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1. Introduction

This paper is concerned with the spectral analysis of (extended) CMV matrices with
dynamically defined Verblunsky coefficients. CMV matrices are canonical matrix rep-
resentations of unitary operators with a cyclic vector, and they arise naturally in the
context of orthogonal polynomials on the unit circle. We refer the reader to [24,25] for
background.

Let us recall how CMV matrices arise in connection with orthogonal polynomials
on the unit circle. Suppose p is a non-trivial probability measure on the unit circle
0D = {z € C : |z| = 1}, that is, u(0D) = 1 and g is not supported on a finite set.
By the non-triviality assumption, the functions 1, z, 22,--- are linearly independent
in the Hilbert space H = L?(dD,du), and hence one can form, by the Gram-Schmidt
procedure, the monic orthogonal polynomials ®,(z), whose Szegd dual is defined by
o = 2"®,(1/Z). There are constants {a,}52, in D = {z € C : |z| < 1}, called the
Verblunsky coefficients, so that

Dp1(2) = 20, (2) — @@ (2), (1.1)

which is the so-called Szegd recurrence. Conversely, every sequence {ay, }22 in D arises

in this way.
The orthogonal polynomials may or may not form a basis of H. However, if we apply
the Gram-Schmidt procedure to 1,z, 271,22, 272, ..., we will obtain a basis — called the

CMYV basis. In this basis, multiplication by the independent variable z in H has the
matrix representation

oo Qipo  P1Po 0 0
po  —Q1og  —p10g 0 0
c— 0  @2p1  —0ar  Q3p2 P3P2
8 p2p1 —p2a1  —Qi3aiy  —pP30i2 ’

0 0 Qups —QuQs

where p,, := (1 — |a,|?)'/? for n > 0. A matrix of this form is called a CMV matriz.

It is sometimes helpful to also consider a two-sided extension of a matrix of this form.
Namely, given a bi-infinite sequence {ay,}nez in D (and defining the p,,’s as before), we
may consider the extended CMV matrix

—Qpa—1 Q1P P1P0 0 0

—po_1 —a1Qg —pP10g 0 0
E=1|--- 0 Qap1  —Qp QP2 P32
0 p2p1 —p20u1  —Q3p  —pP3Q

0 0 0 Q403 —QQ3
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In this paper, we consider dynamically defined Verblunsky coefficients and consider
the direct spectral problem, where we analyze the spectral properties of the associated
CMV matrices. To fix such a setting, we need a base transformation (2, T) and a sampling
function f:Q — D.

Here, 2 will be a compact metric space and T : Q — € a homeomorphism. The
function f: Q — D is assumed to be continuous. The associated Verblunsky coefficients
are then given by

an = ap(w) = f(T"w).

Here, w € Q2 is an arbitrary initial point whose orbit under 7" is sampled using f. Since T’
is invertible, we can take all n € Z in this definition. Thus, we can consider both standard
and extended CMV matrices. The connection between the two is discussed in detail in
[24,25]. Tt is often natural to initially study the two-sided case, even if one ultimately is
interested in the one-sided case. Some tools are naturally two-sided; for example, Kotani
theory. One can then pass from results for the extended matrices to results for standard
matrices by restriction. The latter procedure is well-known and hence we will focus on
the two-sided case in this paper.

Our goal is to establish the genericity of certain spectral phenomena. To do so, we will
fix the base transformation and then ask for how many f € C(€Q,D) the phenomenon in
question occurs. If this set of f’s is residual (i.e., it contains a dense Gy set), then we say
that the phenomenon is generic. Note that even after fixing (2, T, f), the operator £ = &,
still depends on w € ). This is dealt with by considering the concepts of minimality or
ergodicity.

If T is minimal (i.e., every T-orbit {T™w : n € Z} is dense in ), then some spectral
properties of &, are independent of the choice of w. For example, the spectrum o(&,,)
and the absolutely continuous spectrum o,.(€,) are independent of w in this case:

Theorem 1.1. Let (Q, T, f) be as above and suppose that T is minimal. Then, there are
compact sets 3, X, C OD, such that for every w € Q, we have 0(&,) =X and 0,.(E,) =
Yac-

On the other hand, there are always T-ergodic measures S (i.e., T-invariant measures
so that any invariant measurable set must have measure zero or one). For any fixed such
measure, the spectrum and the spectral type of £, will be almost surely independent of
w.

Theorem 1.2. Let (Q, T, f) be as above and suppose that B is a T-ergodic Borel probability
measure. Then, there are compact sets X, Yac, Xge, Lpp © OD, such that for B-almost
every w € Q, we have 0(&,) =X and 04(E,) = Xe for e € {ac,sc,pp}.

These results are standard in the discrete Schrodinger operator setting [7—10,23], and
the statement in Theorem 1.2 about the spectrum being almost everywhere constant
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is [25, Theorem 10.16.1]. Moreover, while Theorem 1.1 is not stated explicitly in [25],
it will quickly follow from the proof of [25, Theorem 10.9.11]. The other statements in
Theorems 1.1 and 1.2 are currently not yet in the literature, but their proofs are very
similar to the proofs of the corresponding results in the Schrédinger operator setting,
which can be found, for example, in [7,8,10]. In fact, closely related work was done by
Geronimo-Teplyaev in [17]; see especially [17, Theorem 3.3 & Theorem 3.4]. However,
since [17] was written before extended CMV matrices were introduced, that paper does
not contain Theorems 1.1 and 1.2 in the formulation above. Since these results are so
fundamental, and yet never explicitly stated and discussed, but essentially known to
experts, we try to strike a balance here by stating them explicitly as theorems and
sketching their proofs in an appendix to this paper. Full details are expected to be
included in the second edition of [25].

When we want to emphasize the dependence of these sets on the sampling function,
we will write S(f), Zac(f), Bsc(f), pp(f)- (They also depend on (2, T, 3), but in what
follows, the base dynamics will be fixed and hence left implicit in the notation.)

Our first generic result concerns the absolutely continuous spectrum.

Theorem 1.3. Suppose that €2 is a compact metric space, T : Q — Q is a homeomorphism,
and B is a non-atomic T-ergodic Borel probability measure on Q. Then,

{f € C(Q,D) : Eac(f) = @}
is residual.

Many modern results for OPUC and CMV matrices are analogs of results first proved
in the setting of OPRL and Jacobi matrices, and most often in the special case of discrete
Schrodinger operators. Indeed, almost the entire text [25] was written in this spirit. The
results presented in the present paper are of this type as well. The discrete Schrédinger
version of Theorem 1.3 was obtained by Avila-Damanik in [1].

Our second generic result concerns the Lebesgue measure of the spectrum. Here,
the base dynamics will be of a particular form: we will consider aperiodic subshifts that
satisfy the Boshernitzan condition. Recall that a subshift is a closed shift-invariant subset
Q of AZ, where A is a finite set carrying the discrete topology and A% is endowed with
the product topology. The map T : Q — Q is given by the shift (Tw),, = wp+1, and
it is clearly a homeomorphism. We say that a subshift (Q,T") satisfies the Boshernitzan
condition (B) if it is minimal and there is a T-invariant Borel probability measure u such
that

limsup n - min{u([w]) : w € Q,} > 0.
n—oo
Here Q,, = {w1 ...wp : w € O} is the set of words of length n that occur in elements of
and [w] is the cylinder set [w] = {w € Q : w; ...w, = w}. This condition was introduced
by Boshernitzan in [2] as a sufficient condition for unique ergodicity.
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Theorem 1.4. Suppose that (Q,T) is an aperiodic subshift that satisfies (B). Then,
{f €C(Q,D): Leb(X(f)) = 0}
1s residual.

Of course zero-measure spectrum implies empty absolutely continuous spectrum, but
the latter property holds under much weaker assumptions, and the former property is not
expected to hold in similar generality. Theorem 1.4 was obtained for discrete Schréodinger
operators by Damanik-Lenz in [13].

Remark 1.5. There is a third generic result in the discrete Schrodinger operator literature.
Namely, Boshernitzan-Damanik proved in [3] that the metric repetition property implies
that for a generic f, we have X,,(f) = 0. Combining this with [I1] and intersecting
two residual sets, we see that the almost sure presence of purely singular continuous
spectrum is generic for suitable base dynamics. Boshernitzan-Damanik established the
metric repetition property for several examples [3,4], including shifts and skew-shifts on
tori. The reason why we do not work out a CMV version of these results is that this
work has already been done by Ong [22].

Remark 1.6. As indicated above, while the generic results in Theorems 1.3 and 1.4 are for-
mulated for extended CMV matrices, they imply the corresponding results for standard
(one-sided) CMV matrices by restriction. Specifically, for a suitable rank-one perturba-
tion, each extended CMV matrix &, decouples into a direct sum, one of whose summands
is C,; see the second proof of Theorem 10.16.3 on p.704 of [25]. In particular, if £, has
purely singular spectrum, then C, has purely singular spectrum, and if &, has zero-
measure spectrum, then C, has zero-measure spectrum. Here, &, is the extended CMV
matrix with Verblunsky coefficients {c,(w)}nez, while C, is the standard CMV matrix
with Verblunsky coefficients {cv, (w)}rn>o0-

The organization of this paper is as follows. In Section 2 we recall some key concepts
from the theory of CMV matrices. Theorems 1.3 and 1.4 are proved in Sections 3 and
4, respectively. The appendix contains material that is crucial to our work in the main
part of the paper, and which is not yet available in the literature in the form needed.
Specifically, in Appendix A we sketch the proofs of Theorems 1.1 and 1.2 and in Ap-
pendix B we state (and derive from known results) the key elements of Kotani theory
for extended CMV matrices.

Acknowledgment
We are indebted to Jake Fillman for pointing out that the ideas in [11] should make

the short proof of Theorem 1.4 we give in this paper possible and to Fritz Gesztesy for
very helpful pointers to the literature.



[ L. Fang et al. / Journal of Functional Analysis 279 (2020) 108803

2. Preliminaries

In this section we recall and collect a few tools that we will need in the proofs of
Theorems 1.3 and 1.4, which are given in Sections 3 and 4, respectively. All these concepts
are discussed in detail in [24,25], and we refer the reader to those monographs for more
information.

As mentioned in the introduction, we are primarily interested in Verblunsky coeffi-
cients of the form a, = a,(w) = f(T"w), w € Q, n € Z, where  is a compact metric
space, T : 2 —  is a homeomorphism, and f : 2 — D is continuous. However, since we
will want to approximate continuous f’s by discontinuous functions, we have to consider
a more general setting, where f is assumed to be measurable (and is subject to additional
conditions, which will be imposed as needed).

If we fix a T-ergodic probability measure 3, then by Theorem 1.2 the associated
extended CMV matrices almost surely have a common spectrum X in the sense that
o(&,) =X for S-almost every w € Q.

If we normalize the monic orthogonal polynomials ®,,(z) by

o (I’n(z)
A CHET
it is easy to see that (1.1) is equivalent to
Pn(W)Pnt1(2) = 2¢n(2) — an(w)¢y(2)- (2.1)

Applying * to (2.1), we thus obtain

(5) =m0 (). (22)

where
0
Tiw) = [ 4%,
and
2() = 1 z —ap(w)
4@ = 2 (cager: )
When

z #0, (2.3)

we can normalize A*(w) and get the determinant 1 matrix M#(w), known as the SU(1, 1)-
valued Szegd cocycle map, given by
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e VE
M) = po(w) <—040(W)\/z %ﬁ ) .

The spectral properties of CMV matrices with dynamically defined Verblunsky coeffi-
cients may be investigated using the Szegd cocycle (w,n) — MZ(w) over T given by

M*(T" W) - M*(w), n>0,
MZ(w) = Id, n=0,
MA(T"w)™ - MA*(T )™, n<0,

where Id is the 2 x 2 identity matrix.
The Lyapunov exponent of this cocycle is defined by

1) = lim [ log M3 d5e) > o

Q

By Kingman’s Subadditive Ergodic Theorem, one has

1 .
Vr(2z) = lim —log || My (w)||

n—,oo N

for S-almost every w.
Kotani theory provides a description of ¥,. in terms of the Lyapunov exponent:

Yac ={2€0D :74(2) =0} . (2.4)

This result is not explicitly stated in [24] since the discussion there focuses on CMV
matrices, while our discussion focuses on extended CMV matrices. It does however follow
from the treatment there; compare Theorem B.2 in Appendix B.

The two conditions under which Kotani theory is developed in [24, Section 10.11] are

/ ~log(1 — |f(w)]) dB(w) < o0 (2.5)

Q

and

[ ~1oss@) dse) < . (2.6)

Q

We remark that condition (2.5) is of critical importance to the existence of the Lyapunov
exponent (which in turn is the central object in Kotani theory). On the other hand,
condition (2.6) is used in [24] merely to establish the existence of the density of zeros
measure as a measure on the unit circle, and only the consequence is needed, while
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the sufficient condition is conjecturally much too strong and should be replaced by a
simple non-triviality assumption (i.e., that the Verblunsky coeflicients do not vanish
identically); compare the second remark after the statement of [24, Theorem 10.5.26]
and [24, Conjecture 10.5.23]. Since for our applications of Kotani theory we do not want
to have to assume condition (2.6), we describe a version of Kotani theory for extended
CMYV matrices, only assuming (2.5) but not (2.6), in Appendix B.

For w € Q, let du,, be the probability measure on 0D associated with the one-sided
sequence {ay,(w)}n>0. There is an associated Carathéodory function, G : D — —iC_,
given by

ew z
G(z) = / T2 G (0).

e — z
and a Schur function, g : D — D, given by

~ 1+2g9(2)

G(z) = = 2g(2)"

For A = e'¥ € 9D, we define the OPUC ¢ associated with the boundary condition A
as follows:

O (2, dpi) = én (2, dpdy),
where dp), the Aleksandrov measure, is defined by
an(dp) = Mo (dpse,).
The OPUC corresponding to the special case A = —1 are singled out:
(2, dpi) == 63~ (2, dpiw).-
Define
Un = Pn + G(2)fn, u, = =, + G(2)¢y,.

Then, [24, Theorem 3.2.11] shows that (fo) is the unique solution of

n
2, = T3 (w)Eo

with the initial condition
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Define

Then, [24, Theorem 10.11.6] shows that for fixed z € D\ {0}, log \mjf(z)| isin L'(Q,dB)
and

Lﬁ%m@@mmw=mw—w@. (2.7)
Q

3. Generic absence of absolutely continuous spectrum

In this section we discuss the generic absence of absolutely continuous spectrum and
seek to prove Theorem 1.3. In fact, we will prove a more general result, Theorem 3.7
below, that also allows us to include a coupling constant. This has the added benefit that
one realizes in this way that, for a generic choice of a sampling function f, one cannot
force the existence of absolutely continuous spectrum even by multiplying the sequence
of Verblunsky coefficients by an arbitrarily small positive constant.

For any arc I C dD, we define

M(f,I):=Leb({z € I:vs(2) =0}).

Remark 3.1. By the key result (2.4) from Kotani theory, it follows that I almost surely
contains no absolutely continuous spectrum if and only if M (f,I) = 0.

Lemma 3.2. Suppose I C 0D is an arc of length |I| < 5. For every 0 <r < 1, the maps

(LHQ) N BA(L=@Q), || 1) > R, [ M(f,1), (3.1)
and
(LY(Q) N B(L=(), |- 1) = R, f%/MMﬂﬂﬁy (3.2)
0

are upper semi-continuous.

Remark 3.3. This lemma is crucial to the proof of Theorems 1.3 and 3.7. Its proof is
based on the mean-value property of harmonic functions. Recall that the assumption
(1.2) was necessary for our dynamical setup, compare also (2.7). The exclusion of zero,
where one would normally center the application of the mean-value property, leads to
some technical difficulties that need to be overcome in the proof of the lemma (as well
as its formulation).
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Proof. The statement of the lemma is trivial if |I| = 0, so let us assume that 0 < [I| < 7.
We begin by remarking that we work in the L*° ball

Br(L=(Q) ={f: Q=D :|fllo <r}

for the fixed chosen value of r € (0, 1), hence the condition (2.5) will always be satisfied,
and the existence of the Lyapunov exponent is ensured in the settings of (3.1) and (3.2).
Other than that, all other statements and arguments are relative to the L' norm.

It suffices to show that (3.1) is upper semi-continuous since this implies that (3.2) is
also upper semi-continuous by Fatou’s lemma.

We have to show that if f,,, f € L1(Q) N B,.(L>=(Q2)) and f,, — f with respect to the
L' norm, then limsup M (f,,I) < M(f,I).

Assume otherwise. Then there are f,, f € L'(Q) N B,(L>(Q)) such that

(1) fn — f in L' and pointwise as n — oo,
(2) liminf M (f,,I) > M(f,I)+ ¢ for some € > 0.

By (1), we have pointwise convergence of the m™ functions m:f 5, inD for almost
every w € ().
In view of the relationship (2.7) between m:)‘f and ~¢(z), that is,

/ log [t ,(2)] df(w) = log || — 7 (2),
Q

the associated Lyapunov exponents 7y, (2) convergence pointwise to v¢(z) in D\{0}.

We will consider the composition of two conformal maps. The variables will be called
¢, w, z, with z being the spectral parameter above, and the maps will be called w = &4 ()
and z = ®5(w). The goal will be to avoid 0 in the z-plane (cf. Remark 3.3), but to apply
the mean-value property in the (-plane centered at 0.

Consider, in the w-plane, the region U; in the upper half plane that is bounded by
the equilateral triangle T' with vertices Ay, Aa, Az satisfying the following properties:
the common side length ¢ is no more than 1 (and it will be determined subject to this

condition momentarily), and A; Ay is the base of the triangle and it has (0,0) as its

1

midpoint. For example, choosing ¢ maximal, £ = 1, gives rise to the vertices A; = —3,

Ay = %, and Az = @z of T.
Consider the conformal mapping ®; from the unit disk D to U;. By the Schwarz-
Christoffel formula (see, e.g., [14, Theorem 2.2]),

®,(¢) = Cy +02/<H (1 - é) de, (3.3)

k=1
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where C7 and Cs are constants and (i, (2, (3 are the inverse images under ®; of the
vertices A1, Ag, Az of T
Consider also the conformal mapping

:ew’UJ—Z

(0] 3.4
() = U, (3.
from Uj to Us := ®5(U;) with the parameters £ and 6’ chosen so that

In order to see that these choices are possible, choose 6’ so that e[ has —1 as its
midpoint and then note that choosing the maximal value 1 for £ would send the base of
T (the line segment connecting A; = f% and Ay = %) to the arc in D with midpoint
—1 and endpoints —% + %i. Since this arc has length more than 0.587, and I has length
5, We can obtain the desired '] by lowering the value of ¢ suitably.
Denote the image of the side As A3 of T under ®, by J and the image of the side
AzA; of T under ®; by K. Thus the region Us is bounded by 7" with sides I, J, K.

Let us emphasize an important point. Since £ < 1, we have that ¢ lies outside of Uy,

no more than Z

and consequently 0 lies outside Us,. This property is crucial in light of Remark 3.3.
Composing the conformal maps ®; and ®,, we have

(I)Q((I)l(C)) =: CI)(C) D — U2.

The functions 7y, o ® are harmonic and bounded in D (here we use the fact that was
pointed out above: Us does not contain 0). This yields

71 (8(0)) = — / 71 (®(c1?)) do),

and similarly for v¢. Since v¢, (®(0)) — v£(®(0)) as n — oo, we infer

27

2 [0, @) = 3 (@(e))]do 0.
0

Since the Lyapunov exponents 7y, (z) converge pointwise to v¢(z) in D\{0}, by domi-
nated convergence, the integral along J and K goes to zero. Therefore, the integral along
I goes to zero.

Since these remarks pertain to the z-plane, let us reformulate this as a statement in
the ¢-plane, and especially in terms of the 6-variable. Choose 61,602,035 € [0,27) so that
¢ =¢e"%, j=1,23.
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The observation above therefore implies that

02
1

o | s (@(e)) =7 (@(e™))] d8 — 0. (3.6)

01

By upper semi-continuity of the Lyapunov exponent (i.e., limsup~y, (2) < v¢(z) for
every z) and dominated convergence,

02
or [ max(a, (@) ~ 25(B(e)),0) 40 0. (3.7)
01

Combining (3.6) and (3.7), we find

o [ mins, (B(e)) = 25 (@(c")),01d0 0. (39)

Choose ¢ > 0 such that the set X = {z € I : 7;(2) < §} has measure bounded by
M(f,I)+e/4 with € from (2). Then

3 [ min{, (@() ~ 2(B(e).0}ds >0,
0co

where
0:={0c[0,2n): () e I\X}.

Therefore, keeping the explicit formulas (3.3) and (3.4) for the change of variables
in mind, it follows that for n > ny with ng sufficiently large, there exists a set Y, of
measure bounded by /4 such that vy, (z) > §/2 for every z € I\(X UY,,). Consequently,
limsup M (fp,I) < M(f,I)+ /2, which contradicts (2). O

Lemma 3.4. Suppose I C 0D is an arc of length |I| < 5. For f € C(Q,D), e >0, >0,
there exists f € C(2,D) such that ||f — flleo <&, M(f,I) <9, and fol M\f,I)d\ < 6.

Proof. Given f € C(Q2, D), note that || f]le < 1 since 2 is compact and f is continuous.
Place an L™ ball B of radius less than 1 — || f||o around f and carry out the subsequent
steps entirely within this ball. This will ensure that the Lyapunov exponent exists for
all sampling functions that appear.

With the dense subset £ of L*°(Q,D) from [, Lemma 2|, consisting of sampling
functions taking finitely many values and for which the resulting process is not periodic
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(cf. the assumptions of Theorem B.3), we choose s € £N B such that || f — sl < £/2. By
Theorem B.3, we have M (As, I) = 0 for every A € (0,1). We choose the same construction
as in [1, Lemma 3] to generate f,, € B, for which we have, by Lemma 3.2, M (f,,I),
fol M(Afn,I)dX\ — 0 as n — oco. By choosing n large enough, we complete the proof. O

Lemma 3.5. Suppose I C 9D is an arc of length [I| < 5. Then there is a residual set of
functions f € C(Q,D) such that M(f,I)=0.

Proof. For § > 0, define
M(T) = {f € C(,D) : M(f, ) < 5}.
By Lemma 3.2, M;(I) is open, and by Lemma 3.4, Ms(I) is dense. It follows that

{feC@QD): M(f,1) =0} = (| M+(])

n>1
is residual. O

Lemma 3.6. Suppose I C 9D is an arc of length |I| < T. Then there is a residual set of
functions f € C(Q,D) such that M(Af,I) =0 for almost every A € (0,1].

Proof. For 6 > 0, define
1
={feC(Q,D): /M)\f, )d\ < 8}
0

By Lemma 3.2, M;s is open, and by Lemma 3.4, M; is dense. Thus,

N

6>0

is residual. It follows that for Baire generic f € C(Q,D), we have M(Af,I) = 0 for
almost every A € (0,1). O

Theorem 3.7. The sets
{f e C,D): Zac(f) =0}
and
{f€C(,D):Z.c(Af) =0 for Lebesgue almost every 0 < A < 1}

are residual.
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Proof. Pick closed arcs Iy, Iz, I3, 14 C 0D of length 5 such that
4
UL =ob.
j=1

By Remark 3.1, we have

{feC(QD): Saclf) =0} = ﬂ{feCQ]D) M(f,1;) = 0}

and
{f €C(Q,D):.c(\f) =0 for Lebesgue a.e. 0 < X < 1}

4
ﬂ{fGCQ D) : M(Af,I;) = 0 for Lebesgue a.e. 0 < A < 1}.

By Lemmas 3.5 and 3.6, the sets on the right-hand side are residual. The theorem
now follows since the intersection of a finite number of residual sets is also a residual
set. 0O

Proof of Theorem 1.3. The first statement in Theorem 3.7 is precisely the assertion of
Theorem 1.3 and hence the latter theorem is proved. O

4. Generic zero-measure spectrum
In this short section we note that the map
Ms : C(Q,D) — [0,00), f > Leb(Xy) (4.1)
is upper semi-continuous. The proof uses variations of ideas developed in [11] in the
context of continuum limit-periodic Schrédinger operators. This semi-continuity result
will then imply that {f € C(Q,D) : Leb(Xf) = 0} is a G5 set, and hence it reduces the
desired genericity statement formulated in Theorem 1.4 to a proof that it is dense. In

the case of subshifts satisfying the Boshernitzan condition, the latter property is known.

Proposition 4.1. The map My, defined in (4.1) is upper semi-continuous, that is, for every
d > 0, we have that Mx(6) = {f € C(Q,D) : Leb(X;) < 6} is open.

Before proving Proposition 4.1, we need to recall two lemmas from [16] and [24]. To
state them, let us recall some basic notions.
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For a subset £ C 0D and £ > 0, we denote
B.(E) := {z €dD: inf |z —z| < 5}.
zeE
The Hausdorff distance between two compact sets F, K C 0D is defined by
du(F,K) :=inf{e > 0: F C B.(K) and K C B.(F)}.
The following is [16, Lemma 3.1]:
Lemma 4.2. For any pair of unitary operators U,V on £?, we have
dua(o(U),0(V)) < U = V], (4.2)
where || - || denotes the usual operator norm.

If U and V are CMV matrices, the operator norm of their difference can be estimates
in terms of the || - ||oo norm of the difference of the respective Verblunsky coefficients.
Namely, the estimate (4.3.13) in [24, Theorem 4.3.3] reads as follows®:

Lemma 4.3. Consider sequences {antnez and {a),}nez of Verblunsky coefficients and
the associated extended CMYV matrices E, and E,. Then,

I€a — Earll < 6v2]Ja — /|32, (4.3)

Proof of Proposition 4.1. Let 6 > 0 be given, and let us consider f € Myx(d). We have
to show that there exists € > 0 such that every g € C(2,D) with ||f — g||co < € belongs
to Mx(9) as well.

By assumption, we have ¢’ := § — Leb(Xf) > 0. By basic properties of the Lebesgue
measure, we can choose finitely many open arcs I1,...,I,, C 0D with

m m e
b)) ; ; - —.
s C UIJ and Zuj\ < Leb(S) + 3
J=1 J=1
Let us set

5/

N2
5

gi=—>0 and e:=|——=] >0.
8m (6\/5)

By (4.2) and (4.3), if || f — gl < €&, then £, C B:(Xy).

4 Actually, the estimate (4.3.13) in [24, Theorem 4.3.3] is stated for CMV matrices, while we need the
estimate for extended CMV matrices. However, the proof for the case we need can be given along similar
lines.
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Putting these two ingredients together, we obtain

EQCBg

I1Cs
Nl

and hence

Leb(X,) <Leb | B | | J I;
j=1

<dmé+ Y |1
j=1

5/

< 4mé + Leb(X¢) + 3

= 6’
as desired. This completes the proof. O
Corollary 4.4. We have that {f € C(Q2,R) : Leb(3(f)) = 0} is a Gs set.

Proof. Simply write

{f € C(R) : Leb((f)) =0} = (] Mz (1)

neN

and use the fact that each Myx(1/n) is open by Proposition 4.1. O

Proof of Theorem 1.4. By Corollary 4.4, the set {f € C(,R) : Leb(X(f)) = 0} is a
G5 set, and by [12] it is also dense under the assumptions of the theorem. Indeed, since
Q) is an aperiodic subshift satisfying the Boshernitzan condition (B), [12] shows that
Leb(3(f)) = 0 holds for every locally constant f : @ — D (recall that f is locally
constant if there is an N € Z, such that f(w) is determined by w_p,...,wn). The set
of locally constant f’s is dense in C'(Q,D), and hence the result follows. O

Appendix A. Invariance of the spectrum and spectral type

In this appendix we discuss Theorems 1.1 and 1.2. As pointed out earlier, these state-
ments are central, essentially known to experts, but not available in the literature. For
this reason we provide some comments on how they are obtained.

We remark that a related discussion can be found in [17, Section 3|. However, the
authors of [17] do not consider extended CMV matrices (which had not yet been intro-
duced) and hence they do not directly discuss Theorems 1.1 and 1.2.
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A.1. A brief discussion of Theorem 1.1

In this subsection we briefly sketch the proof of Theorem 1.1. As was mentioned in
the introduction, the proof follows quickly from the proof of [25, Theorem 10.9.11]. Let
us explain why this is the case.

By symmetry it suffices to show that for every pair wy, way € Q, 0(&,,) C 0(Ew,)- By
using minimality, there is a sequence {n;};>1 such that 7™ ws — w; as j — oo. Due to
the continuity of the sampling function f, £rn;,, converges strongly to &,,. Thus,

0(Eur) € |J 0(Ermin,) = ().

Jj=1

As for the absolutely continuous part, since up to a finite-rank perturbation, &, can
be viewed as the direct sum of two half-line CMV matrices, C~ and C;, we have by the
invariance of the absolutely continuous spectrum of a unitary operator under trace class
perturbations [5,6],

Tac(E0) = 0ac(CH) U 00 (C3). (A1)

For the right half-line CMV matrix, Theorem 10.9.11 in [25] shows that there is a set
Y1 C 0D such that

0ac(CH) = B for all w.
Similarly, one finds that there is a set ¥, C 0D such that
0ac(Cy ) = X, for all w.

The results and discussion in [25, Section 10.9] also imply that f. = ¥, =: Z..(f).
Therefore, 0,c(Ey) = Xac(f) for all w. O

A.2. A brief discussion of Theorem 1.2

In this subsection we briefly sketch the proof of Theorem 1.2. As was mentioned in the
introduction, the statement in Theorem 1.2 about the spectrum being almost everywhere
constant is [25, Theorem 10.16.1]. To get the other statements in Theorem 1.2 one needs
to run an analogous proof with the spectral projections replaced by the respective partial
spectral projections. The key technical point to address here concerns measurability.
Once that has been addressed, the result follows readily from covariance.

5 The trace class perturbation theory is generally discussed primarily in the self-adjoint case, but as
pointed out in the two papers mentioned here, the unitary analog follows via an application of the Cayley
transform.
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Let us first state an elementary and well-known lemma (see, e.g., [10, Lemma 4.1.2]
for the version of this lemma for finite Borel measures on the real line).

Lemma A.1. Fiz a finite Borel measure p on 0D and a countable dense subset S of
OD. Let J denote the countable collection of all finite unions of open arcs in 0D whose
endpoints belong to S. Moreover, let J. denote the collection of all J € J such that
Leb(J) < €. Then

ps(B) = lim sup n(BN.J)

for any Borel set B.

To complete the proof of Theorem 1.2, it suffices to prove the family {P?(I)}.ecq
is weakly measurable (i.e., w +— (¢, 775,.)([ )1) defines a measurable function from Q to
C for all ¢, € H) for e € {ac,sc,pp} and for I C ID. Here P, (I ) is the spectral
projection onto the arc I associated with &,,. P(ac)( I), (E,SC)( I) and P pp)( I) are given
by 77(5,')([) =P, ) e c {ac,sc, pp}, respectively.

By the RAGE theorem for unitary operators (see, e.g., [15, Theorem A.2]),

(©) )\ — _ N
where P; denotes the orthogonal projection onto the linear span of d_,...,d; in £2(Z)

and ¢, € (*(Z). Since &, is weakly measurable, every polynomial in &, is also weakly
measurable. Then P, (I) and P are weakly measurable. Thus, P (I) is weakly mea-
surable since P C)( I)="P,() o).

Due to Lemma A.1, we have

(6, PS)(I)¥) = lim sup (¢, P (I N J)0).

€20 e,
By weak measurability of P,,, polarization, and countability of 7, it follows that P(s)( I)
is weakly measurable.
Therefore,
P =PI =PL), PSI=PEPY, PFY =PI - PL)
are all weakly measurable. 0O

Appendix B. Kotani theory for extended CMV matrices

In this section we state some of the key results from Kotani theory that we need
in the main part of the paper. This theory was developed by Kotani in the setting
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of Schrodinger operators; compare, for example, [18-21]. Since the statements of their
OPUC analogs we need are not discussed in the exact same form in the literature, we
provide some explanation regarding their proofs. Specifically, Kotani theory for OPUC
and CMV matrices has been discussed in [17] and [25]. However, [17] was written prior
to the general use of CMV matrices, and hence does not discuss results for these matri-
ces, and [25] does on the one hand focus on CMV rather than extended CMV matrices,
and on the other hand, and much more importantly, the statements of the main theo-
rems of Kotani theory in [25] assume the condition (2.6), which we cannot assume if we
pursue the results the present paper wants to establish. Thus, our main goal in writ-
ing this appendix is to explain why the main results from Kotani theory for extended
CMYV matrices, once suitably formulated and interpreted, hold without the assumption
(2.6).

The Thouless formula connects the Lyapunov exponent and the density of zeros mea-
sure. Establishing the Thouless formula is an important preliminary step to developing
Kotani theory. The proof of the Thouless formula given in [25] assumes that the den-
sity of zeros measure exists as a measure on 9D; see especially [25, Theorems 10.5.8 &
10.5.26].

However, if in this way one starts the discussion of Kotani theory from the density
of zeros measure, one is faced with the unpleasant realization that in the trivial case
(f =0), all zeros sit at 0, and hence the density of zeros measure is the Dirac mass at
0 in this case, and it is in particular not a measure on 0D. An intriguing conjecture,
[25, Conjecture 10.5.23], states that in all other cases, the density of zeros measure does
exist as a measure on JD. This conjecture is still (wide) open. On the other hand, [25,
Theorem 10.5.19] shows that under the assumption (2.6), the density of zeros measure
does exist as a measure on JD.

Since we do not want to assume (2.6), given the applications presented in this paper,
it is important to note that an alternative version of the Thouless formula connects the
Lyapunov exponent and the density of states measure. The latter exists without any
assumption on f. This change of perspective and the generality in which the formula
holds are discussed in the second remark following [25, Theorem 10.5.26]. We state the
corresponding result in Theorem B.1 below.

Let us first specify the setting: (2, df) is a probability measure space, T : Q — € is
an invertible measure-preserving ergodic transformation, and f : 2 — D a measurable
function. The (in the language of Simon [25]) stochastic Verblunsky coefficients associated
to (Q,dB, T, f) are the random variables on 2 given by

ap(w) = f(T"w), n € Z.

The extended CMV matrix associated with the sequence {ay,(w)},ez is denoted by
E.. Averaging the spectral measure corresponding to the pair (€,,d0) with respect to
df, we obtain the density of states measure dv:
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[ 9©dv6) = [ 6o, g(6.)50) d3w)
for any g € C(9D).

Theorem B.1. Assume (2.5). Then there is ps € (0,1] such that for almost every w € Q
with respect to df, we have

N-1 ~
poo = lim_ <H pn(w)> :
n=0
Moreover we have
17(2) =~ log s — [ log |z sl dv(y)

Proof. As indicated above, this theorem is a consequence of (the proof of) [25, Theo-
rem 10.5.26] and the discussion of this result in [25], especially the second remark after
the statement of [25, Theorem 10.5.26]. O

The two key Kotani theory statements for extended CMV matrices we need in this
paper are the following. The first is the identity (2.4).

€8s

Theorem B.2. Assume (2.5). Then, Zuc(f) = {z € D : v4(z) = 0}

Proof. This is essentially [25, Theorem 10.11.1]. However, there are two points we need
to address here. First, we have switched from the density of zeros measure to the density
of states measure in the discussion of the Thouless formula, while Simon proves [25, The-
orem 10.11.1] based on the Thouless formula that involves the density of zeros measure.
Second, that theorem makes a statement about the almost sure absolutely continuous
spectrum of standard (rather than extended) CMV matrices, while our statement in-
volves extended CMV matrices.

To address the first item, we need to inspect the proof [25, Theorem 10.11.1] and
note that the feature of the Thouless formula which is used there is the fact that the
right-most term is the (negative of) the logarithmic energy of a probability measure on
the unit circle. At that point it no longer matters whether this measure is obtained as
a limit of the distribution of zeros of orthogonal polynomials or the S-average of the
spectral measure associated with the pair (&,,do).

To address the second item, recall that (A.1) expresses the absolutely continuous spec-
trum of the extended (i.e., whole-line) CMV matrix in terms of the absolutely continuous
spectra of the two half-line restrictions:

Tac(€w) = UaC(C:) Uoac(Cy)
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and as was explained in the proof of Theorem 1.1 above,® for S-almost every w € €, we
have

Eac(f) = Gac(gw) = O'ac(c(j_) = Uac(cz;)’

Now, [25, Theorem 10.11.1] states that for S-almost every w € ,

0ac(CH) ={z €D 1 y4(z) =0} .
Combining these two identities, the theorem follows. 0O

The second is the vanishing of these sets in the aperiodic finitely valued setting, used
in the proof of Lemma 3.4.

Theorem B.3. Assume (2.5). If the sampling function f takes only finitely many values
and the process is not periodic (i.e., it is false that for some fized p and almost every w,
Qpip(W) = ay(w) for alln € Z), then

Leb({z € OD : v¢(z) = 0}) = 0.
In particular, in this case we have Yo (f) = 0.

Proof. The first statement is [25, Theorem 10.11.3]. The second statement then follows
from Theorem B.2. O
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