) S ||M||L2(tj,t_j+|) + [lu ||L2(f_j~fj+1) = ||f||L2(tj,t_/+|)v JEL.

Therefore [19, Assumption B.1] is satisfied and by [19, Theorem B.9] the spectral measure of
H,, is supported by the generalized eigenvalues. Thus the eigenfunctions corresponding to gen-
eralized eigenvalues in I span the spectral subspace ran(y;(Hy)).

Proof of Part (iii). First, using — f” = E f and the one-dimensional Sobolev inequalities (see,
e.g., [7, Corollary 4.2.10], [21, IV.1.2]), we have

maX{”f”Loo(tj,l‘j_;_l)a ||f,||L°°(tj,tj+|)}
SUF 20+ 1 220000 (3.24)
<l

’

and

/ 1
I/ ||L°°(t_,',l‘j+1) S ”f”Lz(zj,th) +1f ||L2(fj,fj+1)
S ||f||L2(;_/-,tj+1)

5 ”f”Loo(tj,ljJrl)*
Therefore, after taking
J

u=——"———,
I f Nl Lo w)
and 7 in Step 2 such that either | f(t7)| = || flloo OF | fF (T = || £l 00>

C, <1inStepl,

we may repeat the arguments from Part (i). We pick any value of 7 with desired property and
note that its existence is guaranteed because

fah 20 2 . RV
ol €l*(Z,C%and lim |f(¢t)]= lim |f'(¢)|=0.
@) jez lr]— o0 lrl—c0

So, given 0 < ¢ < », we may choose N = N (e, ) (independent of f) so that
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Lrog | ME(T¢w) > L(E) -6
~log | M (T w)]| > L(E) — 6¢

forall K > max{K (N), log?(|¢|+ 1)} and all K" + K19 < n < K. Our next objective is to show
that

—1
|f(t§++n)| < e—(l—é)L(E)n’ forall n € |:§’ pT] ,

forall K > K(N) and K'!' + K'0 < p < K. As before, the proof relies on a representation of
f in terms of its boundary values at #; and f; 4, and the choice of representation, depends on
which entry of

—1 asE ¢
B, My (TE0)

dominates its norm. We will argue under the assumption that the upper left entry dominates the
norm; the other three cases are almost identical.

Choose v+ as follows: they satisfy the interior vertex conditions in [z, t;4 1, solve —y} =
Er+, and satisfy the boundary conditions

V- =1, 9L =094 ) =0, ¥ ,) =1

Notice that

W@, Yl =19 6D =17
_ 1B, My (TEo)
- 4

N IMF(T¢w)]|
4| B4 pll
2 exp((L(E) — 6¢) p).

(3.25)

One has

Al FaOvl,)  fel Y-l
My Meyla)) My (i, )

(3.26)

+

where My := || f||pR_)- In order to estimate y/_ (t§+n

matrices and use (3.5) as follows

), we rewrite it in terms of the transfer

V-5 = K[(l)] M (T w) [(I)M S exp((L(E) +é)n).

Similarly one can estimate ¢+(l;++n)- Put this together with (3.24)—(3.26) to obtain
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| f @ ) S exp((L(E) + &)n — (L(E) — 6¢) p)

+exp((L(E) +¢&)(p —n) — (L(E) — 6¢) p)
5 26‘_(1_5)'11‘(15)_

In the final inequality, pick ¢ = £(§) > O sufficiently small (which only depends on ). Thus

|f(f;++n)| < e~(=OLEM (3.27)

forall K > K(N) and KUkl <n < &L So, for sufficiently large N, the inequality in (3.27)
4 2 Y b/
holds for all

1 ) 11
n > 2 max [log 21+ 1), N(a),s)} —R.

+

Trivially estimating f (t{ n

) for 0 <n < R (that is, using || fl Lo r) S 1) we obtain

22
|F )| S Cop 518 1D mA=DLEM 1y > 0, (3.28)

Using the representation

Fh) SOV FaG v,
My~ ML) Myy—(iy )

we may prove a version of (3.28) with f replaced by f’ by repeating (3.25)—(3.28). Lastly, we
infer (3.3) for all x > 0 by interpolation. The same argument applies to the negative half-axis.

Proof of Part (iv). The argument is essentially identical to the proof of [10, Theorem 1.1],
which in turn stems from [14], with natural substitution of one-sided intervals by their symmetric
two-sided versions. O

Proof of Theorem 1.2. Since the proof of (ii) was addressed in Remark 1.3, we only need to
prove (i), so suppose that [ satisfies one of the assumptions of Part (i). We have already dealt
with the case when assumption (c) holds at the beginning of the current section, so assume ei-
ther (a) or (b) holds true. By Theorem 3.1, there is a full-measure set € so that the conclusions
of Theorem 3.1.(i)—(iv) hold true. The dynamical localization statement of Part (i) is given in
Theorem 3.1.(iv), so it remains to show that H,, enjoys a basis of exponentially decaying eigen-
functions for a.e. w. This follows from Theorem 3.1.(i) and standard arguments. In particular, (by
intersecting over a countable exhaustion of R \ ® by compact intervals) Theorem 3.1.(i) shows
that, for u-a.e. w, every generalized eigenvalue of H,, in R \ © is a genuine eigenvalue of H,,
whose corresponding eigenfunction decays exponentially. Moreover, for any E € 2, Pastur’s ar-
gument [24] shows that, for u-a.e. w, E is not an eigenvalue of H,,. Since ® is countable, there
is a full-measure set €2, such that, for w € ., H, has no eigenvalues in ©, and every general-
ized eigenvalue of H,, in R \ © has an exponentially decaying (generalized) eigenfunction. Since
the generalized eigenvalues support the spectral measure of H,,, the spectral measure of H,, is
supported on a countable set and hence is pure-point, as desired. O
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