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Abstract

We consider disordered Hamiltonians given by the Laplace operator subject to arbitrary random self-
adjoint singular perturbations supported on random discrete subsets of the real line. Under minimal as-
sumptions on the type of disorder, we prove the following dichotomy: Either every realization of the random 
operator has purely absolutely continuous spectrum or spectral and exponential dynamical localization hold. 
In particular, we establish Anderson localization for Schrödinger operators with Bernoulli-type random sin-
gular potential and singular density.
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1. Introduction

1.1. Overview

The spectral theory of Schrödinger operators with singular potentials, originally motivated by 
the Kronig–Penney model from solid state physics, has been of interest since at least 1961 when 
Berezin and Faddeev [4] gave a mathematically rigorous treatment of −� + εδ, where ε is a real 
parameter and δ denotes a Dirac delta distribution. An illuminating discussion of this subject 
together with historical remarks and relevant references can be found in the classical monograph 
[2].

The main focus of this paper is on Anderson localization for random Hamiltonians with ar-
bitrary point interactions under minimal assumptions on the randomness. The first relevant work 
in this direction is due to Delyon, Simon, and Souillard [12]. They established spectral localiza-
tion for −� +∑

j∈Z λj (ω)δ(x − j), where {λj }j∈Z is a sequence of independent identically 
distributed random variables whose common distribution has a sufficiently regular nontrivial ab-
solutely continuous part. More recently, Hislop, Kirsch, and Krishna [17], [18] proved Anderson 
localization (in suitable energy regions) and studied eigenvalue statistics for the same model 
in dimensions d = 1, 2, 3. Localization and zero-measure spectrum for closely related quantum 
graph models were established in [9,10].

The principal achievement of this paper is twofold. First, we cover arbitrary (as discussed 
in [22, Section 3.4]) self-adjoint second order differential operators with coefficients supported 
on a discrete set {tj }j∈Z. Similar to the Kronig–Penney model, these operators are realized via 
self-adjoint vertex conditions imposed at every tj . Second, we make no assumptions on the reg-
ularity of the common probability distribution of i.i.d. random variables in question, contrary to 
all previously considered Kronig–Penney type random models. Such a level of generality is es-
sential in several random quantum graph models where the random variables take integer values 
representing geometric characteristics of graphs, e.g., the number of edges, cf. [10].

The main ingredient of the proof is the fact that the Lyapunov exponent is positive away from 
a discrete set of exceptional energies, which we establish in Theorem 2.2. It is worth noting that 
the underlying one-step transfer matrix takes a rather general form given by a product of the 
monodromy matrix of the free Hamiltonian and an arbitrary SL(2, R) matrix, see (2.2). The 
latter describes the general self-adjoint vertex condition mentioned above, which takes the form
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[
u(t+j )

u′(t+j )

]
= Bj

[
u(t−j )

u′(t−j )

]
, Bj ∈ SL(2,R). (1.1)

Having established positivity of Lyapunov exponents, we proceed with the proof of localization 
following [5] and its continuum versions [6,10]; see Theorem 3.1.

1.2. Main result

To begin, we discuss self-adjoint realizations of the Laplace operator subject to singular per-
turbations supported on a uniformly discrete set of vertices

{tj }j∈Z ⊂R, inf
j∈Z

(tj+1 − tj ) > 0. (1.2)

Let Hmin be the operator acting in L2(R) and given by

Hminu := −u′′, u ∈ dom(Hmin),

dom(Hmin) := {u ∈ Ĥ 2(R) : u(t±j ) = u′(t±j ) = 0, j ∈ Z},

where Ĥ 2(R) := ⊕j∈ZH 2(tj , tj+1) denotes the direct sum of Sobolev spaces. This operator is 
symmetric and has infinite deficiency indices. Its adjoint Hmax := H ∗

min is given by

Hmaxu := −u′′, u ∈ dom(Hmax) = Ĥ 2(R),

see [2, Section III.2.1]. All self-adjoint extensions H of Hmin (automatically satisfying Hmin ⊂
H = H ∗ ⊂ Hmax) can be described by means of vertex conditions imposed at every tj . Define

Mtriv :=
{([

1 0
0 1

]
, eiθ

[
1 0
0 1

])∣∣∣θ ∈ [0,2π)

}
,

Mconn :=
⎧⎨⎩
([

1 0
0 1

]
, eiθ

[
α β

γ δ

])∣∣∣ θ ∈ [0,2π),

{α,β, γ, δ} ⊂R,

αδ − γβ = 1

⎫⎬⎭ , (1.3)

Msep :=
{([

x y

0 0

]
,

[
0 0
w z

])∣∣∣ {x, y,w, z} ⊂R

}
,

M := Mconn ∪ Msep.

Then by [1, Theorem 1] (see also [3,8,22,25]) the operator H = (Hmax) �dom(H) is a self-adjoint 
extension of Hmin if and only if there exists a sequence

{(Aj ,Bj )}j∈Z ⊂ M , (1.4)

such that dom(H) = {u ∈ Ĥ 2(R) : u satisfies (1.5)}

Aj

[
u(t+j )

u′(t+j )

]
= Bj

[
u(t−j )

u′(t−j )

]
, j ∈ Z. (1.5)
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The main goal of this paper is to show that a random choice of vertex conditions (1.4), (1.5)
leads to Anderson localization unless the vertex matrices are drawn in such a way that the result-
ing Hamiltonians are all unitarily equivalent to an operator with periodic coefficients, in which 
case the resultant operators all have purely absolutely continuous spectrum.

The location of vertices supplies another source of randomness in our model. We assume 
that the distance �j between tj−1 and tj is random. To facilitate this, for a sequence {�j }j∈Z ⊂
(0, ∞), we denote t0 := 0 and

tj :=
{∑j

k=1 �k j � 1,

−∑k=0
k=j+1 �k, j � −1.

(1.6)

Hypothesis 1.1. Fix L+ � L− > 0. Suppose that A ⊂ [L−, L+] × M is a bounded set. Let μ̃
be an arbitrary probability measure on A and let (
, μ) := (A , ̃μ)Z.

For a sequence

ω = {�j , (Aj ,Bj )}j∈Z ∈ 
,

let Hω denote the self-adjoint extension of Hmin corresponding to the discrete set of vertices 
{tj }j∈Z given by (1.6) and the boundary conditions (1.5).

Theorem 1.2. Assume Hypothesis 1.1. (i) Suppose that there exist

(�1, (A1,B1)), (�2, (A2,B2)) ∈ supp μ̃

such that one of the following holds

(a) �1 	= �2, A1 = A2 = I2, B1 /∈ {eiθ I2 : θ ∈ [0, 2π)},
(b) A1 = A2 = I2, B1 /∈ {eiθB2 : θ ∈ [0, 2π)},
(c) (A1, B1) ∈ Msep.

Then Hω possesses a basis of exponentially decaying eigenfunctions for μ-almost every ω ∈ 
. 
Furthermore, there exist a set 
∗ ⊂ 
 with μ(
∗) = 1 and a discrete set D ⊆ R such that for 
every compact interval I ∈R \D, every p > 0 and every compact set K ⊂R,

sup
t>0

∥∥∥|X|pχI (Hω)e−itHωχK
∥∥∥

L2(R)
< ∞, ω ∈ 
∗,

where χI (Hω) denotes the spectral projection corresponding to I , and |X|p denotes the operator 
of multiplication by the function f (x) := |x|p .

(ii) If the assumptions of part (i) are not satisfied then Hω has purely absolutely continuous 
spectrum for every ω ∈ 
.

Remark 1.3.

1. Part (ii) of Theorem 1.2 follows from general arguments. For example, if every (�, (A, B)) ∈
supp μ̃ satisfies A = I2, B = eiθ I2 for some θ ∈ [0, 2π), then all realizations of Hω will be 
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unitarily equivalent to the free Laplacian, and hence will exhibit purely absolutely continuous 
spectrum. Similarly, if there exist � > 0 and B ∈ SL(2, R) such that all elements of supp μ̃

are of the form (�, (I2, eiθB)) for some θ , then every realization of Hω will be unitarily 
equivalent to an operator with periodic point interactions and again the desired localization 
fails.
In particular, we want to point out that Part (i) is optimal in the sense that any amount of 
randomness that pushes one outside the periodic case will produce spectral and dynamical 
localization.

2. In the third case of Theorem 1.2.(i) (that is, when supp μ̃ ∩ Msep 	= ∅), Hω decouples into 
an infinite direct sum of operators on finite intervals (μ-almost surely). These operators 
have compact resolvents by general arguments, so the associated spectra are pure point with 
compactly supported (hence exponentially decaying) eigenfunctions. Moreover, in this case 
one has D = ∅.

3. The set D arises as the complement of the set on which one can verify the hypotheses of 
Furstenberg’s theorem. In particular, D contains the set of energies at which the Lyapunov 
exponent vanishes. In general, dynamical localization only holds away from energies in D, 
which is why it is necessary to project to a compact interval that does not intersect D in 
the statement of dynamical localization. In particular, one may have delocalization effects as 
soon as D is nonempty, if one does not project away from D. Compare [13, Theorem 1]; see 
also [11,20].

4. The three hypotheses on μ̃ in part (i) should be viewed as “single-site conditions”. In par-
ticular, once the support of the distribution generating the random point interactions is large 
enough that one sees two triples satisfying (a) or (b), or a single triple satisfying (c), then the 
localization result will hold true. These assumptions are precisely what is needed to ensure 
that the closed subgroup of SL(2, R) generated by the possible transfer matrices satisfies 
the hypotheses of Furstenberg’s theorem at all energies away from a discrete set. The main 
theorem of [6] explains how to deduce this conclusion from relatively simple inputs involv-
ing the commutator and traces of the transfer matrices; Section 2 explains how to derive the 
hypotheses needed to apply [6, Theorem 2.1] from the assumptions of part (i).

Let us point out that this result yields localization for several physically relevant Hamiltonians. 
Let {αj }j∈Z be a sequence of independent identically distributed random variables taking at least 
two distinct values in a bounded subset of R. Define A(x) :=∑

j∈Z αj δ(x − j), and introduce 
formally self-adjoint differential expressions

τS := −D2
x + A, τD := −Dx(1 + A)Dx, τG := (iDx + A)2 − A2,

(the indices S, D, G stand for Schrödinger, density, gauge correspondingly, see [1]). As was 
shown in [22] these differential expressions may be realized as self-adjoint extensions of Hmin
corresponding to �j ≡ 1 (i.e. tj = j ) and the following vertex matrices

τS ∼ (Aj ,Bj ) =
([

1 0
0 1

]
,

[
1 0
αj 1

])
τD ∼ (Aj ,Bj ) =

([
1 0
0 1

]
,

[
1 −αj

0 1

])
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τG ∼ (Aj ,Bj ) =
⎛⎝[1 0

0 1

]
,

⎡⎣ 2+iαj

2−iαj
0

0
2+iαj

2−iαj

⎤⎦⎞⎠
The first and the second cases satisfy the assumptions of Theorem 1.2 part (i), the third case 
satisfies the assumptions of Theorem 1.2 part (ii). Hence, the first two operators exhibit Anderson 
localization, while the third operator has purely absolutely continuous spectrum.

Another relevant application is to Anderson localization for the Kirchhoff Laplacian on ran-
dom radial trees discussed in [10], [19]. In this case the Hamiltonian is determined by the 
following matrices,

(Aj ,Bj ) =
([

1 0
0 1

]
,

[√
βj 0

αj√
βj

1√
βj

])
,

where {αj } ⊂ R, {βj } ⊂ N are sequences of i.i.d. random variables taking at least two distinct 
values in a bounded subset of R. Anderson localization for this model was proved in [10] and also 
follows from Theorem 1.2. Yet another interesting application is given by Schrödinger operators 
with δ′ potentials which correspond to the following choice of matrices

(Aj ,Bj ) =
([

1 0
0 1

]
,

[
1 βj

0 1

])
Acknowledgments

We are grateful to the anonymous referee for a careful reading of the manuscript and helpful 
suggestions.

2. Ergodic setup and positive Lyapunov exponents

In this section we assume Hypothesis 1.1 with the additional restriction

A ⊂ [L−,L+] × {I2} × SL(2,R). (2.1)

We will explain in the beginning of Section 3 that it is enough to prove Theorem 1.2 assuming 
(2.1).

2.1. Ergodic setup

Let us discuss the eigenvalue problem Hu = Eu, where H is a self-adjoint extension of Hmin
corresponding to a fixed set of vertices (1.2) and vertex conditions (1.5) with {(Aj , Bj )}j∈Z
satisfying

Aj = I2, Bj ∈ SL(2,R), j ∈Z.

Consider the differential equation −f ′′ = Ef subject to f ∈ H 2(tj , tj+1), j ∈ Z and vertex 
conditions (1.1). The solution f satisfies
109
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[
f (t+j )

f ′(t+j )

]
=ME(�j ,Bj )

[
f (t+j−1)

f ′(t+j−1)

]
, j ∈ Z,

where the mapping ME : A → SL(2, R)5 is defined by

ME(�,B) := B

[
cos

√
E� sin

√
E�√

E

−√
E sin

√
E� cos

√
E�

]
. (2.2)

We note that the entries of ME(�, B) are well-defined analytic functions of E ∈C.
Define ME : 
 → SL(2, R) by ME(ω) := ME(ω1). Let T denote the left shift acting on 


and define the skew product

(T ,ME) : 
 ×R2 → 
 ×R2, (T ,ME)(ω, v) = (T ω,ME(ω)v).

We denote the n-step transfer matrix by

ME
n (ω) =

0∏
r=n−1

ME(T rω) = ME(T n−1ω) · · ·ME(T ω)ME(ω), n ∈N,

and note that the iterates over the skew product are given by (T , ME)n = (T n, ME
n ). One has[

u(t+n )

u′(t+n )

]
= ME

n (ω)

[
u(0+)

u′(0+)

]
for all n ∈ Z

whenever u ∈ Ĥ 2(R) satisfies −u′′ = Eu and the vertex conditions from (1.1) corresponding to 
Hω. The Lyapunov exponent is defined by

L(E) := lim
n→∞

1

n

∫



log‖ME
n (ω)‖dμ(ω).

By Kingman’s Subadditive Ergodic Theorem we have

L(E) = lim
n→∞Fn(ω,E),

for μ-almost every ω, where Fn(ω, E) := 1
n

log‖ME
n (ω)‖. Let us point out that there is also a 

natural continuum cocycle which satisfies

M
E

x (ω)

[
u(0+)

u′(0+)

]
=
[

u(x+)

u′(x+)

]

5 By (2.1) the second component of all elements of A is I2. Consequently, slightly abusing notation, we may view 
elements of A as ordered doubles (�, B) rather than ordered triples.
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in the event that u solves −u′′ = Eu and satisfies the vertex conditions corresponding to Hω. By 
a simple application of Birkhoff’s ergodic theorem, the Lyapunov exponent for this cocycle is 
related to that of the discrete cocycle via

L(E) = � · L(E),

where � := ∫
A � dμ̃(�, B) denotes the μ̃-expected value of the length.

2.2. Positivity of Lyapunov exponents

Hypothesis 2.1. Assume Hypothesis 1.1 with

A ⊂ [L−,L+] × {I2} × SL(2,R).

Suppose that there exist B1, B2 ∈ SL(2, R), �1, �2 ∈ [L−, L+] such that

(�1,B1) 	= (�2,±B2), and Bj 	= I2 for some j = 1,2, (2.3)

(�j , I2,Bj ) ∈ supp μ̃, j = 1,2.

The main assertion of this subsection is that the Lyapunov exponent is positive away from a 
discrete set of exceptional energies.

Theorem 2.2. Assume Hypothesis 2.1. Then there is a discrete set D ⊆R with the property that 
L(E) > 0 for every E ∈ R \D.

To begin, we address the key technical fact that will be utilized in the proof of Theorem 2.2. 
Given (�j , I2, Bj ) ∈ A , j = 1, 2, and E ∈ C, define

G(E) = G((�1,B1), (�2,B2),E) =
[
ME(�1,B1),ME(�2,B2)

]
to be the commutator of the two matrices ME(�j , Bj ), j = 1, 2. In view of [6], the key ob-
struction to positive exponents away from a discrete set of energies is everywhere vanishing of 
G.

Theorem 2.3. Given (�j , I2, Bj ) ∈ A , one has G((�1, B1), (�2, B2), E) = 0 for all E ∈C if and 
only if at least one of the following statements is true:

�1 = �2 and B1 ∈ {B2,−B2}
{B1,B2} ⊂ {I2,−I2}.

The following lemma will be helpful in the proof of Theorem 2.3.

Lemma 2.4. If P, Q, R, S ∈ R with R > 0, S > 0 and

lim P cos(Sw) sin(Rw) + Q cos(Rw) sin(Sw) = 0, (2.4)

w→∞
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then either P = Q = 0 or R = S (and P + Q = 0). In particular, if (2.4) holds true, then

P cos(Sw) sin(Rw) + Q cos(Rw) sin(Sw) = 0 for all w.

Proof. Since P cos(Sw) sin(Rw) +Q cos(Rw) sin(Sw) =: f (w) is an almost-periodic function 
of w, if (2.4) holds, then f vanishes identically. To see this, note that if |f (y)| = δ > 0 for some 
y ∈R and p is a δ/2-almost period of f , then |f (y + kp)| � δ/2 for all k ∈ Z.

Thus, we assume f ≡ 0 and that P, Q 	= 0. Since f (π/S) = 0, we arrive at

P sin(πR/S) = 0.

Since P 	= 0, this yields sin(πR/S) = 0, hence R/S ∈ Z. Interchanging the roles of R and S
implies S/R ∈ Z as well. Since S, R > 0, this forces R = S and hence P + Q = 0 as well. �

With Lemma 2.4 in hand, we prove Theorem 2.3.

Proof of Theorem 2.3. Given t ∈ [0, π), b > 0, � > 0, q ∈ R, and E ∈ C, introduce w = √
E, 

and define the matrices

R(t) =
[

cos(t) − sin(t)

sin(t) cos(t)

]
, D(b) =

[
b 0
0 1/b

]
, S(q) =

[
1 0
q 1

]
,

and

T (w,�) =
[

cos(�w) sin(�w)/w

−w sin(�w) cos(�w)

]
.

Consider the matrix given by

M̃(t, b, �, q,w) = R(t)D(b)S(q)T (w, �).

For brevity, we introduce

A= [0,π) × (0,∞) × (0,∞) ×R

for the parameter space; given α = (t, b, �, q) ∈ A, we abuse notation a bit and write M̃(α, w) for 
M̃(t, b, �, q, w). Since Bj ∈ SL(2, R), the Iwasawa decomposition (see, e.g. [23]) implies there 
exist tj , bj , and qj such that αj := (tj , bj , �j , qj ) ∈ A and Bj = ±R(tj )D(bj )S(qj ), and hence 
M̃(αj , w) = ±ME(�j , Bj ). It is enough to assume the representation Bj = R(tj )D(bj )S(qj )

and prove that one of

�1 = �2 and B1 = B2, (2.5)

B1 = B2 = I2 (2.6)

holds.
If either (2.5) or (2.6) holds, then a straightforward calculation reveals that G(E) ≡ 0. Con-

versely, assume that G ≡ 0; in particular, G1,1 ≡ 0.
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Case 1. �1 = �2. In this case, we denote � := �1 = �2.

Case 1.1. t1, t2 �= 0.

Since sin t1, sin t2 	= 0, after making the substitutions xj = cot(tj ) and z = �w, we obtain

0 ≡ b1b2

sin(t1) sin(t2)
G1,1 = A cos2 z + B sin2 z + Cz cos z sin z + D

cos z sin z

z
,

where

A = b2
1 − b2

2 + q1x1 − q2x2

B = q1x2 − q2x1 + (b2
2 − b2

1)x1x2

C = x2 − x1

�

D = �
((

b2
1b

2
2 + q1q2

)
(x1 − x2) +

(
b2

1q2 − b2
2q1

)
(1 + x1x2)

)
.

Since the set of functions {cos2 z, sin2 z, z sin(2z), z−1 sin(2z)} is linearly independent over C, 
we have A = B = C = D = 0, and thus we arrive at

0 = b2
1 − b2

2 + q1x1 − q2x2 (2.7)

0 = −q2x1 + q1x2 − b2
1x1x2 + b2

2x1x2 (2.8)

0 = −x1 + x2

�
(2.9)

0 = �
((

b2
1b

2
2 + q1q2

)
(x1 − x2) +

(
b2

1q2 − b2
2q1

)
(1 + x1x2)

)
(2.10)

From (2.9), we obtain x1 = x2 =: x, which implies t1 = t2 =: t , since tj ∈ (0, π). Plugging this 
into (2.7) and (2.8), we have that 0 = b2

1 − b2
2 + x(q1 − q2) and 0 = x(q1 − q2) − x2(b2

1 − b2
2). 

Subtracting these two equations gives 0 = b2
1 − b2

2 + x2(b2
1 − b2

2) = (b2
1 − b2

2)(1 + x2). Since 
1 + x2 > 0, we obtain that b2

1 = b2
2, and hence b1 = b2 =: b since b1, b2 > 0. Plugging these 

relations into (2.10) and using � > 0, we obtain

0 = b2(q2 − q1)(1 + x2),

implying q1 = q2. Thus, we have shown that (t1, b1, q1) = (t2, b2, q2), as desired.

Case 1.2. Exactly one tj vanishes.

Without loss of generality, assume t1 = 0 and t2 	= 0; in particular sin t1 = 0 and sin t2 	= 0. 
Since the assumption t1 = 0, t2 	= 0 implies B1 	= B2 and B2 	= I2, we aim to show that G ≡ 0 is 
impossible in this case. Using the same substitutions as before, we get

b1b2
G1,1 = A cos2 z + B sin2 z + Cz cos z sin z + D

cos z sin z
,

sin t2 z
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where

A = q1

B = −(q2 + (b2
1 − b2

2)x2)

C = −1/�

D = �
(
b2

1b
2
2 + q1q2 + (b2

1q2 − b2
2q1)x2

)
Since C = 0 is clearly impossible, we see that G1,1 cannot vanish identically in this case.

Case 1.3. t1 = t2 = 0.

Substituting w = z/ l, we get

b1b2G1,1 = B sin2 z + D
cos z sin z

z
,

where B = b2
2 − b2

1 and D = �(b2
1q2 − b2

2q1). Thus, if G1,1 ≡ 0, we obtain B = D = 0, implying 
b1 = b2 and q1 = q2 as before.

Case 2. �1 	= �2

Case 2.1. t1, t2 �= 0.

Substituting xj = cot(tj ), we have

b1b2

w sin t1 sin t2
G1,1(w) = A(w) + 1

w
B(w) + 1

w2 C(w) ≡ 0 (2.11)

where

A(w) = x2 cos(�1w) sin(�2w) − x1 sin(�1w) cos(�2w)

B(w) = sin(�1w) sin(�2w)(x2(q1 − b2
1x1) − x1(q2 − b2

2x2))

+ cos(�1w) cos(�2w)(q1x1 − q2x2 + b2
1 − b2

2)

C(w) = (b2
1 + q1x1)(q2 − b2

2x2) cos(�1w) sin(�2w)

− (q1 − b2
1x1)(b

2
2 + q2x2) sin(�1w) cos(�2w).

Since B(w) and C(w) are bounded functions, (2.11) implies limw→∞ A(w) = 0. Applying 
Lemma 2.4 and recalling that �1 	= �2, we must have A(w) ≡ 0, x1 = x2 = 0, and hence 
t1 = t2 = π

2 . Thus, appealing to boundedness of C(w) as before and using (2.11) again, we 
arrive at B(w) ≡ 0. Since x1 = x2 = 0, this implies

(b2 − b2) cos(�1w) cos(�2w) ≡ 0,
1 2
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so b1 = b2 =: b (since both are positive). Since A and B vanish identically, appealing to (2.11)
one more time gives us C(w) ≡ 0. Consequently,

q2 cos(�1w) sin(�2w) − q1 sin(�1w) cos(�2w) ≡ 0.

From Lemma 2.4 (using �1 	= �2 again), we have q1 = q2 = 0.
At this point, we have t1 = t2 = π

2 , b1 = b2, q1 = q2 = 0. Substituting all of this into the 
relation G2,1 ≡ 0, we see that the expression (b2 −w2) sin(w(�1 −�2)) vanishes for all w, which 
contradicts �1 	= �2.

Case 2.2. Exactly one tj vanishes.

Substituting t1 = 0 and x2 = cot t2, we get

b1b2

w sin t2
G1,1 = D(w) + 1

w
E(w) + 1

w2 F(w),

where

D(w) = − sin(�1w) cos(�2w)

E(w) = q1 cos(�1w) cos(�2w) − sin(�1w) sin(�2w)(x2(b
2
1 − b2

2) + q2)

F (w) = b2
1(b

2
2 + q2x2) sin(�1w) cos(�2w) + q1(q2 − b2

2x2) cos(�1w) sin(�2w).

As before, if G1,1 vanishes identically, then, since the functions E(w) and F(w) are bounded, 
we get limw→∞ D(w) = 0, hence D vanishes identically (by Lemma 2.4), a contradiction.

Case 2.3. t1 = t2 = 0.

Substituting t1 = t2 = 0, we get

b1b2G1,1 = J (w) + 1

w
K(w) ≡ 0

where

J (w) = (b2
2 − b2

1) sin(�1w) sin(�2w)

K(w) = b2
1q2 sin(�1w) cos(�2w) − b2

2q1 cos(�1w) sin(�2w).

As before, K(w) is a bounded function, so limw→∞ J (w) = 0. Arguing as in previous cases, we 
have b1 = b2 =: b and J (w) ≡ 0. Consequently, K(w) ≡ 0, so Lemma 2.4 yields q1 = q2 = 0.

Substituting b = b1 = b2, t1 = t2 = 0, and q1 = q2 = 0 into G2,1 ≡ 0, we arrive at

(1 − b2)w sin(w(�1 − �2)) ≡ 0

Since �1 	= �2, we must have b1 = b2 = 1. Therefore (t1, b1, q1) = (t2, b2, q2) = (0, 1, 0), which 
implies B1 = B2 = I2, just like we wanted. �
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We are now in a position to prove the Theorem 2.2.

Proof of Theorem 2.2. It is enough to check the conditions of [6, Theorem 2.1] with A(z) :=
Mz(�1, B1) and B(z) := Mz(�2, B2). First, both functions are real analytic, trA(z), trB(z) are 
non-constant, and z ∈ R whenever trA(z), trB(z) ∈ [−2, 2]. Then we need to show that for some 
z0 ∈ C one has

[Mz0(�1,B1),Mz0(�2,B2)] 	= 0.

By Assumption (2.3), neither (2.5) nor (2.6) holds and hence Theorem 2.3 implies the desired 
result. �
3. Proof of Theorem 1.2

First, we note that the boundary conditions corresponding to the elements of Msep decouple 
the operator H and hence lead to localization for somewhat trivial reasons. Specifically, assume 
that the sequence in (1.4) contains a subsequence

{(Ajk
,Bjk

)}k∈Z =
{[

xjk
yjk

0 0

]
,

[
0 0

wjk
zjk

]}
k∈Z

⊂ Msep,

jk → ±∞, k → ±∞.

Then

H =
⊕
k∈Z

H[jk,jk+1],

where the operator H[m,n] is given by

H[m,n] = −d2/dx2,H[m,n] : dom(H[m,n]) ⊂ L2(tm, tn) → L2(tm, tn)

dom(H[m,n]) =
⎧⎨⎩u ∈ Ĥ 2(tm, tn) :

u satisfies (1.5) m < j < n

wmu(t+m) + zmu′(t+m) = 0
xnu(t−n ) + ynu

′(t−n ) = 0

⎫⎬⎭ .
(3.1)

Since H[m,n] has compact resolvent, the operator H possesses a basis of compactly supported 
(hence, exponentially decaying) eigenfunctions and has pure point spectrum.

By Remark 1.3.(2) it is enough to prove Theorem 1.2 (i) assuming (2.1), that is, supp μ̃ ∩
Msep = ∅ and θ = 0 in (1.3). This is accomplished in the following theorem.

Theorem 3.1. Assume Hypothesis 2.1 and recall D from Theorem 2.2. Then there exists a set 

̃ ⊂ 
 with μ(
̃) = 1 such that for every compact interval I ⊂ R \ D and every ω ∈ 
̃ the 
following assertions hold:
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(i) For every generalized eigenvalue6 E ∈ I of the operator Hω, one has

L(E) = lim
n→∞

1

n
log‖ME

n (ω)‖ = lim
n→−∞

1

|n| log‖ME
n (ω)‖. (3.2)

(ii) The spectral subspace ran(χI (Hω)) admits a basis of exponentially decaying eigenfunctions.
(iii) Given δ ∈ (0, 1) and a normalized eigenfunction

f ∈ ker(Hω − E),E ∈ I, ‖f ‖L2(R) = 1,

there exist ζ = ζ(f ) ∈ Z, Cω,δ > 0, Cδ > 0 such that

|f (x+)| � Cω,δe
Cδ log22(|ζ |+1)e−(1−δ)L(E)|x−ζ |, x ∈R. (3.3)

(iv) For every p > 0 and every compact set K ⊂R one has

sup
t>0

∥∥∥|X|pχI (Hω)e−itHωχK
∥∥∥

L2(R)
< ∞.

Let us briefly comment on part (i) and its relationship to Theorem 2.2. First, Theorem 2.2
shows that L(E) > 0 for all E ∈ R \D, where D is a discrete set. By the multiplicative ergodic 
theorem, one then gets (3.2) for every E and a full-measure set of ω ∈ 
, where the full-measure 
set in question depends on E. However, since the set of E in question is uncountable, one cannot 
simply intersect the E-dependent full-measure sets to get the conclusion that, for a.e. ω and 
every E, one has (3.2). In fact, the statement just formulated is false [16]. Thus, the passage from 
Theorem 2.2 is nontrivial and requires some care. See [5] for a more detailed discussion of the 
subtleties here.

Proof of Theorem 3.1. Our argument closely follows the proof of [10, Theorem 3.11] which 
in turn stems from that of [5, Theorem 1.2]. Throughout the rest of the proof, f � g denotes 
f � C(A , I )g with some constant C(A , I ) > 0 depending only on A and I .

We begin with a few preliminaries that we will use to define 
̃. As was discussed in [10, 
Section 3.3], Theorem 2.2 yields a Large Deviation Theorem, [5, Theorem 3.1], which in turn 
implies the following two facts:
• For every 0 < ε < 1, there exists a full-measure set 
1(ε) ⊆ 
 with the following property: 
For every ω ∈ 
1(ε), there is n1 = n1(ω, ε) such that∣∣∣∣∣∣L(E) − 1

n2

n2−1∑
s=0

log‖ME
n (T ζ+snω)‖

n

∣∣∣∣∣∣< ε (3.4)

for all E ∈ I , ζ ∈Z, and n � max(log
2
3 (|ζ | + 1), n1), see [5, Proposition 5.2].

• For every 0 < ε < 1, there exists a full measure set 
2(ε) such that for every ω ∈ 
2(ε), there 
is n2 = n2(ε, ω) such that

6 A generalized eigenvalue is an energy E admitting a linearly bounded solution, that is, a solution, u, satisfying (3.9).
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1

n
log‖ME

n (T ζ0ω)‖� L(E) + ε (3.5)

for any ζ0 ∈Z and n � max(log2(|ζ0| + 1), n2), see [5, Corollary 5.3]. In particular, this yields

μ

{
ω : for all E ∈ I, lim sup

n→∞
1

n
log‖ME

n (ω)‖ � L(E)

}
= 1.

In order to prove Part (i), we will show that

μ

⎧⎨⎩ω : lim inf
n→∞

1

n
log‖ME

n (ω)‖ � L(E)

for all generalized eigenvalues E ∈ I

⎫⎬⎭= 1. (3.6)

To that end, we first note a version of [10, Theorem 3.10]7 concerning the elimination of double 
resonances. Denote the Neumann restriction of Hω to [tm, tn] by H[m,n](ω).8 For ε ∈ (0, 1) and 
N ∈ N , define

DN(ε) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ω

∣∣∣∣∣

there exist E ∈ I, ζ ∈Z+,

K � max{log2(ζ + 1),N}, 0 �N1,N2 � K9 such that:⎧⎪⎪⎪⎨⎪⎪⎪⎩
|Fm(T r+ζ ω,E)|� L(E) − ε

and ‖(H[−N1,N2](T ζ ω) − E)−1‖� eK2

for some m ∈ {K,2K}, K10 � r � K,

where K := ⌊
K logK

⌋

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.7)

and 
3(ε) := 
 \ lim sup
N→∞

DN(ε); then one has μ(
3(ε)) = 1. Define the set


̃ :=
⋂

0<ε<�

3⋂
j=1


j(ε),

where

� := 1

3
min
E∈I

L(E).

Note that 
̃ has full measure, since 
j(ε) has full measure and is monotone in ε.
Proof of Part (i). Fix ω = {�j , (I2, Bj )}j∈Z ∈ 
̃ and a generalized eigenvalue E ∈ I of Hω. 

Then in order to establish (3.6) it is enough to check

lim inf
n→∞

1

n
log‖ME

n (ω)‖ � L(E). (3.8)

7 The proof of this fact for the model in question is almost identical to that of [10, Theorem 3.10].
8 Cf. (3.1) with wm = xn = 0, zm = yn = 1.
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Now, let u denote a generalized eigenfunction corresponding to the generalized eigenvalue E
and the operator Hω. That is,⎧⎪⎪⎨⎪⎪⎩

−u′′ = Eu,

for some Cu > 0, max
{
|u′(t±j )|, |u(t±j )|

}
� Cu(1 + |j |), for all j ∈ Z,

and u satisfies the vertex conditions (1.5) for all j ∈Z.

(3.9)

We now follow the blueprint of [10]. Given 0 < ε < � , the primary goal is to show that

1

n
log‖ME

n (ω)‖ � L(E) − 6ε, for all sufficiently large n. (3.10)

Given ζ ∈Z, define9

K(N) := max
{
�log2(|ζ | + 1)�, n1, n2, n3,N

}
, (3.11)

where N ∈ N will be determined later,10 n1 and n2 are as discussed near (3.4) and (3.5) (respec-
tively), and n3 = n3(ω, ε) is the minimal integer such that

ω ∈ 
 \Dj (ε) for every j � n3. (3.12)

Step 1. There exists N = N(Cu) > 0 such that for all K � K(N), there exist integers m1 ∈
[ζ − K9, ζ ], m2 ∈ [ζ, ζ + K9] such that

|u(t−mj
)| � e−2K2

, |u′(t−mj
)| � e−2K2

(3.13)

for j = 1, 2.

Proof. Using (3.4) with n = K3 and ζ := ζ − K9 we get

L(E) − log‖ME
K3(T

ζ+sK3
ω)‖

K3 < ε

for some s =: s1 ∈ [−K9, −K3] ∩Z. Thus,

exp((L(E) − ε)K3) < ‖ME
K3(T

ζ+sK3
ω)‖ (3.14)

Likewise, using (3.4) with n = K3, we obtain (3.14) for some s2 ∈ [0, K6 − 1] ∩Z. Fixing such 
an s2, we introduce α and β via

[α,β] := [ζ + s2K
3, ζ + (s2 + 1)K3], m2 :=

⌊
α + β

2

⌋
.

9 In the arguments that follow, ζ will correspond to the center of localization.
10 Specifically, N will depend solely on Cu, so, if all generalized eigenfunctions are bounded, then N may be chosen 
independently of u.
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We will show that this choice of m2 gives (3.13) with j = 2. The proof for j = 1 relies on (3.14)
with s = s1 and is completely analogous. Our argument is based on a representation of u in terms 
of its boundary values u(t+α ), u(t−β ) and special solutions satisfying specific boundary conditions 
chosen based on which entry of the matrix

B−1
β ME

K3(T
αω) (3.15)

dominates its norm.
Thus, there are four cases; we will consider one case and note that the other cases are com-

pletely similar. The reader may also consult [10] to see what modifications one should make in 
the other three cases.

To that end, let mij denote the ij entry of (3.15), and suppose ‖B−1
β ME

K3(T
αω)‖ � 4|m11|. 

In this case, we choose ψ± to satisfy the interior vertex conditions as well as the boundary 
conditions

ψ ′+(t−β ) = 1, ψ+(t−β ) = 0, ψ ′−(t+α ) = 0, ψ−(t+α ) = 1,

and observe that

|W(ψ+,ψ−)| = |ψ ′+(t+α )| = |ψ−(t−β )| = |m11| > 0. (3.16)

By (3.16), ψ− and ψ+ are linearly independent, so we may write

u(t−m2
) = u′(t+α )

ψ+(t−m2
)

ψ ′+(t+α )
+ u(t−β )

ψ−(t−m2
)

ψ−(t−β )
. (3.17)

Next, we estimate the right-hand side of (3.17). Putting together (3.14) and (3.16), we obtain

|ψ ′+(t+α )| = |ψ−(t−β )| = |m11|�
‖B−1

β ME
K3(T

αω)‖
4

�
‖ME

K3(T
αω)‖

4‖B−1
β ‖

� exp((L(E) − ε)K3).

(3.18)

Next, (3.9) implies

max
{
|u′(t+α )|, |u(t−β )

}
| � Cu(K

9 + e
√

K).

Next, apply (3.5) with ζ0 = ζ + s2K
3 and n = �K3

2 �, and select N so that �K3

2 � � log2(ζ + sK3)

to get

|ψ−(t−m2
)| �

∣∣∣∣〈[1
0

]
,B−1

m2
ME

� K3
2 �(T

ζ+sK3
ω)

[
1
0

]〉∣∣∣∣
� exp

(
1

2
(L(E) + ε)K3

)
.

(3.19)
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Similarly, for N sufficiently large, we get

∣∣ψ+(t−m)
∣∣� exp

(
1

2
(L(E) + ε)K3

)
. (3.20)

Putting together (3.17), (3.18), (3.19), and (3.20), we have

|u(t−m)| � 2Cu(K
9 + e

√
K) exp

(
−1

2
(L(E) − 3ε)K3

)
� e−2K2

,

where the final inequality holds for N = N(Cu, A ) sufficiently large. Similarly,

|u′(t−m2
)| � e−2K2

,

follows by replacing u(t−m2
) (respectively, ψ±(t−m2

)) by u′(t−m2
) (respectively, ψ ′±(t−m2

)) in (3.17), 
and [1, 0]� by [0, 1]� in both (3.19) and (3.20). �
Step 2. If |u(τ−)| = 1 for some τ ∈R, let ζ be the largest integer for which tζ < τ . If |u(τ+)| = 1
for some τ ∈R, let ζ be the largest integer for which tζ � τ . Let m1, m2 be as in Step 1. Then

‖(H[m1,m2](ω) − E)−1‖B(L2(tm1 ,tm2 )) � eK2
. (3.21)

Proof. There exists a K-independent interval J ⊂ (tζ , tζ+1) such that

1/2 � |u(x)| for all x ∈ J. (3.22)

Suppose that ψ± satisfies −ψ ′′± = Eψ± in (tm1, tm2), the interior vertex conditions in the interval 
(tm1, tm2) and

ψ−(t+m1
) = 1, ψ ′−(t+m1

) = 0, ψ+(t−m2
) = 1, ψ ′+(t−m2

) = 0.

Then one has

u(x) = u′(t+m1
)

ψ+(x)

W(ψ+,ψ−)
+ u′(t−m2

)
ψ−(x)

W(ψ+,ψ−)
, x ∈ (tζ , tζ+1).

Integrating over J , using (3.22) and (3.13) we infer

|J |
2

� |u′(t+m1
)|
∫
J

|ψ+(x)|dx

|W(ψ+,ψ−)| + |u′(t−m2
)|
∫
J

|ψ−(x)|dx

|W(ψ+,ψ−)| ,

= e−2K2

∫
J

|ψ+(x)|dx

|W(ψ+,ψ−)| + e−2K2

∫
J

|ψ−(x)|dx

|W(ψ+,ψ−)| .

Thus, without loss we may assume

e2K2 |J |
4

�
∫
J

|ψ−(x)|dx

|W(ψ+,ψ−)| .
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Since ψ+(y) = cos(
√

E(y − tm2)), y ∈ (tm2−1, tm2] we have

ψ+(y) � 1/2, y ∈ (tm2 − ρ, tm2],

for a suitable K-independent constant ρ > 0 which is sufficiently small. Combining the previous 
two inequalities we get

e2K2 |J |ρ
8

�
tm2∫

tm2 −ρ

∫
J

|ψ−(x)|ψ+(y)

|W(ψ+,ψ−)| dx dy.

Let Gω,[m1,m2](x, y) denote the Green function of H[m1,m2](ω), then

Gω,[m1,m2](x, y) = ψ−(x)ψ+(y)

W(ψ+,ψ−)
, x ∈ J, y ∈ (tm2 − ρ, tm2).

Denoting

φ1 := χJ sign(ψ+W(ψ+,ψ−)), φ2 := χ(tm2 −ρ,tm2 ),

we get

eK2 �
|〈φ1, (H[m1,m2](ω) − E)−1φ2〉L2(tm1 ,tm2 )|

‖φ1‖L2(tm1 ,tm2 )‖φ2‖L2(t0,tm)

� ‖(H[m1,m2](ω) − E)−1‖B(L2(tm1 ,tm2 )),

for sufficiently large N in (3.11). �
Step 3. Choose ζ as in the previous step. For a suitable N = N(Cu), we have

1

n
log‖ME

n (T ζ ω)‖� L(E) − 6ε, (3.23)

for every K � K(N) and every K11 + K10 � n � K , where K is as in (3.7).

Proof. By (3.12) and (3.21), we have

1

jK
log‖ME

jK(T ζ+rω)‖� L(E) − ε, for each j = 1,2 and all K10 � r � K.

This input suffices to apply the Avalanche Principle [15] to deduce (3.23). Consult [5, 
(6.17)–(6.18)] for details. �
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Since the intervals in Step 3 cover a half-line, we deduce (3.10), which immediately implies 
(3.8), which in turn yields (3.2).

Proof of Part (ii). By Part (i) and Osceledets’ Theorem, every generalized eigenvalue of Hω

is an eigenvalue whose corresponding eigenfunctions decay exponentially at the rate dictated by 
the Lyapunov exponent.

Next, we note that

(Hω − i)−1 ∈ B(L2(R),L∞(R)).

Indeed, assume that u ∈ dom(Hω), −u′′ − iu = f ∈ L2(R). Then by Sobolev inequalities (see, 
e.g., [7, Corollary 4.2.10], [21, IV.1.2]) we get

‖u‖L∞(tj ,tj+1) � ‖u‖L2(tj ,tj+1)
+ ‖u′′‖L2(tj ,tj+1)

= ‖f ‖L2(tj ,tj+1)
, j ∈ Z.

Therefore [19, Assumption B.1] is satisfied and by [19, Theorem B.9] the spectral measure of 
Hω is supported by the generalized eigenvalues. Thus the eigenfunctions corresponding to gen-
eralized eigenvalues in I span the spectral subspace ran(χI (Hω)).

Proof of Part (iii). First, using −f ′′ = Ef and the one-dimensional Sobolev inequalities (see, 
e.g., [7, Corollary 4.2.10], [21, IV.1.2]), we have

max
{‖f ‖L∞(tj ,tj+1),‖f ′‖L∞(tj ,tj+1)

}
� ‖f ‖L2(tj ,tj+1)

+ ‖f ′′‖L2(tj ,tj+1)

� 1,

(3.24)

and

‖f ′‖L∞(tj ,tj+1) � ‖f ‖L2(tj ,tj+1)
+ ‖f ′′‖L2(tj ,tj+1)

� ‖f ‖L2(tj ,tj+1)

� ‖f ‖L∞(tj ,tj+1).

Therefore, after taking

u = f

‖f ‖L∞(R)

, Cu � 1 in Step 1,

and τ in Step 2 such that either |f (τ−)| = ‖f ‖∞ or |f (τ+)| = ‖f ‖∞,

we may repeat the arguments from Part (i). We pick any value of τ with desired property and 
note that its existence is guaranteed because{[

f (t+j )

f ′(t+j )

]}
j∈Z

∈ �2(Z,C2) and lim|t |→∞ |f (t)| = lim|t |→∞ |f ′(t)| = 0.

So, given 0 < ε < � , we may choose N = N(ε, ω) (independent of f ) so that
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1

n
log‖ME

n (T ζ ω)‖� L(E) − 6ε

for all K � max{K(N), log2(|ζ | +1)} and all K11 +K10 � n � K . Our next objective is to show 
that

|f (t+ζ+n)| � e−(1−δ)L(E)n, for all n ∈
[
p

4
,
p − 1

2

]
,

for all K � K(N) and K11 + K10 � p � K . As before, the proof relies on a representation of 
f in terms of its boundary values at tζ and tζ+p , and the choice of representation, depends on 
which entry of

B−1
ζ+pME

p (T ζ ω)

dominates its norm. We will argue under the assumption that the upper left entry dominates the 
norm; the other three cases are almost identical.

Choose ψ± as follows: they satisfy the interior vertex conditions in [tζ , tζ+p], solve −ψ ′′± =
Eψ±, and satisfy the boundary conditions

ψ−(t+ζ ) = 1, ψ ′−(t+ζ ) = 0,ψ+(t−ζ+p) = 0, ψ ′+(t−ζ+p) = 1.

Notice that

|W(ψ+,ψ−)| = |ψ ′+(t+ζ )| = |ψ−(t−ζ+p)|

�
‖B−1

ζ+pME
p (T ζ ω)‖
4

�
‖ME

p (T ζ ω)‖
4‖Bζ+p‖

� exp((L(E) − 6ε)p).

(3.25)

One has

f (t+ζ+n)

Mf

= f ′(t+ζ )ψ+(t+ζ+n)

Mf ψ ′+(t+ζ )
+ f (t−ζ+p)ψ−(t+ζ+n)

Mf ψ−(t−ζ+p)
, (3.26)

where Mf := ‖f ‖L∞(R+). In order to estimate ψ−(t+ζ+n), we rewrite it in terms of the transfer 
matrices and use (3.5) as follows

|ψ−(t+ζ+n)| =
∣∣∣∣〈[1

0

]
,ME

n (T ζ ω)

[
1
0

]〉∣∣∣∣� exp((L(E) + ε)n).

Similarly one can estimate ψ+(t+ ). Put this together with (3.24)–(3.26) to obtain
ζ+n
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|f (t+ζ+n)| � exp((L(E) + ε)n − (L(E) − 6ε)p)

+ exp((L(E) + ε)(p − n) − (L(E) − 6ε)p)

� 2e−(1−δ)nL(E).

In the final inequality, pick ε = ε(δ) > 0 sufficiently small (which only depends on δ). Thus

|f (t+ζ+n)| � e−(1−δ)L(E)n, (3.27)

for all K � K(N) and K
11+K10

4 � n � K−1
2 . So, for sufficiently large N , the inequality in (3.27)

holds for all

n� 1

2
max

{
log2(|ζ | + 1),N(ω, ε)

}11 =: R.

Trivially estimating f (t+ζ+n) for 0 � n � R (that is, using ‖f ‖L∞(R) � 1) we obtain

|f (t+ζ+n)| � Cω,δe
Cδ log22(|ζ |+1)e−(1−δ)L(E)n, n� 0. (3.28)

Using the representation

f ′(t+ζ+n)

Mf

= f ′(t+ζ )ψ ′+(t+ζ+n)

Mf ψ ′+(t+ζ )
+ f (t−ζ+p)ψ ′−(t+ζ+n)

Mf ψ−(t−ζ+p)
,

we may prove a version of (3.28) with f replaced by f ′ by repeating (3.25)–(3.28). Lastly, we 
infer (3.3) for all x � 0 by interpolation. The same argument applies to the negative half-axis.

Proof of Part (iv). The argument is essentially identical to the proof of [10, Theorem 1.1], 
which in turn stems from [14], with natural substitution of one-sided intervals by their symmetric 
two-sided versions. �
Proof of Theorem 1.2. Since the proof of (ii) was addressed in Remark 1.3, we only need to 
prove (i), so suppose that μ̃ satisfies one of the assumptions of Part (i). We have already dealt 
with the case when assumption (c) holds at the beginning of the current section, so assume ei-
ther (a) or (b) holds true. By Theorem 3.1, there is a full-measure set 
̃ so that the conclusions 
of Theorem 3.1.(i)–(iv) hold true. The dynamical localization statement of Part (i) is given in 
Theorem 3.1.(iv), so it remains to show that Hω enjoys a basis of exponentially decaying eigen-
functions for a.e. ω. This follows from Theorem 3.1.(i) and standard arguments. In particular, (by 
intersecting over a countable exhaustion of R \D by compact intervals) Theorem 3.1.(i) shows 
that, for μ-a.e. ω, every generalized eigenvalue of Hω in R \ D is a genuine eigenvalue of Hω

whose corresponding eigenfunction decays exponentially. Moreover, for any E ∈D, Pastur’s ar-
gument [24] shows that, for μ-a.e. ω, E is not an eigenvalue of Hω. Since D is countable, there 
is a full-measure set 
∗ such that, for ω ∈ 
∗, Hω has no eigenvalues in D, and every general-
ized eigenvalue of Hω in R \D has an exponentially decaying (generalized) eigenfunction. Since 
the generalized eigenvalues support the spectral measure of Hω, the spectral measure of Hω is 
supported on a countable set and hence is pure-point, as desired. �
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