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Curvature-Induced Buckling for
Flapping-Wing Venhicles

Mohammad Sharifzadeh

Abstraci—This article explores a technique to leverage
curved surfaces for producing preferential buckling that
can be used to create forward thrust in flapping-wing de-
vices. We present a novel concept for using anisotropically
buckling beams in robot locomotion, facilitated via an ana-
lytical and finite-element-based analyses. We demonstrate
that with symmetric flapping inputs from a motor, buckling
beams can be used to generate forward thrust, power, and
work while reducing the drag associated with the recovery
phase of the flapping gait. Our analysis includes experi-
mental data that measures the forces produced by wings
flapping in air and water. The results show a clear differ-
ence in the work produced between buckling and nonbuck-
ling curved beams and shows that the average force and
work produced by buckling wings over a number of cycles
with symmetric flapping is nonzero. This has been demon-
strated on a new, two-fin swimming robot that, through the
use of this phenomenon, is capable of reaching an average
speed of 0.1 m/s. This article makes it possible for simple
motor inputs to produce complex swimming gaits through
careful consideration during the mechanical design phase
for swimming robots.

Index Terms—Controlled buckling, curved beam
buckling, robotics, underwater vehicle propulsion.

I. INTRODUCTION

HIS article explores the role curved surfaces and local

buckling can play in the generation of asymmetric loco-
motion forces for swimming and flapping robots. More specifi-
cally, we study how curved slender beams buckle preferentially
in one direction under symmetric motor inputs, utilizing this
phenomenon to design flapping fins and wings that produce
forward thrust and net positive work. We further seek, through a
knowledge-based exploration of the design and gait parameters
key to understanding this effect, how to exploit the phenomenon
of one-sided buckling to create complex flapping patterns that
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create positive average work across multiple gait cycles in
physical prototypes that demonstrate and validate this effect.

Fig. 1 illustrates the overall concept of the proposed wing
mechanism. In this design, a wing (or fin) is attached to an
electric servo via a compliant, curved beam that buckles at two
different points along the positive and negative portion of its
force/displacement curve, corresponding to opposite and equal
sense bending. Fig. 1(a) shows that controlling the amount of
force exerted on the end of the beam in positive and negative
directions can avoid buckling in both directions, permit buckling
in one direction, or buckle the beam in both directions.

When actuated in a fluid such as air or water, it is our intent to
show that the dynamics of powered, symmetric flapping results
in one of three general cyclic flapping patterns for the system
in question. The first regime is typified of slow flapping below
the buckling limit in either direction, where drag and inertial
forces remain low [Fig. 1(d)]. In this case, the curved beam
acts like a simple bending beam; little asymmetric behavior is
observed in its flapping path or in the average thrust generated
overacycle [Fig. 1(e)]. In the second regime—the primary focus
of this article—the flapping velocity is sufficient to buckle the
beam in the equal-sense bending direction but not in the opposite
direction. This results in the beam undergoing large deflections
about the buckling point during roughly half of its flapping cycle,
which permits the larger surface area of the wing to travel nearly
parallel with the direction of motion, rather than perpendicular.
This different angle of attack results in reduced drag forces on the
wing during the recovery segment of the stroke [Fig. 1(b)]. As
the cycle reenters the power stroke, drag causes the wing to open
back up in the other direction and remain perpendicular to the
direction of motion. This difference in overall drag experienced
by the wing in power and recovery phases generates nonzero
average work over a single flapping cycle, even with a symmetric
input from the motor [Fig. 1(c)]. In the third regime, the beam
buckles in both directions due to high torques exerted by the
motor that increase the drag and inertial forces experienced at
the tip of the beam past the buckling limit in both directions.
While also a potentially useful regime, we have observed that,
in some cases, buckling in the opposite sense resulted in plastic
deformation and rapid failure of the beams. Thus, we have
limited our current exploration to the first two regimes in this
article.

The rest of the article is organized as follows. Section I-B
discusses prior work. In Section II, we describe a flapping
wing design in which the buckling characteristics of curved
beams can be studied and tuned. We then study the curved
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Fig. 1. Conceptual illustration of the proposed technique. (a) Different regimes of a wing with curved beam. (b) Motion of wing in one-side buckling

regime. (c) Torque exerted by the wing on a fixed frame with respect to time and joint angle for one-side buckling regime. (d) Motion of wing in
no-buckling regime. (e) Torque exerted by the wing on a fixed frame with respect to time and joint angle for no-buckling regime.

beam by discussing the theoretical underpinnings of our idea in
Section II-A; we subsequently introduce a finite element analysis
(FEA)-based model, which permits us to study curved beam de-
sign parameters (Section II-B). Section III introduces a dynamic
model of our proposed system that validates this phenomenon
in water; Section IV describes experimental validation of the
concept in air (Section IV-A) and in water (Section IV-B) on two
separate robotic platforms, and finally, Section V concludses this
article.

A. Summary of Contributions

Our contributions may be summarized as follows. First, we,
for the first time, apply the concept of buckling tape springs
for locomotion via flapping in fluids. Second, we select an
appropriate analytical framework to understand the effect of
buckling in curved beams for use in generating thrust; third,
utilize finite-element methods to further study the relationships
between design parameters like curvature, length, and width on
beam stiffness and buckling limits. Fourth, these relationships
are then validated in simulation and experimentally, demon-
strating positive nonzero average forces, power, and work (in
contrast to regime I introduced above). Finally, we introduce a
novel robotic platform that leverages this phenomenon to swim
in water.

B. Background

Many structures in nature utilize flexibility and curvature to
enhance locomotion capabilities. In some cases, observations
of active curvature or cupping in fish [1], [2], 3-D curvature
in batoids [3], and flexible flapping of insect wings [4] has
been identified as a strategy proposed for optimizing locomotion
efficiency throughout a stroke. Walker [5] suggests that the
emergence of rowing versus flapping behavior in biological

locomotion is a function of viscosity-dominated forces at low
Reynolds numbers.

Buckling is also used in the natural world for animal locomo-
tion and other tasks. Camber, deformation, and the “umbrella
effect” has been studied in the desert locust [6]-[8]; like an
umbrella buckling in a gust of wind, hindwing camber has been
observed to rapidly invert between up-stroke and down-stroke.
Young et al. [8] find that power economy increases 15% when
considering the effect of camber in flapping models. Both [6]
and [7] identify the buckling of venous structures as the prin-
cipal mechanism, which permits this inversion. Buckling has
also been identified as the principal mechanism for successful
locomotion in bacterial flagella, [9], arthropod joints [10], and
Venus flytraps [11]-[13], and is used by ladybird beetles as a
mechanism to fold and store wings inside their shell [14].

A basic introduction to buckling is typically found in intro-
ductory mechanics of materials texts in engineering. Buckling is
typically considered a source of catastrophic failure in structures,
and models for buckling [15] are introduced in order to avoid
it [16], [17]. However, buckling has several characteristics that
make it potentially useful in mechanisms and robotics. First,
it does not always imply material yield; rather, small geometric
perturbations lead to drastic reductions in load-carrying capacity
irrespective of the stress in the material. In general, buckling
occurs when a material exhibits a nonlinear and often rapid
drop-off in force due to small changes in shape. Once a buckling
condition is met, the material deforms quickly, resulting in a
new force/displacement curve with a much smaller stiffness
coefficient. Sometimes the stiffness coefficient can become neg-
ative, leading the device to rapidly reconfigure to a new stable
state; this condition is referred to as a “snap-through instability”
in the literature [18], [19]. In the design process, buckling is
typically associated with failure and avoided. In some cases—as
in a tape spring or tape measure—this condition is exploited.
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When extended with the curved surface opposing gravity, a
tape spring can support its own weight on the order of several
feet. When flipped over; however, it collapses rather quickly. In
addition, a tape spring is able to be rolled into a small volume
without fatigue or failure. Clearly, the material properties, design
geometries, and selected camber all play an important role in this
device’s operation.

A variety of prior work investigates buckling and snap-
through instabilities with regard to its use as a mechanical
device. Work by Koh et al. [20] demonstrate a flea-inspired
torque reversal mechanism in which energy stored in a spring
is released via a small perturbation in the kinematics of a
mechanism . In other work a venus flytrap-inspired mechanism
utilizes reversible buckling to facilitate rapid inversion between
concave and convex states in a shape memory alloy (SMA)-
actuated device [21]. In [22], a self-deployed gliding wing is
made using characteristics of a curved origami facet. The use
of curved facets permits the wing to deploy at its ballistic apex,
resulting in an increased gliding range. Jung et al. [23] have
also proposed a gripper inspired by a caterpillar’s proleg that
uses flexural buckling for adaptive gripping on rugged, uneven
surfaces. In [24], an origami-inspired structure is used to produce
dual-stiffness joints by prestretching and sandwiching a flexible
material in a multilayer structure during fabrication to induce
buckling in the presence of high forces, forming a mechanical
fuse. Jiang et al. [25] propose a mechanism to reconfigure the
stiffness of tubular structures, using pinching to induce highly
directional changes in stiffness.

In contrast to prior work, which utilizes complex, origami-
inspired mechanisms or uses anisotropy for single-use deploy-
ment applications, this article seeks to leverage the simplicity of
curved slender beams as passive, nonlinear elements in the active
generation of thrust, power, and work via cyclic flapping. Our ap-
proach augments prior work in tape spring theory, using FEA to
understand and control design parameters such as beam length,
curvature, and width to influence the thrust and work generated
via symmetric gait patterns. We are motivated by the simplicity
of the structures we employ, and our approaches differ from prior
analytical methods in that we demonstrate how the nonlinear
stiffness produced by such elements is sufficient to describe the
dynamic and hysteretic nature of flapping systems in fluid.

Our approach to generate thrust resembles the rowing mo-
tion of pectoral fins used by fish in the “labriform” swimming
mode [26], [27], in which the objective is to produce thrust using
a cyclic motion consisting of power and recovery strokes. Dif-
ferent mechanisms have been proposed to enhance production
of propulsive forces during the power stroke while reducing drag
forces during recovery stroke. Behbahani et al. [27] propose a
flexible hinge alongside a hard stop for thrust generation using
pectoral fins in a robotic fish. Using flexural joints or fins in
combination with a hard stop is studied in other fish-inspired
robots [28], water beetles [29], and bird wings [30] as well.
The similar approaches used across these robots use system
flexibility in the recovery stroke to reduce drag forces while
preventing the same flexibility in the power stroke, increasing
the average propulsive force over a gait cycle. Similar thrust
generation through rowing has been achieved using rigid, curved
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Fig. 2.  Side view of our flapping wing designs, with design and exper-
imental variables labeled.

fins [31] as well as active curvature control via multiple ac-
tuators [26], [32]. In contrast to the aforementioned solutions,
our mechanism produces thrust merely through the asymmet-
ric buckling behavior of curved beams, rather than relying on
jointed multibody or multiactuator approaches. This results in
a highly nonlinear response that can be tuned and customized
based on need, while remaining simple in implementation—
control signals at the actuator may remain symmetric using this
concept, as the beam’s anisotropic stiffness is responsible for
breaking swimming symmetry. Tuning can use a wide variety of
design parameters—beam length, curvature, thickness, etc—in
order to achieve different dynamic performance as a function
of the fluid or desired performance criteria (speed, efficiency,
power, etc). In this article, we demonstrate how changing effec-
tive beam length and flapping frequency can affect the behavior
of the system; Future studies will expand on this concept via
other parameters in order to optimize for more specific dynamic
performance criteria in specific cases and media, as discussed
in the conclusions.

[I. ANALYSIS OF CURVED BEAM IN ANISOTROPIC
BUCKLING WINGS

This section details the basic components of anisotropic buck-
ling wings. Subsequently, the section focuses on modeling and
characterization of curved beams embedded in these wings. In
order to split the problem between aerodynamic and buckling
domains, a family of relatively simple wing designs composed
of a long thin beam connected to a circular flat plate has been
considered. This wing is attached to a joint (defined by the
heavy dashed line in Fig. 2) that may be powered by a motor
or transmission. The role of the circular plate is to produce
thrust and drag and apply resultant forces and torques through
the curved beam to the body of a mobile robot. We assume
symmetric propulsion throughout the article, though different
gait strategies could be selected and studied. This permits us to
study the impact buckling and deflection has on thrust and force
production as a function of wing configuration throughout its
gait cycle.

We model buckling under the assumption of end-loading
conditions consisting of point loads and moments from aero-
dynamic forces in the distal portion of the wing. The wing
seen in Fig. 2 comprises several sections: a rigid plastic section
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of length [y (gray), a section of length (x1 — ly) (in cyan), a
second interstitial section of length (I = z; — x;) (red), and a
third section of length (I; — x;) (cyan), which is connected to a
circular plate of diameter d. The curved beam with thickness ¢ is
curved along its length via two curved plastic sliding attachments
located at 'y and x,. These sliders induce a camber to the beam,
which can be represented as a radius of curvature r. The cyan and
red sections of the wing are made of a single sheet of -mm-thick
polyester, whereas the gray portion is a sufficiently rigid 3-D
printed plastic.

For the purposes of our design and analysis, we assume that
the position of sliders 1 and 2 is such that the red portion of the
beam is the weakest and buckles first in the presence of flapping
forces. Though camber of the wing may be observed along the
beam, the circular plate does not exhibit significant curvature
due to increased material stiffness.

A. Theoretical Model for Curved Beam Buckling

Two different formulations are most often used to describe the
buckling phenomenon of curved beams in the literature, namely
the buckling of spherical shells [34], [35] and the behavior of
folded tape-springs [33], [36]-[39].

In order to understand this phenomenon based on the buckling
of spherical shells, Kebadze et al. [35] explain that in opposite-
sense bending, prestressed, curved material first passes through
a flattened state via moments exerted on the shell’s edge (M,
and M,). Stress (o) is the direct result the of curvature change
in the y-direction, whereas (o) is caused by Poisson’s ratio.
Considering that the material remains in its elastic range during
this deformation, the stress distribution through the thickness
stays linear and stress distribution can be determined.

This model finds critical buckling stress as a function of curva-
tures of the two stable phases, i.e., initial longitude curvature and
final phase curvature. In this article, the system has no second
stable phase. As a result, the value for final phase curvature is
unknown and the value for critical buckling moment cannot be
obtained based on this system of equations.

The behavior of a tape spring is formulated by Wuestin [38], in
which moment-curvature relationships for a tape spring subject
to equal and opposite end moments are obtained [Fig. 3(a)].
As described by Soykasap [36], end moments can be obtained
by integrating of moments about the transverse axis for the
whole cross section of the tape spring by considering the beam
as a slightly distorted axi-symmetric cylindrical shell. In this
formulation

s/2
(Ml — le)dy
—s/2

M =

1 1 /1 2
— sD x kl+”u<+ukl>ﬂ+<+ukl> j 28
r r ki \r
(1)

where M; and N; are the bending moment per unit length and
the axial force per unit, respectively. w represents out-of-plan
deflection, the y-axis corresponds to the longitudinal direction,
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Fig. 3. Nonlinear behavior of a curved beam derived (a) from the-

ory [33] and (b) from experimental data for a steel and plastic specimen
with the same geometry. Both results show a considerable decrease
in stiffness after buckling occurrence both in opposite and equal-sense
bending.

and k; is longitudinal curvature. s and D are the width of the tape
spring and bending stiffness, respectively and can be determined
by the following equations:

s = 2rsin (g) 2)
E#
P=na—n @

where E, v, and t are Young’s modulus, Poisson’s ratio, and tape
spring thickness, respectively. r and 6 are the initial transverse
radius and curvature angle of tape spring, respectively. F| and I,
in (1) are calculated as follows:
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The critical buckling moment (M*), can be calculated by
finding the maximum end moment in (1). The “steady moments”
M and M referenced in [36] can be calculated by considering
that the curved region is approximately cylindrical

Mt = (14v)D 7)
M* = —(1+v)D8 (8)

Although M* and M™** are considered different values by [33],
they are considered equivalent in other studies, which changes
the equal-sense bending curve in Fig. 3(a) to a simpler horizontal
line starting from M* = M™ [36]. Additionally, we note that
this formulation is limited to the linear regime of the material’s
stress/strain curve.

In order to evaluate the theoretical model and provide better
understanding of the curved beam, two specimens of a steel mea-
suring tape and a curved polyester beam are considered. Both
specimens have the same length (I). The polyester specimen is
precurved so as to have the same radius of curvature (r) as the
steel specimen. For each specimen, the curved beam is attached
at one end to a fixed plate, while a known force is applied to
the other end. A force sensor mounted to the output of a linear
actuator pushes on the beam via a small, 3-D printed contact
point. The linear actuator moves back and forth through a 50 mm
range in 10 pum increments; applied forces are sampled at each
step.

Fig. 3(b) depicts the result for both specimens in two cases
of equal and opposite-sense bending. Both polyester and steel
specimens exhibit the buckling behavior predicted in the theoret-
ical model. This may be seen in the sudden drop in the resultant
moment at high deflection. The buckling moments in opposite-
sense bending (M™*) are much higher than the equal-sense
buckling moment (M) for both specimens. However, there
are some notable differences between the theoretical model and
experimental data. In both specimens, the deflection of the spec-
imens in Fig. 3(b) does not follow the same path after buckling
when forces are removed. This difference is more noticeable in
the steel specimen compared to the polyester specimen. In the
steel specimen, the values for M} and M are different (as
predicted in [33]), but in the polyester specimen, they have the
same value (as predicted in [36]). The sudden change in the
experimental torque/displacement data is believed to be due to
out-of plane deformation, pusher slip, and friction. Moreover, in
the case of opposite-sense bending, the path during loading and
unloading of the polyester specimen is closer to the theoretical
model predicted in [33] and [36] than the steel specimen. We
attribute this to plastic deformation that was observed in the
steel specimen. While the theoretical model assumes that the
buckling beam does not leave the elastic region, our experiments
show otherwise. This can be due to the fact that, like the drag
force on the wing, the pusher produces a combination of force
and moment on the edge of the curved beam instead of a pure
moment. This force-moment combination produces a nonuni-
form stress distribution on the shell and, in some cases, deforms
the plate after buckling in ways not predicted by [33] and [36].
This deformation results in permanent damage to the beams if
the moment exceeds (M™¥). As a result, a safe region must be

defined for the moment produced by the wing to ensure that the
beam never undergoes opposite-sense buckling.

B. FEA Study on Curved Beam Buckling

In order to customize the buckling behavior of curved beams,
various design parameters can be adjusted, including the radius
of curvature (r), beam width (r0), beam length (I), and other
material properties. FEA may be used to better understand and
tune the relationship between these parameters and the desired
buckling conditions. Unlike the analytical formulation, which is
based upon uniform geometry and specific loading assumptions,
FEA methods permit us to explore a wider range of geometries
with more nuanced loading combinations as our use of this
technique moves toward design optimization.

We, thus, study behavior of a slender curved beam, varying
the curvature (), length (1), and width (r6) of the beam as
primary design parameters and monitor the change in buckling
factor of safety in linear, eigenvalue-based approach. To simplify
the analysis we model half the beam and apply a symmetric
constraint for the other half; we use a curvature-based mesh
setting with a maximum element size of 0.4 and 0.02 mm
tolerance. The proximal edge of the beam is fixed while a load is
applied to the distal end. The load is a combination on nominal
force and moment (1 N and 1 Nm).

First, we demonstrate how adjusting the camber (or longi-
tudinal curvature) of a beam can be used to alter the beam’s
stiffness and critical load to produce asymmetric flapping cycles
and nonzero thrust. The curvature, 6, is defined in Fig. 2 so
that 6 = O corresponds to a flat plate and # = 180 produces
a half-cylinder. Using the results of an FEA study performed
using SolidWorks simulation, seen in Figs. 4(a) and (b), the
deflection of a curved beam (of dimensions [ = 25.4 mm by
rf = 25.4 mmby ¢t = 1 mm) loaded in equal and opposite sense
differs noticeably.

A further study, shown in Fig. 4(c), shows the evolution of the
differences in critical load for equal and opposite-sense bending
as the curvature of a beam is varied between 30° and 180°.
The width (r6) and length (I) of the undeformed half-beam
is set to 25 mm in this article, and the resulting critical loads
are obtained when loads are applied in the equal and oppo-
site orientation using a linear eigenvalue-based analysis. The
results in Fig. 4 show the magnitude of the buckling factor of
safety in equal-sense (blue) and opposite-sense (red) loading
cases. While exceeding the opposite-sense buckling limit leads
to plastic deformation and should be avoided (as discussed in
the previous section), exceeding the equal-sense buckling force
reduces drag in the up-stroke portion of the swimming gait
and increases the average thrust produced in swimming gaits
without leading to beam failure. The black arrows in Fig. 4
show the magnitude of the difference between critical load in
either direction, corresponding to the safe working range for
using drag forces to create asymmetric flapping gaits without
material failure in the beam.

To further understand the relationship of beam width on
buckling point, the curvature (¢) and length ({) of the undeformed
beam are fixed at 180° and 25.4 mm, respectively, whereas the
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critical load. (a) Equal-sense. (b) Opposite-sense bending. Only half of the symmetric beam is simulated and displayed. FEA results demonstrate
the buckling limits as a function of various design parameters in opposite and equal-sense bending, which relate to the differences in load-carrying

capability in either direction. (c) Effect of curvature angle (). (d) Effect of width (r0). (e) Effect of length (I).

width of the beam is varied from 6.4 to 76.2 mm. The beam’s,
radius of curvature (), volume, and mass change as a function
of width. Fig. 4(d) shows the result of this article, where the
factor of safety corresponding to both equal and opposite-sense
buckling increases as the width of the beam grows. The results
also show that the difference in magnitude between equal and
opposite-sense buckling limits (black arrows) grows with width.

In order to better understand how beam length () impacts
buckling, we vary the length of the beam from 6.4 to 76.2 mm
while keeping the curvature (6) and width (r0) of the undeformed
half-beam fixed at 180° and 25.4 mm, respectively. The beam’s
volume and mass change as a function of length (/) while the
radius of curvature (r) is held constant. Loading conditions are
varied as a function of [ in this since the loading conditions on
the buckling portion of the system are defined by the moment
and force combination generated by the forces exerted at the
distal end of the beam.

The result of this article shows that the buckling limit de-
creases for both equal and opposite-sense buckling as the length
grows [Fig. 4(e)]. However, the difference between the magni-
tude of positive and negative buckling limits initially grows and
then stays somewhat constant for [ > 25.4 mm.

Based on these results, we have selected a curved beam
with € = 180° for the rest of the article. The beam length (1),
width (r#), and thickness (¢) remain free design variables that can
be tuned in order to maximize the effects of one-sided buckling
for use in conjunction with the drag and inertial forces acting
on the fin across fluids of different viscosity. Future work will
require a more systematic search for the optimal design through
all parameters to find designs which improve performance for
criteria such as speed, efficiency, or power.

I1l. DYNAMIC MODELING OF BUCKLING WING PROPULSION

This section describes the dynamic modeling of the system by
considering dynamic elements such as wing drag, curved beam
stiffness, and rigid body dynamics.

We have modeled the dynamic behavior of a wing sys-
tem based on these relationships. In this article, a wing sys-
tem [shown in Fig. 5(a)] is connected to the ground at the
base of the input joint and the moments exerted on the envi-
ronment about the rotational axis are recorded similar to our
experimental setup in Section I'V-B. The system is represented
by two rigid links with point masses located at their centers
of mass, connected by a pin joint and torsional spring, with
stiffness coefficient of K, connected in parallel. The nonlinear
stiffness of the spring is represented by three linear regimes; the
slopes of each of these regimes have been adjusted to best fit
experimental data collected from our prototype introduced in
Section I'V-B using the methods discussed in Section II-A.The
length (d; and d,) and mass (m; and m;) of each link match the
measured values of the in-water prototype from Section IV-B.

Using a flat plate model, the forces on a wing due to a fluid
are estimated by the equations derived from [40]:

Fop, = pu? Asin’ a

(€]

F,, = pu® Acosasina (10)

where p, u, A, and « are the density of fluid, the relative velocity
of the plate, the area of the plate, and the angle-of-attack of the
wing, respectively. F,,, and F,, correspond to the drag and lift
elements of the aerodynamics forces on the plate. This model
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Fig. 5. Dynamic modeling of a wing flapping in water. (a) Model for the wing system. (b) Comparison between the average values of wing lift and

drag between flat plate model (9) and (10) and CFD analysis. (c) Velocity magnitude of the water flow in CFD analysis for o = 120°. (d) Motion of
the wing flapping at 0.4 Hz experiencing buckling during the recovery phase. (e) Torque exerted by the wing on the fixed frame with respect to time.

(f) Motor position.

estimates the total force on a flat plate as

F,, = pu* Asina

(1)

where « is 0 when parallel to the flow and 90° when perpendic-
ular (in 2-D) [40]. This force is perpendicular to the wing and
acts as the aerodynamic load on the curved beam [Fig. 1(a)].

Using (11), we can use the velocity of the plate () to control
the amount of drag force exerted on it, which, in conjunction
with the load limits determined by the mechanics of the curved
buckling beam [(1), (7), and (8) and Fig. 3(a)], determines
whether and under what conditions buckling occurs.

The flat plate model best describes the fluid dynamics of a
system when the Reynolds number is low and the system is in
the laminar regime. The Reynolds number of a flapping wing in
fluid is formulated as follows [41], [42]:

Re = ue

14

(12)

where u, ¢, and v are the mean translational velocity of the wing
tip, the wing mean chord, and the kinematic viscosity of the
fluid, respectively. For the given flapping system, @ = 2P f R,
where ® and f are flapping peak-to-peak angular amplitude and
frequency and R is moment arm to the center of pressure of
the wing. For this wing flapping in water, the Reynolds number
varies from 1800 to 7200 when the flapping frequencies varies
from 0.1 to 0.4 Hz, indicating that the flow regime changes from
laminar to turbulent at higher flapping frequencies.

We then compare the flat plate model using a computational
fluid dynamic (CFD) analysis on the system wing. In this article,
carried outin ANSYS [Fig. 5(c)], we have measured the average
lift and drag exerted on the wing by uniform water flow with

different flowrates as the angle-of-attack varies from 0 to 180°.
Fig. 5(b) shows the CFD analysis results for the flow of 0.1 m/s
versus the flat plate model estimation. These plots show the high
correlation between the flat plate model and CFD results for the
latter speed for which the system is in laminar regime. At the
maximum studied flapping frequency, the mean transnational
velocity of the wing reaches 0.41 m/s for which, in the worst
case, the maximum error between flat plate model and CFD
results is less than 15%.

When a sinusoidal torque input is applied to the base joint, the
dynamic model demonstrates that the wing system transitions
between a nonbuckling flapping regime to a one-sided buckling
regime [as shown in Fig. 1(a)] when the flapping frequency is
increased. Fig. 5(e) and (f) plots the torque produced across
different input frequencies as a function of time and base joint an-
gle. From these data we can see that the wing system transitions
from the nonbuckling regime to one-sided buckling at around
0.3 Hz. While the maximum positive torque increases with
frequency in the power stroke, the torque in the recovery section
remains low. The amount of work performed on the environment,
in Fig. 5(f), also grows with the emergence of buckling. Fig. 5(d)
shows the motion of the modeled wing through a full flapping
cycle at 0.4 Hz, behavior which is similar to the in-water flapping
behavior shown in Fig. 8(b) and (c).

[V. EXPERIMENTAL VALIDATION

The goal of this section is to experimentally verify the effect
of curvature on buckling force for a curved beam, as well as
to demonstrate its potential for creating thrust and motion. We
have considered two case studies (air and water) to validate our
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Fig. 6. Experimental setup for measuring air drag applied to wing.

proposed methodology in order to underscore the generality
of this concept, using the design principles from the previous
section as a design guide.

A. Case Study I: Wing Flapping in Air

In this case study, the air drag exerted on a wing utilizing
curved beam buckling is experimentally measured. Our exper-
imental setup is shown in Fig. 6. A dc servo is attached to a
flapping wing via a 3-D printed mount, permitting rapid swap-
ping of different wing designs. Forces and torques generated by
flapping are measured with a six-axis ATI Mini40 force/torque
sensor mounted to the motor and ground. The servo’s position
input signal is a triangular wave with a fixed amplitude of 66°;
the frequency is varied in order to change the aerodynamic
interactions experienced by the wing.

1) Variable Length (One Beam): Two different cases of
symmetric flapping are studied to demonstrate the effect of
anisotropic buckling. In the first case, the sliders are brought
closer together; this shortens the exposed beam length (I) and
prevents buckling in both directions of flapping and results in
similar angle of attack and drag in both up-stroke and down-
stroke [orange line in Fig. 7(a), (b), and (c)]. In the second case,
curved, reinforcing sliders are arranged so that the gap between
them is large enough to permit buckling in the equal-sense di-
rection to occur during sinusoidal flapping. This longer buckling
region allows the curved beam to buckle under drag forces in
equal-sense bending, but is not sufficient to induce buckling in
the opposite sense [blue line in Fig. 7(a)—(c)]. The start and
end points of buckling are illustrated in Fig. 7(a) and (b) using
red circles and blue squares, respectively. Non buckling and
one-sided buckling regions for a full cycle are also shown using
light gray and gray boxes.

Fig. 7(b) and (c) shows the moment generated by the wing
during symmetric flapping as a function of the wing’s angle and
speed, respectively. The shape of the nonbuckling curved beam’s
work loop is qualitatively symmetric (about torque 7 = 0),
indicating that the average work—the area of the work loop
in the positive 7 domain minus the area of the work loop in the
negative 7 domain—over several flapping cycles provided by a
nonbuckling beam (orange) is near zero. In contrast, the buckling
beam (in blue) shows an asymmetric path (about torque 7 = 0),

TABLE |
TORQUE AND WORK GENERATED DURING FLAPPING IN AIR

Frequency Average Work Mechanical

Experiment | =" 5" forque(Nm) () Efficiency ~ Duekling
Variable 228 0012 0.009 1.86% No
Length 228 0.131 0165 2950%  One side
138 0005 0005 298% No

1 Beam 2.06 0.149 0154 2673%  One side
238 0131 0165 2950%  One side
2.06 0.004 0.013 2.29% No

2 Beams 228 0.031 0.019 2.56% One side
243 0.077 0095 1030%  One side

capable of producing nonzero work in the forward direction.
This asymmetry is also noticeable in vertical portion of the
blue line in Fig. 7(c), shown by vertical double arrows lines,
where the positive angular velocity is much smaller compared
to the negative side. The abovementioned changes in power and
work plots show the effectiveness of anisotropic buckling during
symmetric flapping in generating nonzero thrust, power, and
work.

The results demonstrate that the curved beam produces work
in symmetric flapping when it is permitted to buckle. The aver-
age torque generated over one flapping cycle increases from
0.009 to 0.165 Nm in the presence of unidirectional buck-
ling (Table I). Though the wing-beam system is not optimized
for energy efficiency, the mechanical energy efficiency increases
from 1.86% t029.5%. This is calculated by evaluating the ratio of
useful work done over the total work done across a full flapping
cycle.

2) Variable Frequency (One Beam): We next look at the
effect of drag on buckling by increasing the frequency of the
triangular input signal for the same curved beam. Plots in Fig. 7
show the torque generated via a symmetric flapping gait with
respect to time (a,d,g), servo angle (b,e,h), and angular veloc-
ity (c,f,1). In Fig 7(d)—(i), the results for the three flapping rates
of 1.38, 2.06, and 2.28 Hz are depicted in blue, red, and orange
colors, respectively. In these figures we see that the torque gen-
erated by each successive increase in flapping speed increases
the magnitude of torques experienced in the positive y domain
without similar magnitude increases in the negative y domain.
This results in work performed on the environment, which can
be seen as a clockwise work loop in both the torque versus servo
angle and torque versus angular velocity plots in Fig. 7(e) and
(f). At 1.38 Hz, the beam experiences no buckling; however, the
faster two cases (2.06 and 2.28 Hz) result in one-sided buckling.
The average torque, amount of work done on the environment,
and mechanical efficiency are reported in Table I. The data reveal
that the buckling duration of a full flapping cycle increases
from 25% to 42% in one-sided buckling cases between 2.06
and 2.28 Hz. We note that though the hysteretic gaits obtained
here via anisotropic buckling during flapping resembles gaits
generated by other techniques such as the split cycle method
in [43], the effect in our case is a result of designed system
dynamics rather than asymmetric motor inputs.

3) Variable Frequency (Two Beams): To address the nonneg-
ligible torsional effects visible in the wing during flapping, we
stiffened our system in torsion by attaching two beams—40 mm
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Fig. 7.

Effect of asymmetric buckling on a wing flapping in air : (left plots) Torque versus time, measured over several flapping cycles, (middle

plots) position versus torque; (right plots) velocity versus torque (a,b,c) One beam with variable effective buckling length that produces no buckling
and buckling, respectively. (d,e,f) One beam connected to the wing flapping at 1.38, 2.06, and 2.28 Hz. (g,h,i) Two beams connected to the wing,

flapping at 2.06, 2.28, and 2.48 Hz.

apart from each other, in parallel—to the wing, as depicted in
Fig. 2. This reduced the noticeable effects of torsion on long thin
beams (as noted by [44]) and produced slightly different torques
throughout flapping cycles at different speeds. Fig. 7(g)-(1)
shows the results of this test at 2.06 (blue), 2.28 (red), and
2.48 (orange) Hz, respectively. The results show similar trends
and behavior with the previous one-beam case, but because the
system is stiffer (due to two beams in parallel), it takes higher
velocities (and higher drag) to initiate buckling. This can be
seen in the of 2.06 Hz case, which experiences no buckling
in contrast to the single-beam trial. The data sampled in the
two-beam case are smoother, with less high-frequency noise;
this can be attributed both to a reduction in torsional effects
as well as the impact of the altered stiffness on the resonant
frequencies of the system.

B. Case Study II: Flapping in Water

This concept has also been demonstrated in water, using a
RC servo to produce symmetric flapping while measuring the
torques produced by the fluidic interactions. Fig. 8(b) shows

frames extracted from a single flapping cycle of a wing with
a precurved buckling beam. Frames 1—4 represent the recovery
stroke of our sinusoidal control signal; frames 5-8 constitute the
power stroke. Hysteresis is clearly visible between these strokes,
indicating that the dynamic interactions between inertia, drag,
and buckling play a role in deforming the beam anisotropically.

In this experiment, we use a sinusoidal input signal with
constant amplitude and variable frequency to study the impact of
flapping speed on buckling and torque. Fig. 8(c) shows the torque
generated for 0.1, 0.2, 0.3, and 0.4 Hz frequencies over several
cycles. The results clearly demonstrate the effect of anisotropic
beam buckling. The maximum positive torque increases from
0.05 to 0.43 Nm between 0.1 and 0.4 Hz while the negative
torque generated during a flapping cycle is limited across all
experiments to no less than —0.12 Nm. Table II shows the
comparison between the generated torques in this experiment
and values estimated by the dynamic model (Section III). The
results of the two-beam design are subsequently shown in Fig. 2.
Though illustrative of the tradeoffs between torsional stiffness
and buckling, the results show that increased mechanism stift-
ness increases the torque that can be supported by the beam
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TABLE Il
GENERATED TORQUES IN SIMULATION AND EXPERIMENTAL
Frequency Simulation Experiment Buckling
Tmin Tmax Tmin Tmax
(Nm) (Nm) (Nm) (Nm)
0.1 -0.04 0.04 -0.04 0.04 No
0.2 -0.14 0.14 -0.14 0.15 No
0.3 -0.23 0.3 -0.13 0.32 One side
0.4 -0.24 0.46 -0.12 0.44 One side

in recovery [Fig. 8(d)], undesirable from the perspective of
gait efficiency. This design requires optimization against other
design parameters to simultaneously reduce the effect of torsion
and increase efficiency.

Using these results, a water-based robotic platform has been
developed that leverages buckling during flapping. As illustrated
in Fig. 8(a), the robot uses curved beams to connect to two rigid
fins made from 0.76 mm fiberglass sheet. The buckling portions
of the links are made from a laminated composite of fabric,
adhesive and 0.18 mm-thick polyester, which is used to reinforce
the material during buckling.

Based on the properties of the curved beam, if the combination
of force and moment experienced at the fin is between the equal
and opposite-sense buckling values discussed earlier, the curved
beam will buckle unidirectionally, resulting in a different angle
of attack, which impacts the lift and drag forces acting on the
fin by the fluid. As a result, drag on the robot will be different in
power stroke and recovery stroke, creating a thrust differential
over a gait cycle, which makes the robot swim forward. The
magnitude of forces and moments caused by fin propulsion can

be adjusted by controlling the amplitude and speed of the servo
movements, size of the fin, length of the beam (/), and radius of
curvature (7).

The left and right fin servos follow a sinusoidal control signal
of the form

y; = A;sin(2w fit + a;) + b; (13)

where A; represents an adjustable amplitude, f; represents the
frequency, a; represents a phase offset, and b; represents an
amplitude offset from the neutral point, which is nominally set
to b; = 0 throughout these trials. This symmetric motion about
our transverse and bilaterally symmetric robot guarantees that
any forward locomotion can be attributed to the changes in drag
caused by the buckling curved beam attached to the fin. Fig. 8(e)
shows the forward thrust generated by symmetrical flapping of
the two wings for 0.1, 0.2, 0.3, and 0.4 Hz frequencies.

In water trials, the swimming robot was able to swim with
an average speed of 0.1 m/s when yy = y;. The robot was able
to rotate by using only one limb at a time. This is important
because a nonbuckling fin acts more like a fish caudal fin and
causes the robot to move laterally; because of buckling, the fin
produces nonzero average torque, resulting in the robot turning.
The video attached to the article highlights the motion of the
robot.

V. CONCLUSION

This article studies the use of buckling curved beams for
use in flapping-wing mobile robots moving through fluids. The
theory behind this phenomenon is studied analytically, while
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FEA permits us to look beyond the limited conditions antici-
pated by prior work and investigate a wide range of buckling
shapes and load conditions. The proposed propulsion method
has been experimentally validated by measuring the force and
work generated by a wing flapping in air and water, in the
presence and absence of buckling. Hysteresis due to buckling
is clearly visible, and the average force produced via symmetric
flapping is positive in the direction of forward motion. Finally, a
swimming robot based on this phenomenon has been designed
and can swim at an approximate average speed of 0.1 m/s using
a symmetric flapping strategy. The robot is additionally able to
turn when flapping only one fin.

In terms of impact, we believe this work will inform the
future design and optimization of simple flapping swimmers
and flyers. Understanding the nonlinear behavior of buckling
curved beams and how geometry influences critical buckling
loads permits these systems to be tuned along a spectrum of
performance requirements for use in air or water. Knowledge
of how hinge geometry affects such response will also lead
to simpler, more mechanism-oriented design approaches, and
will permit designers to identify coupled wing/beam designs as
well as tuned swimming gaits that are optimal across competing
criteria like efficiency, power, and speed.

Future work will explore mechanisms by which buckling
limits can be adjusted in real time in response to changing needs.
This concept supports new strategies to employ distributed actu-
ation and sensing of curvature as well as multidomain modeling
and design strategies that bridge the gap between mechanics,
mechanisms, and fluids. Our future goal is to permit the rational
design of buckling wings from specification to realization, as
well as to demonstrate this concept on high-performance plat-
forms that leverage programmable buckling in order to create
biorealistic flapping-wing swimmers and flyers. Future work
will expand this concept to include terrestrial locomotion and
amphibious environments.
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