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Abstract— This paper presents a ternary low-density parity-
check (LDPC) error correction system for wireless electro-
cardiogram sensors to improve the accuracy of arrhythmia
classification. The classification system is based on ternary
Delta-modulated bitstreams and rotation linear kernel support
vector machines, which identifies the supraventricular ectopic
beat (SVEB) and the ventricular ectopic beat (VEB) over the
normal heartbeats. We model errors using a ternary symmetric
channel with probability parameter p and construct a variety of
ternary LDPC codes with different coding rates by concatenating
two-component sub-matrices to form a parity-check matrix with
a quasi-cyclic structure that facilitates the hardware design.
In particular, a hardware-friendly LDPC encoder circuit is
proposed that leverages the highly structured parity-check matrix
to perform serial generation of the parity symbols using an
accumulator and a look-up table. The encoder circuits are
implemented on FPGA and synthesized on ASIC using a 32 nm
CMOS process. Simulation results show that the ternary LDPC
codes can significantly improve classification accuracy in the
presence of errors. For example, with an error probability of
up to 21% in the sensor output bitstreams, the classification
accuracy remains above 99% with the proposed error correction
system.

Index Terms— Ternary error correction, low density parity
check, LDPC, delta modulation, wireless wearable sensors, elec-
trocardiogram, arrhythmia classification.

I. INTRODUCTION

W IRELESS wearable biosensors play important roles in
health monitoring applications [1]. Such a system is

expected to perform biomedical signal sensing, processing,
and wireless communication with low power, high accuracy,
and low error rate. For example, wearable electrocardio-
gram (ECG) sensors are expected to continuously monitor the
variation of ECG signals in real-time and identify the abnor-
mality, i.e., arrhythmia. Since most wearable systems [2]–[7]
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are powered by batteries, a common problem in these systems
is that the signal processing usually involves complicated
machine-learning algorithms, which may cause a high comput-
ing overhead and reduces the battery lifetime. For example, [8]
proposed a wearable arrhythmia classification system using
a deep neural network, which relies on a cloud computing
system. However, transmitting the raw ECG signal to the cloud
requires a considerable amount of power and the finite battery
capacity limits the operation time of the system. The trade-off
between the circuit power consumption and real-time signal
processing/communication is one of the primary challenges in
wearable biomedical sensors.

Recently, pulse-based sensing and direct feature extraction
have become promising solutions in wireless biosensors. For
example, the signal slope and slope variation can be directly
obtained from a first-order Delta modulated bit-stream [9]
and a second-order Delta modulated bit-stream [10]. Such
an analog-to-feature converter provides advantages of sim-
ple circuit structure, lower power consumption, and efficient
interface for signal processing. For example, [11] proposed
an arrhythmia classification method that uses the ternary
bit-stream output, i.e., positive, zero, and negative. In wireless
sensors, such a ternary data format would need novel error cor-
rection circuits and systems for data communication. Although
a few bit errors in the non-weighted bit-stream may not
affect the signal processing [12], in biomedical applications,
the system usually requires very high accuracy. For example,
ECG arrhythmia classification usually achieves an accuracy
higher than 95% [11]. Such requirements raise challenges for
the ternary bit-stream processing and communication systems.
This is because the bit-streams are usually generated using
oversampling methods and the sampling rate is much higher
than the signal bandwidth and the Nyquist rate, i.e., at least
8 times. The high sampling rate and the non-ideality of the
comparator may create bit-errors from the sensor readout
circuits. Moreover, errors may occur during wireless commu-
nication between the wearable sensor and the remote receiver
for telemedicine. Therefore, a ternary bit error detection and
correction system is necessary for such a wireless biomedical
application.

To perform error-correction, we consider ternary low-
density parity-check (LDPC) codes. LDPC codes were first
proposed by Gallager in the 1960s and rediscovered in the
late 90s [13], [14]. Since then, an intense research effort
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Fig. 1. Proposed ternary LDPC error correction encoder and decoder for a wireless wearable ECG sensor performing arrhythmia classification.

on this class of error-correction codes has been performed,
including, among many other aspects, achieving channel
capacity [15], [16], weight enumerator and minimum dis-
tance analysis [17], structured codes with efficient hardware
implementations [18], and finite-length performance analy-
sis [19]. Due to their outstanding decoding performance,
LDPC codes have been adopted in multiple communication
standards, including 5G new radio, wireless LANs (IEEE
802.11n), WiMax (IEEE 802.16e), digital video broadcasting
(DMB-T/H, DVB-S2, DVB-T2, and DVB-C2), and China
Multimedia Mobile Broadcasting (CMMB). Asymptotically,
LDPC codes are known to achieve capacity, but at finite
lengths there remain a number of open issues and challenges.
These include designs and mitigation techniques to avoid error
floors that are critical for ultra reliable low latency communi-
cation (URLLC) in IoT applications and, as addressed in this
paper, code and hardware co-design to provide robust error
control performance and reduce power consumption on highly
power-constrained devices.

Non-binary LDPC codes, constructed over finite fields
GF(q) of size q > 2, have been shown to outperform
comparable binary LDPC-BCs, in particular when the block
length is short to moderate [20]. Although non-binary LDPC
codes have received significant attention in the literature (see,
e.g., [20]–[22]), almost all of these code and hardware designs
use an alphabet size that is a power of 2, i.e., q = 2m .
Since there have been few applications that require ternary
codes, they have received relatively little attention, with few
exceptions. For example, different types of ternary channel
model were discussed in [23], [24] and constructions of
ternary codes have been proposed and analyzed in [25]–[28].
However, these designs do not meet the performance
and implementation complexity requirements of wearable
biosensors.

The main contribution of this paper is a novel ternary
LDPC coding system for error detection and correction of the
Delta modulated bit-streams for arrhythmia classification as
presented in Fig. 1. We consider a ternary symmetric channel

and propose a class of ternary LDPC codes with varying
coding rates that achieve different levels of protection and pos-
sess a quasi-cyclic structure for efficient implementation. One
particular contribution of this work is a low-complexity ternary
LDPC encoder circuit that performs serial generation of the
parity symbols using only an accumulator and a look-up table.
This is achieved by careful design of the code parity-check
matrix with hardware-friendly parameter optimization. Here
‘hardware-friendly’ refers to the saving of the hardware cost
in terms of area and power consumption.

The proposed ternary LDPC encoder has been implemented
on an FPGA and synthesised using a 32 nm CMOS process.
We also outline an efficient sum-product algorithm (SPA) for
decoding ternary LDPC codes that is shown to improve the
accuracy of arrhythmia classification under communication
and/or sensing errors. We evaluate the coding performance in
terms of the symbol error rate (SER) and its protection of the
classification accuracy under different channel noise levels.
The simulation results show that with a coding rate of 1/4,
the LDPC coded scheme can maintain a classification accuracy
of 99% up to a symbol error probability of 21%. The synthesis
results show that the proposed error correction system is
hardware-efficient for the implementation of a ternary sensing
system, which makes it attractive for low-power wireless
wearable sensors.

The remainder of the paper is organized as follows.
Section II describes the circuits and systems of the ternary
Delta modulator as well as the feature extraction and classifica-
tion of arrhythmia. Section III presents the channel model and
the ternary error correction system, including both the encod-
ing and decoding approaches, as well as the simulation results
of the ternary LDPC code. Section IV details the hardware
implementation of the proposed ternary LDPC encoder along
with the FPGA and ASIC synthesis results. Section V presents
the system performance analysis along with an estimation
of the power cost. Section VI discusses the advantages and
shortcomings of the proposed methods with future research
directions. Section VII concludes the paper.
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II. TERNARY ECG SENSORS

In this section, we summarize the necessary background
of the overall system of a wearable wireless ECG sensor. The
system includes the ternary Delta modulator, feature selection,
and classification, which is based on our prior work [11].
In such a system, the wearable ECG sensor amplifies the
analog ECG signal and converts the analog signal into digital
bit-streams using the first order delta modulator. Then the
important features are directly extracted from the bit-stream
using a window counting method, which includes the peak and
slope information. Then a support vector machine performs
classification based on the values of the features extracted from
the bitstreams. In the preliminary design, the classification
focuses on normal heartbeat, the supraventricular ectopic beat
(SVEB), and the ventricular ectopic beat (VEB). The classifier
is trained offline using the MIT-BIH database with AAMI
standard [29] with a rotation hyperplane, which combines the
global and local classifier to achieve patient-specific classifi-
cation. Here, offline means that the data was trained without
manually added error. We first collect data from the user for
a certain time and train the local classifier with the collected
data. Then we use the proposed method to generate the rotated
patient-dependent classifier and upload the classifier to the
device. Finally, we can process on-sensor or offline classifica-
tion depending on the user’s choice. For a low power mode,
i.e., the on-sensor classification mode, the classification is done
without transmitting the data. However, if we need to adjust the
classifier or to analyze the ECG data, we have to transmit the
Delta modulated ternary bitstream to a remote station for more
complicated analysis. Thus error may influence the outcome,
and this is the practical scenario of applying the proposed
method. Based on the simulation results, a reliable VEB/SVEB
classifier is expected to achieve an accuracy higher than 95%
without considering bit-errors from the sensor circuits and/or
communication channels.

A. Ternary Delta Modulation

A ternary Delta modulator converts an input analog signal
into a ternary bit-stream. The schematic of the ternary Delta
modulator is shown in Fig. 2(a). The circuit consists of an inte-
grator, two comparators, and a feedback subtractor. The input
signal is subtracted by the feedback signals. The feedback sig-
nals are determined by the comparator outputs. The subtraction
results are then integrated and compared with two pre-defined
thresholds. A +1 result means that the integrator output is
higher than the upper threshold while a −1 result means the
integrator output is lower than the lower threshold. In the case
that the integrator output is between the window formed by
the upper and lower thresholds, the comparison result is set
to 0. Thus, +1, 0, and −1 are the three symbols in the ternary
bit-streams. The ternary bit-stream from the first-order Delta
modulator is a pulse density modulation (PDM) of the input
signal slope. In such a system, a steep increasing slope of the
input signal has a higher pulse density of +1 in the output
bit-stream or vice versa. If the input signal is stable without
variation, the output bit-stream would stay at 0. An example of
the ternary Delta modulation is shown in Fig. 2(b). The output

Fig. 2. The signals and systems of the proposed application: The ternary Delta
modulator (part (a)) converts ECG signals into ternary bitstreams (part (b)).

Fig. 3. The goal of the arrhythmia heart beat classification is to identify
(a) normal heart beat, (b) SVEB heart beat, and (c) VEB heart beat.

bitstream’s pulse density is actually proportional to the input
signal’s slope: the steeper the input signal’s slope, the denser
the output pulse density. It may look wider in some figures but
it is actually the result of consecutive ‘1’ bits or ‘0’ bits. Each
pulse has the same width (1 ms), but sometimes some steeper
input signal causes consecutive bits.

B. Feature Extraction and Classification

The ternary Delta modulated bit-stream is applied in
ECG classification, which including normal heartbeat (sinus
rhythm), VEB, and SVEB. VEB is initiated by ectopic focuses
in ventricles instead of the sinoatrial node, which results in
a bizarre QRS morphology. In contrast, SVEB usually has
a normal QRS morphology but the location of the QRS
complex is abnormal, which results in a variation of the R-R
interval. The difference between normal sinus rhythm, VEB,
and SVEB is illustrated in Fig. 3. To perform such classifi-
cation, the most important features of the ECG waveform are
the R-R interval and the morphology of the QRS complex.
Since the ECG waveforms have been converted into ternary
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bit-streams, we have proposed several features to obtain the
key information of the ECG waveform. These features are
calculated by counting the number of +1 and −1 symbols
in the specific windows in the bit-stream and analyzing the
distribution of the symbols. In this work, we apply a feature
set SkP-32 [11] which includes the number of +1/−1 symbols,
the skewness weight, the R wave polarity, and the R-R interval.

The classification is based on the feature values obtained
from feature extraction, which were tested using the MIT-BIH
database. The detailed feature selection analysis was reported
in [11]. The features are calculated in a 215ms window around
the R peak. Considering the hardware cost and computing
overhead, we choose a simple linear kernel support vector
machine as the classifier since it has a simple structure. The
classifier is evaluated by its accuracy, sensitivity, and speci-
ficity. The primary challenge of improving the classification
performance of a linear kernel SVM is to train the model
and find the parameter of the hyperplane. In our platform,
we proposed a rotation hyperplane that combines a global
classifier, which was generated using all the data in the
database, and a local classifier, which was optimized from data
for a specific record. The combination of the two hyperplane
balances the generalization and specification while providing
reasonable accuracy.

III. TERNARY LDPC ERROR CORRECTION

Wireless communication is one of the key components in
low-power wearable biosensors. The primary reason is that
the capability of on-chip data processing is limited due to
power constraints. Therefore, in most current devices, the raw
data is required to be transmitted from the wearable sensor
to a remote station for advanced processing [8] or checked
by a human expert, i.e., a cardiologist [36]. Unfortunately,
the error introduced during communication may affect the
decision-making process. Indeed, a few critical bits in error
may lead to wrong conclusion and/or treatment, which is not
acceptable in medical applications. Although wearable biosen-
sors have been actively studied [37], [38], most of these works
did not focus on error correction. In particular, for sensing and
processing with ternary data formats, such as [39], there are
no references considering error correction. Thus, the effects of
error and related error correction in communications become
a necessary research topic for wearable biosensors, especially
for the emerging ternary sensors. The proposed work focuses
on the performance of LDPC error correction of ternary
data from wireless transmission as well as its effect on the
classification algorithm. The accuracy improvement from the
sensor device and classification algorithms, interesting in their
own right, goes beyond the scope of this paper.

A. Channel Model and Effect on Classification Accuracy

We consider the case where the ternary ECG symbols can
be corrupted by noise, which we will model by the ternary
symmetric channel with parameter (probability) 0 ≤ p ≤ 1,
as shown in Fig. 4. In the remainder of the paper we rep-
resent the “−1” symbol by a “2”, such that the alphabet is

TABLE I

MODULO-3 ADDITION AND MULTIPLICATION

Fig. 4. Channel model: ternary symmetric channel with parameter 0 ≤ p ≤ 1.

Fig. 5. Classification accuracy as a function of channel error probability p.

GF(3) = {0, 1, 2}. The receiver correctly receives the trans-
mitted symbol with probability 1 − p, but an error occurs
to corrupt the symbol to one of the other two symbols with
transition probability p/2, respectively.1 The operations on
GF(3) are shown in Table I.

Simulation results of classification corresponding to the
proposed ternary symmetric channel as a function of p are
shown as the dashed curve in Fig. 5. It is observed that
the classification accuracy decreases sharply with p until
approximately p = 0.15, at which point the accuracy levels
off at approximately 93.3%. The performance is measured in
terms of a binary classification, which is SVEB (S) versus the
other four types of heartbeats: Normal (N), VEB (V), Fusion
Beats (F), and unknown beats (Q), i.e., the S beat versus the
other four classes defined in the AAMI standard. We proposed
two rotated patient-dependent SVM classifiers for two binary
classifications, one is (S) v.s. (N, V, F, Q), and the other
is (V) v.s. (N, S, F, Q). For explanatory demonstration,
we just presented the result of the first classifier which is

1In this work, we restrict our attention to the symmetric case with uniform
error probabilities to facilitate analysis; however, the channel model and
decoder could be generalized to accommodate non-uniform probabilities.
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(S) v.s. (N, V, F, Q). Crucially, we note that the accuracy drops
below 96% when p is larger than 0.05, indicating the necessity
of an error correction code to reduce the noise influence and
maintain satisfactory classification accuracy.

B. Ternary LDPC Code Construction and
Encoding/Decoding Algorithms

In this section, we present the proposed ternary LDPC code
construction and decoding algorithm. We also confirm the
effectiveness of the approach via simulation results.
1) Code Construction: To design a ternary LDPC code,

we adapt the method proposed in [30], where the parity-check
matrix of a non-binary low-density parity-check (NB-LDPC)
code is constructed by concatenating two component subma-
trices as HNB = [H1 H2], where

H1 =




δ0,0Pb0,0
s δ0,1Pb0,1

s . . . δ0,m−1Pb0,m−1
s

δ1,0P
b1,0
s δ1,1P

b1,1
s . . . δ1,m−1P

b1,m−1
s

...
...

...

δk−1,0P
bk−1,0
s δk−1,1P

bk−1,1
s . . . δk−1,m−1P

bk−1,m−1
s




,

is of size K × M , with K = ks, M = ms, coefficients δ j,i ∈
GF(q), and submatrices P

b j,i
s are s × s circulant permutation

matrices constructed by circulantly shifting the rows of the
s × s identity matrix Is by b j,i ∈ {1, 2, . . . , s} positions to the
left. Moreover,

H2 =




Is 0s . . . . . . γk−1P̂1
s

γ0Is Is 0s . . . 0s
0s γ1Is Is . . . 0s
...

. . .
. . .

. . .
...

0s . . . 0s γk−2Is Is




is a K×K matrix, where γi ∈ GF(q)\{0} and P̂1
s is constructed

by deleting the right corner “1” in the circulant permutation
matrix P1

s , i.e.,

P̂1
s =




0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
. . .

...
...

0 . . . 0 1 0



s×s

.

This modification will allow efficient encoding, as explained
below. The code length is M + K and coding rate
R ≥ M/(M + K ).

This method to design the parity-check matrix of NB-LDPC
via circulant permutation matrices promises parallel decoding,
which can significantly increase the throughput and speed up
the decoding process [30]. Moreover, the memory used to store
the parity check matrix in the hardware design is decreased
by using such a structure, which is desirable in practice.
2) Encoding Algorithms: We consider two approaches to

form encode the ternary information symbols. The first method
derives the generator matrix G used to encode the NB-LDPC
code in a straightforward way by Gaussian elimination.

First, we transform HNB to the following form via Gaussian
elimination

H =




t0,0 t0,1 . . . t0,M−1 1 0 . . . 0
t1,0 t1,1 . . . t1,M−1 0 1 . . . 0
...

...
...

...
...

...
tK−1,0 tK−1,1 . . . tK−1,M−1 0 0 . . . 1




= [T | IK ],
where the elements ti, j ∈ GF(q), the size of T is K × M ,
and q = 3 for ternary LDPC codes. Hence, G is of the form
G = [IM | T′], where the size of T′ is M ×K . The M ternary
information symbols u = [u0, u1, . . . , uM−1] are encoded to
codeword v of length M+K as v = uG. The generator matrix
G generated by Gaussian elimination can be implemented
in full parallel which speeds up the encoding process [31].
However, since the submatrix T′ is dense and unstructured
it is not favorable for implementation when compared to
the second approach below because 1) a memory module will
be required to store a large number of locations of symbols
that are involved in computations, and 2) this method requires
a large number of operations to encode and a significantly
higher layout complexity [32].

To adapt the encoder design to a wearable device that has
severe power constraints, we propose a way to encode the
ternary information that makes use of the highly structured
parity-check matrix HNB. This results in a low-complexity
encoder that can be implemented in small area (hardware
considerations will be discussed in Section IV).

Assume a systematic codeword from the ternary LDPC code
is v = [u0, u1, . . . , uM−1, p0, p1, . . . , pK−1], where the first
M symbols are the ternary information symbols and such
that vHT

NB = 0. By observing the special structure of P̂1
s ,

we notice all elements in the first row are 0s, which means
all the elements in the first row of the H2 are 0s except the
first element. According to the parity-check rule vHT

NB = 0,
the first row of HNB implies

δ0,0us−b0,0 + δ0,1u2s−b0,1 + · · · + δ0,m−1uks−b0,m−1 + p0

≡ 0 (mod 3). (1)

Hence, p0 can be generated by (1). We then move forward
to the (s + 1)th row of HNB, where it follows that ps can be
determined (after obtaining p0) from

δ1,0us−b1,0 + δ1,1u2s−b1,1 + · · · + δ1,m−1uks−b1,m−1

+γ0 p0 + ps ≡ 0 (mod 3). (2)

By repeating this procedure, pis can be serially generated
from row i s + 1 of HNB, i ∈ [0, k − 1]. To compute p1,
we observe from the second row of HNB that

δ0,0u1 + δ0,1u2s−b0,1+1 + · · · + δ0,m−1uks−b0,m−1+1 + p1

+γk−1 p(k−1)s ≡ 0 (mod 3). (3)

Following a similar encoding procedure as described above,
pis+1 is derived from row i s + 2 of HNB, i ∈ [0, k − 1], and
so on in blocks of k symbols until the entire codeword v
is generated. This encoding algorithm is later summarized in
Algorithm 1.
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Fig. 6. Tanner graph of a NB-LDPC code.

As mentioned above, the circulant structure of the
parity-check matrix allows this procedure to be implemented
efficiently using a small area, as will be described in
Section IV, but must be computed serially.2

3) Decoding via the Sum-Product Algorithm: To decode
the designed ternary LDPC codes, we propose to use the
sum-product algorithm (SPA), which iteratively passes mes-
sages (symbol likelihoods) back and forth on a factor graph
representation of the sparse parity check matrix [33]. The
decoding process of LDPC codes proceeds iteratively, updating
the check nodes and variable nodes until convergence to a
valid codeword, which corresponding to a decoding success,
or failure to converge by some preset maximum number of
iterations, which corresponds to a decoding failure. As a class
of NB-LDPC codes over GF(3), ternary LDPC codes can
be represented by Tanner graph as shown in Fig. 6, where
the circles represent the variable nodes, which correspond
to the columns in HNB (code symbols), the squares repre-
sent the check nodes which correspond to the rows in HNB
(parity-check equations), and the lines represent the non-zero
elements in HNB. Here, each edge connecting check node c j
to variable node vx has a weight w j,x which corresponds to
the entry in HNB from GF(q)\{0}. For example, in Fig. 6,
we label check node c j and its three connected edges with the
corresponding weights w j,x , w j,y , and w j,z .

The NB-LDPC decoding algorithm is executed by itera-
tively updating the variable nodes and check nodes. For the
ternary SPA, the message from variable node vx to check
node c j at iteration � is a vector of probabilities V(�)

x, j =
(p(�)

vx, j,0, p
(�)
vx, j,1, p

(�)
vx, j,2) (a probability mass function) that cor-

responds to the likelihood that vx is a 0, 1, or 2, respectively,
where p(�)

vx, j,0 + p(�)
vx, j,1 + p(�)

vx, j,2 = 1. Similarly, the message from
check node c j to variable node vx at iteration � is also a vector
of probabilities C(�)

j,x = (p(�)
c j,x,0, p

(�)
c j,x,1, p

(�)
c j,x,2) (a probability

mass function) that corresponds to the likelihood that vx is a
0, 1, or 2, respectively, where p(�)

c j,x,0 + p(�)
c j,x,1 + p(�)

c j,x,2 = 1.

Messages V(0)
z, j = (p(0)

vx, j,0, p
(0)
vx, j,1, p

(0)
vx, j,2) are initialized from

2For a situation that requires a high speed encoder design, rather than a
low-power small-area design, the Gaussian elimination method that is suitable
for a full-parallel design may be preferred.

the channel using Bayes’ rule and assuming the inputs are
equally likely.

To illustrate, we give a brief example of the update rules
for a variable node of degree 3 and a check node of degree 3,
but the approach suitably generalizes to arbitrary degrees with
appropriate modifications.3 In this case, the check node c j has
three connected variable nodes vx , vy , and vz with correspond-
ing weights w j,x , w j,y , and w j,z .4 According to parity-check
rule, w j,xvx + w j,yvy + w j,zvz = 0. The probability mass
function (message) to be passed to each ternary variable node
can now be computed. For example, the message from c j
to vz (illustrated in Fig. 7(a)) when w j,z = 1 at iteration
� > 0 is

C(�)
j,z = (p(�)

c j,z,0, p
(�)
c j,z,1, p

(�)
c j,z,2),

where

p(�)
c j,z,0 =

∑
a,b∈GF(3)

w j,x a+w j,yb≡0 (mod 3)

p(�−1)
vx, j,a

p(�−1)
vy, j,b

,

p(�)
c j,z,1 =

∑
a,b∈GF(3)

w j,x a+w j,yb≡2 (mod 3)

p(�−1)
vx, j,a

p(�−1)
vy, j,b

,

p(�)
c j,z,2 =

∑
a,b∈GF(3)

w j,x a+w j,yb≡1 (mod 3)

p(�−1)
vx, j,a

p(�−1)
vy, j,b

. (4)

The other case when w j,z = 2 is similar, where the modulo
condition for pc j,z,1 and pc j,z,2 are instead congruent to 1 and 2,

respectively. The other outgoing messages C(�)
j,x and C(�)

j,y
would be computed similarly.

Suppose variable node vz is connected to check nodes c j ,
ck , and cl . Then the (normalized) message vector to pass from
vz to c j at iteration � > 0 (illustrated in Fig. 7(b)) is

V(�)
z, j = (p(�)

vz, j,0
, p(�)

vz, j,1
, p(�)

vz, j,2
),

where

p(�)
vz, j,0

= p(0)
vz, j,0

p(�)
ck,z,0 p

(�)
cl,z,0 /�,

p(�)
vz, j,1

= p(0)
vz, j,1

p(�)
ck,z,1 p

(�)
cl,z,1 /�,

p(�)
vz, j,2

= p(0)
vz, j,2

p(�)
ck,z,2 p

(�)
cl,z,2 /�,

and

� = p(0)
vz, j,0

p(�)
ck,z,0 p

(�)
cl,z,0 + p(0)

vz, j,1
p(�)
ck,z,1 p

(�)
cl,z,1

+p(0)
vz, j,2

p(�)
ck,z,2 p

(�)
cl,z,2 . (5)

The other outgoing messages V(�)
z, j and V(�)

z,k would be
computed similarly.

To simplify the computation and avoid numerical issues,
in our implementation we compute (4) and (5) on the likeli-
hood domain and log-likelihood domains, respectively.5

3The degree of a node is the number of edges connected to this node in the
Tanner graph.

4We assume without loss of generality that no weight is zero since that
would eliminate an edge and reduce the degree of the check node.

5Details of probability domains are omitted. See, e.g., [33] for details.
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Fig. 7. Illustration of the message updates of SPA for ternary LDPC Tanner
graphs: (a) computing check to variable messages and (b) computing variable
to check messages.

4) Simulation Results: To compare the decoding perfor-
mance of ternary LDPC codes, we design three different
codes with rates R = 1/2, 1/3, and 1/4. The codes are
all constructed for M = 500 ternary information symbols,
corresponding to m = 5 and s = 100. The number of symbols
was selected based on the sampling rate of 1kS/sec of the ECG
sensor so that each packet could include a full QRS complex,
which must be protected for accurate classification. Parameter
k was selected as 5, 10 and 15, giving K = 500, 1000, and
1500, respectively. The circulant shift parameters b j,i , are all
randomly selected. In our design, to minimize complexity and
latency, all γl in H2 are set to be 1 and only three δ j,i are
non-zero in each row block of H1 (group of s rows according
to j ). Moreover, to allow hardware re-use in the encoding
computation we select the three non-zero δ j,i values in a row
group j to be 1, 2, 1 in that order. Fixing the pattern for
each j minimizes the hardware cost since it results in the
same parity-check computation for each symbol, as described
in Section IV, and is found to give an acceptable decoding
performance, as shown below. We note that following this δ j,i
and γl structure results in an ensemble of ternary LDPC codes
that all possess efficient hardware implementation.

The simulation results are shown in Fig. 8 for randomly
drawn codes from the hardware-friendly ensemble. 6 When
the code rate R is low, the decoder can correct more
errors: for example, when the target SER is 10−3, the rate
R = 1/4 code has corresponding channel parameter
p ≈ 0.21 (21% of channel error), the rate R = 1/3 code has
p ≈ 0.175, and the rate R = 1/2 code has p ≈ 0.075. In a
practical design, there is trade-off between the error correction
capability and the redundancy. Although in this paper we
restrict our attention to randomly constructed codes to give an
idea of the average performance, and select a particular δ j,i
and γl structure to minimize hardware cost, interesting future
work involves optimization of the code structure to improve
the performance and implementation complexity trade-off.
Nevertheless, the purpose of the random code as presented
is proof-of-concept that a ternary LDPC coding system can
be designed and implemented in an efficient way for such a

6To the best of our knowledge, there does not exist a ternary code that can
meet the requirements of our system for comparison, so we select a code
randomly from the ensemble to demonstrate average performance.

Fig. 8. Decoding performance of the constructed NB-LDPC codes versus
decreasing channel error probability p.

power-restricted device. Improved decoding performance can
be expected for optimized parameters.

IV. HARDWARE DESIGN AND IMPLEMENTATION

The primary considerations in the hardware implemen-
tation of the ternary LDPC encoder for wearable sensors
are the power cost and hardware complexity. Since the tar-
get signal (ECG) is sampled at a relatively low frequency
(1 kSample/second), the encoder can be designed with one
computation circuit and serial generation of output parity sym-
bols to save system power at the cost of a longer processing
time, which is acceptable in our application. For this reason,
our approach avoids using parallel encoding via a dense
generator matrix G derived by Gaussian elimination, which
requires a large number of operations and memory access.
Instead, the encoder generates the parity symbols directly from
the highly structured parity-check matrix of the ternary LDPC
code in a serial fashion. The codeword is formed by con-
catenating the information symbols and the generated parity
symbols. For example, with a 1/2 coding rate, the encoder
generates 500 parity symbols from a group of 500 information
symbols to form a 1000 symbol codeword. Such an encoder
can be designed using a simple accumulator and a parity check
module made of a look-up-table for operations on GF(3).
This method saves the computing resource and the memory
accessing cost of the hardware.

The block diagram of ternary LDPC encoder is shown
in Fig. 9. The Address Generator #0 generates addresses to
store the input serial ECG symbols [u0, u1, . . . , uM−1] in the
random access memory (RAM).7 After the input data has been
stored, the Address Generator #1 generates the appropriate
addresses of the message symbols ui involved in the current
computation (using shift registers according to the parameters
b j,i and s) and the data is read from RAM. This procedure

7Please note that Vivado does not provide verilog file of RAM. To perform
FPGA synthesis, we programmed RAM with shift-registers. Firstly, all Sensor
Inputs are stored in RAM. We then arrange the position of bits in shift-registers
according to Address Generator #0.
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Fig. 9. Block diagram of the ternary LDPC encoder circuit.

will be repeated every time instant according to the current
parity-check symbol computation. The data at a given time
unit is sent to Accumulator, which performs the ternary logic
operations (according to the δ j,i and γi parameters in a row
block (group of s rows) of HNB, which will be explained
below. The generated result that is required to determine the
current parity-check symbol is sent to the Parity-check Module
which outputs the parity-check symbol according to operation
rules on GF(3). This parity-check symbol is one symbol of the
Output and is also fed back to the Accumulator to generate
the next parity-check symbol. The ternary LDPC encoder stops
when all parity-check symbols are generated. This encoding
algorithm is summarized in Algorithm 1.

For example, when computing the initial parity-check sym-
bol p0, the input to the accumulator is [us−b0,0, u2s−b0,1, . . . ,
uks−b0,m−1] and output is the sum of symbols in (1) excluding
the p0 term. When computing ps using (2), input to the
accumulator is [us−b1,0, u2s−b1,1, . . . , uks−b1,m−1 ], as well as
p0 from the Parity-check Module, and output is the sum of
(2) excluding the ps term, and so on. In our design, there are
only three non-zero δ j,i values in any equation, say δ

(t)
1 , δ

(t)
2 ,

and δ
(t)
3 , corresponding to three message symbols u(t)

1 , u(t)
2 ,

and u(t)
3 at time t . Moreover, since the δ’s were selected to

be 1, 2, 1, in that order, and each γ (t) was selected as 1,
the accumulator need only output

δ
(t)
1 × u(t)

1 + δ
(t)
2 × u(t)

2 + δ
(t)
3 × u(t)

3 + γ (t) × p(t−1)

= 1 × u(t)
1 + 2 × u(t)

2 + 1 × u(t)
3 + 1 × p(t−1) (6)

where p(t−1) denotes the parity-check symbol output at the
last time instant (initialized as 0 for the first computation).
Note that a general design would have to allow for up to
m message symbols per unit time and different values for
δ j,i and γl with corresponding logic for the computations in
each row block (value of j ). Our design significantly reduces
the implementation complexity and has good performance (as
shown in Section III-B.4).

In order to implement the ternary LDPC encoder using
binary hardware, the ternary information symbols and ternary
parity check symbols are encoded into two-bit binary data
strings. Specifically, binary strings “00”, “01”, and “10” rep-
resent ternary symbols “0”, “1”, and “2” in GF(3), respectively.

Algorithm 1 Encoding Process for Ternary ECG Data
Input: M ternary symbols u from ECG signal, HNB
Output: Encoded codeword v

1: Initialize RAM with u
2: for parity-check block j = 0, . . . , s − 1 do
3: for i = 0, . . . , k − 1 do
4: Generate the locations of variable nodes (non-zero

entries) in row i s + j + 1 of HNB
5: Read data from RAM according to the generated loca-

tions of message symbols
6: Determine symbols used for current parity-check com-

putation (Accumulator)
7: Compute pis+ j (Parity-check Module) then output and

feedback for next computation
8: end for
9: end for

The Accumulator adds the input binary strings (with no
modulo arithmetic) to form a binary input for the Parity-check
Module. For example, the sum of binary strings “10” and “01”
results in binary string “11”. Our design uses a shift-register
to compute the multiplication between the coefficient δ j,i and
the information symbol before addition. In particular, in the
case that the coefficient δ is 2, the binary information string is
shifted cyclically left by one bit, while if the coefficient δ is 1,
the information string keeps its original (binary) value. The
multiplication results are extended to 4 bits to avoid overflow.8

The parity symbols can now be calculated. Specifically,
the parity symbol p(t) at time t is determined by the three
current information symbols, the previously computed par-
ity symbol, and the appropriate coefficients δ and γ . The
parity-check module computes the parity symbol using the
4-bit binary data output result of (6) from the Accumulator,
which is the binary string according to the sum of the multi-
plication results between the coefficient δ and the information
bits, plus the prior parity symbol. In our design, the coefficients
δ are selected as [1, 2, 1] and the information bits are either
“00”, “01”, or “10”. Thus, the accumulation result of (6)
has a maximum possible value of “1010” (decimal 10) when
the three information bits and the previous parity symbol are
all “10”. Consequently, the range of the parity check module
input (the result of (6)) is from “0000” to “1010”. A look-
up-table is then created to generate the corresponding ternary
parity symbol based on the 4-bit binary input using Table II,
which is computed based on Table I. Note that based on GF(3),
a binary value higher than 3 is equivalent to its modulus of 3.
For example, a 4-bit binary value “0101” means symbol “2”
in GF(3) and its corresponding parity is determined as “1”
since in GF(3) “2”+“1”=‘”0” (Table I). Therefore, the output
binary version is “01”, which is equivalent to “1” in GF(3).

The operation of the encoder is presented as the timing dia-
gram of Fig. 10. First, the write-enable signal (WEA) enables
the writing process from the ternary Delta modulator to RAM.

8With different number of non-zero δ’s involved in (6), different extension
size should be considered.
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Fig. 10. Timing schedule of the ternary LDPC encoder.

TABLE II

PARITY-CHECK MODULE LOOK-UP TABLE

For each symbol group, a total number of 500 symbols from
the data input pin DI N are written into the RAM according
to the address ADDR generated from Address Generator #0.
Then in the encoding process, the encoder-enable signal EN A
initiates the encoding process. The data is read from RAM
through the data output pin DOUT A according to the address
ADDR from Address Generator #1. The Parity-check Module
is then calculating the parity symbols PARIT Y based on the
accumulator output and the parity symbols from the prior clock
cycle. The generated parity symbol should be fed back to the
accumulator to generate the next ternary parity symbol. The
OUT PUT signal is calculated using three prior DOUT A
bits and the one prior PARIT Y bit, which updates every
three clock cycles. Note that the parity-check sequence output
is not in the numbering order. For example, the first calculated
parity symbol is p0, then the next calculated parity symbol is
ps instead of p1, as described in Algorithm 1. The data could
be reordered at the receiver, which typically has less power
constraints.

The proposed encoder has been implemented on an FPGA
and synthesised using a standard 32 nm CMOS technology.
Since the Vivado tool does not provide a verilog file for
the RAM, we used registers as memory blocks in order to
evaluate the hardware cost for FPGA synthesis. To calculate

TABLE III

FPGA AND ASIC SYNTHESIS RESULTS OF THE ENCODER

the size of the memory blocks, we first consider that the codes
are constructed for M = 500 ternary information symbols
and each parity check is generated by every 3 symbols and
each symbol has 2 bits. Therefore, we set a register size
of 500/3*2 = 332 bit. A total 3 of such registers are used
to represent δ

(t)
1 , δ

(t)
2 , and δ

(t)
3 . Each register has a buffer

register to store the temporal data for reordering. Therefore,
a total of six 332-bit registers are used as memory blocks.
The FPGA and ASIC implementation results are presented
in Table III. The power consumption is estimated by the
synthesis tools based on the technology model parameters. The
ASIC synthesis results include the core encoder circuits and
the total encoder with a 2 Kb RAM module. The encoder is
seen to occupy a small footprint and consumes little power
compared to the sensor and the radio circuits, thanks to the
proposed serial operation and the look-up table methods. The
system parameters, such as the coefficients δ j,i and γl , can
be adjusted according to specific designs of the encoder. The
overall system meets the design goals of power consumption
and circuit area. The decoder circuit hardware is not a primary
concern in the system since, unlike the encoder, the decoder
in the receiver usually does not depend on a limited battery
power supply.

V. SYSTEM PERFORMANCE ANALYSIS

The system performance is primarily evaluated by the
classification accuracy under different noise levels. It is also
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Fig. 11. Classification accuracy as a function of channel error probability p
with LDPC coding at different coding rates.

evaluated by the extra power consumption for performing the
error correction. The input signal is an ECG record from the
MIT-BIH database, which is converted into ternary bitstreams
by the Delta modulators. The bitstreams are encoded by the
ternary generator matrix of the LDPC code as described
in Section III-B to generate the transmitted symbols. Then
noise is added to the transmitted symbols based on the
ternary symmetric channel model. The LDPC decoder then
estimates the transmitted symbols using the ternary SPA.
Finally, the classification accuracy is compared between the
data with and without error correction.

A. Classification Accuracy

As described in Section III-A, the arrhythmia classification
accuracy is seen to decrease with increasing channel noise. The
simulation result of the classification accuracy under different
channel error probability p is presented in Fig. 11, where
the dashed curve represents the transmitted ternary bitstreams
converted from the ECG signal without error correction. The
other curves represent the protected data by the ternary LDPC
codes at different coding rates: from left to right R = 1/2, 1/3,
and 1/4, respectively. As expected, we observe that the ternary
LDPC codes with lower rates provide robust classification
accuracy for a larger class of channels (increasing p). For
example, with a code rate of R = 1/4, a classification accuracy
can be maintained at approximately 99.4% for p less than
or equal to approximately 0.21 (21% probability of channel
error); whereas the R = 1/3 code can only maintain this
accuracy for p up to approximately 0.17.

B. Power Analysis

The power cost of the error correction circuit in the ECG
monitoring system has been studied. To transmit the bitstream
from the ECG sensor, the total power cost of the system
includes the sensing power, transmission power, and the
power of the error correction circuitry. From our previous
study [34], the LDPC encoder power is negligible compared
to the transmission power. This is also valid in this work

using 32 nm CMOS process since the estimated power cost
of the ternary LDPC encoder is only 0.71 nW running with
a 2kHz clock, which is fast enough to support the ternary
sensor sampling at 1 kHz. Therefore, most of the extra power
from the error correction system comes from the extra bits
during communication. From [9], the power cost of the ternary
Delta modulator is 720nW at a sampling rate of 1 kHz.
Assuming the transmission power is 1nJ/bit [35] and the
ternary bits are transmitted as two channels the total power
without error correction is 1nJ×2×1kHz= 2µW. With a code
rate of R = 1/4, the total communication power becomes
2µW/(1/4) = 8µW, and the additional power from the error
correction are 8µW−2µW= 6µW. Adding the sensing power
of 720nW, the total power increased from 2.72µW to 8.72µW
to boost the detection accuracy from 93.3% to above 99%.
This power increase is acceptable for wearable ECG sensors.
In the future, an unequal error protection (UEP) method can
be applied to reduce the number of the extra bits for error
correction to save the system power.

VI. DISCUSSION

This paper provides several novel techniques and applica-
tions of wireless biosensors. First, the system and the target
signals have special characteristics that need to be considered
carefully in terms of error correction. To the best of our
knowledge, this is the first paper that addresses error correction
circuits for ternary Delta modulators for the application of
ECG classification. Although the ternary Delta modulator was
presented before, the error introduced during communica-
tion was not considered and may affect the decision-making
process. As discussed above, few critical bits in error may
lead to wrong treatment, which is not acceptable. We were
unable to find any references in the literature that consider
error correction with ternary data for wireless biosensors and
therefore the error effects and mitigating error correction in
communication for wearable biosensors with ternary sensors
form a valuable contribution.

The second innovation is code design. We designed a
novel irregular base parity-check matrix (i.e., selecting the
γ s and δs in the parity-check matrix) such that any code
randomly selected from the resulting code ensemble permits
efficient encoding. Otherwise, encoding an arbitrary ternary
LDPC code would have unacceptably high complexity for such
a device. In order to demonstrate an average performance,
we select a random code from the ensemble and showed that
the performance provides acceptable accuracy of classification
over a wide variety of channel conditions. This delivers proof-
of-concept that such a ternary LDPC coding system can be
designed and implemented in an efficient way for such a
power-restricted device.

The third contribution is the efficient encoder circuit design.
Considering the application constraint of power and area in the
wearable sensors, as well as the low frequency of the target
signal, the implementation applies a serial generation of output
parity symbols instead of conventional parallel encoding. The
encoder generates the parity symbols directly from the highly
structured parity-check matrix of the ternary LDPC code in
a serial fashion. The codeword is formed by concatenating
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the information symbols and the generated parity symbols.
Compared to the regular parallel encoding scheme, this novel,
power-efficient, serial encoding scheme is ideal for this appli-
cation since speed is not the primary consideration.

To improve the system performance, several promising
directions exist for future study. First, since a random code
was selected in the current system to show proof-of-concept,
we plan to perform code optimization while maintaining the
novel efficient base structure. This is expected to increase
the reliability/classification accuracy for a given code over-
head or lower the required amount of overhead for a target
reliability. Second, since the current channel model considers
the worst-case scenario of uniformly likely errors, we plan to
identify and generalize the ternary channel parameters using
hardware devices to obtain a more realistic channel model.
Third, we plan to apply an unequal error protection (UEP)
method to reduce the number of extra bits for error correction
to save the system power.

VII. CONCLUSION

A ternary LDPC error correction system is proposed to pro-
tect Delta modulated bitstreams in ECG sensors for arrhyth-
mia classification. The channel is modeled as a symmetric
ternary channel with an error probability p. A class of ternary
LDPC codes are constructed by concatenating two-component
sub-matrices with quasi-cyclic structure, which facilitates the
hardware design. A hardware-efficient ternary LDPC encoder
circuit is proposed using only an accumulator and a look-up
table to generate the parity-check symbols serially. This
is enabled by careful selection of coefficients in the code
design to facilitate a low-power implementation of the encoder
circuit. The hardware implementation and ASIC synthesis
results show that the proposed encoder has a low power
consumption and silicon footprint. The simulation results show
that the arrhythmia classification accuracy can be maintained
at approximately 99.4% for symbol error probability p up
to 21% with the proposed ternary error correction system.
The proposed design provides a promising solution for error
correction in ternary wireless sensors.
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