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Computation of intermolecular interactions is a challenge in drug discovery because ac-

curate ab initio techniques are too computationally expensive to be routinely applied to

drug-protein models. Classical force elds are more computationally feasible, and force

elds designed to match symmetry adapted perturbation theory (SAPT) interaction en-

ergies can remain accurate in this context. Unfortunately, the application of such force

elds is complicated by the laborious parameterization required for computations on new

molecules. Here, we introduce the component-based machine-learned intermolecular force

eld (CLIFF), which combines accurate, physics-based equations for intermolecular in-

teraction energies with machine-learning models to enable automatic parameterization.

CLIFF uses functional forms corresponding to electrostatic, exchange-repulsion, induc-

tion/polarization, and London dispersion components in SAPT. Molecule-independent pa-

rameters are t with respect to SAPT2+(3)d MP2/aug-cc-pVTZ, and molecule-dependent

atomic parameters (atomic widths, atomic multipoles, and Hirshfeld ratios) are obtained

from machine learning models developed for C, N, O, H, S, F, Cl, and Br. CLIFF achieves

mean absolute errors (MAE) no worse that 0.70 kcal mol�1 in both total and component

energies across a diverse dimer test set. For the sidechain-sidechain interaction database

derived from protein fragments, CLIFF produces total interaction energies with an MAE

of 0.27 kcal mol�1 with respect to reference data, outperforming similar and even more

expensive methods. In applications to a set of model drug-protein interactions, CLIFF is

able to accurately rank-order ligand binding strengths and achieves less than 10% error

with respect to SAPT reference values for most complexes.

a)Electronic mail: jschriber7@gatech.edu
b)Electronic mail: sherrill@gatech.edu (Author to whom correspondence should be addressed)
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I. INTRODUCTION

Accurate characterization of noncovalent interactions is required for meaningful predictions of

diverse chemical properties, including structures of biomolecules and molecular crystals, protein-

ligand interactions, and condensed phase properties. For small-molecule dimers (≲ 40 atoms),

conventional highly-correlated ab initio techniques, like coupled-cluster theory, can provide inter-

molecular interaction energies with benchmark accuracy, and dispersion-corrected density func-

tional theory (DFT-D) remains among the most accurate available supramolecular approaches for

much larger systems containing up to hundreds of atoms.1–3 Alternatively, symmetry adapted

perturbation theory4,5 (SAPT) directly computes interaction energies in terms of electrostatic,

exchange-repulsion, polarization/induction, and London dispersion components using a hierarchi-

cal perturbative scheme. When computationally feasible, SAPT is a particularly attractive candi-

date for applications in drug binding due to the reasonable accuracy and moderate cost of its most

approximate form, SAPT0, and the physical insight provided from component energies.6–8 How-

ever, for studies that require many energy computations, e.g. dynamics studies or high-throughput

screening of drug candidates, quantum mechanical techniques are far too costly, and much cheaper

alternatives involving classical or even machine-learned potentials are required. In this work, we

present a SAPT-based classical potential designed to produce highly accurate total and component

interaction energies for small-molecule and protein-ligand interactions alike.

Characterizing drug binding energetics and relative energies of crystal polymorphs, for ex-

ample, requires a level of accuracy in intermolecular interaction energies that can be dif cult to

achieve using standard force elds. One approach to developing force elds with an improved

treatment of intermolecular interactions is to use a functional form with energy components that

correlate with the components from SAPT.9–12 These SAPT-based force elds provide a good

framework for computing accurate interaction energies, and their accuracy has been demonstrated

in myriad dynamics studies on diverse molecules.10,11,13–16 In practice, functional forms in SAPT-

based force elds typically require numerous monomer-speci c atomic parameters, including mul-

tipole moments and polarizabilities, for each atom in each monomer of interest, in addition to a set

of interaction parameters that arise in the functional forms and are determined by tting to total or

component energies. Throughout this work, we refer to this second class of interaction parameters

as global parameters since they are inherent to the force eld and do not change when applied to

different molecules. The atomic parameters can be computed from ab initio monomer densities
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in tandem with a charge partitioning scheme.11,17–19 While most SAPT-based force elds have

sets of potentially numerous global parameters, replacing these parameters that require tting with

ones derived from ab initio densities where possible can greatly increase a model's transferability

and robustness.20 Atomic multipoles or point charges are commonly obtained in this way by com-

putation of a molecular density followed by a distributed multipole analysis (DMA).21,22 Recently

developed force elds use more information from molecular densities to parameterize advanced

functional forms.18,19,23–25 For example, MASTIFF uses approximated atomic density decay rates

computed from ab initiomolecular densities to compute atomic density overlaps useful for treating

short-range effects.26,27 MEDFF also extensively uses atomic parameters derived from ab initio

densities, and as a result only requires three global tting parameters in the entire model.28

While computation of molecular densities for small-molecule parameterization is straightfor-

ward, the computation of densities in molecules containing hundreds to thousands of atoms is

nontrivial and at times prohibitive. An alternative approach, used in the AMOEBA force eld, is

to use a hybrid model, where ab initio densities are used when feasible and tabulated, atom-typed

parameters derived from fragment ab initio computations are used for large molecules, proteins,

and nucleic acids.29–33 This approach has been very successful for a variety of biomolecular appli-

cations, even including transition metals.34,35 However, the requirement either (1) to recompute an

ab initio molecular density or (2) to re t numerous atomic parameters in computing any new type

of molecule poses a sign cant challenge for applications requiring large numbers of computations

on different molecules, for example the computational screening of large (100 atom) drug targets

in a protein binding region.

To achieve transferability and to avoid numerous reparameterizations, recently proposed alter-

natives to high-accuracy force elds use machine learning (ML) either in combination with or in

replacement of physics-based functional forms.36–39 “Pure” ML models use only molecular co-

ordinates as input to predict, most commonly, total energies,40–49 and recent examples from our

group can instead target interaction energies very accurately.50,51 The bene t of these approaches

is that transferability of the model is limited only by the extent of training data used to build the

model, and no parameterization or quantum-mechanically derived electronic densities are required

for computation of a new molecular system. While curation of training data is a signi cant chal-

lenge in designing a maximally-transferable model, the demonstrated accuracy and performance

of modern ML potentials makes them a very attractive option.

On the other hand, at long range at least, there are well-known functional forms that accurately
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describe intermolecular interactions, and it seems pro table to take advantage of them. Thus, an

alternative solution to transferability is to use physics-based models where some or all of the pa-

rameterization is done using ML.52–54 One manifestation of this approach is the IPML method

introduced by Bereau et al.,55 where ML models are used to compute required atomic parame-

ters for functional forms used in existing force elds. An attractive consequence of using ML

for only the atomic parameters is that the ML models need to be only trained on monomers,

thus avoiding complications in generating very large databases of dimer interaction energies, as-

suming any global interaction parameters can be obtained by tting with a relatively small dimer

database. With only eight global tting parameters in the functional forms, IPML is able to predict

intermolecular interaction energies with high accuracy for diverse small-molecule neutral dimers

composed of C, N, O, and H using a single parameter set. Without the requirement of computing

electron densities for new computations, IPML can in principle be very easily applied to larger

molecules. Despite having terms that correspond to SAPT components, the internal parameters in

IPML are t with respect to total energies only, rendering the individual components inaccurate

and unable to provide qualitative insight. Furthermore, inaccurate component energies mean that

accurate total interaction energies rely on a systematic cancellation of errors, which is not guaran-

teed across diverse interaction types. For example, when applied to the supramolecular complexes

in the S12L database, IPML only shows reasonable agreement with reference total interaction

energies when these dimers are included in tting the global interaction parameters.55

We were inspired by IPML's interesting combination of a sound, physics-based force eld with

ML to quickly and automatically determine most required atomic parameters. Here, we introduce

a new intermolecular potential called the component-based, machine-learned intermolecular force

eld (CLIFF), which uses ML models to provide atomic parameters for a SAPT-based force eld.

The primary goal of CLIFF is to compute both component energies as well as total energies for

non-covalently bound systems to an accuracy comparable to that of high-level ab initio theories.

With accurate components, CLIFF relies minimally on cancellation of errors among component

energies, and can provide useful component-based analysis valuable in SAPT applications.7 De-

spite extensive use of machine-learned atomic parameters, our functional forms still contain global

parameters that require tting. Each component equation in CLIFF contains global parameters

unique to that component, which allows them to be optimized with respect to SAPT component

energies in addition to total energies. Furthermore, this parameterization is only done once and

not during the computation on new molecular systems, and we will show it does not signi cantly
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limit our transferability. By using ML for all parameterizations of new molecules, we are able

to compute intermolecular interaction energies for diverse small-molecule benchmark dimers and

large protein-ligand complexes with the accuracy of high-level SAPT-based force elds. We ad-

ditionally improve upon IPML's ability to model organic molecules containing C, N, O, and H

atoms by adding parameterizations and ML models for molecules containing S, F, Cl, and Br, to

enable more extensive applications in biochemistry and drug discovery.

II. THEORY

A. Atomic Parameterization from Machine Learning

Similar to the approaches of Van Vleet et al.26,27 and Vandenbrande et al.,28 CLIFF uses com-

ponent equations that make use of electronic density overlaps. To write component equations

in a pairwise-atomic form, a partitioning of the monomer electron densities to their atoms is re-

quired and is achieved by using atoms-in-molecules (AIM) methods.9,56,57 Resultant AIM den-

sities are atom-centered electronic distributions that are inherently aware of their local chemical

environments. Force eld parameters derived from AIM densities are consequently speci c to the

molecules under study, without requiring any re tting of large numbers of global parameters, and

provide a means to develop accurate and transferable models. Atomic multipoles, atomic widths,

and Hirshfeld ratios are the atomic properties used in CLIFF, and they can all be derived from

AIM densities.

To partition the molecular electronic density, we use the minimal basis iterative stockholder

(MBIS) method.58 MBIS represents the molecular electronic density as a sum of individual atomic

densities de ned using sums of atom-centered Slater functions, where the sums run over the shells

of the particular atom. From this density, atomic multipole coef cients can be computed, and the

Slater widths of the outer shell de ne the valence width, referred to in this work as the atomic

width. Multipole coef cients from MBIS are used in the electrostatic model, as well as in com-

puting the induced dipoles for the induction term. The atomic widths approximate the exponential

decay rate of the electronic density and are used to compute an approximation to the overlap of

atomic electron densities. As discussed later, these overlap terms are used throughout CLIFF,

particularly to model short-ranged interactions.

In addition to MBIS partitioning, we also use a Hirshfeld partitioning to compute effective
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volume ratios, hi, de ned as the ratio of the effective AIM volume to the effective volume of the

free atom,

hi =
VAIM
i

V free
i

: (1)

We denote these volume ratios as Hirshfeld ratios due to the paritioning scheme used.59 Simi-

lar quantities can be computed with MBIS densities, though we chose the Hirshfeld partitioning

for consistency with the Tkatchenko-Shef er60 method used later, though evidence suggests that

MBIS-derived quantities work equally well in this context.28,58

To compute the atomic multipoles, atomic widths, and Hirshfeld ratios, CLIFF uses separate

ML models for each chemical element used (C, H, N, O, S, F, Cl, Br), for a total of 24 models.

All models use kernel-ridge regression (KRR),61;62 which was initially chosen for its simplicity.

KRR predicts a desired quantity, y, by applying a kernel function, k(x0;x) to a set of regression

coef cients, α, determined using training data,

y=
N

å
i
k(x0i;x)αi; (2)

where the sum runs over N training points, and x refers to the discretized representation of the

atom on which we are predicting, and x0i is similarly the descriptor for an atom used in training.

The kernel function in this work computes the similarity between a pair of descriptors using the

usual Laplacian kernel involving one hyperparameter, s . The regression coef cients are deter-

mined analytically from the training data, α= (K� l I)�1y, where K is the kernel matrix whose

elements are the kernel function applied to all pairs of training data points, y contains the ref-

erence property values, and l is a regularization hyperparameter that requires tting. IPML uses

Coulombmatrices61 as descriptors for models that compute isotropic quantities (atomic widths and

Hirshfeld ratios), and uses the atomic spectrum of London and Axilrod-Teller-Muto potentials62,63

(aSLATM) as the representation for computing multipoles.55 Coulomb matrices are signi cantly

more ef cient than aSLATM but are unable to easily predict orientation-dependent quantities like

atomic dipoles and quadrupoles. In our experience, Coulomb matrices were unable to give reliable

predictions for even isotropic quantities when building models for heavier elements. Therefore, we

use the aSLATM representation implemented in QML64 in computing atomic multipoles, atomic

widths, and Hirshfeld ratios for all chemical elements used.

While CLIFF is designed to compute intermolecular interaction energies, the ML models for

atomic properties do not need to be trained on dimers, as they all depend only on monomer den-

sities. Our monomer database is composed entirely of structures obtained from the ChEMBL
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FIG. 1. Depiction of the fragmentation scheme used to generate the monomer database for all ML models.

Large drug-like molecules are fragmented to a set of non-redundant subunits.

database,65 which we ltered to a subset of approximately 872,000 drug-like molecules. Since the

atomic properties we compute are local in nature, we chose to fragment this set into to molecules

of 5 to 12 heavy atoms, as depicted in Figure 1. Unique fragments are curated to obtain a set

of 8,138 chemically diverse molecules with moieties representative of drug-like molecules and

protein targets. We compute all reference densities with PBE0/aug-cc-pV(D+d)Z using PSI4.66

Reference atomic properties are computed using MBIS and Hirshfeld routines implemented in

HORTON.67

In building ML models for multipoles, atomic widths, and Hirshfeld ratios, randomized subsets

of the 8,138 molecules are taken for each element, with a different percentage of the database being

used for each element due to a higher representation of certain elements (C,H) compared to others

(S, Cl, F, Br). Construction of the ML models is based on the IPML implementation, and we

used our training datasets to re- t KRR hyperparameters. With the ML models trained, we predict

a single set of atomic properties for each monomer to be used in all functional forms. We rst

generate the aSLATM descriptors to encode local environments in our atomic representations, and

we then use these descriptors in all KRR models to predict the desired properties. Identically to

IPML, we scale the predicted atomic charges so that the net charge of each monomer is exactly

zero. This scaling avoids spurious electrostatic interactions between monomers. As will be shown,

our atomic charges are suf ciently accurate so that we do not expect any qualitative difference

between our predicted charges and those from MBIS.
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B. Component Functional Forms

1. Electrostatics

An accurate model of electrostatics needs the exibility to describe the different physical inter-

actions that occur at both long and short range. Long-range interactions are well described by a

distributed multipole expansion, in which atomic multipole coef cients,Mi for atom i in molecule

A and M j for atom j in molecule B, are contracted with the point multipole interaction tensor, Ti j,

to produce the electrostatic energy,68

Eelst = å
i2A

å
j2B

MT
i Ti jM j: (3)

The multipole expansion alone, however, fails at short range (< 2 times the van der Waals ra-

dius) due to charge penetration effects de ned as the enhanced electrostatic interaction resultant

from overlapping electron densities and reduced nuclear screening.68 Charge penetration is miss-

ing from the multipole expansion because it uses point multipoles rather than multipoles with

some representation of widths required to model overlapping charge densities. Correspondingly,

charge penetration corrections typically employ damping functions to give atomic charges widths

necessary to model reduced nuclear screening.

In this work, we employ a damped multipole electrostatic model recently introduced by Rackers

et al.69 While most charge penetration corrections only include damping functions for atomic

charges, Rackers' model uses a damped interaction tensor to include charge penetration effects

from all atomic multipoles. We can write the electrostatic energy by separating the nuclear charge

(Zi for atom i) from the corresponding multipoles,

Eelst = å
i2A

å
j2B

ZiZ j

ri j
+ZiT

f1
i j M j+MT

i T
f1
i j Z j+MT

i T
f2
i j M j; (4)

where T f1
i j and T f2

i j are the damped interaction tensors for nuclear-multipole and multipole-

multipole interactions, respectively. We adopt the same damped interaction tensors as Ref 69,

where the nuclear-multipole damping function is de ned as

f1(ri j) = 1� e�Kelst
i ri j ; (5)

and the multipole-multipole damping function is,

f2(ri j) = 1�
(Kelst

i )2

(Kelst
i )2� (Kelst

j )2
e�Kelst

i ri j �
(Kelst

j )2

(Kelst
j )2� (Kelst

i )2
e�Kelst

j ri j : (6)
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Elements of the damped interaction tensors are computed by taking successive partial derivatives

of f1(ri j)r�1
i j for T f1

i j and f2(ri j)r�1
i j for T f2

i j , analogous to the undamped tensor where these deriva-

tives are applied only to r�1
i j . In the damping functions, we introduce atomic tting parameters

Kelst
i which are obtained by tting equation (4) to SAPT dimer computations. Rather than relying

on additional tting or quantum chemical calculations, our multipoles up to quadrupoles are ob-

tained from the previously mentioned machine learning models. As discussed in more detail later,

the Kelst
i are atom typed largely by element and number of bonding partners.

2. Exchange-repulsion

Exchange-repulsion, frequently referred to as Pauli repulsion, is a repulsive force resulting

from monomer wave function overlap under the requirement that the total dimer wave function be

antisymmetric. Consequently, many classical models of exchange-repulsion make use of some ap-

proximation to the overlap of electronic densities of each monomer.70–72 In fact, empirical ndings

suggest that exchange-repulsion depends linearly on the density overlap, SAB,

Eexch = KSAB; (7)

for monomers A and B with K being a yet-unde ned proportionality constant.70 In the context of

advanced force elds,26,58,73–76 the overlap is de ned using an atoms-in-molecules decomposition,

Eexch = å
i2A;i2B

Ki jSi j; (8)

where Si j is the overlap in electronic density between atom i on monomer A and atom j on

monomer B. Following previous work,26 we de ne the proportionality constant with a multi-

plicative combining rule, Kexch
i j = Kexch

i Kexch
j for atom-typed parameters Kexch

i .

Numerous de nitions of Si j have been proposed, and they typically require some de nition of

an atomic charge width or charge decay rate. The IPML model uses the expression from Vanden-

brande et al.,28

Si j =
NiN j

8p ri j

[( 4s 2
i s 2

j

(s 2
j � s 2

i )
3 +

s iri j
(s 2

j � s 2
i )

2

)
e
�ri j

s i

+
( 4s 2

i s 2
j

(s 2
i � s 2

j )
3 +

s jri j
(s 2

i � s 2
j )

2

)
e
�ri j
s j

]
; (9)

which uses valence atomic populations, Ni, and valence widths, s i, both derived from an MBIS

procedure. Unfortunately, the valence widths of two atoms, particularly of the same element, are
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oftentimes very similar and cause equation (9) to become unstable, requiring separate approxima-

tions to handle these cases. We opt for a simpler overlap approximation developed by Van Vleet

et al.26,27 wherein an effective width,

Bi j =
1

s is j
; (10)

is used in the expression for Si j extrapolated to the s i = s j limit,

Si j = [
1
3
(Bi jri j)2+Bi jri j+1]e�Bi jri j : (11)

Equation (11) is more numerically stable and computationally ef cient than equation (9), and it

has been shown to incur nearly negligible errors with respect to the exact overlap expression.26

Our model for exchange is thus de ned as equation (8) using the atomic overlap de nition from

equation (11).

3. Dispersion

Coupled dynamical correlations between electrons on different monomers can result in an at-

tractive interaction, de ned as dispersion. While dispersion interactions can be treated with ab

initio techniques, empirical models for dispersion have gained popularity for use with classical

potentials, DFT, and wave function-based techniques alike due to their sigi cantly reduced cost

and acceptable accuracy.2,60,77–85 Many classical dispersion models rely on the well-known dis-

persion series,

Edisp =� å
i2A

å
j2B

å
n=6;8;10;:::

Cn;i j

rn
; (12)

where dispersion coef cients Cn;i j are typically computed from imaginary-frequency-dependent

polarizabilities and i ( j) is an atom in monomer A (B). This series is derived from a second-order

perturbative analysis of the interaction energy between dimers with zero charge overlap, and thus

requires an additional short-range treatment usually in the form of damping functions.86

In this work, we use a Tang-Toennies damped dispersion model86 with dispersion coef -

cients derived from machine-learned atomic properties. Following the Tkatchenko-Shef er (TS)

method,60 the atomic-pairwise C6;i j coef cients are computed using single-atom C6;i coef cients

and atomic polarizabilities, a i,

C6;i j =�
2C6;iC6; j

a j
a i
C6;i+

a i
a j
C6; j

: (13)
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We de ne the single-atom dispersion coef cients using free-atom coef cients87 and the machine-

learned Hirshfeld ratios, C6;i =Cfree
6;i h

2
i . Similarly, atomic polarizabilities are computed from free-

atom polarizabilities and Hirshfeld ratios, a i = a free
i hi, where both Cfree

6;i and a free
i are computed

from free-atom densities and tabulated for each element type. To compute higher-order dispersion

coef cients, we rely on recursion relations found in the �D corrections introduced by Grimme

and coworkers.2,79,80 TheC8;i j coef cients require the C6;i j coef cients,

C8;i j = 3C6;i j
√

QiQ j; (14)

where Qi =
p
Zi

hr4i i
hr2i i

and hrni i is a simple multipole-like expectation value that is computed from

free-atom densities and also tabulated for each element. The C10;i j dispersion coef cients follow

a much simpler relation,

C10;i j =
49
40

C2
8;i j

C6;i j
: (15)

To avoid divergences as r approaches zero, damping functions for each term in the dispersion

series are required. We use the Tang-Toennies damping function,

fn = 1�
( n

å
k=0

xki j
k!

)
e�xi j ; (16)

where the argument, xi j, is related to the overlap of atomic densities (Si j) and can be written in

terms of the effective widths, Bi j, de ned in equation 10,

xi j = Bi jri j+
2B2

i j+3Bi j

(Bi jri j)2+3Bi jri j+3
ri j; (17)

as initially derived by Van Vleet et al.26 An extremely appealing result in this procedure is that no

tting is required in the damping function itself, so long as both the machine-learned widths and

the reference widths computed from MBIS for training are accurate.

Computation of C6;i j coef cients using the Tkatchenko-Schef er method with AIM-derived

quantities was initially reported by Verstraelen et al.,58 and the use of this methodology in com-

puting dispersion corrections was done by Vandebrande et al.28 in the MEDFF method. In the

spirit of IPML, our approach follows this work by machine learning the required atomic parame-

ters rather than computing quantum mechanically derived densities and performing a subsequent

AIM routine. Our approach also differs slightly from MEDFF in the functional forms, where

CLIFF uses different de nitions of damping functions and higher-order dispersion coef cients.

Lastly, to compensate for slight overestimation of the higher-order dispersion coef cients, we t
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their contribution with atomic pairwise parameters, Kdisp
i j = Kdisp

i Kdisp
j , when computing the total

dispersion,

Edisp = å
i2A

å
j2B

(C6;i j

r6
f6(ri j)+Kdisp

i j å
n=8;10

Cn;i j

rn
fn(ri j)

)
: (18)

Scaling terms for which n > 6 is also done in�D corrections developed by Grimme et al.,79 though

we use atom-typed parameters to account for atom-dependent errors in higher-order dispersion

coef cients.

4. Induction

To compute the induction component, also referred to as the polarization energy, we combine

the commonly used Thole method88 with a short-range correction de ned using atomic density

overlaps,

Eind = å
i2A

å
j2B

m 0
iTi jM j+Kindu

i j Si j; (19)

where m 0
i are induced atomic dipoles, Si j is the atomic density overlap de ned from equation (11),

and Kindu
i j = Kindu

i Kindu
j are tting parameters. Following the procedure of Ren and Ponder,29,89

the induced dipoles for atom i are computed in an iterative, self-consistent procedure de ned by,

m 0
i (n+1) = (1� w )m 0

i (n)+ w [m 0
i (0)+ a i å

k2A[B
k 6=i

TikMk]; (20)

where k labels all atomic sites on all monomers other than i. We use a successive over-relaxation

procedure to more quickly converge equation (20) by setting w = 0:7. The “direct” induced dipole

is de ned as

m 0
i (0) = a i å

j2B
Ti jM j; (21)

where the summation is only between sites on different monomers. The polarizabilities (a i) are

computed as discussed previously, and come from machine-learned Hirshfeld ratios and tabulated

free-atom polarizabilities. The interaction tensor, Ti j uses Thole damping to smear atomic charge

distributions,

fThole =
3a
4p

e�au3; (22)

where u = ri j=(a ia j)
1
6 , and a is a unitless smearing coef cient conventionally de ned as 0:39.

We instead re- t the smearing coef cient together with our Kindu parameters. An interesting out-

come in our approach, and that of IPML, is that there is no tting required to compute either the
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multipoles or the polarizabilities in the rst (polarization) term in equation (19). Our approach of

combining the usual polarization term with a short-range, overlap-based correction was previously

introduced in the MASTIFF force eld with good results.26 Correcting a polarization energy with

an overlap-based term is also motivated by an apparent relationship between rst-order exchange

energies and charge-transfer interactions that manifest in short-range induction interactions.9,10,90

C. Global Interaction Parameters

As demonstrated, parameters used by CLIFF come in two categories. First are the set of

monomer-speci c atomic parameters—atomic multipoles, atomic widths, and Hirshfeld ratios—

computed using ML models. Second are what we refer to as global interaction parameters, Ki,

which are determined by tting to dimer interaction energies and remain constant in applying

CLIFF to new dimers. Each interaction energy component has a set of seventeen atom-typed

global parameters, Ki, and the smearing coef cient, a, in induction is also t but is not itself atom-

typed. In de ning atom types, we nd a balance between accuracy and tting stability by de ning

a modest number of atom types using the atomic number and coordination number of a given atom.

One exception is with hydrogen, where we de ne a separate atom type based on the element of its

bonding partner. All atom types and global interaction parameters are summarized in Table I.

Following many SAPT-based force elds, we can t the global interaction parameters using

their corresponding SAPT component energy, with or without a total interaction energy. An ad-

vantage of combining ML atomic parameterization with physics-based functional forms is that

the number of reference interaction energies does not need to be nearly as extensive in compar-

ison to pure ML approaches. As a result, high-level reference data is feasible for use in tting

global parameters as the number of required dimers can remain comparatively small. Based on its

performance in comparison to CCSD(T)/CBS total interaction energies,91 we t our interaction pa-

rameters to the component and total energies from SAPT2+(3)d MP2/aug-cc-pVTZ reference cal-

culations. One signi cant complication in this choice is that the distinction between electrostatics,

exchange, induction, and dispersion becomes less clear due to numerous cross-terms, though we

adopt the canonical partitioning of these terms summarized in ref 91. Speci cally, this partitioning

categorizes the d HF and d MP2 terms within the induction term.

Reference interaction energies used for tting were computed with dimers from a custom-built

database. Our dimer database is composed of two collections of dimers. For the rst collection, we
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TABLE I. Atom-typed global interaction parameters used in CLIFF. These parameters are t with respect to

SAPT2+(3)d MP2/aug-cc-pVTZ reference energies using g = 0:4 in our tting function. Along with these

atom-typed parameters, tting of the smearing coef cient from equation 22 resulted in a value of 0.38539.

Atom Type Kelst Kexch Kindu Kdisp

C4 3.3911 2.2649 2.1196�10�5 0.3489

C3 3.3323 2.4566 0.2841 0.3801

C2 3.1057 2.8023 0.7843 0.4747

N3 3.4371 4.4660 1.7546 0.2515

N2 3.0371 4.6251 1.5211 0.9213

N1 3.3785 3.4896 0.8137 0.8142

O2 3.8700 5.8538 1.1477 0.5480

O1 3.6031 5.3435 1.6372 0.7794

S2 3.1034 3.2842 0.7699 0.6898

S1 3.0618 3.1773 0.9862 0.7250

HC 3.5982 0.9890 0.3781 0.1619

HN 3.2554 0.6910 0.5952 0.1420

HO 3.1255 0.5996 0.6856 8.0387�10�7

HS 3.5974 0.7909 0.6031 4.2571�10�6

F 4.3157 7.6036 1.5281 0.5935

Cl 3.4402 3.8152 0.8468 0.6289

Br 3.6942 4.1008 1.1612 0.4993

take all possible pairs of thirty interacting sites on twenty-three unique monomers (Fig. 2), gen-

erating an initial set of 465 dimers. Dimer con gurations are derived by pairing the monomers to

interact through speci c sites, labeled as red atoms and dots in Fig. 2. Angles and dihedral angles

involving the interaction sites and their neighboring atoms are sampled randomly, as described

in more detail in Ref 50. After determining the rotational orientation, a range of intermolecular

distances is generated by varying the van der Waals overlap, de ned using the van der Waals radii

of the interacting sites. Speci cally, the van der Waals overlap is varied from 1:0 Å to �1:0 Å in

0:1 Å steps, where positive values indicate separation between the monomers and negative values

indicate clashes. For dimers formed from strong electrostatic interactions, including hydrogen or
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FIG. 2. Monomers used to construct one collection of the dimer database. Interaction sites can be atoms in

the molecule, labeled in red, or they can be delocalized over a number of bonds, labeled with a red dot.

halogen bonds, we lower the minimum distance to �1:3 Å. For each distance, three con gura-

tions with different angular orientations are obtained to yield 63-72 con gurations for each dimer.

This procedure ensures that our training set includes dimers with relatively short intermolecular

distances. High representation of short-range interactions is important in tting, as the global

interaction parameters are generally linked to short-range corrections in CLIFF. From this set of

roughly 30,000 structures, we take a subset of 7,000 structures chosen from an even distribution

of total interaction energies.

While the rst dimer collection emphasized thorough con gurational sampling of dimers con-

taining all atom-types in CLIFF, the second collection ensures ample representation of equilibrium,

and at times strongly-attractive interactions. Dimers in this collection were selected from a large

database representing interactions between drug molecules and proteins, and they were constructed

using a previously described procedure ultimately resulting in 884 dimers used in training.50 All

dimers are at or near equilibrium geometries, and they span a wide range of energies (�0:3 to

�27:5 kcal mol�1) and chemical structures. Details of this database are presented in the SI. For

the complete training set used in CLIFF, we combine all dimers from this collection with the 7,000

dimers from the rst collection resulting in 7,884 dimers in total.

Rather than tting purely to total or component energies, we use a multi-target tting function

designed to minimize mean squared errors (MSE) of both total and component energies,

L = (1� g )MSE(Etotal)+ g å
i2C

MSE(Ei); (23)
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FIG. 3. Root mean squared errors in total and component energies (kcal mol�1) as a function of g , computed

using our validation set. A value of g = 0 corresponds to parameter tting with respect to total energies only,

and a value of g = 1:0 corresponds to tting purely to component energies.

t where C = felectrostatics, exchange, induction, dispersion}.50 For a given value of g , we mini-

mize L using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm on the training set con-

taining 7,884 dimers. We performed our parameter tting in two stages. First, we t the individual

components to their corresponding SAPT component energy, constraining only that all parame-

ters be nonnegative. We then re t all parameters simultaneously according to equation 22, using

individually-optimized parameters as input. This two-step procedure can be seen as a re nement

of the individually-optimized parameters, the extent of which being controlled by g . To guide our

choice of g in determining a nal parameter set, we use 5,000 dimers from the rst collection of

our custom-built database not involved in the tting as a validation set. In Figure 3, we show the

RMSE of the component and total energies of the validation set as function of g . Aside from g = 0,

increasing values of g tends to slightly decrease the quality of the total energy, while improving the

component energies. Interestingly, the accuracy of each component seems to converge relatively

quickly with g , implying that choosing g < 1 does not necessarily lead to a noticeable decrease

in the quality of component energies, particularly for electrostatics and exchange-repulsion. To

balance accuracy in component and total energies, we choose g = 0:4 for determining our nal

parameters in the remainder of this work. Lastly, we show a summary of the computation of an

interaction energy using CLIFF in Figure 4, highlighting how both the atomic parameters and the

global parameters are used consistently in each component.
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FIG. 4. Summary of interaction energy computation in CLIFF. Starting with a dimer (1), we generate all

aSLATM descriptors for all atoms in each molecule (2). Using these descriptors, we then predict atomic

MBIS multipoles, MBIS widths, and Hirshfeld ratios using KRR models (3). With these atomic properties,

and our set of tted global parameters, we compute each interaction energy term (4). Finally, we can

compute the total interaction energy by summing the four components (5), analogously to SAPT.

III. RESULTS

A. Accuracy of Machine-Learned Atomic Parameters

We summarize mean absolute errors (MAE) of the atomic charges, dipoles, and quadrupoles

computed from CLIFF with respect to those derived directly from MBIS densities in Table II.

Correlation plots of the multipoles showing their magnitudes can be found in Figure S1 in the SI.

The models from IPML report MAEs of 0.01 e, 0.01 eÅ, and 0.02 eÅ2 for charges, dipoles, and

quadrupoles averaged across C, N, O, and H elements. Performing analogous averaging using all

of our elements yields MAEs of 0.013 e, 0.013 eÅ, and 0:027 eÅ2. Our comparable accuracy with

IPML is perhaps not surprising, as the only difference between our approaches is in our training

data, implying that both models are near saturation. The larger errors seen for the multipoles of S

are primarily a result of larger magnitudes of multipole moments, though it may be possible that

these multipoles improve in accuracy with more training data. Additionally, larger errors in S, C,

and N multipoles with respect to other atoms can also be attributed to the more diverse bonding

environments those elements can have. Due to the high cost of KRR, we would have to use an

alternative ML technique to make use of more data. Encouragingly, our errors for the halogens are
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T A B L E II. M e a n a bs ol ut e err ors of pr e di ct e d m ulti p ol es f or e a c h a v ail a bl e el e m e nt i n C LI F F. C orr el ati o n

pl ots c o m p ari n g r ef er e n c e m ulti p ol es wit h M L m ulti p ol es c a n b e f o u n d i n t h e SI.

C  N  O  H S F  Cl  Br

q (e ) 0. 0 1 9 0. 0 1 5 0. 0 0 9 0. 0 0 5 0. 0 2 4 0. 0 0 9 0. 0 1 2 0. 0 1 1

µ (e ∗ Å) 0. 0 1 7 0. 0 1 6 0. 0 0 6 0. 0 0 2 0. 0 3 1 0. 0 0 6 0. 0 1 3 0. 0 1 3

Q (e ∗ Å 2 ) 0. 0 1 9 0. 0 2 4 0. 0 0 9 0. 0 0 3 0. 1 3 1 0. 0 0 5 0. 0 1 2 0. 0 1 2
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0. 5 6 5

0. 5 7 0
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FI G. 5. C orr el ati o n of r ef er e n c e v al e n c e at o mi c wi dt hs c o m p ut e d usi n g M BI S a n d M L wi dt hs c o m p ut e d i n

C LI F F.

v er y l o w, d es pit e t h e r el ati v el y l ar g e m a g nit u d es s e e n i n t h e di p ol es a n d q u a dr u p ol es.

Fi g ur es 5 a n d 6 s h o w c orr el ati o ns b et w e e n M L- pr e di ct e d a n d r ef er e n c e at o mi c wi dt hs a n d

Hirs hf el d r ati os, r es p e cti v el y, f or all el e m e nts u n d er st u d y. E n c o ur a gi n gl y, w e s e e t h at f or all

el e m e nts, o ur M L m o d els ar e a bl e t o a c c ur at el y r e pr o d u c e v al u es c o m p ut e d fr o m t h e a b i niti o

d e nsiti es. F or t h e at o mi c wi dt hs, w e s e e m ost of t h e err ors t o b e ar o u n d 0. 0 0 1 a. u. − 1 , wit h t h e

l ar g est b ei n g 0. 0 0 1 9 a. u.− 1 f or t h e c ar b o n at o m. O ur a v er a g e d M A E of 0. 0 0 1 3 a. u. − 1 , c o m p ut e d

b y a v er a gi n g o v er all el e m e nt t y p es, r e pr es e nts a si g ni fi c a nt i m pr o v e m e nt o v er t h e si mil arl y a v-

er a g e d M A E of 0. 0 0 4 a. u. − 1 fr o m I P M L. S u c h a n i m pr o v e m e nt is li k el y a r es ult of o ur us e of

t h e m or e s o p histi c at e d a S L A T M d es cri pt ors, w hi c h ar e b ett er s uit e d t o c a pt ur e di v ers e b o n di n g

e n vir o n m e nts i n c o m p aris o n t o C o ul o m b m atri c es. F or t h e Hirs hf el d r ati os, o ur m o d els pr o d u c e

a s e e mi n gl y n e gli gi bl e i m pr o v e m e nt o v er t h os e i n I P M L, wit h a v er a g e d M A Es of 0. 0 0 5 9 a n d
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FI G. 6. C orr el ati o n of r ef er e n c e Hirs hf el d r ati os a n d m a c hi n e-l e ar n e d Hirs hf el d r ati os c o m p ut e d i n C LI F F.

0. 0 0 6, r es p e cti v el y. I m p ort a ntl y, o ur v al u e d o es i n cl u d e S, Cl, F, a n d Br. A cr oss all el e m e nts a n d

all at o mi c pr o p erti es, t h e hi g h a c c ur a c y of o ur m o d els c a n b e attri b ut e d t o a c o m bi n ati o n of b ett er

d es cri pt ors a n d l ar g er tr ai ni n g s ets.

I n g e n er al, t h e br o a d r a n g e of v al u es f or m ost el e m e nt t y p es s u p p orts o ur us e of M L m o d els f or

c o m p uti n g at o m- e n vir o n m e nt d e p e n d e nt q u a ntiti es r at h er t h a n fitt e d p ar a m et ers. I n p arti c ul ar, t h e

Hirs hf el d r ati os of S a n d O c a n b e q u alit ati v el y diff er e nt, wit h v al u es b ei n g eit h er a b o v e or b el o w

o n e, d e p e n di n g o n t h e l o c al e n vir o n m e nt. C o n v ers el y, t h e at o mi c wi dt hs a n d Hirs hf el d r ati os f or

t h e h al o g e ns all s p a n a v er y n arr o w r a n g e of v al u es. P er h a ps u ns ur prisi n gl y, t his n arr o w wi n d o w

is a r es ult of h al o g e ns h a vi n g f airl y u nif or m b o n di n g t e n d e n ci es r es ulti n g i n si mil arl y u nif or m

at o mi c d e nsiti es. T h er ef or e, f or t h es e at o ms a n d pr o p erti es, o n e c o ul d b e r e as o n a bl y j usti fi e d i n

usi n g gl o b al p ar a m et ers r at h er t h a n M L m o d els.

Fi n all y, w e n ot e t h at K R R pr e di cti o n of at o mi c pr o p erti es i n g e n er al is r e q uir e d f or a n y e n er g y

c o m p ut ati o n. I n a m ol e c ul ar d y n a mi cs si m ul ati o n, f or e x a m pl e, t h es e at o mi c pr o p erti es w o ul d

b e r e c o m p ut e d o n-t h e- fl y as t h e g e o m etr y of t h e m ol e c ul e c h a n g es. C o u pli n g at o mi c p ar a m et er-

i z ati o n wit h c o m p ut ati o n of e n er g y t er ms all o ws f or p ot e nti all y m u c h m or e a c c ur at e si m ul ati o ns

c o m p ar e d t o usi n g fi x e d p ar a m et ers, ass u mi n g t h at t h e s p e e d of p ar a m et eri z ati o n is a c c e pt a bl y

f ast. O ur c h oi c e of K R R r es ults i n pr e di cti o ns of at o mi c p ar a m et ers t h at ar e f ar t o o sl o w t o b e

us e d i n r o uti n e d y n a mi cs si m ul ati o ns, t h o u g h it d o es a c hi e v e i m pr o v e m e nt o v er q u a nt u m c h e m-

i c all y d eri v e d p ar a m et ers, p arti c ul arl y f or l ar g e ( > 1 0 0 at o m) s yst e ms. F ort u n at el y, d e v el o p m e nt
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of much more ef cient neural network-based atomic models could enable on-the- y prediction of

these atomic properties.

B. Small-Molecule Dimer Databases

To rst understand the accuracy and transferability of CLIFF, we test against a variety of

publicly-available, small-molecule dimer databases. Speci cally, we use the S66x8,92–94 SSI,95

X40x8,96,97 and NBCext1097–99 databases as they cover diverse interaction types including hy-

drogen bonding, halogen bonding, and interactions with one or more p system often over radial

potential energy surface scans. For X40x8, we removed dimers containing HCl, HBr, HF or iodine

as we did not t parameters for iodine or for those speci c cases for hydrogen. Also, we retained

only dimers that had inter-monomer separations between a factor of 0.90 and 2.0 of equilibrium,

analogous to S66x8. Note that none of the dimers in these tests were used in tting the global

interaction parameters. We summarize MAEs, root-mean-squared errors (RMSEs), and maximum

errors (MAX) for component and total interaction energies for all databases under study in Table

III. All statistics are computed with respect to SAPT2+(3)d MP2/aug-cc-pVTZ reference data.

Across all databases, we achieve MAEs of � 0:7 kcal mol�1 or better for total and component

interaction energies, with the exception of the exchange-repulsion energies of NBC10. CLIFF

does particularly well for SSI and NBC10 total interaction energies, with errors of 0.28 and 0.49

kcal mol�1, respectively, which we nd to be particularly encouraging since these databases in-

clude diverse interaction types found in biological applications, including hydrogen bonding and a

variety of p � p and p �H interactions. Lastly, the 0.614 kcal mol�1 MAE in X40x8 also suggests

that CLIFF does not perform signi cantly worse for computations on halogen-containing dimers.

We also plot the correlation of the total interaction energies predicted from CLIFF with the

SAPT reference energies in Figure 7. For all databases, particularly those with radial scans, our

errors grow signi cantly for dimers with positive (repulsive) interaction energies. Even for the

SSI database, large errors are found for the few highly repulsive con gurations shown at > 10

kcal mol�1. Aside from the highly repulsive con gurations, we see that CLIFF can reliably predict

total interaction energies for a diverse set of interactions with quantitative accuracy. Additionally,

we emphasize that all predictions are done using a single parameter set, and higher accuracy can

be achieved in principle by using these test dimers in the tting process. Such a procedure may

be warranted for future applications of CLIFF on condensed systems with one or few different
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TABLE III. MAE, RMSE, and maximum errors for component and total energies of various datasets com-

puted with CLIFF. All statistics are computed with respect to SAPT2+(3)d MP2/aug-cc-pVTZ reference

values. All values are in kcal mol�1.

S66x8 SSI X40x8 NBC10

MAE 0.507 0.328 0.467 0.650

electrostatics RMSE 0.822 0.481 0.905 1.176

MAX 4.739 8.883 5.642 4.798

MAE 0.695 0.507 0.374 0.854

exchange RMSE 1.149 0.770 0.627 1.480

MAX 5.844 13.954 2.725 6.124

MAE 0.264 0.091 0.144 0.138

induction RMSE 0.574 0.246 0.302 0.243

MAX 4.734 3.928 1.633 1.171

MAE 0.206 0.109 0.139 0.190

dispersion RMSE 0.303 0.158 0.273 0.297

MAX 1.381 1.664 1.518 0.924

MAE 0.703 0.281 0.614 0.492

total RMSE 1.115 0.547 1.176 0.939

MAX 4.366 10.031 7.431 6.408

molecules. In general, we prefer optimization of a parameter set that is capable of treating many

different interaction types reasonably well over one that is narrower in scope but with higher

accuracy within that scope.

To understand some sources of error in our predictions of the total interaction energy for these

databases, we rst look at errors in our component energies. Both the induction and the dispersion

components show very low errors consistent across all databases. In particular, our largest MAE

for dispersion is only 0.206 kcal mol�1 for the S66x8 database, followed by a 0.19 kcal mol�1 for

NBC10. Such small errors in dispersion for NBC10 is especially encouraging since this database
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TABLE IV. Total interaction energy MAEs and RMSEs computed using a variety of force elds, semi-

empirical methods, and sSAPT0/jun-cc-pVDZ on the neutral subset of SSI with (All) and without (CNOH)

sulfur-containing residues. All statistics are computed with respect to DW-CCSD(T**)-F12/aug-cc-

pV(d+D)Z. All data aside from CLIFF and IPML values were taken from the BioFragment Database

(BFDb).95 All values are in kcal mol�1.

CNOH All

MAE RMSE MAE RMSE

sSAPT0/jDZ 0.460 0.514 0.473 0.566

AM1 1.548 2.152 1.547 2.149

PM6-DH2 0.266 0.533 0.278 0.572

GAFF 0.620 1.627 0.620 1.598

CGenFF 0.308 1.060 0.319 1.066

IPML 0.387 0.680

CLIFF 0.266 0.489 0.272 0.516

with respect to reference SAPT2+(3)d MP2/aug-cc-pVTZ data. In the left half of the gure, we

show the component predictions of IPML, and in the right half we show the same predictions

from CLIFF, all on S66x8, NBC10, and SSI dimers. We leave out all S-containing molecules

in this gure to enable comparisons with IPML, though those dimers are included in all other

tables and gures. For these databases, we see that CLIFF shows very good correlation for all

components, although the magnitudes of induction and exchange-repulsion are over- and under-

predicted at large magnitudes, respectively. Despite this small degree of systematic error, in gen-

eral the component energies are suf ciently accurate as to be useful for interpreting and classifying

intermolecular interactions and remain minimally reliant on error cancellations for computing total

interaction energies.

Parameters in IPML are t to CCSD(T)/CBS total interaction energies, so its components are

not guaranteed to match any SAPT data. Nonetheless, the electrostatic component in IPML con-

tains no global parameters and does reasonably well, though tends to overpredict the magnitude

of interactions, especially at shorter range. Interestingly, the induction ts nearly to zero for all

dimers, and systematic deviations in exchange and dispersion are also present and rather large.

The components in IPML cannot be used for qualitative analysis, but the total energies they pre-

24



dict are remarkably accurate for S66x8 and SSI, where they produce MAEs with respect to DW-

CCSD(T**)-F12/aug-cc-pVTZ100 of 0.4 kcal mol�1 and 0.387 kcal mol�1, respectively, using

the S22 dataset for parameter tting.55 While very good, this result is in some ways surprising

given that IPML predicts no signi cant induction, which is very important for hydrogen-bonded

systems.

Both CLIFF and IPML perform favorably for total interaction energies of SSI in comparison

to DW-CCSD(T**)-F12/aug-cc-pVTZ benchmark data. In Table IV, we compare total interaction

energies of the neutral subset of SSI computed with CLIFF, IPML, and a variety of other force

elds, semi-empirical methods, and SAPT0/jun-cc-pVDZ. The semi-empirical methods chosen

are the common Austin Model 1 (AM1)101 and the Parameterized Model 6 with dispersion and

hydrogen-bonding corrections (PM6-DH2).102 We also compare to the Generalized Amber Force

Field (GAFF)103 and the CHARMM General Force Field (CGenFF).104,105 Aside from IPML and

CLIFF, all data were taken from the publicly-available BioFragment Database (BFDb).95 To en-

able comparisons with IPML, we present MAEs and RMSEs of the total energies of the subset of

SSI containing only C, N, O, and H. For the remaining methods, we also compare the full neutral

subset of SSI inclusive of sulfur-containing monomers. CLIFF performs remarkably well in com-

parison to all other methods, showing the lowest MAEs and RMSEs for both SSI sets. Such good

agreement with the coupled-cluster reference suggests that our high-level SAPT reference data

used to obtain global parameters is well-chosen for these neutral dimers. The performance of both

CGenFF and GAFF in computing these gas phase interaction energies is also impressive, consid-

ering that both methods are t to condensed phase properties rather than to interaction energies as

is done with IPML and CLIFF. CGenFF and IPML both show low MAEs for these systems, but

interestingly have fairly high RMSEs indicative of an increased presence of large errors in some

dimers. Large errors typically occur when error cancellation is poor, and the low RMSE seen

for CLIFF suggests that its accuracy is less dependent on cancellation of errors in comparison to

the other methods shown. Interestingly, CLIFF, IPML, CGenFF, and PM6-DH2 all show some-

what lower MAEs compared to SAPT0/jDZ, although CLIFF is the only of these methods with

a comparatively lower RMSE. Not only does CLIFF outperform all methods in this comparison,

but, as previously shown, it does so with accurate component energies and without any required

reparameterization and a modest number of distinct atom types.
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TABLE V. MAEs and RMSEs for component and total energies of a combined S66x8, SSI, NBC10 and

X40x8 dataset computed using atomic parameters from ML and AIM methods. All statistics are computed

with respect to SAPT2+(3)d MP2/aug-cc-pVTZ reference values. All values are in kcal mol�1.

ML MBIS

electrostatics MAE 0.389 0.416

RMSE 0.653 0.759

exchange MAE 0.555 0.504

RMSE 0.904 0.859

induction MAE 0.125 0.147

RMSE 0.324 0.432

dispersion MAE 0.133 0.128

RMSE 0.209 0.203

total MAE 0.384 0.444

RMSE 0.748 0.940

C. Sensitivity of Functional Forms to Atomic Parameters

While prediction of component energies appears to be accurate, our use of MLmodels to gener-

ate atomic parameters may be introducing small errors. Errors in component energies come from

three sources: inaccurate atomic parameters, overly-approximate functional forms, and poorly-

obtained global parameters. While the accuracy of the reference AIM quantities we use to train

our models remains somewhat of an open question, we can at least test the degree to which small

errors introduced by the MLmodels affect the component energies. We use the term “AIM” here to

refer to both MBIS and Hirshfeld routines used to generate reference atomic properties for CLIFF.

To empirically test the propagation of errors of our machine-learned atomic parameters, we

compare errors in component and total energies for S66x8, SSI, NBC10, and X40x8 obtained from

CLIFF using atomic parameters computed either with ML or directly from ab initio densities. In
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Table V, we show MAEs, RMSEs, and MAX errors with respect to SAPT2+(3)d MP2/aug-cc-

pVTZ averaged over the four datasets, which were chosen so that all elements (C, N, O, H, S, F,

Cl, Br) in CLIFF are represented. We see that both sources of atomic parameters give effectively

identical statistics, with an absolute difference in total energy MAE of only 0.040 kcal mol�1.

Differences in component statistics are similarly small, with the largest difference being only

0.051 kcal mol�1, seen in exchange-repulsion. Based on this data, we can effectively conclude

that the reported errors in our ML models for atomic properties do not appear in a signi cant way

in either our total or component interaction energies.

An important aspect of this experiment is that the standard CLIFF global parameters are used,

and they are all t using the ML atomic parameters. Therefore, it is reasonable to assume that

there could be some bias in CLIFF that would favor using ML atomic parameters over the ones

derived using AIM procedures directly from ab initio densities. Indeed, we do see that the MAEs

and RMSEs are in general lower when using ML compared to AIM. This difference is very small,

however, so we can con dently conclude that our ML atomic parameters are suf ciently accurate.

Furthermore, the seeming interchangeability between ML and AIM parameters in CLIFF implies

that our global parameters are not masking signi cant de ciencies in our ML parameters.

D. p � p and CH�p potential energy curves

Prediction of interaction energies for non-covalently bound dimers involving aromatic p sys-

tems is a notoriously dif cult problem for force elds.81,82,90,106,107 Not only do these types of

dimers exhibit a typically strong attractive force from dispersion interactions, but charge pene-

tration can also introduce a signi cant stabilizing effect at short range.7 Force elds that do not

explicitly treat charge penetration thus rely on fortuitous error cancellations and overestimations

of dispersion to obtain reasonable descriptions of p � p and CH�p interactions.107,108 CLIFF

explicitly treats charge penetration using the damped multipole model introduced by Rackers et

al.,69 which has been shown to reproduce SAPT2+ electrostatic energies for benzene dimers and

stacked DNA base pairs.69 To further test the accuracy of CLIFF, and in particular the performance

of our parameterization of the electrostatic functional form, we apply CLIFF to the sandwich, T-

shaped, and parallel-displaced benzene dimer con gurations in addition to the methane-benzene

dimer. For each dimer, we compute potential energy curves using rigid monomers, and the parallel-

displaced con guration has a constant vertical inter-monomer separation of 3.4 Å. All molecular
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FI G. 9. T ot al i nt er a cti o n e n er gi es ( k c al m ol − 1 ) of t h e s a n d wi c h, T-s h a p e d, a n d p ar all el dis pl a c e d b e n-

z e n e di m er c o n fi g ur ati o ns a n d a m et h a n e- b e n z e n e c o m pl e x all al o n g a r a di al c o or di n at e. We us e a v er-

ti c al dis pl a c e m e nt of 3. 4 Å f or t h e p ar all el dis pl a c e d b e n z e n e di m er. I n t h e l e g e n d, S A P T r ef ers t o

S A P T 2 +( 3) δ M P 2/ a u g- c c- p V T Z.

c o or di n at es a n d r ef er e n c e C C S D( T)/ C B S, A M B E R, a n d C H A R M M v al u es ar e t a k e n fr o m R ef

1 0 7.

I n Fi g ur e 9, w e s h o w t h e p ot e nti al e n er g y c ur v es f or t h e f o ur di m ers c o m p ut e d usi n g C LI F F,

S A P T 2 +( 3) δ M P 2/ a u g- c c- p V T Z, I P M L, A M B E R, C H A R M M, a n d C C S D( T)/ C B S. S o m e w h at

dis a p p oi nti n gl y, n o n e of t h e e m piri c al m o d els, i n cl u di n g C LI F F, tr e at t h es e f o ur s yst e ms wit h

e q u al a c c ur a c y, d es pit e e x pli cit tr e at m e nts of c h ar g e p e n etr ati o n i n b ot h C LI F F a n d I P M L. I n

g e n er al, I P M L s h o ws n o n c o nti n u o us p ot e nti al e n er g y c ur v es t h at ar e q u alit ati v el y wr o n g f or t h e

s a n d wi c h a n d p ar all el- dis pl a c e d c o n fi g ur ati o ns, t h o u g h q uit e a c c ur at e f or t h e T-s h a p e d b e n z e n e

di m er a n d t h e m et h a n e- b e n z e n e di m er. T his n o n- c o nti n uit y is a r es ult of s hifti n g l o c al r ef er-

e n c e fr a m es, a n d c a n i n pri n ci pl e b e c ur e d wit h a diff er e nt d e fi niti o n of l o c al a x es. A M B E R a n d

C H A R M M p erf or m r e as o n a bl y w ell f or t h e s a n d wi c h di m er, b ut t h e y si g ni fi c a ntl y o v er bi n d t h e
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T-shaped and methane-benzene dimers. These non-polarizable force- elds also converge to the

correct asymptotic limit rather slowly, where close agreement with CCSD(T)/CBS is seen only at

very large intermolecular separations.

CLIFF shows good agreement with CCSD(T)/CBS and SAPT data near equilibrium inter-

molecular distances all the way through dissociation, though it underbinds the T-shaped and

methane-benzene dimers. Since CLIFF is parameterized with respect to SAPT, agreement be-

tween CLIFF and CCSD(T)/CBS is only really possible when our chosen SAPT method itself

agrees well with CCSD(T)/CBS. Based on previous analyses,91 this agreement is expected to be

good for the organic, neutral molecules in this study. For the T-shaped and methane-benzene

dimers in particular, CLIFF becomes far too repulsive at short range, similar to AMBER and

CHARMM. This over-repulsion at short range predicted with CLIFF is consistent with the in-

creased errors for repulsive con gurations shown previously. While CLIFF performs very well

even at short range for the sandwich con guration, it fails for the parallel-displaced con guration

at a short interplanar distance of 3.4 Å. Interestingly, CLIFF, AMBER, and CHARMM all show

a similarly broad potential for the parallel-displaced con guration, though the barrier height is

somewhat more accurately predicted in CLIFF. For all four dimers, CLIFF on average matches

reference CCSD(T)/CBS reference data better than the other empirical models shown, though in

some cases CLIFF only does marginally better than much simpler non-polarizable models.

To identify sources of error in these systems, we compare component energies computed using

CLIFF and SAPT2+(3)d MP2/aug-cc-pVTZ for the sandwich, T-shaped, and parallel-displaced

dimer con gurations in Figure 10. For the sandwich dimer, good agreement in total interaction

energies is achieved at short range by a cancellation of errors between an underestimated exchange

energy and an overestimated (in an absolute sense) electrostatic energy. The non-systematic nature

of the errors in exchange combined with the incorrect shape of the exchange component curve

suggest that some errors related to our neglect of anisotropy may be present. Interestingly, the

electrostatics in the T-shaped con guration agree quite well at all displacements, but the exchange

energy is now overestimated, causing the observed overbinding, though this overestimation is

relatively modest.

For the parallel-displaced con guration, electrostatics are predicted to be near-zero, suggesting

an incomplete treatment of charge penetration effects. Additionally, the exchange repulsion is too

small and too broad, causing a similarly broad total energy curve. Encouragingly, our induction

and dispersion components agree very well with the SAPT reference for all con gurations studied.
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FIG. 11. Interaction between a chlorinated ligand fragment and a model binding pocket from the crystallo-

graphic structure 2UZU.

charge overlap is modest as seen with the T-shaped con guration. In cases of signi cant charge

overlap, such as the sandwich con guration at very short range, our charge penetration model

seems to more signi cantly underestimate stabilization effects. This underestimation points to

some combination of de ciencies in the damping functions employed and the parameterizations

used therein.

E. Protein-Ligand Interactions

As a nal test, we use CLIFF to compute the interaction energies of a variety of protein-ligand

complexes for which computation of SAPT0/jun-cc-pVDZ data is possible. To enable compar-

isons with SAPT0/jun-cc-pVDZ, we have generated a set of global parameters t with respect to

SAPT0/jun-cc-pVDZ computations on the same set of dimers used in higher-level CLIFF ts. Not

only do these comparisons allow us to evaluate the performance of CLIFF on larger molecular

systems, but it also lets us indirectly compare differences in low-level vs high-level SAPT when

applied to large proteins. We will refer to these two parameterizations as CLIFF0 and CLIFF,

where parameterizations come from SAPT0/jun-cc-pVDZ and SAPT2+(3)d MP2/aug-cc-pVTZ,

respectively.
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TABLE VI. DDE computed for a set of ve kinase, four fXa, and one LFA-1 binding pockets using

SAPT0/jun-cc-pVDZ, CLIFF0, and CLIFF. We de ne DDE as the change in interaction energy when re-

placing a chloro- group with a methyl group on the ligand. We identify each protein pocket using the PDB

label. All units are in kcal mol�1.

System SAPT0 CLIFF0 CLIFF

4YHT �1:89 �2:01 �2:27

2JDS 0:63 1:37 0:59

2OJF 1:36 2:09 1:17

2UZU 0:62 1:53 0:74

4YFF 0:21 0:46 �0:07

2PR3 �0:10 �0:20 �1:70

2W26 0:72 0:50 �1:19

3ENS �0:61 1:32 �0:10

2CJI �0:38 �0:02 �1:43

2O7N 2:79 3:65 2:91

Our protein-ligand test set is designed to test the ability of CLIFF and CLIFF0 to match refer-

ence SAPT0 data in predicting relative binding strengths between two similar ligands in the same

binding region. This test set is made up of a variety of binding pockets from ve kinases, four

factor Xa (fXa) substructures, and one from a LFA-1 derived hydrophobic pocket. To each of

the kinases and fXa substructures, we associate two ligands that differ only by substitution of a

chlorine with a methyl group. For the LFA-1 system, the ligand substitution is between bromine

and a cyano group. The protein-ligand systems contain between 144 and 228 atoms, and we show

the 2UZU kinase binding pocket with chlorinated ligand as a representative example in Figure 11,

which is used in this set. We then de ne the change in interaction energy, DDE as the difference in

gas phase interaction energy between the methylated ligand and the chlorinated ligand for the ki-

nase and fXa systems. For LFA-1, we de ne DDE as the difference in interaction energy between

the cyanated ligand and the brominated ligand.

We report the DDE for each protein subsystem in Table VI, computed using SAPT0/jun-cc-

pVDZ, CLIFF0, and CLIFF, and we label each system using the PDB ID from which each sub-

system was derived. In all but one case, CLIFF0 is able to produce the same ligand ordering as

32



− 4 0 − 3 0 − 2 0 − 1 0 0
− 4 0

− 2 0

0

S
A

P
T
0/
j
u
n-

cc
-
p

V
D

Z El e ctr o st ati c s

C LI F F

C LI F F 0

2 0 4 0

2 0

4 0

E x c h a n g e

− 1 5 − 1 0 − 5 0
C LI F F

− 1 5

− 1 0

− 5

0

S
A

P
T
0/
j
u
n-

cc
-
p

V
D

Z I n d u cti o n

− 6 0 − 4 0 − 2 0
C LI F F

− 6 0

− 4 0

− 2 0

Di s p er si o n

FI G. 1 2. C orr el ati o n b et w e e n i nt er a cti o n e n er g y c o m p o n e nts ( k c al m ol − 1 ) c o m p ut e d wit h S A P T 0/j u n- c c-

p V D Z, C LI F F 0, a n d C LI F F o n t h e s et of 2 0 pr ot ei n-li g a n d c o m pl e x es. A 1 k c al m ol − 1 err or wi n d o w is

hi g hli g ht e d i n bl u e.

S A P T 0. F urt h er m or e, C LI F F 0 e v e n s h o ws s o m e q u a ntit ati v e a gr e e m e nt wit h S A P T 0, wit h h alf

of t h e s yst e ms gi vi n g l ess t h a n 0. 3 k c al m ol − 1 a bs ol ut e err or wit h r es p e ct t o S A P T 0, c o m p ar e d

t o a 0. 6 k c al m ol− 1 m e a n a bs ol ut e err or. T h e 3 E N S f X a s yst e m s h o ws t h e l ar g est err or of n e arl y

2 k c al m ol − 1 , a n d als o r es ults i n C LI F F 0 i n c orr e ctl y pr e di cti n g t h e pr ef err e d li g a n d. I n g e n er al,

h o w e v er, t h e C LI F F 0 r es ults a p p e ar t o b e q uit e r eli a bl e i n r e pr o d u ci n g c o n cl usi o ns m a d e usi n g

S A P T 0 d at a. U nli k e C LI F F 0, t h e C LI F F r es ults ar e n ot c o nstr u ct e d t o m at c h t h os e of S A P T 0,

a n d i n c ert ai n c as es si g ni fi c a nt dis a gr e e m e nts aris e. I n 4 Y F F a n d 2 W 2 6, f or e x a m pl e, C LI F F

pr e di cts t h e c hl ori n at e d li g a n ds t o h a v e a m or e f a v or a bl e i nt er a cti o n c o m p ar e d t o t h e m et h yl at e d

li g a n ds. F or t h e l att er c as e i n p arti c ul ar, C LI F F pr e di cts a 1. 1 9 k c al m ol− 1 st a bili z ati o n u p o n

c hl ori n ati o n, c o m p ar e d t o t h e 0. 7 2 k c al m ol − 1 d est a bili z ati o n pr e di ct e d b y S A P T 0. T h e o bs er v e d

r eli a bilit y of C LI F F 0 wit h r es p e ct t o S A P T 0 d o es i m pl y t h at C LI F F, b ei n g fit wit h r es p e ct t o

S A P T 2 +( 3) δ M P 2/ a u g- c c- p V T Z, m a y b e pr o d u ci n g a m or e a c c ur at e r es ult t h a n S A P T 0.

T o b e n c h m ar k t h e p erf or m a n c e of C LI F F 0 a n d C LI F F o n t h es e s yst e ms, w e pl ot t h e c orr el a-

ti o n of t h eir c o m p o n e nt e n er gi es i n Fi g ur e 1 2. F or C LI F F 0, w e s e e t h at t h e err ors wit h r es p e ct

t o S A P T 0 i n i n d u cti o n a n d dis p ersi o n ar e l ar g el y wit hi n a 1 k c al m ol− 1 err or wi n d o w, a n d t h at

el e ctr ost ati cs a n d e x c h a n g e s h o w sli g htl y l ar g er err ors b ut still g o o d c orr el ati o n. F or el e ctr ost at-

i cs, e x c h a n g e, a n d i n d u cti o n, t h e C LI F F c o m p o n e nt e n er gi es als o s e e m t o c orr el at e f airl y w ell

wit h S A P T 0, s u g g esti n g t h at S A P T 0/j u n- c c- p V D Z a n d S A P T 2 +( 3) δ M P 2/ a u g- c c- p V T Z pr o d u c e

si mil ar v al u es f or t h es e c o m p o n e nts. F or dis p ersi o n, h o w e v er, t h e C LI F F pr e di cti o ns ar e s yst e m at-
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− 5 0 − 4 0 − 3 0 − 2 0 − 1 0

C LI F F

− 5 0

− 4 0

− 3 0

− 2 0

− 1 0

S
A

P
T
0/
j
u
n-

cc
-
p

V
D

Z

C LI F F

C LI F F 0

FI G. 1 3. C orr el ati o n b et w e e n t ot al i nt er a cti o n e n er gi es ( k c al m ol − 1 ) c o m p ut e d wit h S A P T 0/j u n- c c- p V D Z,

C LI F F 0, a n d C LI F F o n t h e s et of 2 0 pr ot ei n-li g a n d c o m pl e x es. A 1 k c al m ol − 1 err or wi n d o w is hi g hli g ht e d

i n d ar k bl u e, a n d a 1 0 % err or wi n d o w is hi g hli g ht e d i n li g ht bl u e.

i c all y l ar g er i n m a g nit u d e c o m p ar e d t o b ot h C LI F F 0 a n d S A P T 0, wit h t h e l ar g est diff er e n c e b ei n g

o v er 1 0 k c al m ol − 1 .

C LI F F’s pr e di cti o n of hi g h er- m a g nit u d e dis p ersi o n c o m p ar e d t o S A P T 0 a n d C LI F F 0 als o r e-

s ults i n t ot al i nt er a cti o n e n er gi es b ei n g si mil arl y l ar g er i n m a g nit u d e, as s h o w n i n Fi g ur e 1 3.

A cr oss a f airl y br o a d e n er g y r a n g e, C LI F F 0 us u all y pr o d u c es l ess t h a n 1 0 % err or c o m p ar e d t o

S A P T 0 i nt er a cti o n e n er gi es, a n d at ti m es s h o ws l ess t h a n a 1 k c al m ol − 1 err or. C LI F F pr e-

di cts m or e st a bl e pr ot ei n-li g a n d i nt er a cti o ns c o m p ar e d t o S A P T 0 a n d C LI F F 0, c o nsist e nt wit h

t h e l ar g er pr e di ct e d c o ntri b uti o ns fr o m dis p ersi o n i nt er a cti o ns. B as e d o n t h e d e m o nstr at e d a c c u-

r a c y of C LI F F 0 a n d C LI F F, it is li k el y t h at S A P T 0 u n d er bi n ds t h es e c o m pl e x es t o s o m e e xt e nt d u e

t o n e gl e ct e d dis p ersi o n i nt er a cti o ns. A d diti o n all y, t h e u n d er esti m at e d dis p ersi o n i n S A P T 0 is n ot

u nif or m a cr oss t his t est s et, i m pl yi n g t h at it m a y n ot al w a ys b e r eli a bl e i n r a n k- or d eri n g li g a n ds.

I V. C O N C L U SI O N S

We h a v e pr es e nt e d a n e w i nt er m ol e c ul ar f or c e fi el d d esi g n e d t o h a v e tr a nsf er a bl e a c c ur a c y i n

c o m p uti n g b ot h c o m p o n e nt a n d t ot al i nt er a cti o n e n er gi es f or di v ers e i nt er a cti o n t y p es e n c o u n-

t er e d i n or g a ni c c h e mistr y a n d dr u g dis c o v er y a p pli c ati o ns. O ur m o d el, C LI F F, a c hi e v es t his

tr a nsf err a bl e a c c ur a c y t hr o u g h a c o m bi n ati o n of m a c hi n e l e ar ni n g a n d a d v a n c e d f u n cti o n al f or ms

fr o m s y m m etr y a d a pt e d p ert ur b ati o n t h e or y ( S A P T) b as e d f or c e fi el ds. T h e tr a nsf er a bilit y i n

C LI F F is a c hi e v e d fr o m its a d o pti o n of f u n cti o n al f or ms t h at tr a diti o n all y us e q u a ntiti es d eri v e d
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from molecular densities to reduce the amount of parameter tting required. Following IPML, the

applicability of CLIFF is further increased by machine-learning these atomic parameters, so that

computation of any new, potentially large molecule can be done nearly automatically. Lastly, good

accuracy for many diverse large and small molecules is achieved by using advanced functional

forms from SAPT-based force elds.26,28,69 Furthermore, we reliably obtain accurate component

and total energies by tting our modest number of global parameters to high-level SAPT data.

We tested CLIFF on diverse small-molecule databases, where we achieved MAEs of at worst

0.70 kcal mol�1 for the radial scans of 66 van der Waals dimers in the S66x8 test set, and at

best 0.28 kcal mol�1 for the neutral-neutral interaction energies of the sidechain-sidechain inter-

actions (SSI) test set, derived from close contacts in the protein databank (PDB). For short-range,

repulsive con gurations, CLIFF produced its largest errors, and tended to overbind molecules in

this energetic region, at times substantially. From equilibrium intermolecular distances to disso-

ciation, conversely, CLIFF matches reference high-level quantum mechanical SAPT interaction

total and component energies with consistently low errors. In applications to ligands in protein

pockets, where structures are usually desired in an optimized con guration, CLIFF is thus ex-

pected to perform favorably, as these systems require accurate computation of numerous long-

range interactions in addition to a smaller number of dominant contacts. Our tests on a variety

of 20 protein-ligand interactions support this notion, where CLIFF0 was able to reliably repro-

duce SAPT0 reference data. Moreover CLIFF's parameterization to higher-level SAPT makes it

a very useful tool in studying these systems, in that it provides potentially more accuracy than

SAPT0. Lastly, CLIFF represents one of the only ways to routinely achieve the accuracy of ab

initio density-based, SAPT-based force elds for systems containing hundreds of atoms without

requiring massive ab initio computations intractable for many applications.

Despite these initial successes of CLIFF, several challenges persist that need to be addressed in

future developments. Perhaps the most signi cant limitation is that CLIFF, like IPML, can only

be applied to neutral dimers. Extension of CLIFF to charged systems would require nontrivial

changes to the parameterization scheme, formulation of machine learning models, and potentially

even the functional forms. While our reference SAPT data is reliable for the systems in this

work, it is unclear if the same reliability of the reference data can be expected for charged dimers.

Additionally, our application of CLIFF to dimers involving benzene in Section III.D highlighted a

few de ciencies in the current model. While our model for electrostatics is shown to be accurate

in the larger databases, we see it can underestimate the extent of charge penetration in certain
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cases. From these same tests, we also saw that our model for exchange-repulsion can at times be

inaccurate, likely due to our neglect of anisotropy in our overlap-based formulation.

CLIFF, like IPML, represents an intermediate approach between pure ML potentials and ab

initio parameterized force elds. Instead of using pure ML approaches to compute energy com-

ponents directly, we use the advanced physics-based functional forms typical of ab initio force

elds. However, instead of labor-intensive parameterization, or parameterization based on frag-

ment quantum mechanical computations, we obtain atomic parameters by ML models that need

only monomer geometries. Due to the increasing accuracy of ML potenticals,51 however, a fu-

ture direction of force eld development in CLIFF may be to include machine-learned interaction

energy models for some components, particularly for cases where the existing functional forms

are least effective. Alternatively, improvements to the physical functional forms would also sig-

ni cantly help the model, particularly corrections for anisotropy.27 Aside from improvements to

CLIFF that result in higher accuracy, we also see a number of practical directions for CLIFF devel-

opment. Most notably are the replacement of the KRR models with much faster neural-network

based models, and adaptation of such models to enable prediction on charged molecules. With

the speed of neural-networks, existing intramolecular force elds could use CLIFF as an inter-

molecular potential in molecular dynamics simulations to compute properties beyond interaction

energies.

SUPPLEMENTARYMATERIAL

The supplementary material includes additional structural analyses on both monomer and dimer

databases. We also report performance of our ML models in predicting atomic multipoles, global

parameters used for CLIFF0, and all interaction energies used in the energy scans of the benzene

dimer con gurations and the benzene-methane complex. Total and component interaction energies

for all protein-ligand complexes are also provided from SAPT0/jun-cc-pVDZ, CLIFF, and CLIFF0

computations. We include geometries of all protein-ligand complexes, all dimers used in tting

global parameters, and all monomers used in ML model training. Finally, reference interaction

energies for our dimer database and reference atomic properties for the monomer database are

also provided.
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82K. Strutyński, J. A. N. F. Gomes, and M. Melle-Franco, J. Phys. Chem. A 118, 9561 (2014).
83Y. Liu and I. William A Goddard, J. Phys. Chem. Lett. 1, 2550 (2010).
84K. U. Lao and J. M. Herbert, J. Phys. Chem. Lett. 3, 3241 (2012).
85M. Kim, W. J. Kim, T. Gould, E. K. Lee, S. Lebègue, and H. Kim, J. A. C. S. 142, 2346 (2020).
86K. T. Tang and J. P. Toennies, J. Chem. Phys. 80, 3726 (1998).
87X. Chu and A. Dalgarno, J. Chem. Phys. 121, 4083 (2004).
88B. Thole, Chem. Phys. 59, 341 (1981).
89P. Y. Ren and J. W. Ponder, J. Phys. Chem. B 107, 5933 (2003).
90T. S. Totton, A. J. Misquitta, and M. Kraft, J. Chem. Theory Comput. 6, 683 (2010).
91T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140,

094106 (2014).
92J. Rezác, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 2427 (2011).
93J. Rezác, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 3466 (2011).
94J. Rezác, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 10, 1359 (2014).
95L. A. Burns, J. C. Faver, Z. Zheng, M. S. Marshall, D. G. A. Smith, K. Vanommeslaeghe, A. D.

MacKerell Jr., K. M. Merz Jr., and C. D. Sherrill, J. Chem. Phys. 147, 161727 (2017).
96J. Rezác, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 8, 4285 (2012).
97D. G. A. Smith, L. A. Burns, K. Patkowski, and C. D. Sherrill, J. Phys. Chem. Lett. 7, 2197

(2016).
98L. A. Burns, A. Vázquez-Mayagoitia, B. G. Sumpter, and C. D. Sherrill, J. Chem. Phys. 134,

084107 (2011).
99M. S. Marshall, L. A. Burns, and C. D. Sherrill, J. Chem. Phys. 135, 194102 (2011).
100M. S. Marshall and C. D. Sherrill, J. Chem. Theory Comput. 7, 3978 (2011).
101M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. A. C. S. 107, 3902 (2002).
102M. Korth, M. Pitonák, J. Rezác, and P. Hobza, J. Chem. Theory Comput. 6, 344 (2010).
103D. A. Case, T. A. Darden, T. E. C. III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, R. C.

Walker, W. Zhang, K. M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A. W.

41



Götz, I. Kolossváry, K. F. Wong, F. Paesani, J. Vanicek, R. M. Wolf, J. Liu, X. Wu, S. R.

Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D. R. Roe,

D. H. Mathews, M. G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov,

A. Kovalenko, and P. Kollman, University of California, San Francisco (2012).
104K. Vanommeslaeghe, E. P. Raman, and A. D. MacKerell, J Chem Inf Model 52, 3155 (2012).
105B. R. Brooks, C. L. Brooks, A. D. MacKerell, L. Nilsson, R. J. Petrella, B. Roux, Y.Won, G. Ar-

chontis, C. Bartels, S. Boresch, A. Ca isch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer,

J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W.

Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu,

W. Yang, D. M. York, and M. Karplus, J. Comp. Chem. 30, 1545 (2009).
106A. T. Macias and A. D. Mackerell, J. Comp. Chem. 26, 1452 (2005).
107C. D. Sherrill, B. G. Sumpter, M. O. Sinnokrot, M. S. Marshall, E. G. Hohenstein, R. C. Walker,

and I. R. Gould, J. Comp. Chem. 30, 2187 (2009).
108T. M. Parker and C. D. Sherrill, J. Chem. Theory Comput. 11, 4197 (2015).

42


