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Computation of intermolecular interactions is a challenge in drug discovery because ac-
curate ab initio techniques are too computationally expensive to be routinely applied to
drug-protein models. Classical force elds are more computationally feasible, and force

elds designed to match symmetry adapted perturbation theory (SAPT) interaction en-
ergies can remain accurate in this context. Unfortunately, the application of such force

elds is complicated by the laborious parameterization required for computations on new
molecules. Here, we introduce the component-based machine-learned intermolecular force

eld (CLIFF), which combines accurate, physics-based equations for intermolecular in-
teraction energies with machine-learning models to enable automatic parameterization.
CLIFF uses functional forms corresponding to electrostatic, exchange-repulsion, induc-
tion/polarization, and London dispersion components in SAPT. Molecule-independent pa-
rameters are t with respect to SAPT2+(3) MP2/aug-cc-pVTZ, and molecule-dependent
atomic parameters (atomic widths, atomic multipoles, and Hirshfeld ratios) are obtained
from machine learning models developed for C, N, O, H, S, F, Cl, and Br. CLIFF achieves
mean absolute errors (MAE) no worse that 0.70 kcal mol ! in both total and component
energies across a diverse dimer test set. For the sidechain-sidechain interaction database
derived from protein fragments, CLIFF produces total interaction energies with an MAE
of 0.27 kcal mol ! with respect to reference data, outperforming similar and even more
expensive methods. In applications to a set of model drug-protein interactions, CLIFF is
able to accurately rank-order ligand binding strengths and achieves less than 10% error

with respect to SAPT reference values for most complexes.
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I. INTRODUCTION

Accurate characterization of noncovalent interactions is required for meaningful predictions of
diverse chemical properties, including structures of biomolecules and molecular crystals, protein-
ligand interactions, and condensed phase properties. For small-molecule dimers (< 40 atoms),
conventional highly-correlated ab initio techniques, like coupled-cluster theory, can provide inter-
molecular interaction energies with benchmark accuracy, and dispersion-corrected density func-
tional theory (DFT-D) remains among the most accurate available supramolecular approaches for
much larger systems containing up to hundreds of atoms.!™ Alternatively, symmetry adapted
perturbation theory*> (SAPT) directly computes interaction energies in terms of electrostatic,
exchange-repulsion, polarization/induction, and London dispersion components using a hierarchi-
cal perturbative scheme. When computationally feasible, SAPT is a particularly attractive candi-
date for applications in drug binding due to the reasonable accuracy and moderate cost of its most
approximate form, SAPTO, and the physical insight provided from component energies.®8 How-
ever, for studies that require many energy computations, e.g. dynamics studies or high-throughput
screening of drug candidates, quantum mechanical techniques are far too costly, and much cheaper
alternatives involving classical or even machine-learned potentials are required. In this work, we
present a SAPT-based classical potential designed to produce highly accurate total and component

interaction energies for small-molecule and protein-ligand interactions alike.

Characterizing drug binding energetics and relative energies of crystal polymorphs, for ex-
ample, requires a level of accuracy in intermolecular interaction energies that can be dif cult to
achieve using standard force elds. One approach to developing force elds with an improved
treatment of intermolecular interactions is to use a functional form with energy components that
correlate with the components from SAPT.”"!? These SAPT-based force elds provide a good
framework for computing accurate interaction energies, and their accuracy has been demonstrated
in myriad dynamics studies on diverse molecules.'®!!-13-16 In practice, functional forms in SAPT-
based force elds typically require numerous monomer-speci ¢ atomic parameters, including mul-
tipole moments and polarizabilities, for each atom in each monomer of interest, in addition to a set
of interaction parameters that arise in the functional forms and are determined by tting to total or
component energies. Throughout this work, we refer to this second class of interaction parameters
as global parameters since they are inherent to the force eld and do not change when applied to

different molecules. The atomic parameters can be computed from ab initio monomer densities
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in tandem with a charge partitioning scheme.!"!"~1 While most SAPT-based force elds have
sets of potentially numerous global parameters, replacing these parameters that require tting with
ones derived from ab initio densities where possible can greatly increase a model s transferability
and robustness.?’ Atomic multipoles or point charges are commonly obtained in this way by com-
putation of a molecular density followed by a distributed multipole analysis (DMA).%!*? Recently
developed force elds use more information from molecular densities to parameterize advanced
functional forms.!'®1%-23-25 For example, MASTIFF uses approximated atomic density decay rates
computed from ab initio molecular densities to compute atomic density overlaps useful for treating
short-range effects.”®?” MEDFF also extensively uses atomic parameters derived from ab initio
densities, and as a result only requires three global tting parameters in the entire model.?®

While computation of molecular densities for small-molecule parameterization is straightfor-
ward, the computation of densities in molecules containing hundreds to thousands of atoms is
nontrivial and at times prohibitive. An alternative approach, used in the AMOEBA force eld, is
to use a hybrid model, where ab initio densities are used when feasible and tabulated, atom-typed
parameters derived from fragment ab initio computations are used for large molecules, proteins,
and nucleic acids.?=33 This approach has been very successful for a variety of biomolecular appli-
cations, even including transition metals.3*3> However, the requirement either (1) to recompute an
ab initio molecular density or (2) to re t numerous atomic parameters in computing any new type
of molecule poses a sign cant challenge for applications requiring large numbers of computations
on different molecules, for example the computational screening of large (100 atom) drug targets
in a protein binding region.

To achieve transferability and to avoid numerous reparameterizations, recently proposed alter-
natives to high-accuracy force elds use machine learning (ML) either in combination with or in
replacement of physics-based functional forms.>¢3 “Pure” ML models use only molecular co-

ordinates as input to predict, most commonly, total energies,***°

and recent examples from our
group can instead target interaction energies very accurately.”’>! The bene t of these approaches
is that transferability of the model is limited only by the extent of training data used to build the
model, and no parameterization or quantum-mechanically derived electronic densities are required
for computation of a new molecular system. While curation of training data is a signi cant chal-
lenge in designing a maximally-transferable model, the demonstrated accuracy and performance

of modern ML potentials makes them a very attractive option.

On the other hand, at long range at least, there are well-known functional forms that accurately
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describe intermolecular interactions, and it seems pro table to take advantage of them. Thus, an
alternative solution to transferability is to use physics-based models where some or all of the pa-
rameterization is done using ML.>>->% One manifestation of this approach is the IPML method

introduced by Bereau et al.,>>

where ML models are used to compute required atomic parame-
ters for functional forms used in existing force elds. An attractive consequence of using ML
for only the atomic parameters is that the ML models need to be only trained on monomers,
thus avoiding complications in generating very large databases of dimer interaction energies, as-
suming any global interaction parameters can be obtained by tting with a relatively small dimer
database. With only eight global tting parameters in the functional forms, [IPML is able to predict
intermolecular interaction energies with high accuracy for diverse small-molecule neutral dimers
composed of C, N, O, and H using a single parameter set. Without the requirement of computing
electron densities for new computations, IPML can in principle be very easily applied to larger
molecules. Despite having terms that correspond to SAPT components, the internal parameters in
IPML are t with respect to total energies only, rendering the individual components inaccurate
and unable to provide qualitative insight. Furthermore, inaccurate component energies mean that
accurate total interaction energies rely on a systematic cancellation of errors, which is not guaran-
teed across diverse interaction types. For example, when applied to the supramolecular complexes
in the S12L database, IPML only shows reasonable agreement with reference total interaction

energies when these dimers are included in tting the global interaction parameters.>>

We were inspired by IPML s interesting combination of a sound, physics-based force eld with
ML to quickly and automatically determine most required atomic parameters. Here, we introduce
a new intermolecular potential called the component-based, machine-learned intermolecular force

eld (CLIFF), which uses ML models to provide atomic parameters for a SAPT-based force eld.
The primary goal of CLIFF is to compute both component energies as well as total energies for
non-covalently bound systems to an accuracy comparable to that of high-level ab initio theories.
With accurate components, CLIFF relies minimally on cancellation of errors among component
energies, and can provide useful component-based analysis valuable in SAPT applications.” De-
spite extensive use of machine-learned atomic parameters, our functional forms still contain global
parameters that require tting. Each component equation in CLIFF contains global parameters
unique to that component, which allows them to be optimized with respect to SAPT component
energies in addition to total energies. Furthermore, this parameterization is only done once and

not during the computation on new molecular systems, and we will show it does not signi cantly
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limit our transferability. By using ML for all parameterizations of new molecules, we are able
to compute intermolecular interaction energies for diverse small-molecule benchmark dimers and
large protein-ligand complexes with the accuracy of high-level SAPT-based force elds. We ad-
ditionally improve upon IPML s ability to model organic molecules containing C, N, O, and H
atoms by adding parameterizations and ML models for molecules containing S, F, Cl, and Br, to

enable more extensive applications in biochemistry and drug discovery.

II. THEORY
A. Atomic Parameterization from Machine Learning

Similar to the approaches of Van Vleet et al.?%2” and Vandenbrande et al.,”® CLIFF uses com-
ponent equations that make use of electronic density overlaps. To write component equations
in a pairwise-atomic form, a partitioning of the monomer electron densities to their atoms is re-
quired and is achieved by using atoms-in-molecules (AIM) methods.”>%>7 Resultant AIM den-
sities are atom-centered electronic distributions that are inherently aware of their local chemical
environments. Force eld parameters derived from AIM densities are consequently speci c¢ to the
molecules under study, without requiring any re tting of large numbers of global parameters, and
provide a means to develop accurate and transferable models. Atomic multipoles, atomic widths,
and Hirshfeld ratios are the atomic properties used in CLIFF, and they can all be derived from
AIM densities.

To partition the molecular electronic density, we use the minimal basis iterative stockholder
(MBIS) method.’® MBIS represents the molecular electronic density as a sum of individual atomic
densities de ned using sums of atom-centered Slater functions, where the sums run over the shells
of the particular atom. From this density, atomic multipole coef cients can be computed, and the
Slater widths of the outer shell de ne the valence width, referred to in this work as the atomic
width. Multipole coef cients from MBIS are used in the electrostatic model, as well as in com-
puting the induced dipoles for the induction term. The atomic widths approximate the exponential
decay rate of the electronic density and are used to compute an approximation to the overlap of
atomic electron densities. As discussed later, these overlap terms are used throughout CLIFF,
particularly to model short-ranged interactions.

In addition to MBIS partitioning, we also use a Hirshfeld partitioning to compute effective
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volume ratios, /;, de ned as the ratio of the effective AIM volume to the effective volume of the

free atom,
yAIM
h; = -

(1

- Vifree
We denote these volume ratios as Hirshfeld ratios due to the paritioning scheme used.>® Simi-
lar quantities can be computed with MBIS densities, though we chose the Hirshfeld partitioning
for consistency with the Tkatchenko-Shef er®® method used later, though evidence suggests that
MBIS-derived quantities work equally well in this context.?8->

To compute the atomic multipoles, atomic widths, and Hirshfeld ratios, CLIFF uses separate
ML models for each chemical element used (C, H, N, O, S, F, CI, Br), for a total of 24 models.

All models use kernel-ridge regression (KRR),®! 2

which was initially chosen for its simplicity.
KRR predicts a desired quantity, y, by applying a kernel function, k(x X) to a set of regression

coef cients, o, determined using training data,
N

y= k(x; X)ox; ()
i

where the sum runs over N training points, and x refers to the discretized representation of the
atom on which we are predicting, and x; is similarly the descriptor for an atom used in training.
The kernel function in this work computes the similarity between a pair of descriptors using the
usual Laplacian kernel involving one hyperparameter, . The regression coef cients are deter-
mined analytically from the training data, o = (K I) 'y, where K is the kernel matrix whose
elements are the kernel function applied to all pairs of training data points, y contains the ref-
erence property values, and is a regularization hyperparameter that requires tting. IPML uses
Coulomb matrices®! as descriptors for models that compute isotropic quantities (atomic widths and
Hirshfeld ratios), and uses the atomic spectrum of London and Axilrod-Teller-Muto potentials®>-63
(aSLATM) as the representation for computing multipoles.> Coulomb matrices are signi cantly
more ef cient than aSLATM but are unable to easily predict orientation-dependent quantities like
atomic dipoles and quadrupoles. In our experience, Coulomb matrices were unable to give reliable
predictions for even isotropic quantities when building models for heavier elements. Therefore, we
use the aSLATM representation implemented in QML® in computing atomic multipoles, atomic

widths, and Hirshfeld ratios for all chemical elements used.
While CLIFF is designed to compute intermolecular interaction energies, the ML models for

atomic properties do not need to be trained on dimers, as they all depend only on monomer den-

sities. Our monomer database is composed entirely of structures obtained from the ChEMBL
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Drug-like molecule Non-redundant fragments

FIG. 1. Depiction of the fragmentation scheme used to generate the monomer database for all ML models.

Large drug-like molecules are fragmented to a set of non-redundant subunits.

database,% which we Itered to a subset of approximately 872,000 drug-like molecules. Since the
atomic properties we compute are local in nature, we chose to fragment this set into to molecules
of 5 to 12 heavy atoms, as depicted in Figure 1. Unique fragments are curated to obtain a set
of 8,138 chemically diverse molecules with moieties representative of drug-like molecules and
protein targets. We compute all reference densities with PBEO/aug-cc-pV(D+d)Z using Psi4.%
Reference atomic properties are computed using MBIS and Hirshfeld routines implemented in

HORTON.®’

In building ML models for multipoles, atomic widths, and Hirshfeld ratios, randomized subsets
of the 8,138 molecules are taken for each element, with a different percentage of the database being
used for each element due to a higher representation of certain elements (C,H) compared to others
(S, CL, F, Br). Construction of the ML models is based on the IPML implementation, and we
used our training datasets to re- t KRR hyperparameters. With the ML models trained, we predict
a single set of atomic properties for each monomer to be used in all functional forms. We rst
generate the aSLATM descriptors to encode local environments in our atomic representations, and
we then use these descriptors in all KRR models to predict the desired properties. Identically to
IPML, we scale the predicted atomic charges so that the net charge of each monomer is exactly
zero. This scaling avoids spurious electrostatic interactions between monomers. As will be shown,
our atomic charges are suf ciently accurate so that we do not expect any qualitative difference

between our predicted charges and those from MBIS.



B. Component Functional Forms
1. Electrostatics

An accurate model of electrostatics needs the exibility to describe the different physical inter-
actions that occur at both long and short range. Long-range interactions are well described by a
distributed multipole expansion, in which atomic multipole coef cients, M; for atom i in molecule
A and M for atom j in molecule B, are contracted with the point multipole interaction tensor, 7;;,
to produce the electrostatic energy,®

Eaw=  M/T;M; (3)

i Aj B

The multipole expansion alone, however, fails at short range (2 times the van der Waals ra-
dius) due to charge penetration effects de ned as the enhanced electrostatic interaction resultant
from overlapping electron densities and reduced nuclear screening.® Charge penetration is miss-
ing from the multipole expansion because it uses point multipoles rather than multipoles with
some representation of widths required to model overlapping charge densities. Correspondingly,
charge penetration corrections typically employ damping functions to give atomic charges widths
necessary to model reduced nuclear screening.

In this work, we employ a damped multipole electrostatic model recently introduced by Rackers

et al.®?

While most charge penetration corrections only include damping functions for atomic
charges, Rackers model uses a damped interaction tensor to include charge penetration effects
from all atomic multipoles. We can write the electrostatic energy by separating the nuclear charge

(Z; for atom i) from the corresponding multipoles,

Z,7;
Eqy = = 7T M+ M T 2+ M T M (4)
iAjB Tij
where Tifl and Tifz are the damped interaction tensors for nuclear-multipole and multipole-

multipole interactions, respectively. We adopt the same damped interaction tensors as Ref 69,

where the nuclear-multipole damping function is de ned as
filr)=1 e 5 5)

and the multipole-multipole damping function is,

Isty2 Isty2
(K7™ Kty (K5™) , Koy
>

folrij) =1 ‘ —e : :
(Kielst)Z (Kjf;lst)z (Kj?lst>2 (Klgelst)

(6)




Elements of the damped interaction tensors are computed by taking successive partial derivatives

ij
tives are applied only to 7,.!. In the dampin functions, we introduce atomic tting parameters
pp y ij ping gp

of fi(r; j)rijl for 7}{1 and f>(rj)r; jl for T2, analogous to the undamped tensor where these deriva-

KflS‘ which are obtained by tting equation (4) to SAPT dimer computations. Rather than relying
on additional tting or quantum chemical calculations, our multipoles up to quadrupoles are ob-
tained from the previously mentioned machine learning models. As discussed in more detail later,

the KfISt are atom typed largely by element and number of bonding partners.

2. Exchange-repulsion

Exchange-repulsion, frequently referred to as Pauli repulsion, is a repulsive force resulting
from monomer wave function overlap under the requirement that the total dimer wave function be
antisymmetric. Consequently, many classical models of exchange-repulsion make use of some ap-
proximation to the overlap of electronic densities of each monomer.”%"2 In fact, empirical ndings

suggest that exchange-repulsion depends linearly on the density overlap, Sap,
E¥" =KSyp ™)

for monomers A and B with K being a yet-unde ned proportionality constant.” In the context of

26,58,73-76

advanced force elds, the overlap is de ned using an atoms-in-molecules decomposition,

E®h = Ki;iSij €))
i Ai B
where §;; is the overlap in electronic density between atom i on monomer A and atom j on
monomer B. Following previous work,?® we de ne the proportionality constant with a multi-
plicative combining rule, Kiej"Ch = Kf"ChK;?"Ch for atom-typed parameters KfXCh.
Numerous de nitions of S;; have been proposed, and they typically require some de nition of
an atomic charge width or charge decay rate. The IPML model uses the expression from Vanden-
brande et al.,28

r,-j

o NN 47 iTij |
= [(( 7 32 .2)2)6 ’
J J l

8 rij i
4 22 _y ’ij
(st i )e | ©)
(; j)3 (; j)z
which uses valence atomic populations, »;, and valence widths, ;, both derived from an MBIS

procedure. Unfortunately, the valence widths of two atoms, particularly of the same element, are

10



oftentimes very similar and cause equation (9) to become unstable, requiring separate approxima-
tions to handle these cases. We opt for a simpler overlap approximation developed by Van Vleet

et al.20-27 wherein an effective width,

1
Bijj=— (10)
ij
is used in the expression for §;; extrapolated to the ;= ; limit,
_ ! 2 1le Biitii 11
Sij =[5 (Bijrij)” + Bijrij+ e ™ (11)

Equation (11) is more numerically stable and computationally ef cient than equation (9), and it
has been shown to incur nearly negligible errors with respect to the exact overlap expression.?
Our model for exchange is thus de ned as equation (8) using the atomic overlap de nition from

equation (11).

3. Dispersion

Coupled dynamical correlations between electrons on different monomers can result in an at-
tractive interaction, de ned as dispersion. While dispersion interactions can be treated with ab
initio techniques, empirical models for dispersion have gained popularity for use with classical
potentials, DFT, and wave function-based techniques alike due to their sigi cantly reduced cost
and acceptable accuracy.>®%77-85 Many classical dispersion models rely on the well-known dis-

persion series,
Cnij
rl’l

Edisp = (12)

i Aj Bn=6810
where dispersion coef cients C, ;; are typically computed from imaginary-frequency-dependent
polarizabilities and i () is an atom in monomer A (B). This series is derived from a second-order
perturbative analysis of the interaction energy between dimers with zero charge overlap, and thus
requires an additional short-range treatment usually in the form of damping functions.?¢
In this work, we use a Tang-Toennies damped dispersion model®® with dispersion coef -
cients derived from machine-learned atomic properties. Following the Tkatchenko-Shef er (TS)

method,% the atomic-pairwise Cg ;; coef cients are computed using single-atom Cg ; coef cients

and atomic polarizabilities, ;,
2Cs iCs |

—fC6,‘+ —;C6j

Coij= (13)
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We de ne the single-atom dispersion coef cients using free-atom coef cients®’ and the machine-
learned Hirshfeld ratios, Cg; = Cgr‘l?ehiz. Similarly, atomic polarizabilities are computed from free-
atom polarizabilities and Hirshfeld ratios, ; = ifreehi, where both Cgr?e and l.free are computed
from free-atom densities and tabulated for each element type. To compute higher-order dispersion
coef cients, we rely on recursion relations found in the D corrections introduced by Grimme

and coworkers.>7?80 The Cg ; j coef cients require the Cg ;; coef cients,

Csij =3Csij+/QiQ; (14)
__ 4
where Q; = Z,-:—':2 and 7} is a simple multipole-like expectation value that is computed from

free-atom densities and also tabulated for each element. The Cy ;; dispersion coef cients follow

a much simpler relation,
49 C;% ij
40 Cg

To avoid divergences as r approaches zero, damping functions for each term in the dispersion

Cioij= (15)

series are required. We use the Tang-Toennies damping function,

n xl.{.

fa=1 ( i)e i) (16)

k=0 K!
where the argument, x;;, is related to the overlap of atomic densities (S;;) and can be written in
terms of the effective widths, B;;, de ned in equation 10,

2B} +3Bi;
2 Tij
(Bijrij)* +3Bijrij+3

xij = Bijrij+ (17)

as initially derived by Van Vleet et al.?® An extremely appealing result in this procedure is that no
tting is required in the damping function itself, so long as both the machine-learned widths and
the reference widths computed from MBIS for training are accurate.

Computation of Cg;; coef cients using the Tkatchenko-Schef er method with AIM-derived
quantities was initially reported by Verstraelen et al.,’® and the use of this methodology in com-
puting dispersion corrections was done by Vandebrande et al.?® in the MEDFF method. In the
spirit of IPML, our approach follows this work by machine learning the required atomic parame-
ters rather than computing quantum mechanically derived densities and performing a subsequent
AIM routine. Our approach also differs slightly from MEDFF in the functional forms, where
CLIFF uses different de nitions of damping functions and higher-order dispersion coef cients.

Lastly, to compensate for slight overestimation of the higher-order dispersion coef cients, we t
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their contribution with atomic pairwise parameters, Kl.dlep = K;i ISPK;hSp, when computing the total

dispersion,
Cuij

C6 .. di
Egisp = (rTUf6(rij) +Kij15p o fn(rij>> (18)
i Aj B n=8 10
Scaling terms for whichn  6isalsodonein D corrections developed by Grimme et al.,”® though
we use atom-typed parameters to account for atom-dependent errors in higher-order dispersion

coef cients.

4. Induction

To compute the induction component, also referred to as the polarization energy, we combine
the commonly used Thole method®® with a short-range correction de ned using atomic density
overlaps,

Eing = i TiMj + K5 S;; (19)
i Aj B

where ; are induced atomic dipoles, §;; is the atomic density overlap de ned from equation (11),
and K};ld“ = K}“duK}nd“ are tting parameters. Following the procedure of Ren and Ponder,?”%°

the induced dipoles for atom i are computed in an iterative, self-consistent procedure de ned by,
i+ =0 ) (m+ [0+ i Ty My ] (20)

k A B
k=i

where k labels all atomic sites on all monomers other than i. We use a successive over-relaxation
procedure to more quickly converge equation (20) by setting =0 7. The “direct” induced dipole

is de ned as
i(0)= i T;M; 1)
j B
where the summation is only between sites on different monomers. The polarizabilities ( ;) are
computed as discussed previously, and come from machine-learned Hirshfeld ratios and tabulated

free-atom polarizabilities. The interaction tensor, T;; uses Thole damping to smear atomic charge

distributions,

3a 3

SThole = 4—6 a (22)

| . . . . .
where u =r;; ( ; j)6, and a is a unitless smearing coef cient conventionally de ned as 0 39.
We instead re- t the smearing coef cient together with our K™ parameters. An interesting out-

come in our approach, and that of IPML, is that there is no tting required to compute either the

13



multipoles or the polarizabilities in the rst (polarization) term in equation (19). Our approach of
combining the usual polarization term with a short-range, overlap-based correction was previously
introduced in the MASTIFF force eld with good results.?® Correcting a polarization energy with
an overlap-based term is also motivated by an apparent relationship between rst-order exchange

energies and charge-transfer interactions that manifest in short-range induction interactions.”!0-%

C. Global Interaction Parameters

As demonstrated, parameters used by CLIFF come in two categories. First are the set of
monomer-speci ¢ atomic parameters—atomic multipoles, atomic widths, and Hirshfeld ratios—
computed using ML models. Second are what we refer to as global interaction parameters, Kj,
which are determined by tting to dimer interaction energies and remain constant in applying
CLIFF to new dimers. Each interaction energy component has a set of seventeen atom-typed
global parameters, K;, and the smearing coef cient, a, in induction is also t but is not itself atom-
typed. In de ning atom types, we nd a balance between accuracy and tting stability by de ning
a modest number of atom types using the atomic number and coordination number of a given atom.
One exception is with hydrogen, where we de ne a separate atom type based on the element of its
bonding partner. All atom types and global interaction parameters are summarized in Table I.

Following many SAPT-based force elds, we can t the global interaction parameters using
their corresponding SAPT component energy, with or without a total interaction energy. An ad-
vantage of combining ML atomic parameterization with physics-based functional forms is that
the number of reference interaction energies does not need to be nearly as extensive in compar-
ison to pure ML approaches. As a result, high-level reference data is feasible for use in tting
global parameters as the number of required dimers can remain comparatively small. Based on its

performance in comparison to CCSD(T)/CBS total interaction energies,’!

we tour interaction pa-
rameters to the component and total energies from SAPT2+(3) MP2/aug-cc-pVTZ reference cal-
culations. One signi cant complication in this choice is that the distinction between electrostatics,
exchange, induction, and dispersion becomes less clear due to numerous cross-terms, though we
adopt the canonical partitioning of these terms summarized in ref 91. Speci cally, this partitioning
categorizes the HF and MP2 terms within the induction term.

Reference interaction energies used for tting were computed with dimers from a custom-built

database. Our dimer database is composed of two collections of dimers. For the rst collection, we
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TABLE I. Atom-typed global interaction parameters used in CLIFF. These parameters are t with respect to
SAPT2+(3) MP2/aug-cc-pVTZ reference energies using =04 in our tting function. Along with these

atom-typed parameters, tting of the smearing coef cient from equation 22 resulted in a value of 0.38539.

Atom Type Kelst Kexch Kindu Kdisp

C4 3.3911 2.2649 2.1196 10 3 0.3489

C3 3.3323 2.4566 0.2841 0.3801
C2 3.1057 2.8023 0.7843 0.4747
N3 3.4371 4.4660 1.7546 0.2515
N2 3.0371 4.6251 1.5211 0.9213
N1 3.3785 3.4896 0.8137 0.8142
02 3.8700 5.8538 1.1477 0.5480
Ol 3.6031 5.3435 1.6372 0.7794
S2 3.1034 3.2842 0.7699 0.6898
S1 3.0618 3.1773 0.9862 0.7250
HC 3.5982 0.9890 0.3781 0.1619
HN 3.2554 0.6910 0.5952 0.1420

HO 3.1255 0.5996 0.6856 8.0387 10 7

HS 3.5974 0.7909 0.6031 42571 10

F 4.3157 7.6036 1.5281 0.5935
Cl 3.4402 3.8152 0.8468 0.6289
Br 3.6942 4.1008 1.1612 0.4993

take all possible pairs of thirty interacting sites on twenty-three unique monomers (Fig. 2), gen-
erating an initial set of 465 dimers. Dimer con gurations are derived by pairing the monomers to
interact through speci c sites, labeled as red atoms and dots in Fig. 2. Angles and dihedral angles
involving the interaction sites and their neighboring atoms are sampled randomly, as described
in more detail in Ref 50. After determining the rotational orientation, a range of intermolecular
distances is generated by varying the van der Waals overlap, de ned using the van der Waals radii
of the interacting sites. Speci cally, the van der Waals overlap is varied from 1 0 Ato 10 A in
0 1 A steps, where positive values indicate separation between the monomers and negative values

indicate clashes. For dimers formed from strong electrostatic interactions, including hydrogen or
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FIG. 2. Monomers used to construct one collection of the dimer database. Interaction sites can be atoms in

the molecule, labeled in red, or they can be delocalized over a number of bonds, labeled with a red dot.

halogen bonds, we lower the minimum distance to 13 A. For each distance, three con gura-
tions with different angular orientations are obtained to yield 63-72 con gurations for each dimer.
This procedure ensures that our training set includes dimers with relatively short intermolecular
distances. High representation of short-range interactions is important in tting, as the global
interaction parameters are generally linked to short-range corrections in CLIFF. From this set of
roughly 30,000 structures, we take a subset of 7,000 structures chosen from an even distribution
of total interaction energies.

While the rst dimer collection emphasized thorough con gurational sampling of dimers con-
taining all atom-types in CLIFF, the second collection ensures ample representation of equilibrium,
and at times strongly-attractive interactions. Dimers in this collection were selected from a large
database representing interactions between drug molecules and proteins, and they were constructed
using a previously described procedure ultimately resulting in 884 dimers used in training.”® All
dimers are at or near equilibrium geometries, and they span a wide range of energies ( 0 3 to

27 5 kecal mol ') and chemical structures. Details of this database are presented in the SI. For
the complete training set used in CLIFF, we combine all dimers from this collection with the 7,000
dimers from the rst collection resulting in 7,884 dimers in total.

Rather than tting purely to total or component energies, we use a multi-target tting function

designed to minimize mean squared errors (MSE) of both total and component energies,

Z=(1 )MSE(Eow)+  MSE(E) (23)
i C
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FIG. 3. Root mean squared errors in total and component energies (kcal mol ') as a function of , computed
using our validation set. A value of = 0 corresponds to parameter tting with respect to total energies only,

and a value of =1 0 corresponds to tting purely to component energies.

t where C = electrostatics, exchange, induction, dispersion}.50 For a given value of , we mini-
mize . using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm on the training set con-
taining 7,884 dimers. We performed our parameter tting in two stages. First, we t the individual
components to their corresponding SAPT component energy, constraining only that all parame-
ters be nonnegative. We then re t all parameters simultaneously according to equation 22, using
individually-optimized parameters as input. This two-step procedure can be seen as a re nement
of the individually-optimized parameters, the extent of which being controlled by . To guide our
choice of in determining a nal parameter set, we use 5,000 dimers from the rst collection of
our custom-built database not involved in the tting as a validation set. In Figure 3, we show the
RMSE of the component and total energies of the validation set as function of . Aside from =0,
increasing values of tends to slightly decrease the quality of the total energy, while improving the
component energies. Interestingly, the accuracy of each component seems to converge relatively
quickly with , implying that choosing 1 does not necessarily lead to a noticeable decrease
in the quality of component energies, particularly for electrostatics and exchange-repulsion. To
balance accuracy in component and total energies, we choose = 0 4 for determining our nal
parameters in the remainder of this work. Lastly, we show a summary of the computation of an
interaction energy using CLIFF in Figure 4, highlighting how both the atomic parameters and the

global parameters are used consistently in each component.
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FIG. 4. Summary of interaction energy computation in CLIFF. Starting with a dimer (1), we generate all
aSLATM descriptors for all atoms in each molecule (2). Using these descriptors, we then predict atomic
MBIS multipoles, MBIS widths, and Hirshfeld ratios using KRR models (3). With these atomic properties,
and our set of tted global parameters, we compute each interaction energy term (4). Finally, we can

compute the total interaction energy by summing the four components (5), analogously to SAPT.

III. RESULTS
A. Accuracy of Machine-Learned Atomic Parameters

We summarize mean absolute errors (MAE) of the atomic charges, dipoles, and quadrupoles
computed from CLIFF with respect to those derived directly from MBIS densities in Table II.
Correlation plots of the multipoles showing their magnitudes can be found in Figure S1 in the SI.
The models from IPML report MAEs of 0.01 e, 0.01 e/ok, and 0.02 eA? for charges, dipoles, and
quadrupoles averaged across C, N, O, and H elements. Performing analogous averaging using all
of our elements yields MAEs of 0.013 ¢, 0.013 eA, and 0 027 eA2. Our comparable accuracy with
IPML is perhaps not surprising, as the only difference between our approaches is in our training
data, implying that both models are near saturation. The larger errors seen for the multipoles of S
are primarily a result of larger magnitudes of multipole moments, though it may be possible that
these multipoles improve in accuracy with more training data. Additionally, larger errors in S, C,
and N multipoles with respect to other atoms can also be attributed to the more diverse bonding
environments those elements can have. Due to the high cost of KRR, we would have to use an

alternative ML technique to make use of more data. Encouragingly, our errors for the halogens are
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TABLE II. Mean absolute errors of predicted multipoles for each available element in CLIFF. Correlation

plots comparing reference multipoles with ML multipoles can be found in the SI.

C N 0] H S F Cl Br
q(e) 0.019 0.015 0.009 0.005 0.024 0.009 0.012 0.011
‘u(e*fi) 0.017 0.016 0.006 0.002 0.031 0.006 0.013 0.013
Q(e*fiz) 0.019 0.024 0.009 0.003 0.131 0.005 0.012 0.012
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FIG. 5. Correlation of reference valence atomic widths computed using MBIS and ML widths computed in

CLIFE.

very low, despite the relatively large magnitudes seen in the dipoles and quadrupoles.

Figures 5 and 6 show correlations between ML-predicted and reference atomic widths and
Hirshfeld ratios, respectively, for all elements under study. Encouragingly, we see that for all
elements, our ML models are able to accurately reproduce values computed from the ab initio
densities. For the atomic widths, we see most of the errors to be around 0.001 a.u.~!, with the
largest being 0.0019 a.u.~! for the carbon atom. Our averaged MAE of 0.0013 a.u.~!, computed
by averaging over all element types, represents a significant improvement over the similarly av-
eraged MAE of 0.004 au.~! from IPML. Such an improvement is likely a result of our use of
the more sophisticated aSLATM descriptors, which are better suited to capture diverse bonding
environments in comparison to Coulomb matrices. For the Hirshfeld ratios, our models produce

a seemingly negligible improvement over those in IPML, with averaged MAEs of 0.0059 and
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FIG. 6. Correlation of reference Hirshfeld ratios and machine-learned Hirshfeld ratios computed in CLIFE.

0.006, respectively. Importantly, our value does include S, Cl, F, and Br. Across all elements and
all atomic properties, the high accuracy of our models can be attributed to a combination of better

descriptors and larger training sets.

In general, the broad range of values for most element types supports our use of ML models for
computing atom-environment dependent quantities rather than fitted parameters. In particular, the
Hirshfeld ratios of S and O can be qualitatively different, with values being either above or below
one, depending on the local environment. Conversely, the atomic widths and Hirshfeld ratios for
the halogens all span a very narrow range of values. Perhaps unsurprisingly, this narrow window
is a result of halogens having fairly uniform bonding tendencies resulting in similarly uniform
atomic densities. Therefore, for these atoms and properties, one could be reasonably justified in

using global parameters rather than ML models.

Finally, we note that KRR prediction of atomic properties in general is required for any energy
computation. In a molecular dynamics simulation, for example, these atomic properties would
be recomputed on-the-fly as the geometry of the molecule changes. Coupling atomic parameter-
ization with computation of energy terms allows for potentially much more accurate simulations
compared to using fixed parameters, assuming that the speed of parameterization is acceptably
fast. Our choice of KRR results in predictions of atomic parameters that are far too slow to be
used in routine dynamics simulations, though it does achieve improvement over quantum chem-

ically derived parameters, particularly for large (>100 atom) systems. Fortunately, development
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of much more ef cient neural network-based atomic models could enable on-the- y prediction of

these atomic properties.

B. Small-Molecule Dimer Databases

To rst understand the accuracy and transferability of CLIFF, we test against a variety of
publicly-available, small-molecule dimer databases. Speci cally, we use the S66x8,92-94 SSI,9
X40x8,°%97 and NBCext10°7-° databases as they cover diverse interaction types including hy-
drogen bonding, halogen bonding, and interactions with one or more  system often over radial
potential energy surface scans. For X40x8, we removed dimers containing HCI, HBr, HF or iodine
as we did not t parameters for iodine or for those speci c cases for hydrogen. Also, we retained
only dimers that had inter-monomer separations between a factor of 0.90 and 2.0 of equilibrium,
analogous to S66x8. Note that none of the dimers in these tests were used in tting the global
interaction parameters. We summarize MAESs, root-mean-squared errors (RMSEs), and maximum
errors (MAX) for component and total interaction energies for all databases under study in Table
III. All statistics are computed with respect to SAPT2+(3) MP2/aug-cc-pVTZ reference data.
Across all databases, we achieve MAEs of 07 kcal mol ! or better for total and component
interaction energies, with the exception of the exchange-repulsion energies of NBC10. CLIFF
does particularly well for SSI and NBCI10 total interaction energies, with errors of 0.28 and 0.49
kcal mol !, respectively, which we nd to be particularly encouraging since these databases in-
clude diverse interaction types found in biological applications, including hydrogen bonding and a
variety of and  Hinteractions. Lastly, the 0.614 kcal mol ! MAE in X40x8 also suggests
that CLIFF does not perform signi cantly worse for computations on halogen-containing dimers.

We also plot the correlation of the total interaction energies predicted from CLIFF with the
SAPT reference energies in Figure 7. For all databases, particularly those with radial scans, our
errors grow signi cantly for dimers with positive (repulsive) interaction energies. Even for the
SSI database, large errors are found for the few highly repulsive con gurations shown at 10
kcal mol '. Aside from the highly repulsive con gurations, we see that CLIFF can reliably predict
total interaction energies for a diverse set of interactions with quantitative accuracy. Additionally,
we emphasize that all predictions are done using a single parameter set, and higher accuracy can
be achieved in principle by using these test dimers in the tting process. Such a procedure may

be warranted for future applications of CLIFF on condensed systems with one or few different
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TABLE III. MAE, RMSE, and maximum errors for component and total energies of various datasets com-
puted with CLIFF. All statistics are computed with respect to SAPT2+(3) MP2/aug-cc-pVTZ reference

values. All values are in kcal mol !.

S66x8 SSI X40x8 NBC10
MAE 0.507 0.328 0.467 0.650
electrostatics RMSE 0.822 0.481 0.905 1.176
MAX 4.739 8.883 5.642 4.798
MAE 0.695 0.507 0.374 0.854
exchange RMSE 1.149 0.770 0.627 1.480
MAX 5.844 13.954 2.725 6.124
MAE 0.264 0.091 0.144 0.138
induction RMSE 0.574 0.246 0.302 0.243
MAX 4.734 3.928 1.633 1.171
MAE 0.206 0.109 0.139 0.190
dispersion RMSE 0.303 0.158 0.273 0.297
MAX 1.381 1.664 1.518 0.924
MAE 0.703 0.281 0.614 0.492
total RMSE 1.115 0.547 1.176 0.939
MAX 4.366 10.031 7.431 6.408

molecules. In general, we prefer optimization of a parameter set that is capable of treating many
different interaction types reasonably well over one that is narrower in scope but with higher

accuracy within that scope.

To understand some sources of error in our predictions of the total interaction energy for these
databases, we rst look at errors in our component energies. Both the induction and the dispersion
components show very low errors consistent across all databases. In particular, our largest MAE
for dispersion is only 0.206 kcal mol ! for the S66x8 database, followed by a 0.19 kcal mol ! for

NBC10. Such small errors in dispersion for NBC10 is especially encouraging since this database
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FIG. 8. Comparison of IPML and CLIFF components against SAPT2+(3)dMP2/aug-cc-pVTZ reference

values. Data obtained from a combination of S66x8, SSI, and NBC10 and databases where all dimers

containing S are removed to enable direct comparison with IPML.

is composed mostly of challenging dispersion-bound complexes. In general, we see the exchange-

repulsion energy usually serves as the error-limiting component, with electrostatics typically pro-

ducing just slightly better performance. Not only are the MAEs for the exchange energies typically

the largest, but they also can exhibit large outliers, with possible errors over 10 kcal mol~!. These

errors tend to be largest for short-range interactions that occur in repulsive regions of potential

energy curves. At these ranges, the magnitude of exchange can easily surpass 50-60 kcal mol~!,

so that even errors of 10 kcal mol~! remain moderate in a relative sense.

In Figure 8, we plot correlations for component energies computed with IPML and CLIFF

23



TABLE IV. Total interaction energy MAEs and RMSEs computed using a variety of force elds, semi-
empirical methods, and sSAPTO/jun-cc-pVDZ on the neutral subset of SSI with (All) and without (CNOH)
sulfur-containing residues. All statistics are computed with respect to DW-CCSD(T**)-F12/aug-cc-
pV(d+D)Z. All data aside from CLIFF and IPML values were taken from the BioFragment Database

(BFDb).”> All values are in kcal mol .

CNOH All
MAE RMSE MAE RMSE

sSAPT0/jDZ 0.460 0.514 0.473 0.566
AM1 1.548 2.152 1.547 2.149
PM6-DH2 0.266 0.533 0.278 0.572
GAFF 0.620 1.627 0.620 1.598
CGenFF 0.308 1.060 0.319 1.066
IPML 0.387 0.680

CLIFF 0.266 0.489 0.272 0.516

with respect to reference SAPT2+(3) MP2/aug-cc-pVTZ data. In the left half of the gure, we
show the component predictions of IPML, and in the right half we show the same predictions
from CLIFF, all on S66x8, NBC10, and SSI dimers. We leave out all S-containing molecules
in this gure to enable comparisons with IPML, though those dimers are included in all other
tables and gures. For these databases, we see that CLIFF shows very good correlation for all
components, although the magnitudes of induction and exchange-repulsion are over- and under-
predicted at large magnitudes, respectively. Despite this small degree of systematic error, in gen-
eral the component energies are suf ciently accurate as to be useful for interpreting and classifying
intermolecular interactions and remain minimally reliant on error cancellations for computing total

interaction energies.

Parameters in IPML are t to CCSD(T)/CBS total interaction energies, so its components are
not guaranteed to match any SAPT data. Nonetheless, the electrostatic component in IPML con-
tains no global parameters and does reasonably well, though tends to overpredict the magnitude
of interactions, especially at shorter range. Interestingly, the induction ts nearly to zero for all
dimers, and systematic deviations in exchange and dispersion are also present and rather large.

The components in IPML cannot be used for qualitative analysis, but the total energies they pre-
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dict are remarkably accurate for S66x8 and SSI, where they produce MAEs with respect to DW-
CCSD(T**)-F12/aug-cc-pVTZ!% of 0.4 kcal mol ! and 0.387 kcal mol !, respectively, using
the S22 dataset for parameter tting.>> While very good, this result is in some ways surprising
given that IPML predicts no signi cant induction, which is very important for hydrogen-bonded

systems.

Both CLIFF and IPML perform favorably for total interaction energies of SSI in comparison
to DW-CCSD(T#**)-F12/aug-cc-pVTZ benchmark data. In Table IV, we compare total interaction
energies of the neutral subset of SSI computed with CLIFF, IPML, and a variety of other force

elds, semi-empirical methods, and SAPTO/jun-cc-pVDZ. The semi-empirical methods chosen
are the common Austin Model 1 (AM1)!! and the Parameterized Model 6 with dispersion and
hydrogen-bonding corrections (PM6-DH2).!0> We also compare to the Generalized Amber Force
Field (GAFF)!%? and the CHARMM General Force Field (CGenFF).!%195 Aside from IPML and
CLIFF, all data were taken from the publicly-available BioFragment Database (BFDb).>> To en-
able comparisons with IPML, we present MAEs and RMSEs of the total energies of the subset of
SSI containing only C, N, O, and H. For the remaining methods, we also compare the full neutral
subset of SSI inclusive of sulfur-containing monomers. CLIFF performs remarkably well in com-
parison to all other methods, showing the lowest MAEs and RMSEs for both SSI sets. Such good
agreement with the coupled-cluster reference suggests that our high-level SAPT reference data
used to obtain global parameters is well-chosen for these neutral dimers. The performance of both
CGenFF and GAFF in computing these gas phase interaction energies is also impressive, consid-
ering that both methods are t to condensed phase properties rather than to interaction energies as
is done with IPML and CLIFF. CGenFF and IPML both show low MAEs for these systems, but
interestingly have fairly high RMSEs indicative of an increased presence of large errors in some
dimers. Large errors typically occur when error cancellation is poor, and the low RMSE seen
for CLIFF suggests that its accuracy is less dependent on cancellation of errors in comparison to
the other methods shown. Interestingly, CLIFF, IPML, CGenFF, and PM6-DH?2 all show some-
what lower MAEs compared to SAPT0/jDZ, although CLIFF is the only of these methods with
a comparatively lower RMSE. Not only does CLIFF outperform all methods in this comparison,
but, as previously shown, it does so with accurate component energies and without any required

reparameterization and a modest number of distinct atom types.
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TABLE V. MAEs and RMSEs for component and total energies of a combined S66x8, SSI, NBC10 and
X40x8 dataset computed using atomic parameters from ML and AIM methods. All statistics are computed

with respect to SAPT2+(3) MP2/aug-cc-pVTZ reference values. All values are in kcal mol .

ML MBIS

electrostatics MAE 0.389 0.416
RMSE 0.653 0.759

exchange MAE 0.555 0.504
RMSE 0.904 0.859

induction MAE 0.125 0.147
RMSE 0.324 0.432

dispersion MAE 0.133 0.128
RMSE 0.209 0.203

total MAE 0.384 0.444
RMSE 0.748 0.940

C. Sensitivity of Functional Forms to Atomic Parameters

While prediction of component energies appears to be accurate, our use of ML models to gener-
ate atomic parameters may be introducing small errors. Errors in component energies come from
three sources: inaccurate atomic parameters, overly-approximate functional forms, and poorly-
obtained global parameters. While the accuracy of the reference AIM quantities we use to train
our models remains somewhat of an open question, we can at least test the degree to which small
errors introduced by the ML models affect the component energies. We use the term “AIM” here to

refer to both MBIS and Hirshfeld routines used to generate reference atomic properties for CLIFF.

To empirically test the propagation of errors of our machine-learned atomic parameters, we
compare errors in component and total energies for S66x8, SSI, NBC10, and X40x8 obtained from

CLIFF using atomic parameters computed either with ML or directly from ab initio densities. In
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Table V, we show MAEs, RMSEs, and MAX errors with respect to SAPT2+(3) MP2/aug-cc-
pVTZ averaged over the four datasets, which were chosen so that all elements (C, N, O, H, S, F,
Cl, Br) in CLIFF are represented. We see that both sources of atomic parameters give effectively
identical statistics, with an absolute difference in total energy MAE of only 0.040 kcal mol !.
Differences in component statistics are similarly small, with the largest difference being only
0.051 kcal mol !, seen in exchange-repulsion. Based on this data, we can effectively conclude
that the reported errors in our ML models for atomic properties do not appear in a signi cant way
in either our total or component interaction energies.

An important aspect of this experiment is that the standard CLIFF global parameters are used,
and they are all t using the ML atomic parameters. Therefore, it is reasonable to assume that
there could be some bias in CLIFF that would favor using ML atomic parameters over the ones
derived using AIM procedures directly from ab initio densities. Indeed, we do see that the MAEs
and RMSE:s are in general lower when using ML compared to AIM. This difference is very small,
however, so we can con dently conclude that our ML atomic parameters are suf ciently accurate.
Furthermore, the seeming interchangeability between ML and AIM parameters in CLIFF implies

that our global parameters are not masking signi cant de ciencies in our ML parameters.

D. and CH potential energy curves

Prediction of interaction energies for non-covalently bound dimers involving aromatic ~ sys-
tems is a notoriously dif cult problem for force elds.3!:82.90:106.107 Not only do these types of
dimers exhibit a typically strong attractive force from dispersion interactions, but charge pene-
tration can also introduce a signi cant stabilizing effect at short range.” Force elds that do not
explicitly treat charge penetration thus rely on fortuitous error cancellations and overestimations
of dispersion to obtain reasonable descriptions of and CH interactions.'%7108 CLIFF
explicitly treats charge penetration using the damped multipole model introduced by Rackers et
al.,%° which has been shown to reproduce SAPT2+ electrostatic energies for benzene dimers and
stacked DNA base pairs.%° To further test the accuracy of CLIFF, and in particular the performance
of our parameterization of the electrostatic functional form, we apply CLIFF to the sandwich, T-
shaped, and parallel-displaced benzene dimer con gurations in addition to the methane-benzene
dimer. For each dimer, we compute potential energy curves using rigid monomers, and the parallel-

displaced con guration has a constant vertical inter-monomer separation of 3.4 A. All molecular
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FIG. 9. Total interaction energies (kcal mol—1) of the sandwich, T-shaped, and parallel displaced ben-
zene dimer configurations and a methane-benzene complex all along a radial coordinate. We use a ver-
tical displacement of 3.4 A for the parallel displaced benzene dimer. In the legend, SAPT refers to
SAPT2+(3)6 MP2/aug-cc-pVTZ.

coordinates and reference CCSD(T)/CBS, AMBER, and CHARMM values are taken from Ref
107.

In Figure 9, we show the potential energy curves for the four dimers computed using CLIFF,
SAPT2+(3)6MP2/aug-cc-pVTZ, IPML, AMBER, CHARMM, and CCSD(T)/CBS. Somewhat
disappointingly, none of the empirical models, including CLIFF, treat these four systems with
equal accuracy, despite explicit treatments of charge penetration in both CLIFF and IPML. In
general, IPML shows noncontinuous potential energy curves that are qualitatively wrong for the
sandwich and parallel-displaced configurations, though quite accurate for the T-shaped benzene
dimer and the methane-benzene dimer. This non-continuity is a result of shifting local refer-
ence frames, and can in principle be cured with a different definition of local axes. AMBER and

CHARMM perform reasonably well for the sandwich dimer, but they significantly overbind the
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T-shaped and methane-benzene dimers. These non-polarizable force- elds also converge to the
correct asymptotic limit rather slowly, where close agreement with CCSD(T)/CBS is seen only at
very large intermolecular separations.

CLIFF shows good agreement with CCSD(T)/CBS and SAPT data near equilibrium inter-
molecular distances all the way through dissociation, though it underbinds the T-shaped and
methane-benzene dimers. Since CLIFF is parameterized with respect to SAPT, agreement be-
tween CLIFF and CCSD(T)/CBS is only really possible when our chosen SAPT method itself
agrees well with CCSD(T)/CBS. Based on previous analyses,’! this agreement is expected to be
good for the organic, neutral molecules in this study. For the T-shaped and methane-benzene
dimers in particular, CLIFF becomes far too repulsive at short range, similar to AMBER and
CHARMM. This over-repulsion at short range predicted with CLIFF is consistent with the in-
creased errors for repulsive con gurations shown previously. While CLIFF performs very well
even at short range for the sandwich con guration, it fails for the parallel-displaced con guration
at a short interplanar distance of 3.4 A. Interestingly, CLIFF, AMBER, and CHARMM all show
a similarly broad potential for the parallel-displaced con guration, though the barrier height is
somewhat more accurately predicted in CLIFF. For all four dimers, CLIFF on average matches
reference CCSD(T)/CBS reference data better than the other empirical models shown, though in
some cases CLIFF only does marginally better than much simpler non-polarizable models.

To identify sources of error in these systems, we compare component energies computed using
CLIFF and SAPT2+(3) MP2/aug-cc-pVTZ for the sandwich, T-shaped, and parallel-displaced
dimer con gurations in Figure 10. For the sandwich dimer, good agreement in total interaction
energies is achieved at short range by a cancellation of errors between an underestimated exchange
energy and an overestimated (in an absolute sense) electrostatic energy. The non-systematic nature
of the errors in exchange combined with the incorrect shape of the exchange component curve
suggest that some errors related to our neglect of anisotropy may be present. Interestingly, the
electrostatics in the T-shaped con guration agree quite well at all displacements, but the exchange
energy is now overestimated, causing the observed overbinding, though this overestimation is
relatively modest.

For the parallel-displaced con guration, electrostatics are predicted to be near-zero, suggesting
an incomplete treatment of charge penetration effects. Additionally, the exchange repulsion is too
small and too broad, causing a similarly broad total energy curve. Encouragingly, our induction

and dispersion components agree very well with the SAPT reference for all con gurations studied.
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FIG. 10. Interaction energy components of sandwich, T-shaped, and parallel displaced benzene dimers

computed with CLIFF (solid lines) and SAPT2+(3)6 MP2/aug-cc-pVTZ (dashed lines).

In previous work, the failure of AMBER and CHARMM to reproduce the parallel-displaced ben-
zene dimer potentials was attributed to the lack of charge penetration in those models.!%” Specifi-
cally for sandwich and parallel-displaced benzene dimers, a pure multipole model will largely pro-
duce positive values for electrostatic interactions since the dominant energetic contributions come
from interactions of like charges on carbon atoms and like charges on hydrogen atoms. CLIFF,

alternatively, does explicitly treat charge penetration, and does so with high accuracy when the
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FIG. 11. Interaction between a chlorinated ligand fragment and a model binding pocket from the crystallo-

graphic structure 2UZU.

charge overlap is modest as seen with the T-shaped con guration. In cases of signi cant charge
overlap, such as the sandwich con guration at very short range, our charge penetration model
seems to more signi cantly underestimate stabilization effects. This underestimation points to
some combination of de ciencies in the damping functions employed and the parameterizations

used therein.

E. Protein-Ligand Interactions

As a nal test, we use CLIFF to compute the interaction energies of a variety of protein-ligand
complexes for which computation of SAPTO0/jun-cc-pVDZ data is possible. To enable compar-
isons with SAPTO/jun-cc-pVDZ, we have generated a set of global parameters t with respect to
SAPTO/jun-cc-pVDZ computations on the same set of dimers used in higher-level CLIFF ts. Not
only do these comparisons allow us to evaluate the performance of CLIFF on larger molecular
systems, but it also lets us indirectly compare differences in low-level vs high-level SAPT when
applied to large proteins. We will refer to these two parameterizations as CLIFFO and CLIFF,
where parameterizations come from SAPTO/jun-cc-pVDZ and SAPT2+(3) MP2/aug-cc-pVTZ,

respectively.
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TABLE VI. E computed for a set of ve kinase, four fXa, and one LFA-1 binding pockets using
SAPTO/jun-cc-pVDZ, CLIFFO, and CLIFF. We de ne  E as the change in interaction energy when re-
placing a chloro- group with a methyl group on the ligand. We identify each protein pocket using the PDB

label. All units are in kcal mol .

System SAPTO CLIFFO CLIFF
4YHT 189 201 227
2JDS 063 137 059
20JF 136 209 117
2U0ZU 062 153 074
4YFF 021 046 007
2PR3 010 020 170
2W26 072 050 119
3ENS 061 132 010
2CH 038 002 143
207N 279 365 291

Our protein-ligand test set is designed to test the ability of CLIFF and CLIFFO to match refer-
ence SAPTO data in predicting relative binding strengths between two similar ligands in the same
binding region. This test set is made up of a variety of binding pockets from ve kinases, four
factor Xa (fXa) substructures, and one from a LFA-1 derived hydrophobic pocket. To each of
the kinases and fXa substructures, we associate two ligands that differ only by substitution of a
chlorine with a methyl group. For the LFA-1 system, the ligand substitution is between bromine
and a cyano group. The protein-ligand systems contain between 144 and 228 atoms, and we show
the 2UZU kinase binding pocket with chlorinated ligand as a representative example in Figure 11,
which is used in this set. We then de ne the change in interaction energy, E as the difference in
gas phase interaction energy between the methylated ligand and the chlorinated ligand for the ki-
nase and fXa systems. For LFA-1, we de ne  E as the difference in interaction energy between

the cyanated ligand and the brominated ligand.

We report the  E for each protein subsystem in Table VI, computed using SAPTO0/jun-cc-
pVDZ, CLIFFO, and CLIFF, and we label each system using the PDB ID from which each sub-

system was derived. In all but one case, CLIFFO is able to produce the same ligand ordering as
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FIG. 12. Correlation between interaction energy components (kcal mol~!) computed with SAPT0/jun-cc-
pVDZ, CLIFF0, and CLIFF on the set of 20 protein-ligand complexes. A 1 kcal mol~! error window is
highlighted in blue.

SAPTO. Furthermore, CLIFFO even shows some quantitative agreement with SAPTO, with half
of the systems giving less than 0.3 kcal mol~! absolute error with respect to SAPTO0, compared
to a 0.6 kcal mol~! mean absolute error. The 3ENS fXa system shows the largest error of nearly
2 keal mol~!, and also results in CLIFFO incorrectly predicting the preferred ligand. In general,
however, the CLIFFO results appear to be quite reliable in reproducing conclusions made using
SAPTO data. Unlike CLIFFO, the CLIFF results are not constructed to match those of SAPTO,
and in certain cases significant disagreements arise. In 4YFF and 2W26, for example, CLIFF
predicts the chlorinated ligands to have a more favorable interaction compared to the methylated
ligands. For the latter case in particular, CLIFF predicts a 1.19 kcal mol~! stabilization upon
chlorination, compared to the 0.72 kcal mol~! destabilization predicted by SAPTO. The observed
reliability of CLIFFO with respect to SAPTO does imply that CLIFF, being fit with respect to
SAPT2+(3)6MP2/aug-cc-pVTZ, may be producing a more accurate result than SAPTO.

To benchmark the performance of CLIFFO and CLIFF on these systems, we plot the correla-
tion of their component energies in Figure 12. For CLIFFO, we see that the errors with respect
to SAPTO in induction and dispersion are largely within a 1 kcal mol~! error window, and that
electrostatics and exchange show slightly larger errors but still good correlation. For electrostat-
ics, exchange, and induction, the CLIFF component energies also seem to correlate fairly well
with SAPTO, suggesting that SAPTO/jun-cc-pVDZ and SAPT2+(3)6 MP2/aug-cc-pVTZ produce

similar values for these components. For dispersion, however, the CLIFF predictions are systemat-
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FIG. 13. Correlation between total interaction energies (kcal mol~!) computed with SAPTO0/jun-cc-pVDZ,
CLIFFO0, and CLIFF on the set of 20 protein-ligand complexes. A 1 kcal mol~! error window is highlighted

in dark blue, and a 10% error window is highlighted in light blue.

ically larger in magnitude compared to both CLIFFO and SAPTO, with the largest difference being
over 10 kcal mol~1.

CLIFF’s prediction of higher-magnitude dispersion compared to SAPTO and CLIFFO also re-
sults in total interaction energies being similarly larger in magnitude, as shown in Figure 13.
Across a fairly broad energy range, CLIFFO usually produces less than 10% error compared to
SAPTO interaction energies, and at times shows less than a 1 kcal mol~! error. CLIFF pre-
dicts more stable protein-ligand interactions compared to SAPTO and CLIFFO, consistent with
the larger predicted contributions from dispersion interactions. Based on the demonstrated accu-
racy of CLIFFO and CLIFF, it is likely that SAPTO underbinds these complexes to some extent due
to neglected dispersion interactions. Additionally, the underestimated dispersion in SAPTO is not

uniform across this test set, implying that it may not always be reliable in rank-ordering ligands.

IV. CONCLUSIONS

We have presented a new intermolecular force field designed to have transferable accuracy in
computing both component and total interaction energies for diverse interaction types encoun-
tered in organic chemistry and drug discovery applications. Our model, CLIFF, achieves this
transferrable accuracy through a combination of machine learning and advanced functional forms
from symmetry adapted perturbation theory (SAPT) based force fields. The transferability in

CLIFF is achieved from its adoption of functional forms that traditionally use quantities derived
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from molecular densities to reduce the amount of parameter tting required. Following IPML, the
applicability of CLIFF is further increased by machine-learning these atomic parameters, so that
computation of any new, potentially large molecule can be done nearly automatically. Lastly, good
accuracy for many diverse large and small molecules is achieved by using advanced functional
forms from SAPT-based force elds.?%?86% Furthermore, we reliably obtain accurate component

and total energies by tting our modest number of global parameters to high-level SAPT data.

We tested CLIFF on diverse small-molecule databases, where we achieved MAEs of at worst
0.70 kcal mol ! for the radial scans of 66 van der Waals dimers in the S66x8 test set, and at
best 0.28 kcal mol ! for the neutral-neutral interaction energies of the sidechain-sidechain inter-
actions (SSI) test set, derived from close contacts in the protein databank (PDB). For short-range,
repulsive con gurations, CLIFF produced its largest errors, and tended to overbind molecules in
this energetic region, at times substantially. From equilibrium intermolecular distances to disso-
ciation, conversely, CLIFF matches reference high-level quantum mechanical SAPT interaction
total and component energies with consistently low errors. In applications to ligands in protein
pockets, where structures are usually desired in an optimized con guration, CLIFF is thus ex-
pected to perform favorably, as these systems require accurate computation of numerous long-
range interactions in addition to a smaller number of dominant contacts. Our tests on a variety
of 20 protein-ligand interactions support this notion, where CLIFFO was able to reliably repro-
duce SAPTO reference data. Moreover CLIFF s parameterization to higher-level SAPT makes it
a very useful tool in studying these systems, in that it provides potentially more accuracy than
SAPTO. Lastly, CLIFF represents one of the only ways to routinely achieve the accuracy of ab
initio density-based, SAPT-based force elds for systems containing hundreds of atoms without

requiring massive ab initio computations intractable for many applications.

Despite these initial successes of CLIFF, several challenges persist that need to be addressed in
future developments. Perhaps the most signi cant limitation is that CLIFF, like IPML, can only
be applied to neutral dimers. Extension of CLIFF to charged systems would require nontrivial
changes to the parameterization scheme, formulation of machine learning models, and potentially
even the functional forms. While our reference SAPT data is reliable for the systems in this
work, it is unclear if the same reliability of the reference data can be expected for charged dimers.
Additionally, our application of CLIFF to dimers involving benzene in Section III.D highlighted a
few de ciencies in the current model. While our model for electrostatics is shown to be accurate

in the larger databases, we see it can underestimate the extent of charge penetration in certain
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cases. From these same tests, we also saw that our model for exchange-repulsion can at times be

inaccurate, likely due to our neglect of anisotropy in our overlap-based formulation.

CLIFF, like IPML, represents an intermediate approach between pure ML potentials and ab
initio parameterized force elds. Instead of using pure ML approaches to compute energy com-
ponents directly, we use the advanced physics-based functional forms typical of ab initio force

elds. However, instead of labor-intensive parameterization, or parameterization based on frag-
ment quantum mechanical computations, we obtain atomic parameters by ML models that need
only monomer geometries. Due to the increasing accuracy of ML potenticals,”' however, a fu-
ture direction of force eld development in CLIFF may be to include machine-learned interaction
energy models for some components, particularly for cases where the existing functional forms
are least effective. Alternatively, improvements to the physical functional forms would also sig-
ni cantly help the model, particularly corrections for anisotropy.?’ Aside from improvements to
CLIFF that result in higher accuracy, we also see a number of practical directions for CLIFF devel-
opment. Most notably are the replacement of the KRR models with much faster neural-network
based models, and adaptation of such models to enable prediction on charged molecules. With
the speed of neural-networks, existing intramolecular force elds could use CLIFF as an inter-
molecular potential in molecular dynamics simulations to compute properties beyond interaction

energies.

SUPPLEMENTARY MATERIAL

The supplementary material includes additional structural analyses on both monomer and dimer
databases. We also report performance of our ML models in predicting atomic multipoles, global
parameters used for CLIFFO, and all interaction energies used in the energy scans of the benzene
dimer con gurations and the benzene-methane complex. Total and component interaction energies
for all protein-ligand complexes are also provided from SAPTO/jun-cc-pVDZ, CLIFF, and CLIFFO
computations. We include geometries of all protein-ligand complexes, all dimers used in tting
global parameters, and all monomers used in ML model training. Finally, reference interaction
energies for our dimer database and reference atomic properties for the monomer database are

also provided.
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