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1. Introduction

This paper is concerned with the spectral analysis of (extended) CMV matrices with 
dynamically defined Verblunsky coefficients. CMV matrices are canonical matrix rep-
resentations of unitary operators with a cyclic vector, and they arise naturally in the 
context of orthogonal polynomials on the unit circle. We refer the reader to [24,25] for 
background.

Let us recall how CMV matrices arise in connection with orthogonal polynomials 
on the unit circle. Suppose μ is a non-trivial probability measure on the unit circle 
∂D = {z ∈ C : |z| = 1}, that is, μ(∂D) = 1 and μ is not supported on a finite set. 
By the non-triviality assumption, the functions 1, z, z2, · · · are linearly independent 
in the Hilbert space H = L2(∂D, dμ), and hence one can form, by the Gram-Schmidt 
procedure, the monic orthogonal polynomials Φn(z), whose Szegő dual is defined by 
Φ∗

n = znΦn(1/z). There are constants {αn}∞
n=0 in D = {z ∈ C : |z| < 1}, called the 

Verblunsky coefficients, so that

Φn+1(z) = zΦn(z) − αnΦ∗
n(z), (1.1)

which is the so-called Szegő recurrence. Conversely, every sequence {αn}∞
n=0 in D arises 

in this way.
The orthogonal polynomials may or may not form a basis of H. However, if we apply 

the Gram-Schmidt procedure to 1, z, z−1, z2, z−2, . . ., we will obtain a basis – called the 
CMV basis. In this basis, multiplication by the independent variable z in H has the 
matrix representation

C =

⎛
⎜⎜⎜⎜⎝

α0 α1ρ0 ρ1ρ0 0 0 · · ·
ρ0 −α1α0 −ρ1α0 0 0 · · ·
0 α2ρ1 −α2α1 α3ρ2 ρ3ρ2 · · ·
0 ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2 · · ·
0 0 0 α4ρ3 −α4α3 · · ·

· · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠ ,

where ρn := (1 − |αn|2)1/2 for n ≥ 0. A matrix of this form is called a CMV matrix.
It is sometimes helpful to also consider a two-sided extension of a matrix of this form. 

Namely, given a bi-infinite sequence {αn}n∈Z in D (and defining the ρn’s as before), we 
may consider the extended CMV matrix

E =

⎛
⎜⎜⎜⎜⎜⎜⎝

· · · · · · · · · · · · · · · · · · · · ·
· · · −α0α−1 α1ρ0 ρ1ρ0 0 0 · · ·
· · · −ρ0α−1 −α1α0 −ρ1α0 0 0 · · ·
· · · 0 α2ρ1 −α2α1 α3ρ2 ρ3ρ2 · · ·
· · · 0 ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2 · · ·
· · · 0 0 0 α4ρ3 −α4α3 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

.

· · · · · · · · · · · · · · · · · · · · ·



L. Fang et al. / Journal of Functional Analysis 279 (2020) 108803 3
In this paper, we consider dynamically defined Verblunsky coefficients and consider 
the direct spectral problem, where we analyze the spectral properties of the associated 
CMV matrices. To fix such a setting, we need a base transformation (Ω, T ) and a sampling 
function f : Ω → D.

Here, Ω will be a compact metric space and T : Ω → Ω a homeomorphism. The 
function f : Ω → D is assumed to be continuous. The associated Verblunsky coefficients 
are then given by

αn = αn(ω) := f(T nω).

Here, ω ∈ Ω is an arbitrary initial point whose orbit under T is sampled using f . Since T
is invertible, we can take all n ∈ Z in this definition. Thus, we can consider both standard 
and extended CMV matrices. The connection between the two is discussed in detail in 
[24,25]. It is often natural to initially study the two-sided case, even if one ultimately is 
interested in the one-sided case. Some tools are naturally two-sided; for example, Kotani 
theory. One can then pass from results for the extended matrices to results for standard 
matrices by restriction. The latter procedure is well-known and hence we will focus on 
the two-sided case in this paper.

Our goal is to establish the genericity of certain spectral phenomena. To do so, we will 
fix the base transformation and then ask for how many f ∈ C(Ω, D) the phenomenon in 
question occurs. If this set of f ’s is residual (i.e., it contains a dense Gδ set), then we say 
that the phenomenon is generic. Note that even after fixing (Ω, T, f), the operator E = Eω

still depends on ω ∈ Ω. This is dealt with by considering the concepts of minimality or 
ergodicity.

If T is minimal (i.e., every T -orbit {T nω : n ∈ Z} is dense in Ω), then some spectral 
properties of Eω are independent of the choice of ω. For example, the spectrum σ(Eω)
and the absolutely continuous spectrum σac(Eω) are independent of ω in this case:

Theorem 1.1. Let (Ω, T, f) be as above and suppose that T is minimal. Then, there are 
compact sets Σ, Σac ⊆ ∂D, such that for every ω ∈ Ω, we have σ(Eω) = Σ and σac(Eω) =
Σac.

On the other hand, there are always T -ergodic measures β (i.e., T -invariant measures 
so that any invariant measurable set must have measure zero or one). For any fixed such 
measure, the spectrum and the spectral type of Eω will be almost surely independent of 
ω.

Theorem 1.2. Let (Ω, T, f) be as above and suppose that β is a T -ergodic Borel probability 
measure. Then, there are compact sets Σ, Σac, Σsc, Σpp ⊆ ∂D, such that for β-almost 
every ω ∈ Ω, we have σ(Eω) = Σ and σ•(Eω) = Σ• for • ∈ {ac, sc, pp}.

These results are standard in the discrete Schrödinger operator setting [7–10,23], and 
the statement in Theorem 1.2 about the spectrum being almost everywhere constant 
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is [25, Theorem 10.16.1]. Moreover, while Theorem 1.1 is not stated explicitly in [25], 
it will quickly follow from the proof of [25, Theorem 10.9.11]. The other statements in 
Theorems 1.1 and 1.2 are currently not yet in the literature, but their proofs are very 
similar to the proofs of the corresponding results in the Schrödinger operator setting, 
which can be found, for example, in [7,8,10]. In fact, closely related work was done by 
Geronimo-Teplyaev in [17]; see especially [17, Theorem 3.3 & Theorem 3.4]. However, 
since [17] was written before extended CMV matrices were introduced, that paper does 
not contain Theorems 1.1 and 1.2 in the formulation above. Since these results are so 
fundamental, and yet never explicitly stated and discussed, but essentially known to 
experts, we try to strike a balance here by stating them explicitly as theorems and 
sketching their proofs in an appendix to this paper. Full details are expected to be 
included in the second edition of [25].

When we want to emphasize the dependence of these sets on the sampling function, 
we will write Σ(f), Σac(f), Σsc(f), Σpp(f). (They also depend on (Ω, T, β), but in what 
follows, the base dynamics will be fixed and hence left implicit in the notation.)

Our first generic result concerns the absolutely continuous spectrum.

Theorem 1.3. Suppose that Ω is a compact metric space, T : Ω → Ω is a homeomorphism, 
and β is a non-atomic T -ergodic Borel probability measure on Ω. Then,

{f ∈ C(Ω,D) : Σac(f) = ∅}

is residual.

Many modern results for OPUC and CMV matrices are analogs of results first proved 
in the setting of OPRL and Jacobi matrices, and most often in the special case of discrete 
Schrödinger operators. Indeed, almost the entire text [25] was written in this spirit. The 
results presented in the present paper are of this type as well. The discrete Schrödinger 
version of Theorem 1.3 was obtained by Avila-Damanik in [1].

Our second generic result concerns the Lebesgue measure of the spectrum. Here, 
the base dynamics will be of a particular form: we will consider aperiodic subshifts that 
satisfy the Boshernitzan condition. Recall that a subshift is a closed shift-invariant subset 
Ω of AZ, where A is a finite set carrying the discrete topology and AZ is endowed with 
the product topology. The map T : Ω → Ω is given by the shift (Tω)n = ωn+1, and 
it is clearly a homeomorphism. We say that a subshift (Ω, T ) satisfies the Boshernitzan 
condition (B) if it is minimal and there is a T -invariant Borel probability measure μ such 
that

lim sup
n→∞

n · min{μ([w]) : w ∈ Ωn} > 0.

Here Ωn = {ω1 . . . ωn : ω ∈ Ω} is the set of words of length n that occur in elements of Ω
and [w] is the cylinder set [w] = {ω ∈ Ω : ω1 . . . ωn = w}. This condition was introduced 
by Boshernitzan in [2] as a sufficient condition for unique ergodicity.
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Theorem 1.4. Suppose that (Ω, T ) is an aperiodic subshift that satisfies (B). Then,

{f ∈ C(Ω,D) : Leb(Σ(f)) = 0}

is residual.

Of course zero-measure spectrum implies empty absolutely continuous spectrum, but 
the latter property holds under much weaker assumptions, and the former property is not 
expected to hold in similar generality. Theorem 1.4 was obtained for discrete Schrödinger 
operators by Damanik-Lenz in [13].

Remark 1.5. There is a third generic result in the discrete Schrödinger operator literature. 
Namely, Boshernitzan-Damanik proved in [3] that the metric repetition property implies 
that for a generic f , we have Σpp(f) = ∅. Combining this with [1] and intersecting 
two residual sets, we see that the almost sure presence of purely singular continuous 
spectrum is generic for suitable base dynamics. Boshernitzan-Damanik established the 
metric repetition property for several examples [3,4], including shifts and skew-shifts on 
tori. The reason why we do not work out a CMV version of these results is that this 
work has already been done by Ong [22].

Remark 1.6. As indicated above, while the generic results in Theorems 1.3 and 1.4 are for-
mulated for extended CMV matrices, they imply the corresponding results for standard 
(one-sided) CMV matrices by restriction. Specifically, for a suitable rank-one perturba-
tion, each extended CMV matrix Eω decouples into a direct sum, one of whose summands 
is Cω; see the second proof of Theorem 10.16.3 on p.704 of [25]. In particular, if Eω has 
purely singular spectrum, then Cω has purely singular spectrum, and if Eω has zero-
measure spectrum, then Cω has zero-measure spectrum. Here, Eω is the extended CMV 
matrix with Verblunsky coefficients {αn(ω)}n∈Z, while Cω is the standard CMV matrix 
with Verblunsky coefficients {αn(ω)}n≥0.

The organization of this paper is as follows. In Section 2 we recall some key concepts 
from the theory of CMV matrices. Theorems 1.3 and 1.4 are proved in Sections 3 and 
4, respectively. The appendix contains material that is crucial to our work in the main 
part of the paper, and which is not yet available in the literature in the form needed. 
Specifically, in Appendix A we sketch the proofs of Theorems 1.1 and 1.2 and in Ap-
pendix B we state (and derive from known results) the key elements of Kotani theory 
for extended CMV matrices.

Acknowledgment

We are indebted to Jake Fillman for pointing out that the ideas in [11] should make 
the short proof of Theorem 1.4 we give in this paper possible and to Fritz Gesztesy for 
very helpful pointers to the literature.
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2. Preliminaries

In this section we recall and collect a few tools that we will need in the proofs of 
Theorems 1.3 and 1.4, which are given in Sections 3 and 4, respectively. All these concepts 
are discussed in detail in [24,25], and we refer the reader to those monographs for more 
information.

As mentioned in the introduction, we are primarily interested in Verblunsky coeffi-
cients of the form αn = αn(ω) := f(T nω), ω ∈ Ω, n ∈ Z, where Ω is a compact metric 
space, T : Ω → Ω is a homeomorphism, and f : Ω → D is continuous. However, since we 
will want to approximate continuous f ’s by discontinuous functions, we have to consider 
a more general setting, where f is assumed to be measurable (and is subject to additional 
conditions, which will be imposed as needed).

If we fix a T -ergodic probability measure β, then by Theorem 1.2 the associated 
extended CMV matrices almost surely have a common spectrum Σ in the sense that 
σ(Eω) = Σ for β-almost every ω ∈ Ω.

If we normalize the monic orthogonal polynomials Φn(z) by

φn(z) = Φn(z)
‖Φn(z)‖μ

,

it is easy to see that (1.1) is equivalent to

ρn(ω)φn+1(z) = zφn(z) − αn(ω)φ∗
n(z). (2.1)

Applying ∗ to (2.1), we thus obtain
(

φn

φ∗
n

)
= T z

n(ω)
(

φ0
φ∗

0

)
, (2.2)

where

T z
n(ω) =

0∏
j=n−1

Az(T jω),

and

Az(ω) = 1
ρ0(ω)

(
z −α0(ω)

−α0(ω)z 1

)
.

When

z �= 0, (2.3)

we can normalize Az(ω) and get the determinant 1 matrix Mz(ω), known as the SU(1, 1)-
valued Szegő cocycle map, given by
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Mz(ω) = 1
ρ0(ω)

( √
z −α0(ω)√

z

−α0(ω)
√

z 1√
z

)
.

The spectral properties of CMV matrices with dynamically defined Verblunsky coeffi-
cients may be investigated using the Szegő cocycle (ω, n) → Mz

n(ω) over T given by

Mz
n(ω) =

⎧⎪⎪⎨
⎪⎪⎩

Mz(T n−1ω) · · · Mz(ω), n > 0,

Id, n = 0,

Mz(T nω)−1 · · · Mz(T −1ω)−1, n < 0,

where Id is the 2 × 2 identity matrix.
The Lyapunov exponent of this cocycle is defined by

γf (z) := lim
n→∞

1
n

∫
Ω

log ‖Mz
n(ω)‖ dβ(ω) ≥ 0.

By Kingman’s Subadditive Ergodic Theorem, one has

γf (z) = lim
n→∞

1
n

log ‖Mz
n(ω)‖

for β-almost every ω.
Kotani theory provides a description of Σac in terms of the Lyapunov exponent:

Σac = {z ∈ ∂D : γf (z) = 0}ess
. (2.4)

This result is not explicitly stated in [24] since the discussion there focuses on CMV 
matrices, while our discussion focuses on extended CMV matrices. It does however follow 
from the treatment there; compare Theorem B.2 in Appendix B.

The two conditions under which Kotani theory is developed in [24, Section 10.11] are
∫
Ω

− log(1 − |f(ω)|) dβ(ω) < ∞ (2.5)

and ∫
Ω

− log(|f(ω)|) dβ(ω) < ∞. (2.6)

We remark that condition (2.5) is of critical importance to the existence of the Lyapunov 
exponent (which in turn is the central object in Kotani theory). On the other hand, 
condition (2.6) is used in [24] merely to establish the existence of the density of zeros 
measure as a measure on the unit circle, and only the consequence is needed, while 
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the sufficient condition is conjecturally much too strong and should be replaced by a 
simple non-triviality assumption (i.e., that the Verblunsky coefficients do not vanish 
identically); compare the second remark after the statement of [24, Theorem 10.5.26]
and [24, Conjecture 10.5.23]. Since for our applications of Kotani theory we do not want 
to have to assume condition (2.6), we describe a version of Kotani theory for extended 
CMV matrices, only assuming (2.5) but not (2.6), in Appendix B.

For ω ∈ Ω, let dμω be the probability measure on ∂D associated with the one-sided 
sequence {αn(ω)}n≥0. There is an associated Carathéodory function, G : D → −iC+, 
given by

G(z) =
∫

eiθ + z

eiθ − z
dμω(θ),

and a Schur function, g : D → D, given by

G(z) = 1 + zg(z)
1 − zg(z) .

For λ = eiψ ∈ ∂D, we define the OPUC φλ
n associated with the boundary condition λ

as follows:

φλ
n(z, dμω) = φn(z, dμλ

ω),

where dμλ
ω, the Aleksandrov measure, is defined by

αn(dμλ
ω) = λαn(dμω).

The OPUC corresponding to the special case λ = −1 are singled out:

ψn(z, dμω) := φλ=−1
n (z, dμω).

Define

un = ψn + G(z)φn, u∗
n = −ψ∗

n + G(z)φ∗
n.

Then, [24, Theorem 3.2.11] shows that 
(

un

u∗
n

)
is the unique solution of

Ξn = T z
n(ω)Ξ0

with the initial condition

Ξ0 =
(

1
1

)
.
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Define

m+
ω,f (z) = u1(z)

u0(z) .

Then, [24, Theorem 10.11.6] shows that for fixed z ∈ D\{0}, log |m+
ω,f (z)| is in L1(Ω, dβ)

and ∫
Ω

log |m+
ω,f (z)| dβ(ω) = log |z| − γf (z). (2.7)

3. Generic absence of absolutely continuous spectrum

In this section we discuss the generic absence of absolutely continuous spectrum and 
seek to prove Theorem 1.3. In fact, we will prove a more general result, Theorem 3.7
below, that also allows us to include a coupling constant. This has the added benefit that 
one realizes in this way that, for a generic choice of a sampling function f , one cannot 
force the existence of absolutely continuous spectrum even by multiplying the sequence 
of Verblunsky coefficients by an arbitrarily small positive constant.

For any arc I ⊆ ∂D, we define

M(f, I) := Leb({z ∈ I : γf (z) = 0}).

Remark 3.1. By the key result (2.4) from Kotani theory, it follows that I almost surely 
contains no absolutely continuous spectrum if and only if M(f, I) = 0.

Lemma 3.2. Suppose I ⊂ ∂D is an arc of length |I| ≤ π
2 . For every 0 < r < 1, the maps

(L1(Ω) ∩ Br(L∞(Ω)), ‖ · ‖1) → R, f → M(f, I), (3.1)

and

(L1(Ω) ∩ Br(L∞(Ω)), ‖ · ‖1) → R, f →
1∫

0

M(λf, I) dλ, (3.2)

are upper semi-continuous.

Remark 3.3. This lemma is crucial to the proof of Theorems 1.3 and 3.7. Its proof is 
based on the mean-value property of harmonic functions. Recall that the assumption 
(1.2) was necessary for our dynamical setup, compare also (2.7). The exclusion of zero, 
where one would normally center the application of the mean-value property, leads to 
some technical difficulties that need to be overcome in the proof of the lemma (as well 
as its formulation).
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Proof. The statement of the lemma is trivial if |I| = 0, so let us assume that 0 < |I| ≤ π
2 .

We begin by remarking that we work in the L∞ ball

Br(L∞(Ω)) = {f : Ω → D : ‖f‖∞ ≤ r}

for the fixed chosen value of r ∈ (0, 1), hence the condition (2.5) will always be satisfied, 
and the existence of the Lyapunov exponent is ensured in the settings of (3.1) and (3.2). 
Other than that, all other statements and arguments are relative to the L1 norm.

It suffices to show that (3.1) is upper semi-continuous since this implies that (3.2) is 
also upper semi-continuous by Fatou’s lemma.

We have to show that if fn, f ∈ L1(Ω) ∩ Br(L∞(Ω)) and fn → f with respect to the 
L1 norm, then lim sup M(fn, I) ≤ M(f, I).

Assume otherwise. Then there are fn, f ∈ L1(Ω) ∩ Br(L∞(Ω)) such that

(1) fn → f in L1 and pointwise as n → ∞,
(2) lim inf M(fn, I) ≥ M(f, I) + ε for some ε > 0.

By (1), we have pointwise convergence of the m+ functions m+
ω,fn

in D for almost 
every ω ∈ Ω.

In view of the relationship (2.7) between m+
ω,f and γf (z), that is,

∫
Ω

log |m+
ω,f (z)| dβ(ω) = log |z| − γf (z),

the associated Lyapunov exponents γfn
(z) convergence pointwise to γf (z) in D\{0}.

We will consider the composition of two conformal maps. The variables will be called 
ζ, w, z, with z being the spectral parameter above, and the maps will be called w = Φ1(ζ)
and z = Φ2(w). The goal will be to avoid 0 in the z-plane (cf. Remark 3.3), but to apply 
the mean-value property in the ζ-plane centered at 0.

Consider, in the w-plane, the region U1 in the upper half plane that is bounded by 
the equilateral triangle T with vertices A1, A2, A3 satisfying the following properties: 
the common side length � is no more than 1 (and it will be determined subject to this 
condition momentarily), and A1A2 is the base of the triangle and it has (0, 0) as its 
midpoint. For example, choosing � maximal, � = 1, gives rise to the vertices A1 = −1

2 , 
A2 = 1

2 , and A3 =
√

3
2 i of T .

Consider the conformal mapping Φ1 from the unit disk D to U1. By the Schwarz-
Christoffel formula (see, e.g., [14, Theorem 2.2]),

Φ1(ζ) = C1 + C2

ζ∫ 3∏ (
1 − ξ

ζk

)− 2
3

dξ, (3.3)

k=1
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where C1 and C2 are constants and ζ1, ζ2, ζ3 are the inverse images under Φ1 of the 
vertices A1, A2, A3 of T .

Consider also the conformal mapping

Φ2(w) = eiθ′ w − i

w + i
, (3.4)

from U1 to U2 := Φ2(U1) with the parameters � and θ′ chosen so that

Φ2(A1A2) = I. (3.5)

In order to see that these choices are possible, choose θ′ so that e−iθ′
I has −1 as its 

midpoint and then note that choosing the maximal value 1 for � would send the base of 
T (the line segment connecting A1 = −1

2 and A2 = 1
2 ) to the arc in ∂D with midpoint 

−1 and endpoints −3
5 ± 4

5 i. Since this arc has length more than 0.58π, and I has length 
no more than π

2 , we can obtain the desired e−iθ′
I by lowering the value of � suitably.

Denote the image of the side A2A3 of T under Φ2 by J and the image of the side 
A3A1 of T under Φ2 by K. Thus the region U2 is bounded by T ′ with sides I, J , K.

Let us emphasize an important point. Since � ≤ 1, we have that i lies outside of U1, 
and consequently 0 lies outside U2. This property is crucial in light of Remark 3.3.

Composing the conformal maps Φ1 and Φ2, we have

Φ2(Φ1(ζ)) =: Φ(ζ) : D → U2.

The functions γfn
◦ Φ are harmonic and bounded in D (here we use the fact that was 

pointed out above: U2 does not contain 0). This yields

γfn
(Φ(0)) = 1

2π

2π∫
0

γfn
(Φ(eiθ)) dθ,

and similarly for γf . Since γfn
(Φ(0)) → γf (Φ(0)) as n → ∞, we infer

1
2π

2π∫
0

[γfn
(Φ(eiθ)) − γf (Φ(eiθ))] dθ → 0.

Since the Lyapunov exponents γfn
(z) converge pointwise to γf (z) in D\{0}, by domi-

nated convergence, the integral along J and K goes to zero. Therefore, the integral along 
I goes to zero.

Since these remarks pertain to the z-plane, let us reformulate this as a statement in 
the ζ-plane, and especially in terms of the θ-variable. Choose θ1, θ2, θ3 ∈ [0, 2π) so that 
ζj = eiθj , j = 1, 2, 3.
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The observation above therefore implies that

1
2π

θ2∫
θ1

[γfn
(Φ(eiθ)) − γf (Φ(eiθ))] dθ → 0. (3.6)

By upper semi-continuity of the Lyapunov exponent (i.e., lim sup γfn
(z) ≤ γf (z) for 

every z) and dominated convergence,

1
2π

θ2∫
θ1

max{γfn
(Φ(eiθ)) − γf (Φ(eiθ)), 0} dθ → 0. (3.7)

Combining (3.6) and (3.7), we find

1
2π

θ2∫
θ1

min{γfn
(Φ(eiθ)) − γf (Φ(eiθ)), 0} dθ → 0. (3.8)

Choose δ > 0 such that the set X = {z ∈ I : γf (z) < δ} has measure bounded by 
M(f, I) + ε/4 with ε from (2). Then

1
2π

∫
θ∈Θ

min{γfn
(Φ(eiθ)) − γf (Φ(eiθ)), 0} dθ → 0,

where

Θ := {θ ∈ [0, 2π) : Φ(eiθ) ∈ I\X}.

Therefore, keeping the explicit formulas (3.3) and (3.4) for the change of variables 
in mind, it follows that for n ≥ n0 with n0 sufficiently large, there exists a set Yn of 
measure bounded by ε/4 such that γfn

(z) ≥ δ/2 for every z ∈ I\(X ∪Yn). Consequently, 
lim sup M(fn, I) ≤ M(f, I) + ε/2, which contradicts (2). �
Lemma 3.4. Suppose I ⊂ ∂D is an arc of length |I| ≤ π

2 . For f ∈ C(Ω, D), ε > 0, δ > 0, 
there exists f̃ ∈ C(Ω, D) such that ‖f − f̃‖∞ < ε, M(f̃ , I) < δ, and 

∫ 1
0 M(λf̃ , I) dλ < δ.

Proof. Given f ∈ C(Ω, D), note that ‖f‖∞ < 1 since Ω is compact and f is continuous. 
Place an L∞ ball B of radius less than 1 − ‖f‖∞ around f and carry out the subsequent 
steps entirely within this ball. This will ensure that the Lyapunov exponent exists for 
all sampling functions that appear.

With the dense subset L of L∞(Ω, D) from [1, Lemma 2], consisting of sampling 
functions taking finitely many values and for which the resulting process is not periodic 
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(cf. the assumptions of Theorem B.3), we choose s ∈ L ∩B such that ‖f −s‖∞ < ε/2. By 
Theorem B.3, we have M(λs, I) = 0 for every λ ∈ (0, 1). We choose the same construction 
as in [1, Lemma 3] to generate fn ∈ B, for which we have, by Lemma 3.2, M(fn, I), ∫ 1

0 M(λfn, I) dλ → 0 as n → ∞. By choosing n large enough, we complete the proof. �
Lemma 3.5. Suppose I ⊂ ∂D is an arc of length |I| ≤ π

2 . Then there is a residual set of 
functions f ∈ C(Ω, D) such that M(f, I) = 0.

Proof. For δ > 0, define

Mδ(I) = {f ∈ C(Ω,D) : M(f, I) < δ}.

By Lemma 3.2, Mδ(I) is open, and by Lemma 3.4, Mδ(I) is dense. It follows that

{f ∈ C(Ω,D) : M(f, I) = 0} =
⋂

n≥1
M 1

n
(I)

is residual. �
Lemma 3.6. Suppose I ⊂ ∂D is an arc of length |I| ≤ π

2 . Then there is a residual set of 
functions f ∈ C(Ω, D) such that M(λf, I) = 0 for almost every λ ∈ (0, 1].

Proof. For δ > 0, define

Mδ = {f ∈ C(Ω,D) :
1∫

0

M(λf, I) dλ < δ}.

By Lemma 3.2, Mδ is open, and by Lemma 3.4, Mδ is dense. Thus,
⋂
δ>0

Mδ

is residual. It follows that for Baire generic f ∈ C(Ω, D), we have M(λf, I) = 0 for 
almost every λ ∈ (0, 1). �
Theorem 3.7. The sets

{f ∈ C(Ω,D) : Σac(f) = ∅}

and

{f ∈ C(Ω,D) : Σac(λf) = ∅ for Lebesgue almost every 0 < λ ≤ 1}

are residual.
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Proof. Pick closed arcs I1, I2, I3, I4 ⊂ ∂D of length π
2 such that

4⋃
j=1

Ij = ∂D.

By Remark 3.1, we have

{f ∈ C(Ω,D) : Σac(f) = ∅} =
4⋂

j=1
{f ∈ C(Ω,D) : M(f, Ij) = 0}

and

{f ∈ C(Ω,D) : Σac(λf) = ∅ for Lebesgue a.e. 0 < λ ≤ 1}

=
4⋂

j=1
{f ∈ C(Ω,D) : M(λf, Ij) = 0 for Lebesgue a.e. 0 < λ ≤ 1}.

By Lemmas 3.5 and 3.6, the sets on the right-hand side are residual. The theorem 
now follows since the intersection of a finite number of residual sets is also a residual 
set. �
Proof of Theorem 1.3. The first statement in Theorem 3.7 is precisely the assertion of 
Theorem 1.3 and hence the latter theorem is proved. �
4. Generic zero-measure spectrum

In this short section we note that the map

MΣ : C(Ω,D) → [0, ∞), f �→ Leb(Σf ) (4.1)

is upper semi-continuous. The proof uses variations of ideas developed in [11] in the 
context of continuum limit-periodic Schrödinger operators. This semi-continuity result 
will then imply that {f ∈ C(Ω, D) : Leb(Σf ) = 0} is a Gδ set, and hence it reduces the 
desired genericity statement formulated in Theorem 1.4 to a proof that it is dense. In 
the case of subshifts satisfying the Boshernitzan condition, the latter property is known.

Proposition 4.1. The map MΣ defined in (4.1) is upper semi-continuous, that is, for every 
δ > 0, we have that MΣ(δ) := {f ∈ C(Ω, D) : Leb(Σf ) < δ} is open.

Before proving Proposition 4.1, we need to recall two lemmas from [16] and [24]. To 
state them, let us recall some basic notions.
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For a subset E ⊆ ∂D and ε > 0, we denote

Bε(E) :=
{

z ∈ ∂D : inf
x∈E

|z − x| < ε

}
.

The Hausdorff distance between two compact sets F, K ⊆ ∂D is defined by

dH(F, K) := inf{ε > 0 : F ⊆ Bε(K) and K ⊆ Bε(F )}.

The following is [16, Lemma 3.1]:

Lemma 4.2. For any pair of unitary operators U, V on �2, we have

dH(σ(U), σ(V )) ≤ ‖U − V ‖, (4.2)

where ‖ · ‖ denotes the usual operator norm.

If U and V are CMV matrices, the operator norm of their difference can be estimates 
in terms of the ‖ · ‖∞ norm of the difference of the respective Verblunsky coefficients. 
Namely, the estimate (4.3.13) in [24, Theorem 4.3.3] reads as follows4:

Lemma 4.3. Consider sequences {αn}n∈Z and {α′
n}n∈Z of Verblunsky coefficients and 

the associated extended CMV matrices Eα and Eα′ . Then,

‖Eα − Eα′‖ ≤ 6
√

2‖α − α′‖1/2
∞ . (4.3)

Proof of Proposition 4.1. Let δ > 0 be given, and let us consider f ∈ MΣ(δ). We have 
to show that there exists ε > 0 such that every g ∈ C(Ω, D) with ‖f − g‖∞ < ε belongs 
to MΣ(δ) as well.

By assumption, we have ε′ := δ − Leb(Σf ) > 0. By basic properties of the Lebesgue 
measure, we can choose finitely many open arcs I1, . . . , Im ⊂ ∂D with

Σf ⊂
m⋃

j=1
Ij and

m∑
j=1

|Ij | < Leb(Σf ) + ε′

2 .

Let us set

ε̃ := ε′

8m
> 0 and ε :=

(
ε̃

6
√

2

)2

> 0.

By (4.2) and (4.3), if ‖f − g‖∞ < ε, then Σg ⊂ Bε̃(Σf ).

4 Actually, the estimate (4.3.13) in [24, Theorem 4.3.3] is stated for CMV matrices, while we need the 
estimate for extended CMV matrices. However, the proof for the case we need can be given along similar 
lines.
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Putting these two ingredients together, we obtain

Σg ⊂ Bε̃

⎛
⎝ m⋃

j=1
Ij

⎞
⎠ ,

and hence

Leb(Σg) ≤ Leb

⎛
⎝Bε̃

⎛
⎝ m⋃

j=1
Ij

⎞
⎠

⎞
⎠

≤ 4mε̃ +
m∑

j=1
|Ij |

< 4mε̃ + Leb(Σf ) + ε′

2
= δ,

as desired. This completes the proof. �
Corollary 4.4. We have that {f ∈ C(Ω, R) : Leb(Σ(f)) = 0} is a Gδ set.

Proof. Simply write

{f ∈ C(Ω,R) : Leb(Σ(f)) = 0} =
⋂

n∈N

MΣ
( 1

n

)

and use the fact that each MΣ(1/n) is open by Proposition 4.1. �
Proof of Theorem 1.4. By Corollary 4.4, the set {f ∈ C(Ω, R) : Leb(Σ(f)) = 0} is a 
Gδ set, and by [12] it is also dense under the assumptions of the theorem. Indeed, since 
Ω is an aperiodic subshift satisfying the Boshernitzan condition (B), [12] shows that 
Leb(Σ(f)) = 0 holds for every locally constant f : Ω → D (recall that f is locally 
constant if there is an N ∈ Z+ such that f(ω) is determined by ω−N , . . . , ωN ). The set 
of locally constant f ’s is dense in C(Ω, D), and hence the result follows. �
Appendix A. Invariance of the spectrum and spectral type

In this appendix we discuss Theorems 1.1 and 1.2. As pointed out earlier, these state-
ments are central, essentially known to experts, but not available in the literature. For 
this reason we provide some comments on how they are obtained.

We remark that a related discussion can be found in [17, Section 3]. However, the 
authors of [17] do not consider extended CMV matrices (which had not yet been intro-
duced) and hence they do not directly discuss Theorems 1.1 and 1.2.
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A.1. A brief discussion of Theorem 1.1

In this subsection we briefly sketch the proof of Theorem 1.1. As was mentioned in 
the introduction, the proof follows quickly from the proof of [25, Theorem 10.9.11]. Let 
us explain why this is the case.

By symmetry it suffices to show that for every pair ω1, ω2 ∈ Ω, σ(Eω1) ⊆ σ(Eω2). By 
using minimality, there is a sequence {nj}j≥1 such that T nj ω2 → ω1 as j → ∞. Due to 
the continuity of the sampling function f , ET nj ω2 converges strongly to Eω1 . Thus,

σ(Eω1) ⊆
⋃
j≥1

σ(ET nj ω2) = σ(Eω2).

As for the absolutely continuous part, since up to a finite-rank perturbation, Eω can 
be viewed as the direct sum of two half-line CMV matrices, C+

ω and C−
ω , we have by the 

invariance of the absolutely continuous spectrum of a unitary operator under trace class 
perturbations [5,6],5

σac(Eω) = σac(C+
ω ) ∪ σac(C−

ω ). (A.1)

For the right half-line CMV matrix, Theorem 10.9.11 in [25] shows that there is a set 
Σ+

ac ⊆ ∂D such that

σac(C+
ω ) = Σ+

ac for all ω.

Similarly, one finds that there is a set Σ−
ac ⊆ ∂D such that

σac(C−
ω ) = Σ−

ac for all ω.

The results and discussion in [25, Section 10.9] also imply that Σ+
ac = Σ−

ac =: Σac(f). 
Therefore, σac(Eω) = Σac(f) for all ω. �
A.2. A brief discussion of Theorem 1.2

In this subsection we briefly sketch the proof of Theorem 1.2. As was mentioned in the 
introduction, the statement in Theorem 1.2 about the spectrum being almost everywhere 
constant is [25, Theorem 10.16.1]. To get the other statements in Theorem 1.2 one needs 
to run an analogous proof with the spectral projections replaced by the respective partial 
spectral projections. The key technical point to address here concerns measurability. 
Once that has been addressed, the result follows readily from covariance.

5 The trace class perturbation theory is generally discussed primarily in the self-adjoint case, but as 
pointed out in the two papers mentioned here, the unitary analog follows via an application of the Cayley 
transform.
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Let us first state an elementary and well-known lemma (see, e.g., [10, Lemma 4.1.2]
for the version of this lemma for finite Borel measures on the real line).

Lemma A.1. Fix a finite Borel measure μ on ∂D and a countable dense subset S of 
∂D. Let J denote the countable collection of all finite unions of open arcs in ∂D whose 
endpoints belong to S. Moreover, let Jε denote the collection of all J ∈ J such that 
Leb(J) < ε. Then

μs(B) = lim
ε→0

sup
J∈Jε

μ(B ∩ J)

for any Borel set B.

To complete the proof of Theorem 1.2, it suffices to prove the family {P•
ω(I)}ω∈Ω

is weakly measurable (i.e., ω �→ 〈φ, P(•)
ω (I)ψ〉 defines a measurable function from Ω to 

C for all φ, ψ ∈ H) for • ∈ {ac, sc, pp} and for I ⊂ ∂D. Here Pω(I) is the spectral 
projection onto the arc I associated with Eω. P(ac)

ω (I), P(sc)
ω (I) and P(pp)

ω (I) are given 
by P(•)

ω (I) = Pω(I)P(•)
ω , • ∈ {ac, sc, pp}, respectively.

By the RAGE theorem for unitary operators (see, e.g., [15, Theorem A.2]),

〈φ, P(c)
ω ψ〉 = lim

J→∞
lim

N→∞

1
2N + 1 〈φ, E−N

ω (I − PJ)EN
ω ψ〉, (A.2)

where PJ denotes the orthogonal projection onto the linear span of δ−J , . . . , δJ in �2(Z)
and φ, ψ ∈ �2(Z). Since Eω is weakly measurable, every polynomial in Eω is also weakly 
measurable. Then Pω(I) and P(c)

ω are weakly measurable. Thus, P(c)
ω (I) is weakly mea-

surable since P(c)
ω (I) = Pω(I)P(c)

ω .
Due to Lemma A.1, we have

〈φ, P(s)
ω (I)ψ〉 = lim

ε→0
sup

J∈Jε

〈φ, Pω(I ∩ J)ψ〉.

By weak measurability of Pω, polarization, and countability of Jε, it follows that P(s)
ω (I)

is weakly measurable.
Therefore,

P(ac)
ω = P(c)

ω (I − P(s)
ω ), P(sc)

ω = P(c)
ω P(s)

ω , P(pp)
ω = P(s)

ω (I − P(c)
ω )

are all weakly measurable. �
Appendix B. Kotani theory for extended CMV matrices

In this section we state some of the key results from Kotani theory that we need 
in the main part of the paper. This theory was developed by Kotani in the setting 
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of Schrödinger operators; compare, for example, [18–21]. Since the statements of their 
OPUC analogs we need are not discussed in the exact same form in the literature, we 
provide some explanation regarding their proofs. Specifically, Kotani theory for OPUC 
and CMV matrices has been discussed in [17] and [25]. However, [17] was written prior 
to the general use of CMV matrices, and hence does not discuss results for these matri-
ces, and [25] does on the one hand focus on CMV rather than extended CMV matrices, 
and on the other hand, and much more importantly, the statements of the main theo-
rems of Kotani theory in [25] assume the condition (2.6), which we cannot assume if we 
pursue the results the present paper wants to establish. Thus, our main goal in writ-
ing this appendix is to explain why the main results from Kotani theory for extended 
CMV matrices, once suitably formulated and interpreted, hold without the assumption 
(2.6).

The Thouless formula connects the Lyapunov exponent and the density of zeros mea-
sure. Establishing the Thouless formula is an important preliminary step to developing 
Kotani theory. The proof of the Thouless formula given in [25] assumes that the den-
sity of zeros measure exists as a measure on ∂D; see especially [25, Theorems 10.5.8 & 
10.5.26].

However, if in this way one starts the discussion of Kotani theory from the density 
of zeros measure, one is faced with the unpleasant realization that in the trivial case 
(f ≡ 0), all zeros sit at 0, and hence the density of zeros measure is the Dirac mass at 
0 in this case, and it is in particular not a measure on ∂D. An intriguing conjecture, 
[25, Conjecture 10.5.23], states that in all other cases, the density of zeros measure does 
exist as a measure on ∂D. This conjecture is still (wide) open. On the other hand, [25, 
Theorem 10.5.19] shows that under the assumption (2.6), the density of zeros measure 
does exist as a measure on ∂D.

Since we do not want to assume (2.6), given the applications presented in this paper, 
it is important to note that an alternative version of the Thouless formula connects the 
Lyapunov exponent and the density of states measure. The latter exists without any 
assumption on f . This change of perspective and the generality in which the formula 
holds are discussed in the second remark following [25, Theorem 10.5.26]. We state the 
corresponding result in Theorem B.1 below.

Let us first specify the setting: (Ω, dβ) is a probability measure space, T : Ω → Ω is 
an invertible measure-preserving ergodic transformation, and f : Ω → D a measurable 
function. The (in the language of Simon [25]) stochastic Verblunsky coefficients associated 
to (Ω, dβ, T, f) are the random variables on Ω given by

αn(ω) = f(T nω), n ∈ Z.

The extended CMV matrix associated with the sequence {αn(ω)}n∈Z is denoted by 
Eω. Averaging the spectral measure corresponding to the pair (Eω, δ0) with respect to 
dβ, we obtain the density of states measure dν:
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∫
g(θ) dν(θ) =

∫
〈δ0, g(Eω)δ0〉 dβ(ω)

for any g ∈ C(∂D).

Theorem B.1. Assume (2.5). Then there is ρ∞ ∈ (0, 1] such that for almost every ω ∈ Ω
with respect to dβ, we have

ρ∞ = lim
N→∞

(
N−1∏
n=0

ρn(ω)
) 1

N

.

Moreover we have

γf (z) = − log ρ∞ −
∫

log |z − y|−1 dν(y).

Proof. As indicated above, this theorem is a consequence of (the proof of) [25, Theo-
rem 10.5.26] and the discussion of this result in [25], especially the second remark after 
the statement of [25, Theorem 10.5.26]. �

The two key Kotani theory statements for extended CMV matrices we need in this 
paper are the following. The first is the identity (2.4).

Theorem B.2. Assume (2.5). Then, Σac(f) = {z ∈ ∂D : γf (z) = 0}ess
.

Proof. This is essentially [25, Theorem 10.11.1]. However, there are two points we need 
to address here. First, we have switched from the density of zeros measure to the density 
of states measure in the discussion of the Thouless formula, while Simon proves [25, The-
orem 10.11.1] based on the Thouless formula that involves the density of zeros measure. 
Second, that theorem makes a statement about the almost sure absolutely continuous 
spectrum of standard (rather than extended) CMV matrices, while our statement in-
volves extended CMV matrices.

To address the first item, we need to inspect the proof [25, Theorem 10.11.1] and 
note that the feature of the Thouless formula which is used there is the fact that the 
right-most term is the (negative of) the logarithmic energy of a probability measure on 
the unit circle. At that point it no longer matters whether this measure is obtained as 
a limit of the distribution of zeros of orthogonal polynomials or the β-average of the 
spectral measure associated with the pair (Eω, δ0).

To address the second item, recall that (A.1) expresses the absolutely continuous spec-
trum of the extended (i.e., whole-line) CMV matrix in terms of the absolutely continuous 
spectra of the two half-line restrictions:

σac(Eω) = σac(C+
ω ) ∪ σac(C−

ω )
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and as was explained in the proof of Theorem 1.1 above,6 for β-almost every ω ∈ Ω, we 
have

Σac(f) = σac(Eω) = σac(C+
ω ) = σac(C−

ω ).

Now, [25, Theorem 10.11.1] states that for β-almost every ω ∈ Ω,

σac(C+
ω ) = {z ∈ ∂D : γf (z) = 0}ess

.

Combining these two identities, the theorem follows. �
The second is the vanishing of these sets in the aperiodic finitely valued setting, used 

in the proof of Lemma 3.4.

Theorem B.3. Assume (2.5). If the sampling function f takes only finitely many values 
and the process is not periodic (i.e., it is false that for some fixed p and almost every ω, 
αn+p(ω) = αn(ω) for all n ∈ Z), then

Leb({z ∈ ∂D : γf (z) = 0}) = 0.

In particular, in this case we have Σac(f) = ∅.

Proof. The first statement is [25, Theorem 10.11.3]. The second statement then follows 
from Theorem B.2. �
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