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Abstract. A classic approach to MPC uses preprocessed multiplication
triples to evaluate arbitrary Boolean circuits. If the target circuit features
conditional branching, e.g. as the result of a IF program statement, then
triples are wasted: one triple is consumed per AND gate, even if the output
of the gate is entirely discarded by the circuit’s conditional behavior.

In this work, we show that multiplication triples can be re-used across
conditional branches. For a circuit with b branches, each having n AND

gates, we need only a total of n triples, rather than the typically required
b · n. Because preprocessing triples is often the most expensive step in
protocols that use them, this significantly improves performance.

Prior work similarly amortized oblivious transfers across branches in the
classic GMW protocol (Heath et al., Asiacrypt 2020, [HKP20]). In ad-
dition to demonstrating conditional improvements are possible for a dif-
ferent class of protocols, we also concretely improve over [HKP20]: their
maximum improvement is bounded by the topology of the circuit. Our
protocol yields improvement independent of topology: we need triples
proportional to the size of the program’s longest execution path, regard-
less of the structure of the program branches.

We implemented our approach in C++. Our experiments show that we
significantly improve over a “näıve” protocol and over prior work: for a
circuit with 16 branches and in terms of total communication, we im-
proved over näıve by 12× and over [HKP20] by an average of 2.6×.

Our protocol is secure against the semi-honest corruption of p−1 parties.
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1 Introduction

Secure Multiparty Computation (MPC) enables untrusting parties to compute a
function of their private inputs while revealing only the function output. In this
work, we consider semi-honest MPC protocols that use the classic trick of Beaver
to evaluate Boolean circuits by preprocessing ‘multiplication triples’ [Bea92].

In such protocols, XOR gates are ‘free’ (i.e., require no interaction), but each
AND gate consumes a distinct multiplication triple. To generate these triples, the



parties use a more expensive MPC protocol that can be run ahead of time in
a preprocessing phase. The communication in this phase is proportional to the
number of triples and is usually the performance bottleneck. Hence, if we reduce
the number of required triples, then we significantly improve performance.

Because one triple is needed per AND gate, protocols waste significant work
if the computed function has conditional behavior, e.g. as the result of an IF

program statement. Each gate requires a distinct triple, even if the output of
the gate is entirely discarded by the function’s conditional behavior.

Our protocol re-uses multiplication triples across conditional branches. A sin-
gle triple can support any number of AND gates, so long as the gates occur in
mutually exclusive program branches. This re-use does require that the parties
hold additional correlated randomness, but the parties can generate this ran-
domness efficiently. Our approach greatly decreases total communication and
hence improves performance.

1.1 High Level Intuition

Multiplication triples typically cannot be re-used (Section 2.5 reviews multipli-
cation triples in detail): triples are essentially one-time-pads on cleartext values
in the circuit: since no strict subset of parties knows the values in the triple, it
is secure to use the triple to mask cleartext values. However, if we use the same
triple for two different gates, then we violate security. We can work around this.

Consider two conditionally composed circuits C0 and C1, both with n AND

gates. For sake of example, suppose C0 is the active branch, but suppose the
parties do not know and should not learn this fact. We re-use the same triples
to evaluate gates in both C0 and C1 by carefully applying secret shared masks
to the triples. For the inactive branch C1, the parties mask the shares with
XOR shares of uniform masks, randomizing the triples and preventing us from
breaking the security of one-time-pad. By randomizing the triples, we violate
the correctness of AND gates on the inactive branch, but this is of no concern: the
output of each inactive AND gate is ultimately discarded. For the active branch
C0, the parties use the triples ‘as is’, meaning the active branch is evaluated
normally. Of course, the parties should not know which branch is inactive, so
from the perspective of the parties it should appear plausible that either branch
could have used randomized triples. To achieve this, for the active branch the
parties also XOR masks onto the triples, but in this case each mask is a sharing
of zero: hence the XORing is a no-op.

The problem of amortizing triples across branches thus reduces to the prob-
lem of generating secret shared masks, both uniform and ‘all-zero’. We present
techniques for efficiently generating these masks, the most general of which is
based on oblivious vector-scalar multiplication, achieved by a small number of
1-out-of-2 oblivious transfers. The crucial point is that the protocols for generat-
ing masks require far less communication than protocols for generating triples.1

Thus, we decrease communication and improve performance.

1 We emphasize communication improvement because multiplication triples are of-
ten constructed from communication-expensive oblivious transfers (OTs). Silent
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1.2 Advantage over [HKP20]

Recent work showed an improvement similar to ours: [HKP20] showed that obliv-
ious transfers can be re-used across conditional branches in the classic GMW
protocol (see Section 2.4 for a review).

However, [HKP20] has one significant disadvantage: their performance im-
provement depends on circuit topology. Efficient GMW implementations mini-
mize latency by organizing circuits into layers of gates. The input wires into each
layer are the outputs of previous layers only, and hence all gates in a particular
layer can be executed simultaneously. This strategy yields latency proportional
to the circuit’s multiplicative depth instead of to the number of gates.

Due to this important optimization, [HKP20]’s performance improvement is
limited by the ‘relative alignment’ of the layers across branches: two branches are
highly aligned if each of their respective layers has a similar number of AND gates.
Their protocol issues oblivious transfers that simultaneously run one gate per
branch and hence cannot optimize gates that occur in different layers. The rela-
tive alignment of branches is dependent on the target application. [HKP20] sug-
gests resorting to compiler technologies to extract more performance.

Our approach does not depend on topology. Instead, we depend only on the
number of AND gates in each branch. The parties require enough triples to han-
dle the maximum number of AND gates across the branches. It is difficult to
analytically quantify our improvement over [HKP20] without a specific applica-
tion in mind, but our experiments show that the improvement is significant. We
ran both approaches across a variety of topologies, and on average we improved
communication by 2.6× (see Section 8). In addition to concretely outperform-
ing [HKP20], our approach also demonstrates that conditional improvement is
possible for a different class of protocols (i.e. those based on triples), and hence
is of independent interest.

1.3 Our Contributions

– Efficient Re-use of Beaver Triples. Our MPC protocol is secure against
the semi-honest corruption of up to p−1 parties. The protocol re-uses triples
across branches and requires a number of triples proportional only to the size
of the longest execution path rather than to the size of the entire circuit.

– Topology-Independent Improvement. Unlike [HKP20], our improve-
ment is independent of the topology of the conditional branches.

– Implementation and evaluation. We implemented our approach in C++

and report performance (see Section 8). For 2PC and a circuit with 16

OT [BCG+19] is an exciting new primitive that largely removes the communication
overhead of OT. The trade off is increased computation: the classic OT extension
of [IKNP03], which uses relatively little computation, is still preferable to Silent
OT in most settings. This said, even if we were to use Silent OT, our improvement
would be beneficial: we greatly reduce the needed number of OTs and hence would
significantly reduce Silent OT computation overhead.
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branches, we improve communication over state-of-the-art [HKP20] on av-
erage by 2.6× and over a standard triple-based protocol (i.e., without our
conditional improvement) by 12×.

2 Preliminaries

2.1 Notation

– p denotes the number of parties.
– b denotes the number of branches.
– Subscript notation associates variables with parties. E.g., ai is a variable

held by party Pi.
– G denotes a pseudo-random generator (PRG).
– κ is the computational security parameter (e.g. 128).
– t denotes the ‘taken’ branch in a conditional, i.e. the branch that is active

during the oblivious execution. t̄ implies an inactive branch.
– Superscript notation associates variables with a particular branch. E.g., x0

is associated with branch 0 while x1 is associated with branch 1.
– ∈$ denotes that the left hand side is uniformly drawn from the right hand

set. E.g., x ∈$ {0, 1} denotes that x is a uniform bit.
– , denotes that the left hand side is defined to be the right hand side.
– We manipulate vectors and bitstrings (i.e., vectors of bits):
• Variables denoting vectors are indicated with bold notation, e.g. a. If

we wish to explicitly write out a vector, we use parenthesized, comma-
separated values, e.g. (a, b, ..., y, z).
• We index vectors with brackets and use 1-based indexing, e.g. a[1].
• When clear from context, n denotes vector length.
• When two bitstrings are known to have the same length, we use ⊕ to

denote the bitwise XOR sum:

a⊕ b = (a[1], ...,a[n])⊕ (b[1], ..., b[n]) , (a[1]⊕ b[1], ...,a[n]⊕ b[n])

• We indicate a bitwise vector scalar product by writing the scalar to the
left of the vector:

ab = a(b[1], ..., b[n]) , (a(b[1]), ..., a(b[n]))

– We manipulate XOR secret shares. Section 2.2 presents our secret share no-
tation and reviews basic properties.

2.2 XOR Secret Shares

Our main contribution is a Beaver-triple based construction for efficient condi-
tional branching. Additionally, we review prior work that is based on the classic
GMW protocol. Both techniques are based on XOR secret shares. Thus, we briefly
establish notation for XOR shares and review their properties.
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An XOR secret sharing held amongst p parties is a vector of bits (x1, ..., xp)
where each party Pi holds xi. We refer to the full vector as a sharing and to the
individual bits held by parties as shares. The semantic value of a sharing (i.e.,
the cleartext value that the sharing represents) is the XOR sum of its shares. If
the semantic value of a sharing (x1, ..., xp) is a bit x, i.e. x1 ⊕ ...⊕ xp = x, then
we use the shorthand JxK to denote the sharing:

JxK , (x1, ..., xp) such that x1 ⊕ ...⊕ xp = x

Typically, sharings are used in a context where no strict subset of parties
knows the semantic value of the sharing. Nevertheless, parties can easily perform
homomorphic linear operations over XOR sharings.

– Parties XOR two sharings by locally XORing their respective shares:

JxK⊕ JyK = (x1, ..., xp)⊕ (y1, ..., yp) Defn. sharing

= (x1 ⊕ y1, ..., xp ⊕ yp) Defn. vector XOR

= Jx⊕ yK XOR commutes, assoc., defn. sharing

– Parties AND a sharing with a public constant by locally scaling each share.

cJxK = c(x1, ..., xp) Defn. sharing

= (cx1, ..., cxp) Defn. vector scalar product

= JcxK AND distributes over XOR, defn. sharing

– Parties encode public constants as sharings by letting P1 take the constant
as his/her share and letting all other parties take 0 as his/her share.

JcK = (c, 0, ..., 0) 0 identity, defn. sharing

This allows the parties to XOR sharings with public constants.

A party can easily share her private bit x with the parties. She uniformly
draws p bits, with the constraint that the p bits XOR to x. She then distributes
JxK amongst the parties.

Parties can compute sharings of uniform values. To draw a uniform sharing,
each party locally draws a uniform share. In our protocols, we overload ∈$ no-
tation to draw sharings: for example, JxK ∈$ {0, 1} indicates that each party Pi
draws a uniform share xi.

Finally, parties can reconstruct the semantic value of a sharing. To do so,
each party broadcasts his/her share (or sends it to a specified output party).
Upon receiving all shares, each party locally XORs the shares.

For security, we often require that each party’s share be uniformly chosen.
We point out where shares are uniform when relevant.
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VS Functionality:

– Input: Parties P1, ..., Pp input a scalar JsK and a bitstring JxK.
– Output: Parties output a uniform sharing JsxK.

Fig. 1: The functionality defining VS gate semantics. VS gates allow parties to
multiply a sharing of a bitstring by a sharing of a scalar.

2.3 Vector Scalar Multiplication

Next, we review how parties operate non-linearly over sharings. In contrast to
typical approaches that consider AND gates, we instead consider more general
vector scalar multiplication gates, which we call VS gates. We consider these
more expressive gates because they are needed to review prior work [HKP20]
and because we use VS gates in our constructions.

To begin, we extend the notion of sharings to vectors. Specifically, we define
the sharing of a vector to be a vector of sharings:

JxK = J(x[1], ...,x[n])K , (Jx[1]K, ..., Jx[n]K)

Suppose we wish to scale a shared vector x by a shared bit s. That is, we wish
to compute the scalar product JsxK. Unlike linear operations, this vector scalar
multiplication requires the parties to communicate.

[HKP20] showed that parties can use p(p − 1) oblivious transfers (OTs) to
implement a VS gate. We review their VS protocol at a high level; Figure 1
specifies the protocol functionality. For simplicity, we focus p = 2 parties and
length-2 vectors, but the approach generalizes to arbitrary p and n.

Suppose two parties P1, P2, holding sharings JsK, J(a, b)K, wish to compute
J(sa, sb)K: semantically, they wish to scale the vector (a, b) by the bit s.

Observe the following equality over the desired semantic value:

(sa, sb) = s(a, b) Distribute

= (s1 ⊕ s2)(a1 ⊕ a2, b1 ⊕ b2) Defn. sharing

= (s1a1 ⊕ s1a2 ⊕ s2a1 ⊕ s2a2, s1b1 ⊕ s1b2 ⊕ s2b1 ⊕ s2b2) Distribute

= s1(a1, b1)⊕ s1(a2, b2)⊕ s2(a1, b1)⊕ s2(a2, b2) Group

The first and fourth summands can be computed locally by the respective
parties. Thus, we need only show how to compute s1(a2, b2) (the remaining third
summand is computed symmetrically). To compute this vector AND, the parties
perform a single 1-out-of-2 OT of length-2 secrets. Here, P2 plays the OT sender
and P1 the receiver. P2 draws two uniform bits x, y ∈$ {0, 1} and allows P1 to
choose between the following two secrets:

(x, y) (x⊕ a2, y ⊕ b2)

P1 chooses based on s1 and hence receives (x⊕s1a2, y⊕s1b2). P2 uses the vector
(x, y) as her share of this summand. Thus, the parties hold Js1(a2, b2)K.
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Put together, the full vector multiplication s(a, b) uses only two 1-out-of-2
OTs of length-2 secrets. VS gates generalize to arbitrary numbers of parties and
vector lengths: a vector scaling of n elements between p parties requires p(p− 1)
1-out-of-2 OTs of length-n secrets.

VS gates are important for our constructions. We present a modification to
the above protocol, used once per conditional branch, that is optimized for scalar
multiplication of long vectors (see Section 6.2). This modification is similar to
techniques in [KK13, ALSZ13] and reduces communication by up to half.

2.4 Efficient Conditionals from VS Gates: [HKP20] Review

[HKP20] was the first work to significantly reduce the cost of branching in the
multi-party setting. Their MOTIF protocol extends the classic GMW protocol
with VS gates in order to amortize oblivious transfers across conditional branches.
We review how VS gates enable this amortization.

For simplicity, consider two branches computed by two parties. Since the two
branches are conditionally composed, one branch is active and one is inactive.

MOTIF’s key invariant, set up by the protocol’s circuit gadgets, is that on each
wire of the inactive branch the parties hold a sharing J0K, whereas on the active
branch they hold valid sharings. XOR gates immediately propagate this invariant:
on the inactive branch, XOR gates output J0K, while on the active branch XOR gates
output valid sharings.2

Next, we review how VS gates make use of and propagate the invariant. Let
Ja0K, Jb0K be sharings held on wires in branch 0 and Ja1K, Jb1K be sharings held on
wires in branch 1. Suppose the parties wish to compute both Ja0b0K and Ja1b1K.
Despite the fact that the parties compute two AND gates, they need only two
1-out-of-2 OTs. Let t denote the active branch. Hence, at̄ and bt̄ are both 0.

Observe the following equalities:

(at ⊕ at̄)bt = (at ⊕ 0)bt = atbt

(at ⊕ at̄)bt̄ = (at ⊕ 0)0 = 0

Thus computing both J(at ⊕ at̄)btK and J(at ⊕ at̄)bt̄K, propagates the invariant:
the active branch receives the correct sharing while the inactive branch receives
J0K. These products reduce to a vector-scalar product computable by a VS gate
(see Figure 1).

J(at ⊕ at̄)(bt, bt̄)K

Thus, MOTIF computes two AND gates for the price of one. This improvement
generalizes to an arbitrary number of branches.

2 MOTIF does not natively support NOT gates because they would break the invariant:
NOT maps J0K to J1K. NOT gates can be implemented by XOR gates together with a
distinguished wire that holds J1K on the active branch and J0K on the inactive branch.
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TripleGen Functionality:

– Input: Parties P1, ..., Pp provide no input.
– Output: Let a, b ∈$ {0, 1} be uniform bits. Parties output uniform sharings JaK,

JbK, and JabK.

Fig. 2: The Beaver Triple preprocessing functionality, TripleGen.

Branch Layer Alignment. As discussed in Section 1.2, the MOTIF protocol
is dependent on circuit topology. The less aligned the layers of the branches
are (branches that are highly aligned have similar numbers of AND gates in each
layer), the less the circuit benefits from MOTIF.

In the above example, the parties issued two OTs to implement the two AND

gates simultaneously. The parties can only perform this optimization if inputs
for both gates are available. If not, the parties cannot amortize the OTs. Hence,
gates in different layers cannot share OTs.

In the p-party protocol, in each layer MOTIF eliminates all OTs except for
the total of p(p − 1) · max(wi) OTs, where wi is the number of AND gates in
the current layer of branch i. In contrast, our technique does not depend on
the circuit’s topology and is always proportional only to the circuit’s longest
execution path.

2.5 Semi-honest Triple-Based Protocol Review

In this work, we amortize Beaver triples across conditional branches. We thus
review how triples enable non-linear operations over XOR sharings.

Suppose the parties hold sharings JxK and JyK and wish to compute a uni-
form sharing JxyK. Suppose further that the parties have a Beaver triple: they
have three uniform sharings JaK, JbK, JabK where a, b ∈$ {0, 1} are uniform bits
unknown to any strict subset of parties. First, the parties locally compute Ja⊕xK
and Jb⊕yK, then reconstruct the semantic values a⊕x and b⊕y by broadcasting
shares. This is secure: a ⊕ x leaks nothing about x because a is uniform and
secret (and similarly for y). The parties can now compute JxyK as follows:

(a⊕ x)(b⊕ y)⊕ (a⊕ x)JbK⊕ (b⊕ y)JaK⊕ JabK = JxyK

This protocol is simple and efficient: the parties broadcast only two bits per AND
gate. However, because the triple values a and b are used as one-time-pads on
semantic values, one triple is typically needed per gate. Thus, the parties must
preprocess many triples according to the functionality in Figure 2. Computing
this functionality is often the most expensive step in triple-based protocols. For
example, triples might be achieved via the classic GMW protocol, requring p(p−
1) OTs per triple. In this work, we show a technique that re-uses triples across
conditional branches and hence decreases overall cost.
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3 Related Work

We review related work, focusing on works that optimize secure evaluation of
conditional branches or that use multiplication triples in the malicious model.

MOTIF. The most closely related work is MOTIF [HKP20]. MOTIF amortizes obliv-
ious transfers across conditional branches in the classic semi-honest GMW pro-
tocol [GMW87]. We reviewed this approach in detail in Section 2.4, explained
why our approach outperforms MOTIF in Section 1.2, and present experimental
comparisons between the two approaches in Section 8.

Stacked Garbling. Recent works demonstrated similar conditional improvements
for the garbled circuit (GC) technique [Kol18, HK20b, HK20a]. [Kol18, HK20b]
reduced communication in settings where one party knows which branch is ac-
tive. [Kol18] is motivated by the use case where the GC generator knows the
active branch, such as when evaluating one of several database queries. [HK20b]
is motivated by zero knowledge proofs. [HK20a] superceded these prior works
and for the first time showed that communication can be greatly improved even
if no party knows which branch is active.

These works’ “stacking” technique does not have an obvious analog for inter-
active multiparty protocols, so different techniques are needed, such as explored
in [HKP20] and in this work. However, our approach follows the basic idea of
material re-use introduced by Stacked Garbling: the expensive material is safely
re-used in the (possibly incorrect) evaluation of inactive branches, whose output
is obliviously discarded

Universal Circuits. We improve branching via cryptographic techniques. An-
other approach instead recompiles conditionals into a new form. Universal cir-
cuits (UCs) are programmable constructions that can evaluate any circuit up to
a given size n. Branches can be compiled to one UC, potentially amortizing cost.
At runtime, the UC can be programmed to compute the active branch.

Decades after Valiant’s original work [Val76], UC enjoyed renewed interest
due to its relevance to MPC, and UC constructions have steadily improved [KS08,
LMS16, GKS17, AGKS19, KS16, ZYZL18]. Even with these improvements, rep-
resenting conditional branches with UCs is often impractical. The state-of-the-
art UC construction applied to a circuit with n gates still has factor 3 log n over-
head [LYZ+20]. Thus, UC-based conditional evaluation is often more expensive
than simply evaluating the condition näıvely. UC-based branching is superceded
by cryptographic techniques such as Stacked Garbling, MOTIF, and this work.

Maliciously Secure Triple-Based Protocols. We present an improved triple-based
semi-honest protocol. Two exciting and related lines of work explore triple-
based protocols in the malicious model. These two lines differ primarily in how
they preprocess triples. One line generates triples using homomorphic encryption
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[BDOZ11, DPSZ12, DKL+13, KPR18] while another generates them using obliv-
ious transfer [NNOB12, LOS14, FKOS15, KOS16, CDE+18]. To achieve mali-
cious security, these methods rely on expensive primitives such as zero knowledge
proofs and cut-and-choose. As a result, preprocessing is expensive.

Amortizing triples in these protocols would be an important improvement.
While we make no claims in the malicious model, malicious improvements have
historically been preceded by similar improvements in the semi-honest model.
We leave investigating triple amortization in the malicious model as future work.

4 Technical Overview

As reviewed in Section 2.5, Beaver triples can efficiently and securely imple-
ment AND gates. In general, triples cannot be re-used, and hence a circuit with b
branches each with n AND gates typically requires n · b triples.

As discussed in Section 1.1, our key observation is that triples can be re-
used across conditional branches, as long as uniform XOR masks are additionally
applied. These masks allow us to re-use the same triple to compute b gates
across b branches. Thus b branches each with n gates require only n triples,
improving the number of needed triples by factor b. Our technique does require
the parties to hold additional shared per-branch masks, but these masks are
computed cheaply.

This section presents our protocol, ΠMT (the ‘masked triple protocol’), with
detail sufficient to understand our contribution. ΠMT securely computes Boolean
circuits among p parties, re-uses triples across conditional branches, and is secure
against the semi-honest corruption of up to p−1 parties. Full formal algorithms,
with accompanying proofs of correctness and security, are in Section 5.

4.1 Re-using Beaver Triples

For simplicity, consider only two branches, C0 and C1 and, without loss of gen-
erality, let C0 be the active branch. The parties re-use the same set of triples for
both branches. For the inactive branch, the parties will mask the triples with
sharings of uniform bits; on the active branch the parties will mask the triples
with sharings of zeros.

Suppose the parties hold sharings Jx0K, Jy0K on branch 0 and Jx1K, Jy1K on
branch 1. Suppose further that they wish to obliviously compute one of Jx0y0K
or Jx1y1K, depending on which branch is active. Let JaK, JbK, JabK be a uniform
preprocessed triple. On the active branch, the parties mask JaK and JbK with
uniform sharings of 0:

JaK⊕ J0K = JaK JbK⊕ J0K = JbK

The parties use this masked triple to compute branch 0’s AND gate normally: the
parties compute and reconstruct a ⊕ x0 and b ⊕ y0, and then locally compute
the correct product:

(a⊕ x0)(b⊕ y0)⊕ (a⊕ x0)JbK⊕ (b⊕ y0)JaK⊕ JabK = Jx0y0K
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MaskGen Functionality:

– Parameters: The size of output bitstrings n.
– Input: Parties P1, ..., Pp provide no private input.
– Output: Let s ∈$ {0, 1} be a uniform bit. Let r ∈$ {0, 1}n be a uniform

bitstring. Parties output JsK as well as the pair:

M0,M1 =

{
J0nK, JrK if s = 0

JrK, J0nK otherwise

All output sharings are uniform.

Fig. 3: The MaskGen functionality provides parties with the pairs of masks needed
to implement our optimization. The functionality computes two shared bit-
strings. One bitstring is the all zero bitstring while the other is uniform. The
two strings are swapped according to s, and the parties are given JsK.

In contrast, on the inactive branch the parties mask their shares with uniform
bits. Let r, s ∈$ {0, 1} be two such bits and let the parties hold uniform sharings
JrK, JsK. The parties compute:

JaK⊕ JrK = Ja⊕ rK JbK⊕ JsK = Jb⊕ sK

When the parties use this masked triple, they compute and reconstruct a⊕r⊕x1

and b⊕ s⊕ y1, and then locally compute the following expression:

(a⊕ r ⊕ x1)(b⊕ s⊕ y1)⊕ (a⊕ r ⊕ x1)Jb⊕ sK⊕ (b⊕ s⊕ y1)Ja⊕ rK⊕ JabK

The above expression does not correctly compute Jx1y1K, but this is irrelevant
since all computations performed in the inactive branch are ultimately discarded
by the circuit’s conditional behavior.

Now, consider the security of the above re-use. As discussed above, each party
views the following reconstructed semantic values:

a⊕ x0 b⊕ y0 a⊕ r ⊕ x1 b⊕ s⊕ y1

Because a, b, r, s are all uniform, this view is simulated by four uniform bits.
Thus, our approach is secure. See Section 5.3 for a formal proof.

Although we have shown that mask sharings allow triple amortization, we
have not discussed how these sharings are computed. Figure 3 formalizes MaskGen,
a preprocessing functionality that computes strings of masks M0 and M1 such
that (1) the parties receive a uniform sharing JsK where s ∈$ {0, 1}, (2) Ms is
a uniform sharing of all zeros, and (3) M s̄ is a uniform sharing of random bits.
During the preprocessing phase, the parties use MaskGen to preprocess strings
with size sufficient to mask each triple. We formalize and prove secure ΠMT in
the MaskGen-hybrid model. Instantiations of MaskGen are provided and proved
secure in Section 6.
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Entering a conditional. MaskGen constructs two bitstrings that are ordered
according to a uniform bit s (the parties hold a uniform sharing JsK). To use our
approach, the parties need to appropriately ‘line up’ the masks with the branches:
the active branch should use the all zeros mask and the inactive branch should
use the uniform mask. We assume the parties have explicit access to a sharing
of the branch condition: the parties hold JtK. Upon entering the conditional, the
parties compute Js⊕ tK and then broadcast their shares to reconstruct s⊕ t. If
s ⊕ t is 0, the parties do nothing. Otherwise, they locally swap their respective
shares of the strings M0 and M1. After performing this conditional swap, the
parties are assured that M t is the all zeros mask and M t̄ is uniform. Note, s⊕ t
does not reveal the active branch t because s is uniform.

Exiting a conditional. Exiting conditionals is performed using ordinary Boolean
logic. Let Jx0K, Jx1K be corresponding output sharings from the two branches.
We leave the branch by multiplexing each such pair of outputs: we compute
Jx0 ⊕ t(x0 ⊕ x1)K = JxtK. Thus, multiplexing requires one AND gate per condi-
tional output.

4.2 Nested Branches

We have presented a technique for handling conditionals with only two branches.
To generalize to higher branching factors, we nest conditionals. At each condi-
tional, we use MaskGen to generate fresh masks and then apply these masks to
the (possibly already masked) triples. This trivially and securely allows us to
handle arbitrary branching control flow.

As a brief argument of security, consider that each branch uses a distinct mask
string from each of its parent conditionals. Further, if the branch is inactive (1)
at least one mask string will be uniform and (2) the XOR sum of all uniform mask
strings for the branch is unique. Thus, all AND gate broadcasts can be simulated
by uniform bits. We argue this more formally in Section 5.3.

We note that instead of nesting, it is possible to generalize our approach to
directly handle vectors of conditionals, e.g., corresponding to program switch

statements. This direction is not necessarily preferable: for a circuit with b
branches, both techniques amortize a triple across up to b gates, and the work
required to generate masks is very similar. We present the nested formalization
due to its generality and relative simplicity.

5 ΠMT: Formalization and Proofs

We now present ΠMT formally. Section 5.1 begins by defining circuit syntax, in-
cluding circuits with explicit conditional branching. We then specify our protocol
in Section 5.2 and prove it correct and secure in Section 5.3.
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5.1 Circuit Formal Syntax

Conditional branching is central to our approach. Thus, traditional circuits that
include only low-level gates are insufficient for our formalization. We instead use
the syntax of [HK20a] which makes explicit conditional branching. We review
and formally present their syntax.

Conventionally, a circuit is a list of Boolean gates together with specified
input and output wires. We refer to this representation as a netlist. We do not
modify the semantics of netlists and evaluate them using the standard triple-
based technique (see Section 2.5).

We extend the space of circuits with notion of a conditional. A conditional is
parameterized over two circuits, C0 and C1. By convention, the first bit of input
to the conditional is the branch condition t. The semantics of a conditional is
that branch Ct is given the remaining input to the overall conditional, and Ct’s
output is returned.

Finally, we require an extra notion that allows us to place conditionals ‘in
the middle’ of the overall circuit. A sequence is parameterized over two circuits
C ′ and C ′′. When executed, the sequence passes its input to C ′, feeds the output
of C ′ as input to C ′′, then returns the output of C ′′.

More formally, the space of circuits C is defined inductively. Let C0, C1, C ′, C ′′

be arbitrary circuits. The space of circuits is defined as follows:

C , Netlist(·) | Cond(C0, C1) | Seq(C ′, C ′′)

That is, a circuit is either a (1) netlist, a (2) conditional, or a (3) sequence. By ar-
bitrarily nesting conditionals and sequences, we may achieve complex branching
control structure.

5.2 ΠMT Formalization

Figure 4 presents our protocol for handling circuits with conditional branching.
ΠMT first delegates to TripleGen, generating sufficient multiplication triples to
handle the circuit, and then delegates to the sub-protocol eval. eval recursively
walks the structure of the circuit and securely achieves circuit semantics.

ΠMT formalizes the ideas stated in Section 4 in a natural manner. The most
interesting case in eval is the handling of conditionals, where we (1) invoke
the MaskGen oracle, (2) mask the available triples, and (3) recursively evaluate
both branches. Although we for clarity write MaskGen inline, the actual MaskGen
protocol does not depend on any circuit values, and thus can be moved to a pre-
processing phase. After evaluating both branches, we discard the inactive branch
outputs and propagate the active branch outputs via a multiplexer. The multi-
plexer is implemented simply as a netlist, and computes the following function
for each corresponding pair of branch outputs Jx0K, Jx1K:

Jx0 ⊕ t(x0 ⊕ x1)K = JxtK (1)

For simplicity, we abstract some algorithms and briefly describe them be-
low. Other than ΠBase, which is discussed in Section 2.5, we do not write these
algorithms in full, as they are simple.
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Functionality:

– Parameters: A circuit C ∈ C.
– Input: Each party Pi inputs a private bitstring inpi ∈ {0, 1}∗.
– Output: Each party Pi outputs C(inp1, ..., inpp).

Semi-Honest Protocol:

ΠMT(C, inp1, ..., inpp) :

JinpK← shareinput(inp1, ..., inpp)

JtriplesK← TripleGen(neededtriples(C))

JoutK← eval(C, JtriplesK, JinpK)
return reconstruct(JoutK)

eval(C, JtriplesK, JinpK) :

switch C :

case Sequence(C′, C′′) :

. Parse JtriplesK into parts of sufficient length for each circuit.

Jtriples′K, Jtriples′′K← JtriplesK
return eval(C′′, Jtriples′′K, eval(C′, Jtriples′K, JinpK))

case Cond(C0, C1) :

. Parse JtriplesK into triples for the conditional and for the multiplexer.

JtriplescondK, JtriplesmuxK← JtriplesK
. Split the branch condition t from the other branch inputs.

. By convention, the first input wire is the condition bit.

JtK, JinpcondK← JinpK

JM0K, JM1K, JsK← MaskGen(2 · |JtriplescondK|)
(s⊕ t)← reconstruct(JsK⊕ JtK)

(M0,M1)← if (s⊕ t) then (M1,M0) else (M0,M1)

Jout0K← eval(C0, applymask(M0, JtriplescondK), JinpcondK)

Jout1K← eval(C1, applymask(M1, JtriplescondK), JinpcondK)

return mux(JtK, Jout0K, Jout1K, JtriplesmuxK)
case Netlist(g1, ..., gk) :

. Evaluate with a standard triple-based protocol.

return ΠBase((g1, ..., gk), JtriplesK, JinpK)

Fig. 4: ΠMT allows p parties to securely compute a circuit C ∈ C. ΠMT delegates
to a recursive sub-procecure eval.

– ΠBase is the standard triple-based protocol as specified in Section 2.5. ΠBase

takes as input (1) a vector of gates (g1, ..., gk), (2) a vector of (possibly
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masked) triples JtriplesK and (3) the netlist input JinpK. ΠBase returns a
sharing of outputs JoutK.
We emphasize that while we do not, for simplicity, explicitly list ΠBase, the
protocol is not a black-box functionality.3

– neededtriples computes the number of needed triples for the circuit C.
This computed number is equal to the number of AND gates on the circuit’s
longest execution path.

– shareinput allows the parties to construct and distribute sharings of their
respective private inputs.

– reconstruct allows parties to reconstruct a sharing via broadcast.
– mux computes the per-output multiplexer function (Equation (1)).
– applymask specifies how mask sharings are XORed onto triples. Specifically,

for each uniformly shared triple JaK, JbK, JcK, we draw two bits from the mask
sharing and XOR one bit onto both JaK and JbK.

5.3 ΠMT Proofs

Now that we have introduced ΠMT, we prove it both correct and secure in the
MaskGen- and TripleGen-hybrid model. We instantiate MaskGen in Section 6.

In both proofs, we refer to the notion of a valid triple. A triple is valid if it
is uniformly shared and of the following form: JaK, JbK, JabK. That is, the third
term is a share of the product of the first two terms. An invalid triple is a triple
JaK, JbK, JcK such that c 6= ab. Invalid triples arise in our protocol due to the
application of extra masks to the first two entries in triples.

Theorem 1 (ΠMT correctness). For all circuits C ∈ C and all private inputs
inp1, ..., inpp ∈ {0, 1}∗:

ΠMT(C, inp1, ..., inpp) = C(inp1, ..., inpp)

Proof. By induction on the structure of C. The inductive invariant is as follows:

If the triples passed to eval are valid, then eval correctly implements
the semantics of C.

We focus on conditionals; the correctness of netlists follows trivially from the
standard triple-based protocol. The correctness of sequences is immediate.

Suppose C is a conditional Cond(C0, C1). Further, suppose JtK is the branch
condition. If the triples passed to the conditional are invalid, then the inductive
invariant vacuously holds. Thus, we need only consider evaluation of a condi-
tional on valid triples. The oracle call to MaskGen constructs two mask strings
M0,M1 such that Ms is all-zero and M s̄ is uniform. By reconstructing s ⊕ t
3 We cannot support ΠBase as a black-box because it is possible to implement a protocol

that securely handles netlists, but that is insecure when given masked triples. For
example, the parties could out-of-band check the validity of triples and reveal all
inputs if the triples are found invalid. Therefore, ΠBase is a white-box protocol.
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and accordingly locally swapping the two mask strings, the parties ensure M t is
the all-zero string. Thus, Ct is given valid triples (the valid triples are masked
by sharings of zeros and hence remain valid) and, by induction, returns the cor-
rect semantic outputs. C t̄ will not return correct values, but these outputs are
discarded by the multiplexer. Thus, conditionals support the inductive invariant.

The top level circuit is given valid triples via the oracle call to TripleGen.
This fact, combined with the inductive invariant, implies that ΠMT is correct.

Theorem 2 (ΠMT security). ΠMT is secure against semi-honest corruption
of up to p− 1 parties in the TripleGen-hybrid and MaskGen-hybrid model.

Proof. By construction of a simulator for one party, which we later generalize to
simulate up to p−1 parties. Each broadcast received by a party can be simulated
by a uniform bit.4 We prove this simulation secure by induction on the structure
of the circuit C. The inductive invariant is as follows:

Let JaK, JbK, JcK be a (possibly invalid) triple. For each triple, we refer to
the semantic values a and b as the one-time-pad parts. eval uses both
one-time-pad parts of each triple to mask at most one cleartext value.

For netlists, this is trivial: we use a distinct triple for each AND gate, and
each one-time-pad part is used only to mask one of the gate inputs. Similarly,
sequences satisfy the inductive invariant trivially: we provide different triples to
both parts of the sequence.

Therefore we focus on conditionals. Consider a conditional Cond(C0, C1). As
a brief aside from proving that the inductive invariant holds, while the parties
reconstruct s⊕t, s is uniform, and hence this leaks nothing about t (i.e., s⊕t can
be simulated by a uniform bit). Now, returning to the invariant: We first split the
triples into sufficient numbers for the conditional body and for the multiplexer.
The multiplexer is implemented by a netlist, and hence trivially satisfies our
invariant. The conditional body is more complicated. Indeed, we use the same
triples to evaluate both branches. However, our call to MaskGen together with the
conditional swap ensures that M t̄ is a sharing of uniform bits. When we apply
M t̄ to the triples, we re-randomize the one-time-pad parts of the triples. (Note,
applying M t (the all zeros mask) has no effect on the one-time-pad parts.) Thus,
we provide independent one-time-pad parts to both C0 and C1, satisfying the
inductive invariant.

Because each one-time-pad part is (1) uniform and (2) used to mask at most
one cleartext value, and because each broadcast is masked by a one-time-pad
part, each broadcast can be simulated by a uniform bit. Thus, we can simulate
a single party’s view.

The generalization from simulating one party to simulating up to p − 1 is
based on a simple observation about XOR secret shares: the view of p− 1 parties

4 One caveat is that broadcasts used to reconstruct the circuit’s outputs must XOR to
the correct output value. The simulator must arrange the simulated output broad-
casts such that they appropriately add up. This is typical in MPC proofs and is easy
to set up.
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holds no more information than the share of 1 party. The remaining broadcasts
from the remaining, unsimulated parties can be simulated by uniform bits.

ΠMT is secure against semi-honest corruption of up to p− 1 parties.

Some MPC techniques, e.g., computing multiplicative inverse [BIB89], rely on
opening (randomized) intermediate values. This may not always be compatible
with our optimization, since our randomization of the inactive branch may cause
an invalid opened value, thereby revealing that it was in fact inactive.

6 Semi-Honest MaskGen Instantiations

In this section, we instantiate MaskGen (Figure 3). We present three protocols,
two formally and one informally, that follow two general approaches:

1. The first approach is generic in that it works for an arbitrary number of
parties and is based on vector scalar multiplication (Section 2.3). Since our
approach often uses long masks, we introduce a useful trick that improves
vector scalar multiplication for long vectors.

2. In special cases, masks can be more efficiently derived starting from short
seeds. We present two and three-party protocols which require communica-
tion proportional only to κ rather than to the mask length n.

6.1 p-Party Mask Generation

Our general mask generation technique, Π - MaskGen - VS (Figure 5), allows p par-
ties to preprocess length-n masks using only a single VS gate.

In this protocol, parties jointly sample a uniform sharing of a uniform bit
JsK and a uniform bitstring JrK. The parties compute JsrK via a VS gate, set the
first mask to JM0K = JsrK, and set the second mask to JM1K = JsrK⊕ JrK.

Π - MaskGen - VS is correct and secure.

Theorem 3. Π - MaskGen - VS correctly implements MaskGen.

Proof. s and r are uniform. Depending on s, the product sr is, of course, either
all zeros or r. Thus, setting JM0K = JsrK and JM1K = JsrK ⊕ JrK places the all
zeros mask in Ms.

Theorem 4. Π - MaskGen - VS is secure against semi-honest corruption of up to
p− 1 parties in the VS-hybrid model.

Proof. We communicate only once: when evaluating a single VS gate. Hence, the
simulator is trivially constructed from the VS gate simulator.
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Functionality:

– Parties P1, . . . , Pp compute MaskGen.

Semi-Honest Protocol:

. n is the output mask length.

Π - MaskGen - VS(n) :

. Parties jointy sample r and s.

JrK ∈$ {0, 1}n

JsK ∈$ {0, 1}
JsrK← JsKJrK . Computed via VS gate.

JM0K← JsrK

JM1K← JsrK⊕ JrK

. Ms is all zeros, M s̄ is uniform.

return JsK, JM0K, JM1K

Fig. 5: Protocol Π - MaskGen - VS is our default method for generating masks, and
is secure for an arbitrary number of parties.

Vector Scalar Multiplication for Long Vectors. We have shown that VS

gates can efficiently compute pairs of masks. However, this requires us to evaluate
VS gates over potentially long vectors: we compute VS gates over vectors with
length proportional to the number of AND gates, which can be arbitrarily high.

As discussed in Section 2.3, we decompose vector scalar products into sum-
mands, some that are computed locally and others that are computed interac-
tively. For each interactive summand, one party holds a bit a, one a vector b,
and the two must jointly compute JabK. Let n be the length of b. To compute
this product, the protocol presented by [HKP20] requires two messages of length
n. In this section, we introduce a natural trick, Π - Half - VS - Long, that reduces
this communication cost by half: only one message of length n need be sent,
and the other can be derived from a pseudo-random seed. Both the functionality
and the protocol are listed in Figure 6. We explain the Π - Half - VS - Long trick
in more detail in our proof of correctness. Our trick is similar to techniques in
[KK13, ALSZ13]. We denote the protocol that performs vector scalar multiplica-
tion using this trick (with the algebra described in Section 2.3) by Π - VS - Long.

Theorem 5. Π - Half - VS - Long, and hence Π - VS - Long, is correct.

Proof. The key observation is that P1’s input bit a determines one of two possible
outcomes for the vector scalar multiplication. If a = 0, the output is a sharing
of all zeros. In this case, P1 and P2’s output shares must XOR to zeros. If a = 1,
the output is a sharing of P2’s input vector b.

We achieve this functionality with a single 1-out-of-2 OT of length κ strings.
P1 acts as the OT receiver and uses as her choice bit a. If a = 0, P1 receives
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Functionality:

– Input: Party P1 inputs a private bit a, P2 inputs a private vector b.
– Output: Parties output a uniform sharing JabK.

Semi-Honest Protocol:

Π - Half - VS - Long(a, b) :

P1 : P2 :

S ∈$ {0, 1}κ

. P2 expands S to get his share of ab.

(ab)2 ← G(S)

k ∈$ {0, 1}κ

. P2 sends G(k)⊕ ((ab)2 ⊕ b) to P1.

v ← G(k)⊕ ((ab)2 ⊕ b)

v ← recv(P2) send(v, P1)

. P1 and P2 run OT.

. P1 is the OT receiver. . P2 is the OT sender.

w ← OTrecv(a) OTsend(S,k)

. w = a(S ⊕ k)⊕ S.

. If a = 0, G(w) = G(S) = (ab)2.

. If a = 1, G(w)⊕ v = G(k)⊕ v.

= (ab)2 ⊕ b.

(ab)1 ← G(w)⊕ av
return (ab)1 return (ab)2

Fig. 6: Π - Half - VS - Long can be used to evaluate the interactive subterms that
emerge from computing a VS gate.

the seed that P2 used to generate her share. P1 expands this seed and obtains
the same share as P2. If a = 1, P1 receives a key that helps him to decrypt a
ciphertext sent separately by P2. The ciphertext holds a valid share of b.

The correctness of Π - VS - Long is immediate from the correctness of
Π - Half - VS - Long and [HKP20]’s VS instantiation.

Next, we prove this faster vector scalar multiplication procedure secure.
Ideally, we would modularly prove Π - Half - VS - Long and Π - VS - Long secure
by simulation. Unfortunately, this is not possible. Specifically, suppose that in
Π - Half - VS - Long P1 provides input a = 0. In this case, P1 outputs the expan-
sion of the pseudorandom seed w received by the OT oracle. Now we need to
simulate w that matches the expansion G(w) output by the protocol. Since G
is assumed secure, this simulation is infeasible. Therefore, we forego modular-
ity, and instead prove the security of our top level circuit protocol, ΠMT, but
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where we instantiate the MaskGen functionality based on Π - VS - Long. With our
PRG-utilizing subprocedures ‘inlined’, we can prove the top-level protocol se-
cure, since the expansions of PRG seeds no longer appear as protocol outputs
and we can simulate the seed simply by a random string.

Theorem 6. Let Π - MaskGen - VS′ be the protocol Π - MaskGen - VS (Figure 5),
with VS instantiated by Π - VS - Long. Let Π ′MT be the protocol ΠMT (Figure 4),
with MaskGen instantiated by Π - MaskGen - VS′. Π ′MT is secure against semi-honest
corruption of up to p− 1 parties in the TripleGen-hybrid and OT-hybrid model.

Proof. By construction of a simulator.

The proof is similar to that of Theorem 2, so we elide most details. Because
we explicitly instantiate MaskGen with Π - MaskGen - VS′, we focus on the corre-
sponding difference in the proof and explain how we simulate Π - MaskGen - VS′

messages. Namely, we argue that all messages of Π - MaskGen - VS′ are simulated
by uniform bits.

Π - MaskGen - VS′ invokes Π - VS - Long, which in turn makes 2(p − 1) per-
party calls to Π - Half - VS - Long. Each pair of parties Pi, Pj jointly call
Π - Half - VS - Long twice, once where Pi is the receiver and once where Pi is
the sender.

When Pi is the receiver, he receives two messages:

– First, Pi receives from Pj an encrypted share of b: Pj chooses a PRG seed
k, expands G(k), and then sends G(k)⊕G(S)⊕ b to Pi. The simulator can
simulate this received message by uniform bits because k and S are both
uniform and because G is a secure PRG.

– Second, Pi receives a message from the OT oracle. Depending on its input
bit ai, Pi receives either the seed k or the seed S (which was used to generate
(ab)2). In either case, k and S are simulated by a uniform string. This does
not conflict with the previously simulated message G(k) ⊕ G(S) ⊕ b, since
one of the seeds k,S remains hidden from Pi.

If Pi is the sender, no message is received; Pi’s view is trivially simulated.

It is easy to see that the masks produced by Π - MaskGen - VS′ are used exactly
once in Π ′MT, and hence the inductive invariant of Theorem 2 is maintained.

Π ′MT is secure.

6.2 Efficient 2PC and 3PC Mask Generation

In this section, we present two efficient implementations of MaskGen, one for
two parties, and one for three. At a high level, these methods are based on
(1) distributing pseudo-random seeds and (2) expanding the seeds with a PRG
into n-bit masks. The advantage of these seed-based methods is that they use
communication proportional only to κ. This is a significant improvement over
Π - MaskGen - VS, which uses communication proportional to the mask length n.
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Functionality:

– Parties P1 and P2 compute MaskGen.

Semi-Honest Protocol:

Π - MaskGen - 2P(n) :

JsK ∈$ {0, 1} ; JSK ∈$ {0, 1}κ

JsSK← JsKJSK . Computed via VS gate.

. P1, P2 compute uniform shares of two seeds S0,S1.

JS0K← JsSK ; JS1K← JsSK⊕ JSK
. P1, P2 expand their PRG seeds into n-bit masks.

JM0K← Π - Expand - 2P(JS0K, n)

JM1K← Π - Expand - 2P(JS1K, n)

. Ms is all zeros, M s̄ is uniform.

return JsK, JM0K, JM1K

. P1 and P2 expand their respective seeds into n-bit strings.

Π - Expand - 2P((S1,S2), n) :

P1 : return G(S1, n) P2 : return G(S2, n)

Fig. 7: Π - MaskGen - 2P is an efficient two-party protocol for generating masks.

Two party improved protocol. Figure 7 presents our protocol for two parties,
ΠMT - 2P. Here, the parties use vector scalar multiplication to distribute XOR
sharings of two length-κ strings; one sharing encodes a uniform string and one
encodes the all zeros string. The parties then interpret their respective shares as
PRG seeds and apply G. Because of the nature of XOR sharings, this means that
for the all zeros sharing, the parties generate the same pseudorandom expansion,
so the resultant expansions are a sharings of all zeros. In contrast, the expansion
of the random sharing leads to a larger pseudorandom sharing.

By using this protocol, the two parties can share arbitrarily long masks at
the cost of only O(κ) bits of communication.

Theorem 7. Π - MaskGen - 2P correctly implements MaskGen.

Proof. By the correctness of VS gates and properties of XOR shares.
One of JS0K and JS1K is a sharing of zeros while the other is a sharing of

a random bitstring. The position of the all-zeros sharing is determined by a
uniform bit s. Consider one such sharing, and interpret both shares as PRG
seeds. If the parties’ two seeds are the same, then the expanded masks will also
be the same, and will therefore XOR to zeros. If the parties’ two seeds differ, then,
by the properties of the PRG, the expanded masks will XOR to a uniform value.

Π - MaskGen - 2P is correct.
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We next prove Π - MaskGen - 2P secure. Like Π - Half - VS - Long, we unfortu-
nately cannot modularly prove this protocol secure by simulation: each party
outputs the expansion of a PRG seed that appears in the party’s view. We there-
fore instead prove that ΠMT is secure in the case where we instantiate MaskGen

with Π - MaskGen - 2P. This higher level approach works because the output of a
PRG does not appear as final output, so the PRG seeds can be simulated.

Theorem 8 (ΠMT - 2P Security). Let ΠMT - 2P be ΠMT (Figure 4), where we
instantiate MaskGen with Π - MaskGen - 2P. ΠMT - 2P is secure against semi-honest
corruption of a single party in the TripleGen-hybrid and VS-hybrid model.

Proof. The proof is nearly identical to that of ΠMT (Theorem 2); we therefore
focus our discussion on the call to Π - MaskGen - 2P.

In Π - MaskGen - 2P, the parties jointly sample uniform sharings JsK and JSK,
and then compute JsSK via VS. VS outputs uniform sharings, and so the message
each party receives from the VS oracle is simulated by uniform bits. The parties
locally expand their shares to obtain masks JM0K and JM1K. Because G is a
secure PRG, JM s̄K is a sharing of a uniform string.

Now, recall Theorem 2’s inductive invariant: we must ensure that the top-
level protocol uses the one-time-pad part of each multiplication triple at most
once. ΠMT - 2P XORs the current triples with both JM0K and JM1K. Because
JM s̄K is a sharing of a uniform string, this appropriately rerandomizes the triples
into the inactive branch, and hence we support the inductive invariant.

ΠMT - 2P is secure against semi-honest corruption of a single party.

Three party informal MaskGen protocol. The three party efficient MaskGen

protocol is a relatively straightforward generalization of the two party proto-
col. However, the mask generation is notationally complex, so for simplicity we
present informally. A similar technique was used in [BKKO20] to help to con-
struct a two-private three-server distributed point function.

Unlike the two-party protocol, P1, P2, and P3 each obtain two pairs of seeds.
Each pair is used to generate one mask by (1) expanding both seeds with a PRG
into an n-bit string and (2) XORing the two expanded outputs together. At a
high level, we ensure that:

1. For the all zeros mask, each party holds the same seed as one other party.
Thus, their PRG expansions XOR to zeros.

2. For the uniform mask, each party holds a seed distinct from all other parties.
Thus, their PRG expansions XOR to a uniform mask.

The key difficulty is in making the two above scenarios indistinguishable from
the perspective of any strict subset of parties. We contrast these two scenarios,
showing that they appear indistinguishable.

In the first case, the parties are given seeds as follows:

P1 : S1,S2 P2 : S1,S3 P3 : S2,S3
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If we consider an adversary who corrupts any two parties, he will see that one
seed is shared between them and the others appear uniform.

In the second case the parties are given seeds as follows:

P1 : S4,S5 P2 : S4,S6 P3 : S4,S7

As in the first case, an adversary that corrupts two parties sees one seed in
common; the others are uniform. Hence, the cases are indistinguishable for any
one or two parties.

Thus, the protocol is secure and correct, assuming we appropriately distribute
seeds. Seed distribution can easily be implemented by GMW extended with VS

gates: the parties sample seven uniform seeds S1, ...,S7 ∈$ {0, 1}κ, swap them
using a VS gate, and output each of them to the appropriate party.

7 Implementation

We implemented our approach in C++. Specifically, we implemented ΠMT, in-
stantiating MaskGen with both Π - MaskGen - VS and Π - MaskGen - 2P (we did not
implement the three-party variant). We instantiated TripleGen with the nat-
ural approach based on random OT. For comparison, we also (1) implemented
a standard triple-based protocol and (2) incorporated MOTIF’s implementation
into our repository. We discuss key aspects of our implementation in Section 7.1.

To the best of our knowledge, there is no comprehensive suite of MPC bench-
mark circuits, particularly for circuits that include conditional branches. Thus,
we implemented a random circuit generator to produce benchmarks. In design-
ing the circuit generator, our key goal was to capture the impact of branch
alignment on MOTIF’s performance such that we can highlight our improvement.
The circuit generator samples circuits with a variety of branch alignments. We
describe details of circuit generation in Section 7.2.

7.1 Key Implementation Aspects

Our implementation of ΠMT is straightforward, but we note some of its inter-
esting aspects. We use the 1-out-of-2 OT protocol of [IKNP03] as implemented
by EMP [WMK16] in order to generate both triples and masks. In ΠMT and
standard triple-based protocol, we list AND gates in layers so that we can paral-
lelize broadcasts for ANDs in the same circuit layer. MOTIF similarly parallelizes
OTs for VS gates in the same layer. Thus, all three protocols use communication
rounds proportional to the circuit’s multiplicative depth.

7.2 Random Circuit Generation

Circuit generation consists of three main steps:

1. We parameterize circuits on the numbers of conditional branches, the number
of circuit layers, the number of XOR and AND gates per branch, and the number
of input/output wires to each branch. Each branch uses the same parameters.
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2. We uniformly assign a number of gates to each branch’s layers. We implement
this functionality with a RANCOM algorithm [NW78], which is based on the
balls-in-cells problem and is called separately for each branch.

3. We connect the gates layer by layer. Specifically, we maintain a pool of wires
whose value has already been assigned (i.e., it is a branch input or the output
of a gate). For each gate, we uniformly sample two inputs from the pool and
choose a fresh output wire. Once a layer has been entirely connected, we add
all of that layer’s gate outputs to the pool.

The above strategy is relatively ad-hoc, and may not be representative of
all applications. Again, we adopt the above approach (1) to show the impact
of circuit alignment on our relative performance over MOTIF and (2) because no
standard benchmark suite exists.

8 Performance Evaluation

We compare ΠMT to MOTIF and the standard triple-based protocol. We compare
these protocols for various numbers of parties. All experiments were run on a
commodity laptop running Ubuntu 20.04 with an Intel(R) Core(TM) i5-8350U
CPU @ 1.70GHz and 16GB RAM. All parties were run on the same machine
and network settings were configured with the tc command. We averaged each
data point over 100 runs.

In each experiment, we generated random circuits as described in Section 7.2.
We fixed the circuit parameters to 10 layers, 30, 000 AND gates per branch and
30, 000 XOR gates per branch. We set the number of branch input and output
wires to 128. We generated a new circuit with these same parameters for each
run of each experiment. We performed and report on three experiments:

1. We fixed the number of branches to two, fixed the number of parties to
two, and explore variation in performance based on branch alignment (Sec-
tion 8.1).

2. We fixed the number of parties to two, varied the number of branches, and
explore corresponding communication and wall-clock runtime (Section 8.2
and Section 8.3).

3. We fixed the branching factor to 16, varied the number of parties, and explore
corresponding communication.

Each experiment shows that our approach is preferred in almost every setting.

8.1 Branch Alignment

We first demonstrate MOTIF’s dependence on circuit topology in the case of two
branches. Figure 8 plots the distribution of the number of random OTs needed for
two parties to evaluate each protocol. Across all 100 runs, ΠMT and the standard
triple-based protocol always need the same number of OTs. On the other hand,
MOTIF’s performance differs depending on branch alignment. Because we sample
alignments uniformly, this results in an increased number of consumed OTs.

24



N
um

be
r o

f R
an

do
m

 O
Ts

 (x
10

00
0)

0

2

4

6

8

Our Work MOTIF Triple Protocol

Random OTs in 2-Branched Circuit

Fig. 8: Random OTs required to evaluate a circuit with two branches.

Discussion. For two branches and on average, our approach required 1.5× fewer
OTs than MOTIF and consistently required 2× fewer OTs than the standard
triple-based protocol. Given that random OTs are the main communication
bandwidth bottleneck, MOTIF is far from reducing communication by the opti-
mal factor 2×. ΠMT never used more OTs than MOTIF. MOTIF’s best run required
1.12× more OTs than ΠMT and 1.71× in the worst case.

8.2 Communication

We next report our 2PC communication improvement over both MOTIF and the
standard triple-based protocol as a function of branching factor. We instantiated
MaskGen with Π - MaskGen - 2P.

Figure 9 plots both preprocessing communication and total communication.
For further reference, Figure 10 tabulates our communication improvement.

In our measurements, preprocessing constitutes both triple generation and
mask generation. Each data point is averaged over 100 runs; the amount of
communication may differ from run to run because each circuit has a randomly
generated topology. In ΠMT the total communication is constant. In contrast,
MOTIF communication differs significantly across runs due to the layering issue
explained in Section 2.4.

Discussion. In this metric, ΠMT is preferred:

– Preprocessing Communication. On 16 branches, we improve communi-
cation by 2.96× over MOTIF and by 14.4× over the standard triple-based
protocol. There are three reasons we did not achieve 16× improvement
over standard triple-based protocol. First, both the standard triple-based
approach and ours must perform the same number of base OTs to set up
an OT extension matrix [IKNP03]. This adds a small amount of communi-
cation (around 20KB) common to both approaches, which cuts slightly into
our advantage. Second, we need one OT per each of b−1 mask pairs. Third,
entering and exiting conditionals have very small overhead differences.

– Total Communication. On 16 branches, our approach improves total com-
munication by 2.6× over MOTIF and by 12× over the standard protocol. Our
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Fig. 9: 2PC comparison of ΠMT against MOTIF and a standard triple-based pro-
tocol. We plot the following metrics as functions of the branching factor : the
preprocessing per-party communication (top), the total per-party communica-
tion (bottom).

# Branches ΠMT(MB) Π - MOTIF(MB) Broadcast (MB)
2 0.57 0.86 1.11
4 0.58 1.16 2.19
8 0.61 1.46 4.10

16 0.67 1.79 8.19
32 0.80 2.14 16.09

Fig. 10: Per-party communication improvement for our 2PC random circuit ex-
periment as a function of the branching factor.

total communication improvement is lower than our preprocessing improve-
ment because our evaluation phase communication is not improved. While
improvement over the standard protocol is almost constant across runs, the
improvement over MOTIF differs due to varying circuit topology: our improve-
ment ranges from 2.16× to 2.93×.

8.3 Wall-Clock Time

We next present the wall-clock time improvements over MOTIF and the standard
triple-based protocol. Specifically, we consider three different simulated network
settings:

1. LAN: A simulated gigabit ethernet connection with 1Gbps bandwidth and
2ms round-trip latency.
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Fig. 11: 2PC comparison of ΠMT against MOTIF and a standard triple-based pro-
tocol. We plot the following metrics as functions of branching factor: wall-clock
time on a LAN (left), the wall-clock time on a LAN where other processes share
bandwidth (center), and the wall-clock time on a WAN (right).

2. Shared LAN: A simulated local area network connection where the protocol
shares network bandwidth with a number of other processes. The connection
features 50Mbps bandwidth and 2ms round-trip latency.

3. WAN: A simulated wide area network connection with 100Mbps bandwidth
and 20ms round-trip latency.

Figure 11 plots total wall-clock time for each network setting.

Discussion. In these metrics, ΠMT is preferred:

– LAN wall-clock time. On a fast LAN, our approach’s improvement is
diminished compared to our communication improvement. On average and
for 16 branches, we improve by 1.52× over MOTIF and by 1.81× over the
standard protocol. A 1Gbps network is very fast, and our modest hardware
struggles to keep up with available bandwidth.

– Shared LAN wall-clock time. On the more constrained shared LAN,
our hardware easily keeps up with the communication channel, and we see
corresponding improvement. On average and for 16 branches, we achieve
2.26× speedup over MOTIF and 7.43× speedup over the standard protocol.

– WAN wall-clock time. On this high-latency network our advantage is
less pronounced. On average and for 16 branches, we achieve 1.14× speedup
over MOTIF and 2.04× speedup over the standard protocol. This high-latency
network highlights the weakness of multi-round protocols in such settings.

8.4 Scaling to MPC

Our last experiment emphasizes our approach’s scaling to the multiparty setting.
This experiment uses the same circuit parameters as the former experiments, but
we fix the number of branches to 16. We implemented Π - MaskGen - VS and ran
the circuit among 4-8 parties. Figure 12 plots per-party communication as a
function of the number of parties.
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Fig. 12: Protocol per-party communication usage as a function of the number of
parties. Like MOTIF and the standard protocol, we consume per-party communi-
cation linear in the number of parties.

Discussion. ΠMT works well in the multiparty setting. In particular, our branch-
ing optimization does not add additional costs as compared to MOTIF and stan-
dard triple-based protocol. Each technique consumes communication quadratic
in the number of parties.
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