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How deregulation, drought and increasing 
fire impact Amazonian biodiversity

Xiao Feng1,23 ✉, Cory Merow2,23, Zhihua Liu3,23, Daniel S. Park4,5,23, Patrick R. Roehrdanz6,23, 
Brian Maitner2,23, Erica A. Newman7,8,23, Brad L. Boyle7,9, Aaron Lien8,10, Joseph R. Burger7,8,11, 
Mathias M. Pires12, Paulo M. Brando13,14,15, Mark B. Bush16, Crystal N. H. McMichael17, 
Danilo M. Neves18, Efthymios I. Nikolopoulos19, Scott R. Saleska7, Lee Hannah6, 
David D. Breshears10, Tom P. Evans20, José R. Soto10, Kacey C. Ernst21 & Brian J. Enquist7,22,23

Biodiversity contributes to the ecological and climatic stability of the Amazon Basin1,2, 
but is increasingly threatened by deforestation and fire3,4. Here we quantify these 
impacts over the past two decades using remote-sensing estimates of fire and 
deforestation and comprehensive range estimates of 11,514 plant species and 3,079 
vertebrate species in the Amazon. Deforestation has led to large amounts of habitat 
loss, and fires further exacerbate this already substantial impact on Amazonian 
biodiversity. Since 2001, 103,079–189,755 km2 of Amazon rainforest has been 
impacted by fires, potentially impacting the ranges of 77.3–85.2% of species that are 
listed as threatened in this region5. The impacts of fire on the ranges of species in 
Amazonia could be as high as 64%, and greater impacts are typically associated with 
species that have restricted ranges. We find close associations between forest policy, 
fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest 
policies that were initiated in the mid-2000s corresponded to reduced rates of 
burning. However, relaxed enforcement of these policies in 2019 has seemingly begun 
to reverse this trend: approximately 4,253–10,343 km2 of forest has been impacted by 
fire, leading to some of the most severe potential impacts on biodiversity since 2009. 
These results highlight the critical role of policy enforcement in the preservation of 
biodiversity in the Amazon.

The Amazon Basin6 supports around 40% of the world’s remaining 
tropical forests7 and has a vital role in regulating the Earth’s climate8. 
Amazonia contains 10% of all known species6 and it has been estimated 
that 1,000 tree species can be found in a single square kilometre of the 
forest9. Such high biodiversity also enhances ecosystem resilience 
through functional diversity10 and influencing rates of secondary forest 
recovery11, and has probably enabled Amazonia to remain relatively sta-
ble and to buffer ecosystem functioning in the face of climate change1,2. 
However, continued degradation and loss of forest cover and biodiver-
sity therein could undermine ecosystem resilience and hasten an irre-
versible tipping point12. Indeed, a loss of 20–25% of Amazonian forests 
could precipitate a rapid transition to savannah-like formations13,14.

Since the 1960s, approximately 20% of Amazonian forest cover has 
been lost as a result of deforestation and fires15. Forest loss is predicted 
to reach 21–40% by 2050, and such habitat loss will have large impacts 

on Amazonian biodiversity16,17. In conjunction with ongoing habitat loss 
due to deforestation, increasing fires in the Amazon potentially pose 
another great threat to biodiversity4: because Amazonian species have 
largely evolved in the absence of fire, they generally lack adaptations to 
fire-related damage (ref. 18 and references therein). Fires associated with 
deforestation generally lead to a total loss of forest habitat3, and the burn-
ing of felled vegetation impairs regeneration and facilitates the invasion 
of exotic grasses19. Forest fires also have largely negative impacts on the 
habitats and long-term fitness of species due to habitat degradation20–22. 
Repeated burning can result in considerable species loss and turnover23,24. 
Burning can also initiate a series of positive feedbacks, including increases 
in dry fuel loads and midday temperatures, desiccation of biomass and 
flammability of native forests at the edges of clearings25.

Fires in the Amazon are collectively influenced by climate, deforesta-
tion, forest fragmentation, selective logging and forest policies26–28. 
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Recent drought events in 2005, 2010 and 2015 have been associated 
with increases in the detection of active fires29. Deforestation provides 
a major source of ignition and increases the flammability of remaining 
forests by increasing edge density, raising regional temperatures and 
reducing rainfall3. Logging operations can also increase forest flamma-
bility by reducing the coverage of the forest leaf canopy and by altering 
microclimates3,28. Socioeconomic factors, governmental policy and 
initiatives by non-governmental organizations are increasingly recog-
nized as major factors that influence deforestation rates, and therefore 
deforestation fires and forest fires in the Amazon3,30. Beginning in the 
mid-2000s and especially after 2008, a series of policies implemented 
by the Brazilian government and international organizations resulted 
in a substantial reduction in deforestation rates until 2018. The widely 
reported increase in satellite-detected fires in 2019 has been attributed 
to the relaxed enforcement of existing policies aimed at slowing defor-
estation31. As a large portion of the Amazon is located in Brazil, changes 
in deforestation rates and policies in the nation have disproportionate 
impacts on the Amazon rainforest.

Although fires in the Amazon have been broadly studied3, there 
remains a gap in knowledge regarding how the increase in fires has 
impacted Amazonian biodiversity. In addition to habitat loss resulting 
from deforestation, we investigated the cumulative impact of fires 
on the geographic ranges of species, which are correlated with spa-
tial requirements to maintain populations and biodiversity32; similar 
approaches have been used in other large-scale studies of biodiversity 
(for example, refs. 17,33,34). We compiled satellite-detected fires across 
forested areas in the Amazon (termed ‘fire-impacted forest’ hereaf-
ter) and, to our knowledge, the most comprehensive collection of 
range maps of Amazonian plant and vertebrate species to date (Fig. 1, 
Extended Data Fig. 1; Methods). The satellite-detected fires include 
deforestation fires and fires that spread into standing forests (forest 
fires)3. The impacts of both types of fire on biodiversity are largely nega-
tive, due either to direct loss of habitat or to mortality of organisms, 
as well as damage to or deficits in fitness of organisms in the areas in 
which the fires occur (refs. 18,20–22 and references therein). We estimated 
the extent of species’ ranges in the Amazonian forest that have been 

exposed to and impacted by fires (hereafter termed ‘range impact’) 
over the past two decades, and assessed how drought conditions and 
policy changes in Brazil affected the temporal trend of fire-impacted 
forest in the Amazon.

The impact of fires on biodiversity
We generated Amazonian biodiversity maps from range maps of 14,593 
terrestrial plant and vertebrate species (Supplementary Discussion). 
Range maps of 11,514 plant species were estimated by different algo-
rithms depending on the number of observation records per spe-
cies (Methods). For species with at least 10 spatially unique records 
(n = 7,526) we used a Poisson point process model. For species with 3–9 
spatially unique records (n = 2,590) we used a range-bagging algorithm. 
For species with 1–2 spatially unique records (n = 1,398), we included 
the grid cells in which records were found (at 10-km resolution). Expert 
range maps of 3,079 vertebrates were refined to reflect the extent of 
suitable habitat by limiting the ranges of species to known elevational 
ranges and habitat associations to produce more accurate estima-
tions. These maps provide conservative estimates of the potential 
distributions of species based on techniques that aim to minimize the 
underlying uncertainties (Methods).

Using two remote-sensing products we estimate that, since 2001, a 
total of 103,079–189,755 km2 (2.2–4.1%) of the Amazon forest was poten-
tially impacted by fire, affecting the ranges of the majority of plant and 
vertebrate species therein (Figs. 1, 2, Extended Data Fig. 1). Up to 93.3–
95.5% of Amazonian plant and vertebrate species (13,608–13,931) might 
have been impacted by fires, if only to a minor degree (Supplementary 
Discussion; Extended Data Figs. 2, 3). However, many of these species 
are known from a small number of records and probably have restricted 
ranges35. Indeed, the Amazon comprises numerous species (610) that 
are considered threatened by the International Union for Conservation 
of Nature (IUCN). Since 2001, a large fraction of these threatened spe-
cies have now experienced impacts of fire within their ranges: 236–264 
IUCN-listed plant species, 83–85 bird species, 53–55 mammal species, 
5–9 reptile species and 95–107 amphibian species. These values represent 
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Fig. 1 | Overview of plant and vertebrate species richness and fire-impacted 
forest in the Amazon Basin. a, b, Richness map of plant (a) and vertebrate  
(b) species in the Amazon Basin. c, MODIS burned area (resampled to 10 km) 
shows fire-impacted forest, with black representing non-forested areas masked 
out from this study. Scale bar, 500 km. d–f, Examples of three species, 
Allantoma kuhlmannii (d) (IUCN status: critically endangered), Opisthocomus 
hoazin (hoatzin) (e) (IUCN status: least concern) and Ateles marginatus 

(white-cheeked spider monkey) (f) (IUCN status: endangered), which are 
estimated to have 36.7–37.7%, 1.8–2.6% and 4.1–5.9% of their Amazonian  
forest range impacted, respectively. Photograph credits: d, adapted from  
The New York Botanical Garden Herbarium under a CC BY 4.0 licence  
(https://creativecommons.org/licenses/by/4.0/); e, Mathias M. Pires; f,  
adapted from Rich Hoyer under a CC BY 2.0 licence (https://creativecommons.
org/licenses/by/2.0/).
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a range that varies according to the remote-sensing products used to 
assess the impact of fire (Supplementary Discussion).

The most pronounced species-level impacts are often associated with 
species that have smaller ranges (Extended Data Fig. 2). For example, 
fires may have impacted around 60% of the restricted range of Remijia 
kuhlmannii (Rubiaceae) in the southern Brazilian Amazon. Fire-impacted 
forests over the past two decades have been mainly located in the ‘arc 
of deforestation’ that spans the southern edge of the Amazon Basin36 
(Fig. 1, Extended Data Fig. 1). The region that comprises this ‘arc’ has 
been recently recognized as containing the widest range of evolution-
ary lineages of South American trees37. This is especially concerning 
because phylogenetic diversity is positively associated with ecosystem 
function38. Habitat alteration in this region has been pervasive and rapid, 
and has impacted a considerable number of species (for example, there 
are 263–700 species for which greater than 10% of their ranges within 
the Amazon is impacted; Fig. 2, Supplementary Discussion). These num-
bers are probably underestimates for several reasons: first, knowledge 
of the spatial distribution of Amazonian biodiversity is limited by a 
lack of biological collections and observations39; second, vertebrate 
species represent only a small portion of the animal kingdom40; third, 
remote sensing tends to underestimate the number and the extent 
of forest fires (Methods); and fourth, historical (pre-2001) forest loss 
and degradation were not considered here. Furthermore, species can 

become functionally extirpated well before they lose the entirety of their 
range due to various factors (for example, demographic processes41).

Increasing impacts over time
Large areas of habitat loss through deforestation constitutes a major 
threat to biodiversity in the Amazon, and similar amounts of habitat 
are further degraded by fire (Fig. 2, Extended Data Figs. 2, 4, 5; see addi-
tional discussions in Supplementary Information). Over the past two 
decades, the area of Amazonian forests that has been impacted by fire 
has fluctuated, but the potential area of newly impacted forest per year 
has never decreased below between 889 and 3,127 km2 (based on mod-
erate resolution imaging spectroradiometer (MODIS) burned area and 
active fire, respectively) (Fig. 2, Extended Data Table 1). Notably, both 
the cumulative fire-impacted area and its impacts on species ranges 
have continued to increase at a steady rate (Fig. 2a, c, Extended Data 
Fig. 3). The area of fire-impacted forest is tightly correlated with the 
number of species impacted (Fig. 2). For every 10,000 km2 of forest that 
experiences fire, an additional 27–37 plant species and 2–3 vertebrate 
species that have more than 10% of their ranges within the Amazon will 
be impacted (Fig. 2b, d).

Both drought and policy affect the area that experiences fire (Sup-
plementary Discussion). The amount of newly fire-impacted forest 
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Fig. 2 | Cumulative effects of fire on biodiversity in the Amazon rainforest. 
a, c, The black and grey shading represent the cumulative area of forest 
impacted by fire based on MODIS burned area and MODIS active fire, 
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area in Brazil corresponds to three distinct policy regimes: first, the 
fire-impacted area was larger during the pre-regulation period before 
200830,42, when forest policies were limited (early in this period) or 
when the enforcement of new policies had yet to take full effect (later 
in this period); second, the fire-impacted area was markedly reduced 
during the regulation period 2009–2018 (with the exception of drought 
years), when a series of policies aimed at reducing deforestation and 
forest burning were implemented30,43; and third, the fire-impacted 
area increased in 2019, which coincided with a relaxation of enforce-
ment of those policies44 by the Brazilian government during the first 8 
months of the year. A period of renewed policy enforcement beginning 

in September 201945 (Fig. 3, Extended Data Fig. 6; Methods) saw monthly 
fire-impacted forest area decrease once more. While drought led to a 
greater area of fire-impacted forest, enforcement of forest policy less-
ened the drought effect to 9–16% of that in the pre-regulation period 
(Fig 3b, Extended Data Fig. 6, Extended Data Table 2). The majority 
of the newly fire-impacted forest was inside the borders of Brazil 
(mean = 79%, s.d. = 8–12%) (Extended Data Fig. 7). As a result, policy 
changes in Brazil have had a large impact on the entire region, and 
similar drought-related patterns were also observed for the entire 
Amazon (Extended Data Table 2).

The impact of the 2019 fires
The year 2019 stands out as one of the most extreme years for biodi-
versity impacts since 2009, when forest regulations were enforced. 
The area of fire-impacted forest in 2019 shows a shift between the first 
8 months and the last 4 months of the year: it is higher than expec-
tations for the former and lower for the latter given drought condi-
tions, compared with the years under regulation (2009–2018) (Fig. 3, 
Extended Data Fig. 6). This change coincides with the policy shift in 
Brazil, in which regulations were relaxed during the first 8 months 
of 2019, after which extra efforts were devoted to control forest fires 
beginning in September45. We estimate a total fire-impacted forest area 
for 2019 of 4,253–10,343 km2; this is 463–1,193 km2 (20–28%) higher 
than expectations given the drought condition in 2019, reiterating 
the findings in ref. 3 (Fig. 4, Extended Data Fig. 8). In 2019 alone, we 
estimate that the ranges of 12,064–12,801 plant and vertebrate species 
experienced fire. Range impacts in 2019 were 19.6–28.0% higher for 
plants and  28.6–34.6% higher for vertebrates than expected (Fig. 4, 
Extended Data Fig. 8). These impacts are 1.42–2.58 times greater for 
plants and 1.39–2.53 times greater for vertebrates compared with 2014, 
when the drought conditions were slightly worse. When we exclude 
the effects of drought, the impact of fire on species’ ranges in 2019 is 
greater than that during most of the regulation period (2009–2018), 
excluding 2010 (Fig. 4, Extended Data Fig. 8).

In addition to the increased extent of fires that is associated with 
the 2019 relaxation of forest-protection policies, the high estimated 
impacts on biodiversity could also be attributed to the locations of fires 
in 2019 (Fig. 1, Extended Data Fig. 1). Fires have increasingly impacted 
more interior regions of the Brazilian Amazon, whereas previously they 
had been mainly confined to the southeast. The spread of fires into the 
central Amazon is likely to increase the extent of impacts on biodiver-
sity, as these regions are generally more species-rich and contain many 
species that are not present in southeastern Brazil.

The Amazon and global climate change
Climate change is likely to make drought increasingly common in 
the Amazon Basin46. Our results show that although drought is an 
important driver of total fire-impacted forest area in the Amazon, 
drought effects can be significantly mitigated by forest policies (Fig. 3, 
Extended Data Table 2, Extended Data Fig. 6). We expect that the indi-
rect impacts of fires, exacerbated by the effects of climate change and 
drought4, are likely to continue to increase over time through positive 
feedback. Additionally, deforestation—in combination with climate 
change—might contribute to increased frequency, intensity and extent 
of droughts, thereby accelerating reductions in forest cover47. It has 
been estimated that a loss of 20–25% of total forest cover in the Amazon 
Basin might be enough to trigger a state-change tipping point from 
tropical forest to savannah-like formations in eastern, southern and 
central Amazonia13. Such a change could have catastrophic impacts on 
regional biodiversity. Forest cover loss—if sufficiently extensive—can 
result in changes in local climate that, in turn, can affect the func-
tions of climates and ecosystems across the globe through ecoclimate 
teleconnections48.
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a, Fire-impacted forest area that is not explained by drought conditions. The 
colours represent different policy regimes: pre-regulations in light red (mean 
value in dark red), regulation in grey (mean value in black dashed line) and 2019 
in dark blue. The y axis represents the difference between actual area and area 
predicted by drought conditions calibrated by data from regulated years 
(Methods). A positive value on the y axis represents more area than expected, 
using the regulation years as a baseline. b, A scatter plot of newly 
fire-impacted forest in Brazil and drought conditions (Standardized 
Precipitation–Evapotranspiration Index (SPEI)); the lines represent the 
ordinary least squares linear regression between fire-impacted forest and 
drought conditions for the pre-regulation (red) and regulation (black) 
periods.
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Implications for future forest policy
Our study highlights a tight connection between policy and forest 
fires, and shows how these factors can combine to impact biodiver-
sity. In 2019, the relaxation of deforestation policies in Brazil resulted 
in increased degradation of species ranges and habitats. However, 
after national and international backlash against the increase in fires 
between June and August 2019, the Brazilian government again changed 
course49, deploying the army to fight fires and once again ramping up 
the enforcement of existing policy45. These findings show that effec-
tive policy and its implementation and enforcement are essential50 to 
delay or prevent a tipping point13 being reached in the Amazon that 
would have potentially catastrophic regional and global consequences.

Conclusions
Habitat loss as a result of deforestation has profound negative impacts 
on Amazonian biodiversity, and fires can exacerbate these already sub-
stantial impacts. There is a tight association between the cumulative 
amount of forest experiencing fire and the impacts on biodiversity. 
Over the past two decades, the ranges of the majority of Amazonian 
species are likely to have been impacted in some way by fires. Many 
of these impacted species are already considered by the IUCN to be 

threatened. Although the estimated impact of forest fires on biodiver-
sity has fluctuated over time, the cumulative impact has continued to 
increase. As fires move closer to the heart of the Amazon Basin—which 
is characterized by greater levels of diversity (Fig. 1a, b)—the impact 
of fires on biodiversity will undoubtedly increase, even if the rate of 
forest burning remains unchanged. Although regulations have been 
effective in slowing the pace of burning and deforestation, relaxing 
those regulations—as shown in Brazil in 2019—can quickly erase gains 
made. Such policy reversals, in combination with more severe droughts, 
are likely to accelerate the impacts of fire on Amazonian species and 
destabilize the role of biodiversity in mitigating climate change in the 
future. Our estimation of the fire-induced impacts on biodiversity 
provides a scientific basis for future conservation and forest policy 
in the Amazon Basin.
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Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
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on the y axes indicate larger-than-expected values compared to those from 
years under regulation. The dotted lines represent a smooth curve fitted to 
values based on the loess method.
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Methods

Fire, remote sensing and land cover
We restricted the study area to the Amazon Basin, using a refined bound-
ary of the Amazon6 based on terrestrial ecoregions of the world51, and 
only considered fires in areas that were forested between 2001–2019. 
To do this, we overlaid the MODIS-derived fire detections of a focal 
year with the forest land cover from the previous year. The MODIS 
products uniquely provide a wide temporal coverage of our study 
area (around 20 years) at the resolution52 of 463 m. This enabled us to 
quantify fire-impacted forest and its consequences on the geographic 
ranges of species each year.

We used two remote sensing products, MODIS burned area (MCD64A1 
v006) and MODIS active fire (MCD14ML v006), to quantify lower and 
upper bounds on the amount of fire-impacted forest. We obtained 
monthly burned area layers (MCD64A1 v006; https://lpdaac.usgs.gov/
products/mcd64a1v006/) at 463 m (colloquially referred to as 500 m) 
spatial resolution from January 2002 to December 201953. The MODIS 
burned area product detects the approximate date of burning by locat-
ing the occurrence of rapid changes in daily surface reflectance time 
series data. We also obtained the monthly active fire location product 
(MCD14ML) from the University of Maryland (https://modis-fire.umd.
edu/). The MODIS active fire product detects land surface thermal 
anomalies at the time of satellite overpass under relatively cloud-free 
conditions using a contextual algorithm. We used vegetation fire with 
high detection confidence (>80%) to avoid false or minor fire signals, 
and converted the fire locations into monthly 927-m (or 1-km) raster 
layers54. A fire-impacted cell derived from MODIS active fire indicates 
at least one fire occurred during the detecting window, and the fire is 
usually large or hot enough to be detectable by the MODIS sensor54. The 
MODIS burned area and MODIS active fire products could represent 
different degrees of fire impacts. The MODIS burned area algorithm 
tends to detect fewer fire events than comparable active fire products 
due to its more stringent detection criteria (hence our lower bound), 
whereas the MODIS active fire could represent a broader estimation 
of fire-impacted area in the Amazon (hence our upper bound). Fire 
estimation from MODIS active fire was restricted to be conservative 
using a high detection confidence (80%). We used both products to 
estimate the possible range of fire-impacted forest in the Amazon 
Basin. Although we did not directly distinguish between fire-impacted 
forest derived from the two products, we determined the different 
fates of the fire-impacted forest based on annual forest loss data (see 
below). We aggregated the monthly pixel-level fire-impacted forest 
into annual pixel-level fire-impacted forest (1 = burned, 0 = unburned). 
We determined the pixels that were newly impacted by fire in a focal 
year (that is, not impacted in any previous years since 2001), to reflect 
the frontier of the fires.

We used annual forest fractional cover data of years 2001–2018 to 
estimate fire-impacted forest. The annual forest fractional cover data 
were resampled from MODIS Vegetation Continuous Fields (MOD44B 
v006; https://lpdaac.usgs.gov/products/mod44bv006/) at 232-m 
(or 250-m) to 463-m resolution using the mean function. We further 
refined our study area to forest pixels within the Amazon basin that had 
at least 60% tree cover at any year between 2001–2018. This threshold 
of 60% was also used in defining forest land cover in MODIS Land Cover 
Type Product (MCD12Q1 v006; https://lpdaac.usgs.gov/products/
mcd12q1v006). The refined study area excluded non-forested areas 
from the subsequent impact analyses—such as previously deforested 
area, farmland, shrubland or grassland—as our objective was to quantify 
the fire-impacted forest, where the trees lack the adaptations needed 
to resist fire-related damage18,55,56.

With these layers, we overlapped the newly fire-impacted forest 
(resampled to 463 m) and annual forest fractional cover, and identified 
pixels that experienced fire in a focal year that were classified as forest 
pixels in the previous year. This procedure led to a series of layers of 

annual newly fire-impacted forest, based on which we quantified the 
cumulative area of fire-impacted forest across 2001–2019. Instead of 
summarizing the fire-impacted forest using binary values (for example, 
forest versus non-forest in land cover data), the tree cover percent-
ages within the refined study area were kept to get a more accurate 
estimation of the fire-impacted forest. There is potential for multiple 
types of land cover to coexist in one pixel (mixed pixels), which could 
introduce errors of omission/commission. This is a recognized issue 
with remote-sensing analyses, but its effect is minimized in this study 
by restricting the study area to areas where forest is the dominant land 
cover in a pixel. We calculated the sum of percentages across the pixels 
of fire-impacted forest and transformed them into area in km2 based 
on the resolution of the raster layers. In addition, we calculated the 
cumulative and newly fire-impacted forest at monthly scale across 
2001–2019, using monthly fire-impacted forest of a focal year and forest 
land cover in the previous year with a similar procedure.

The fire-impacted forest we compiled here essentially represents 
satellite-detected fires among forested areas. Compared with the ter-
minology in literature, the fire-impacted forest we examined here could 
include deforestation fires, as well as fires that spread into standing 
forests (forest fires) and does not include fires in previously cleared 
areas3. The impacts of both types of fire on biodiversity are largely 
negative, due to loss of habitat and direct mortality of organisms as 
well as damages to or deficits of fitness in organisms where the fires 
occurred. Fires of either type create negative effects that go beyond the 
immediate location and time at which the fire occurred. Deforestation 
fires generally lead to a total loss of the forest habitat by converting the 
original forest to other land-cover types, especially cropland, which 
is often the goal of deforestation fires. As a result, there has been an 
increase in cropland along the arc of deforestation57. Although fire is 
usually not the causal factor of the forest loss, the burning of felled 
vegetation can impair regeneration and facilitate the invasion of exotic 
grasses, thus impeding forest recovery19. The fires that encroach upon 
and sometimes spread into standing forest can also rapidly damage 
Amazon forests, the trees of which lack adaptations needed to resist 
fire-related damage18,55,56. For example, even light burns are known to 
remove more than 70% of the sapling and vine populations21. Low to 
medium severity fires can kill more than 50% of trees58 and almost all 
of the larger woody lianas20,59,60. Fires could be catastrophic and lead to 
90% annualized tree mortality when coupled with drought, as shown 
in studies with experimental fires22,61. The impacts of fires are not only 
on plants but also on animals. Studies also show that wildfires drive 
the impoverishment of birds18,62 and high-intensity fires can cause the 
extinction of forest specialists63.

Distinguishing the different types of fire can facilitate the under-
standing of their impacts on biodiversity, but would need additional 
data and validations64 that are beyond the objective of this study. Alter-
natively, we resorted to using annual forest loss data to infer the fate of 
forest associated with satellite-detected fires. Specifically, we obtained 
annual forest loss layers from ref. 52 (http://earthenginepartners.apps-
pot.com/science-2013-global-forest) and resampled them from 30 m 
to 463 m to obtain the percentage of forest loss per pixel using mean 
function. By overlapping the annual percentage of forest loss with 
the fire-impacted forest, we classified forest loss and fire-impacted 
forest into (a) forest loss without fire, (b) fire-impacted forest with 
forest loss, and (c) fire-impacted forest without forest loss. Such treat-
ment enables us to partition the total impact as fire-related impacts 
versus non-fire related impacts (b + c versus a), or forest loss versus 
fire-induced impacts without forest loss (a + b versus c). The forest 
loss (a + b) is directly associated with the loss of forest habitat and thus 
loss of species range. The fire-impacted forest without forest loss (c) 
represents degraded forest habitat and thus degradation of species 
range. We used the term ‘forest loss’ to reflect the observation of forest 
changes by remote sensing. The class (a) could be interpreted as a sub-
set of deforestation. The class (b) may be associated with deforestation 
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(for example, slash and burn) or fire-induced forest loss. Our analysis 
showed that forest loss without fire constituted a major driver for the 
impact on Amazon forest and biodiversity (Extended Data Figs. 2, 
5). The forest loss without fire was estimated to be 8,068–8,181 km2 
yr−1, the magnitude of which was comparable to fire-induced impacts 
(5,425–9,987 km2 yr−1) (Extended Data Fig. 4). The difference was that 
the fire-induced impacts were more variable among years (s.d. = 4,089–
6,972 km2 yr−1) than forest loss without fire (s.d. = 3,280–3,414 km2 yr−1). 
We caution the interpretation of the relative proportion of forest loss 
without fire versus fire-impacted forest. The size of the fire-impacted 
forest was probably an underestimation for several reasons. MODIS 
sensors cannot consistently detect small and less intense understory 
fires in the Amazon50, whereas the area of these can be twice the area 
of annual deforestation during severe drought years65. The use of 
tree cover percentages within the refined study area (as opposed to 
binary forest cover) also led to a more conservative estimation of the 
fire-impacted forest. Our analysis included a one-year temporal win-
dow for a conservative estimation; this would not include delayed tree 
mortality that could occur after fires21,66; otherwise, the proportion of 
fire-impacted forest with forest loss would be larger. Inference about 
the fate of forest among the fire-impacted forest showed that a small 
portion was directly associated with forest loss (Extended Data Fig. 4). 
This proportion could be larger if a multi-year window were used, as 
the impact of fire is known to go beyond the year in which it occurs21,66. 
However, we restricted our analysis to the same year to limit potential 
uncertainties of the inferences. The large amount of forest loss without 
fire echoes the findings that deforestation is a major threat to Amazo-
nian biodiversity15,16. The large amount of fire-impacted forest without 
forest loss also echoes the recent finding that forest degradation could 
exceed deforestation in the Amazon67. We caution that our estimated 
areas might not be directly comparable with similar studies using dif-
ferent methodologies, because estimates of impacted area depend on 
a number of factors, including the specific remote-sensing products 
and algorithms used68 and definition of concepts and categories3.

A caveat of our remote sensing-based approach is that it is difficult 
to verify whether the MODIS-detected fire-impacted forest is totally 
burned for the focal spatial range (Amazon Basin) and temporal extent 
(the past two decades). Notably, the fire-impacted forest as identified by 
the MODIS sensors69 was probably underestimated due to frequent cloud 
cover and optically thick aerosols, as well as detection limitations of the 
MODIS sensor and the algorithm. The MODIS sensors are more likely to 
capture larger fires (and thus, larger impacts on biodiversity), and omit 
small and less intense understory fires in the Amazon65,70 that would have 
relatively smaller impacts on biodiversity71. Besides excluding fires that 
occurred in non-forested areas, we also selected a relatively high detection 
confidence (80%) for the active fire product to minimize false signals.

There is substantial empirical evidence that the impact of fire on the 
rainforest is not only local, but the impact of fires can also stretch far 
beyond the immediate time and location at which the fire occurred, 
suggesting that the impact could be passed to the whole pixel if the 
pixel is not 100% burned. For example, deforestation and fires can 
fragment forests and create more edges, which further thin the canopy, 
reduce the fuel moisture within the forest interior, and subsequently 
increase the likelihood and intensity of fires28,72–74. These positive feed-
backs among fire, deforestation and forest fragmentation increases 
the vulnerability of forest to future fires18,21,75. Fires can have prolonged 
effects on tree lifespan and fitness: when not directly killing trees, the 
fires can weaken tree trunks and make them vulnerable to breakage 
by windstorms22,76. These analyses were performed within the Google 
Earth Engine platform (accessed March 2021).

Plant and vertebrate range maps
Plant range maps
Data compilation and cleaning. For plants, we used species distribu-
tion models77 to infer the geographic distributions of species based on 

species occurrences and climate and soil characteristics. Plant occur-
rence records used for modelling were from the BIEN database (Botanical 
Information and Ecology Network; http://bien.nceas.ucsb.edu/bien/
about/), which is compiled via a linked workflow that standardizes, inte-
grates, corrects and validates data from disparate data sources and data 
formats. BIEN data include herbarium collections, ecological plots and 
surveys78–87, and trait observations from a large variety of sources. The 
plant occurrences in the BIEN database are the product of contributions 
by 1,076 different data contributors, including numerous individual 
herbaria and data indexers of herbaria. The largest direct data contribu-
tors to BIEN include The Global Biodiversity Information Facility (GBIF), 
the US Forest Inventory and Analysis National Program (FIA)88, Missouri 
Botanical Garden, SpeciesLink, Tree flora of the Neotropical Region (Neo-
TropTree)89, New York Botanical Garden and VegBank90. The distribution 
records in BIEN were compiled using PostgreSQL (v.10.17).

Taxon names associated with BIEN occurrence records were cor-
rected and standardized using the Taxonomic Name Resolution Service 
(TNRS)91 with Tropicos, The Plant List and USDA Plants as taxonomic 
references, and all other options at their default settings. In addition to 
correcting misspellings, the TNRS updates synonymous matched names 
to the current accepted name, according to the taxonomic sources 
used. When available in the original data, we also included family along 
with the species name submitted to the TNRS; this additional informa-
tion enables the TNRS to detect homonyms (identical names referring 
to different taxa) in different families. The declared political division 
names of occurrences were standardized using the Geographic Name 
Resolution Service (GNRS; http://bien.nceas.ucsb.edu/bien/tools/
gnrs/), which corrects spelling errors and standardizes names, codes 
and abbreviations in multiple languages to standard political divisions 
in the GeoNames gazetteer (https://www.geonames.org). Geographic 
coordinates of occurrences are flagged as erroneous if they (1) fall out-
side the coordinate system (for example, longitude >180° or <−180°), (2) 
contain suspect coordinate values (for example, latitude or longitude 
exactly zero), (3) fall in the ocean, (4) match a political division centroid 
or (5) fall outside of a declared political division. Occurrence records 
that fall outside of a species’ native range are identified using the Native 
Species Resolver (NSR; http://bien.nceas.ucsb.edu/bien/tools/nsr/), 
which uses published checklists and endemism data to determine if the 
observed species is native in a given location. Observations are flagged 
as potentially cultivated and removed from the observation data, on 
the basis of (1) searching for direct information within the curatorial 
note fields that the specimen is from a cultivated plant, (2) wildcard 
searches in the specimen description and locality fields suggesting that 
the plant is cultivated or growing in a location in which it is likely to be 
cultivated (that is, keywords such ‘farm’ or ‘plantation’ or ‘campus’ in 
the locality description, in any of several languages), or (3) any obser-
vation occurring within 3 km of a botanical garden or herbarium (the 
latter are typically in urban areas and associated with botanical gardens) 
was excluded as potentially cultivated. Full details of the BIEN workflow 
can be found at http://bien.nceas.ucsb.edu/bien/tools/ and in multiple 
references91–95. The occurrences that coded as specimen, plot, literature 
or checklist and passed taxonomic validation (http://bien.nceas.ucsb.
edu/bien/tools/tnrs/), geovalidation (http://bien.nceas.ucsb.edu/bien/
tools/gnrs/) and native/nonnative filters (http://bien.nceas.ucsb.edu/
bien/tools/nsr/) were used in the species distribution modelling.

On the basis of these cleaned data, additional steps were under-
taken to prepare the data for species distribution modelling. If multiple 
records were found in a 10-km grid cell, only one was retained. Such 
thinning is recommended when modelling density of occurrence96 (in 
contrast to the density of individuals in which retaining each record 
is critical97). The occurrences were thinned to reduce spatial autocor-
relation to ensure that all retained records were at least 20 km from 
one another using the default thinning algorithm of spthin (v.0.2.0)98.

We further removed records that could be automatically identified 
as obvious outliers. Outliers in geographic and environmental space 
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were determined based on a Grubb’s outlier test with99 P = 1 × 10−3 imple-
mented with the R package outliers (v.0.14)100. For each test, we calcu-
lated the centroid of all records in geographic or environmental space 
respectively and then the distance from each point to the centroid. 
The one-sided Grubb’s test then determines whether the single largest 
distance is an outlier relative to all other points. If it was determined 
to be an outlier, the point was discarded. The test was repeated on the 
remaining points until no points were determined outliers.
 
Environmental data. The geographic distributions of plant spe-
cies were modelled on six climate and five soil variables (correlation 
coefficient |r| <0.7) at 10-km resolution: four bioclim variables from 
WorldClim 2.0 (mean annual temperature, mean diurnal temperature 
range, annual precipitation, precipitation seasonality)101, two additional 
climatic variables that represent seasonality of tropical regions based 
on expert recommendations. To capture the precipitation peak in the 
warm and cold period, we calculated the ratio of precipitation in the 
warmest quarter (BIO18) to sum of precipitation in the warmest quarter 
and the coldest quarter (BIO18+BIO19), while the calculation of BIO18 
and BIO19 follows the method used by WorldClim102. The soil variables 
were resampled from 250 m (raw resolution) to 10 km, by averaging 
values of the top four horizons of the soil data. To account for the effect 
of the dry season length and the water deficit experienced by vegetation 
during dry periods, we calculated an accumulated aridity index. The 
five soil layers are depth to bedrock, proportion clay, proportion silt in 
the first four soil horizons, mean bulk density, and mean pH in the first 
four soil horizons (SoilGrid; http://soilgrids.org), which are expected 
to be relevant for large-scale biogeography patterns103.
 
Species distribution modelling. For plant species with at least 10 spatially 
unique records, we used Poisson point process models fit with the R pack-
age glmnet (v.4.0-2)104, closely related to the popular Maxent algorithm105. 
For species with 3–9 spatially unique records, we used a range-bagging 
algorithm106, which uses an ensemble of statistically generated convex hulls 
in environmental space. For any species with 1–2 spatially unique records, 
we used the cells in which records were found (at 10 km resolution) as its 
range. The selection of the algorithms is based on the philosophy of using 
a more conservative approach when there are fewer data for model train-
ing. The list of plant species was further refined to the checklist in ref. 107 
and the species that had at least 10% of their range within the Amazonian 
forest, which yielded 11,514 plant species (7,526 species with Poisson point 
process model, 2,590 with range bagging, and 1,398).

Poisson point process models describe the spatially varying intensity 
of occurrence records as a function of covariates. An inhomogeneous 
Poisson point process model describes this intensity, λ, as a log-linear 
function of environmental covariates Xi at location s, with model param-
eters stored in vector β=(β0, β1,...,βp)108,109

log λ s β β X β X β X( ( )) = + + + … + .p p0 1 1 2 2

To fit Poisson point process models, the presence points are con-
trasted against background points sampled across the modelling 
domain. For each plant species, we used the ecoregion in which its 
occurrences fall and the closest ecoregions110 as the training and 
projecting domain, from which 20,000 random backgrounds were 
selected. For the Poisson point process models, different feature classes 
were used depending on sample size: linear and quadratic features are 
always selected, and the product features were used for species with 
200 or more records. The regularization parameter was determined 
based on 5-fold cross-validation with each fold, choosing a value one 
standard deviation below the minimum deviance, which is the standard 
choice built into the cv.glmnet function104. This approach enabled us to 
find an ‘optimal’ (in the sense of balancing overfitting with underfitting) 
regularization parameter based on efficient computation of the entire 
regularization path104. Poisson point process models were fitted using 

spatially stratified cross-validation111 using a custom stratification algo-
rithm. This algorithm is designed to (a) remove spatial autocorrelation 
between records to allow for more accurate performance statistics, (b) 
avoid extrapolation to the extent possible by maximizing the amount 
of environmental space spanned within each fold, and (c) enabling 
species-specific scaling of the appropriate distance between records 
needed to minimize spatial autocorrelation. Folds were generated by 
first computing a k-means cluster on the coordinates of records, seek-
ing 25 clusters. These 25 spatial clusters were then randomly assigned 
to five folds. If a species had fewer than 25 records, a smaller number 
of groups was used based on sample size, and these were split into five 
folds. This flexible approach accounts for variation in the spatial scale 
of aggregation among species by using the cluster analysis. By splitting 
into 25 groups initially (rather than 5) we obtain better environmental 
coverage (at least on average) within a fold and hence reduce artefacts 
from extrapolation112. Because this fold assignment was the only sto-
chastic component in the modelling workflow, we set a random seed 
based on converting each species name to an integer to ensure that 
all results are exactly reproducible. This resulted in five models per 
species, which we then combined in an unweighted ensemble. This 
ensemble prediction can be interpreted as a relative occurrence rate 
that sums to 1 over the modelling domain113. The models were only 
projected to the training domains, thus avoiding model extrapola-
tion issues114. The threshold of 5% training omission rate was used to 
transform the raw prediction into binary range maps. We evaluated the 
model performances using three indices: partial area under the curve of 
the receiver operating characteristic (pAUC), true skill statistics (TSS), 
and true positive rate (TPR) at the threshold of 5% training omission 
rate (5% of training presences predicted as absences). We used pAUC 
instead of traditional AUC to evaluate the model performance at high 
sensitivity levels (percentage of correctly predicted presences), in our 
case from 0.8 to 0.95, thus it is more appropriate for cases based on 
thresholds115. We also calculated TSS, which is the sum of sensitivity 
(true positive rate; proportion of known presences predicted present) 
and specificity (true negative rate; proportion of known absences pre-
dicted absent)116. Given that background points instead of absence data 
were used, omission error (1 − sensitivity) is expected to have higher 
importance than commission error (1 − specificity), so sensitivity was 
included as another evaluation index. The evaluation index showed 
robust performances of the models: 0.70 (s.d. = 0.09) for mean pAUC, 
0.33 (s.d. = 0.13) for mean TSS and 0.84 (s.d. = 0.10) for sensitivity.

For species with 3 to 9 unique points on the 10 km grid, we produced 
species distribution models with the range-bagging algorithm (origi-
nal version)106. Presence data, environmental data preparation and 
domain selection were based on the methods for Poisson point process 
models. Range-bagging is an adaptation of machine learning meth-
ods that stochastically builds convex hulls in environmental space to 
produce estimates of relative occurrence probability on a continuous 
scale106. It provides some key advantages: it requires only presence 
data, sampling bias is important only at range boundaries instead 
of throughout the range, it can characterize discontinuous ranges 
in geographic space, and it predicts variation in habitat suitability. 
The model training randomly takes 33% of occurrences (to capture 
the variation among samples) and two predictors (to decrease the 
possible complexity of variable interactions, thus simpler models). 
This procedure was repeated 100 times and ensembled as 100 voting 
scores. The models were projected to the same training domains as 
used for Poisson point process models. The continuous predictions of 
the range-bagging algorithm were converted to binary maps for our 
analysis with a threshold (0.165 of votes) that was chosen to ensure 
that all presences were correctly predicted (true positive rate  = 1 for 
all species). On average, 14.9% (s.d. 13.5%) of background locations 
in ecoregions in which a species occurs were predicted as occupied, 
reflecting that spatial extrapolation was minimal for the vast majority 
of species. Such a low threshold (0.165 of votes) predicts larger range 
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sizes than would higher thresholds, which leads to more conservative 
predictions in our analysis about the proportion of range size impacted 
by fire. In other words, a higher threshold and hence smaller range 
size estimate would lead to more severe fire impacts estimated, and 
we chose to be conservative about how these poorly sampled species 
would influence our analysis. Owing to the small sample sizes (3–9 
presences), we used range bagging as a simple first order estimate of 
species ranges to infer which locations on the landscape are similar to 
those limited locations in which a species has been observed.

For species with 1–2 spatially unique records (n = 1,398), we used the 
10-km resolution cells where records were found as the range. Such maps 
should be only cautiously interpreted as the species distribution owing 
to limited available data. Using conservative, if imperfect, estimates of 
poorly sampled species ranges was preferable to ignoring them entirely, 
as many of them are probably truly rare35. We do not expect the inclusion 
of species with restricted ranges to bias our results, as their restricted 
ranges are as likely to overlap with fires as not. Indeed, excluding such 
species from our analyses reduces both the number of species with their 
ranges impacted by fire (629–898) and the number of species that have 
not had their ranges impacted (500–769), in roughly equal proportions. 
All else equal, underestimating species ranges is as likely to result in an 
underestimation of fire impacts as it is to result in an overestimation of 
the proportion of range impacted. Along these lines, excluding species 
with restricted ranges from our analyses did not influence our central 
conclusions. It had a minimal effect on the temporal trend in cumula-
tive impacts and the proportion of plant species impacted by fire by 
2019, which changed from 6.48–16.52% to 6.36–15.89% based on the 
5% threshold, from 2.13–5.60% to 1.67–4.81% for the 10% threshold, and 
from 0.97–2.23 to 0.50–1.69% for the 15% threshold.

Generally speaking, the workflow of species distribution models 
constructed conservative estimates of species potential distributions 
while minimizing the underlying uncertainties. The effort in cleaning 
the occurrences of species, including cleaning taxonomic name based 
on TNRS (this avoids erroneous species names and reduces the uncer-
tainties associated with those names), excluding cultivated records 
(this helps to restrict the prediction to natural areas and reduces the 
likelihood of overestimations), and excluding spatial and environmental 
outliers (this helps to avoid extreme broad potential distributions). 
The workflow incorporated a gradient of complexities based on the 
amount of data, from the most conservative approach using spatial 
buffer of species with 1–2 spatially unique records, to limited environ-
mental inferences based on range bagging for species with 3–9 spatially 
unique records, to more liberal environmental inferences based on Pois-
son point process models for species with 10 or more spatially unique 
records, within which group we further distinguished simpler and more 
complex features for species with more or fewer presences. To minimize 
the uncertainties, we implemented 5-fold cross-validations and used the 
ensemble average in the prediction. Last, to minimize the uncertainties 
during the inference process, we also restricted model predictions to 
the ecoregions used in model training. The workflow of species distribu-
tion modelling has been used in other global biodiversity studies117,118.

Vertebrate range maps
For vertebrates, we used expert maps provided by the IUCN rather than 
modelling species distributions, as these have been carefully vetted 
by taxon specialists and offer comparatively complete coverage of 
known species. Range polygons coded as ‘extant’ and ‘resident’ for 
all species were obtained from the IUCN spatial data portal5,119. IUCN 
range polygons were modified to reflect the extent of suitable habitat 
by limiting the species range to the known elevational range and habitat 
association as it has been shown that this allows for a more accurate 
representation of species range area for analysis120.

The dataset we compiled is expected to provide a comprehensive 
estimation of biodiversity in the Amazon to date. However, we lack data 
for many of the species that are known to occur in the Amazon, and are 

undoubtedly missing data for species that have yet to be discovered. 
Our data did not include 14% (n = 1,949) of the plant species included in 
a recently published checklist of Amazonian plants107. The distribution 
maps were processed in R (v.3.5.1).

Quantifying the impact of fires on biodiversity
We restricted our study area to the Amazon forest, defined as at 
least 60% forest cover in MODIS Vegetation Continuous Fields 
(MOD44Bv006; see section 1) during 2001–2018 within the Amazon 
Basin6. We first identified species that have over 10% of their range 
within the Amazon forest, so as to exclude species that have large geo-
graphic ranges or species that have little of their ranges in the Amazon 
forest. Within the Amazon forest, we overlapped fire-impacted forest 
layers (resampled to 10 km using mean function) with species ranges. 
For each species, we quantified the cumulative impact (percentage of 
a species’ range impacted by fire in Amazon forest) over 2002–2019. 
We summarized the number of species that had any range impacted, or 
for which the range being impacted within the Amazon forest reached 
one or more of three thresholds (5, 10 or 15%). We also examined the 
relationship between cumulative fire-impacted forest (predictor) and 
the cumulative number of species affected (response) each year using 
ordinary least squares linear regression.

Ground-based surveys before and after the fire could give us more 
accurate knowledge about how fires have impacted biodiversity. But such 
surveys are only possible for a few case studies, and it is near impossible 
to assess biodiversity in situ across the entire Amazon Basin. Building 
upon nearly two decades of remote-sensing data across the Amazon and 
a large amount of species’ range maps, our study provided a basin-wide 
estimate of the potential impacts of fires on biodiversity. Our estimates 
should be on the conservative end of the uncertainty spectrum: the 
MODIS remote-sensing products are more likely to capture larger fires 
than small fires (including under canopy fires65,70), and the size estima-
tions of species range also involves a series of conservative approaches.

Drought, policy and fire-impacted forest in the Amazon
Definition of three periods of policy regimes
We separated our study period into three policy regimes: before 2008, 
2009–2018 and 2019. Policy periods were defined through analysis 
and interpretation of the relevant literature. There are many policy 
factors that influence deforestation and forest fires in the Amazon, 
including government policy in Brazil and other countries in the Ama-
zon region and voluntary conservation initiatives spearheaded by 
non-governmental organizations. Governmental policy varies greatly 
across different countries in the Amazon region and also within coun-
tries depending on how laws and regulations are interpreted and 
enforced at lower levels of government. Similarly, conservation initia-
tives advocated by non-governmental organizations and foreign gov-
ernments are voluntary and rely on market pressures and other tools 
for implementation. In this paper, our primary concern is the effect of 
policy on biodiversity and the potential effect of changes in regulatory 
enforcement in 2019 by Brazil44, where the majority of Amazon forest 
and fires are located (Extended Data Fig. 7). As a result, the three policy 
regime periods selected are consistent with changes in policy regimes in 
Brazil rather than the entire Amazon region. The pre-regulation period 
includes years before 2008. During this period, specific policies to pre-
vent deforestation and forest fires were either yet to be implemented 
or were under development30,42. The strict regulation period is 2009 to 
2018. During this period, Brazil had strong policies in place and many of 
the voluntary programs promoted by non-governmental organizations 
were also fully functional30,43. There was then a retraction in the policy 
regime in Brazil in 2019 as the new president relaxed enforcement of 
official government policies from January through August44,121. From 
September to the end of the typical burning season, Brazil responded 
to international pressure and again enforced deforestation and forest 
burning regulations45,122. The first part of this period is a relaxation of 



policies rather than a full removal of policies because voluntary pro-
grams outside of government control remained in place.

Drought conditions
Drought is a well-known factor that affects fires in the Amazon61. We 
used Standardized Precipitation–Evapotranspiration Index (SPEI) to 
quantify the drought conditions in the Amazon123. The SPEI is a multisca-
lar drought index based on climatic data and has been used in studying 
forest dynamics and forest fires124,125. The key advantage of SPEI over 
another commonly used drought index (Standardized Precipitation 
Index (SPI)) is the indirect incorporation of the effect of tempera-
ture, that is by accounting for potential evapotranspiration. The role 
of heat-induced drought stress is associated with tree mortality and 
forest fires66,126. Another drought index, the maximum climatological 
water deficit (MCWD), has been used to study the relationship between 
drought and the Amazon forest61. These indices were highly correlated in 
our study area (r = 0.77), thus we did not include MCWD in our analyses.

Monthly SPEI data were downloaded from the SPEI Global Drought 
Monitor (https://spei.csic.es/map) and spatially and temporally aver-
aged for Brazilian portion of Amazon. We considered monthly SPEI at 
five temporal scales (1, 3, 6, 9 and 12 months), to account for possible 
lag effects between drought and fires67. The yearly SPEI was calculated 
as the mean of monthly SPEI based on 1-month SPEI for a focal year, 
to represent the general drought condition of this year. The drought 
index was paired with data of fire-impacted forest at monthly or yearly 
scales in the regression analyses (see below).
 
Regression between drought, policy and impact on biodiversity
Policy, drought and the fire-impacted forest. We conducted ordinary 
least squares linear regression using newly fire-impacted forest by year 
as dependent variable and annual SPEI, policy regime (pre-regulation 
(2003–2008) or regulation (2009–2018)), and their interaction term as 
independent variables. The data used for this analysis started in 2002, 
which is the first year for which the data for newly fire-impacted forests are 
available. This analysis was implemented for the Brazilian portion of the 
Amazon and for the whole Amazon. See results in Extended Data Table 1.
 
Fire-impacted forest and impact on biodiversity in 2019 compared 
with previous years in the Brazilian Amazon. We assessed the newly 
fire-impacted forest at both monthly and yearly scales using the regula-
tion period (2009–2018) as a baseline. For the monthly scale analysis, 
we preselected a 9-month SPEI among the five different scales. Specifi-
cally, we constructed linear mixed models using newly fire-impacted 
forest as the dependent variable, with SPEI and policy regime as fixed 
effects (pre-regulation or regulation), and using month as a random 
effect. The model using SPEI based on 9-month SPEI had the lowest 
Akaike information criterion (AIC) value.

We used the regulation period as the baseline and conducted ordinary 
least squares linear regressions with data from the regulation period, 
using monthly or yearly newly fire-impacted forest as dependent variable 
and using monthly or yearly SPEI as independent variable. We used cali-
brated models to predict the fire-impacted forest in the pre-regulation 
period and 2019 given the drought conditions at monthly or yearly scales. 
We further calculated the difference between the actual fire-impacted 
forest and predicted fire-impacted forest. For example, the calculated 
differences could be considered as residuals for the regulation years. 
See results in Fig. 3a and Extended Data Fig. 6a for results on a monthly 
scale and Fig. 3b and Extended Data Fig. 6b for the yearly scale. In a similar 
manner, we compared the mean of species range impacted by fire at a 
yearly scale. See results in Fig. 4 and Extended Data Fig. 8.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The plant occurrences from the BIEN database are accessible using 
the RBIEN package (https://github.com/bmaitner/RBIEN). The cli-
matic data are accessible from http://worldclim.org and the soil data 
are available from http://soilgrids.org. MODIS active fire and burned 
area products are available at http://modis-fire.umd.edu. The MODIS 
Vegetation Continuous Fields data are publicly available from https://
lpdaac.usgs.gov/products/mod44bv006/. The annual forest loss 
layers are available from http://earthenginepartners.appspot.com/
science-2013-global-forest. The plant range maps are accessible at 
https://github.com/shandongfx/paper_Amazon_biodiversity_2021. 
The vertebrate range maps are available from https://www.iucnredlist.
org/resources/spatial-data-download. The SPEI data are available from 
SPEI Global Drought Monitor (https://spei.csic.es/map).

Code availability
The code to process the remote-sensing data is available at https://
github.com/shandongfx/paper_Amazon_biodiversity_2021.
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Extended Data Fig. 1 | Fire-impacted forest and forest loss in the Amazon 
Basin. a–h, Visualization of fire-impacted forest (a, b), forest loss without fire 
(c, d), fire-impacted forest with forest loss (e, f), and fire-impacted forest 
without forest loss (g, h) in the Amazon Basin based on MODIS burned area (left 
panels) and active fire (right panels). Data in a–d are resampled from the 500m 
(MODIS burned area) or 1 km (MODIS active fire) to 10 km resolution using 

mean function and thresholded at 0.01 to illustrate the temporal dynamics. 
Black represents non-forested areas masked out from this study. The 
cumulative fire-impacted forest is classified into two categories: fire-impacted 
forest with forest loss (e, f) and fire-impacted forest without forest loss (g, h). 
Data in e–h are resampled to 10 km using mean function to illustrate the 
cumulative percentages of impacts.



Article

Extended Data Fig. 2 | Scatter plot of species’ range impacted by fire. Scatter plot of species’ range size in Amazon forest (x-axis) and percentage of total range 
impacted by fire (red) and forest loss without fire (black) up to 2019 for plants (left panel) and vertebrates (right panel).



Extended Data Fig. 3 | Density plot of species’ cumulative range impacted by fire. Density plot of species’ cumulative range impacted by fire. The different 
colours represent years 2001-2019. The x-axis is log10 transformed.



Article

Extended Data Fig. 4 | Summary of forest impacts in the Amazon Basin. Areas of forest impact in the Amazon Basin estimated from MODIS burned area (top) 
and MODIS active fire (bottom).



Extended Data Fig. 5 | Cumulative impacts on biodiversity in the Amazon 
Basin. Cumulative effects of forest loss without fire on biodiversity in the Amazon 
rainforest. In the left panels, the black and grey shading represent the cumulative 
forest loss without fire based on MODIS burned area and MODIS active fire, 
respectively. Coloured areas represent the lower and upper bounds of cumulative 
numbers of a, plant and c, vertebrate species’ ranges impacted. Right panels 

depict the relationships between the cumulative forest loss without fire (based on 
MODIS burned area) and cumulative number of b, plant and d, vertebrate species. 
Coloured lines represent predicted values of an ordinary least squares linear 
regression and grey bands define the two-sided 95% confidence interval 
(two-sided, p values = 0.00). The silhouette of the tree is from http://phylopic.
org/; silhouette of the monkey is courtesy of Mathias M. Pires.

http://phylopic.org/
http://phylopic.org/


Article

Extended Data Fig. 6 | Fire-impacted forest in Brazil. Newly fire-impacted 
forest in Brazil (based on MODIS active fire). a shows the area of fire-impacted 
forest not explained by drought conditions. Different colours represent years 
from different policy regimes: pre-regulations in light red (mean value in dark 
red), regulation in grey (mean value in black dashed line), and 2019 in blue. The 
y-axis represents the difference between actual area and area predicted by 

drought conditions calibrated by data from regulation years (Methods). A 
positive value on the y-axis represents more area than expected, using the 
regulation years as a baseline. b shows a scatter plot of newly fire-impacted 
forest in Brazil and drought conditions (SPEI); The lines represent the ordinary 
least squares linear regression between fire-impacted forest and drought 
conditions for pre-regulation (red) and regulation (black) respectively.



Extended Data Fig. 7 | Fire-impacted forest in different countries. The contribution (0–1) of different countries to the newly fire-impacted forest each year 
based on MODIS active fire (top) and MODIS burned area (bottom).
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Extended Data Figure 8 | Impacts of fire on forest and biodiversity in Brazil. 
a, Newly fire-impacted forest, b, new range impact on plants and c, new range 
impacts on vertebrate species in Brazil each year (based on MODIS active fire) 
that are not predicted by drought conditions. The colours represent three 
policy regimes: pre-regulation in red, regulation in grey and 2019 in blue. The 
y-axis represents the difference between actual value (area or range impacted 

by fire) and the values predicted by drought conditions calibrated by data from 
regulation years (Methods). A positive value on the y-axis represents more area 
or range impacted by fire than the expectation using the regulation years as a 
baseline. The dotted lines represent a smooth curve fitted to the values based 
on the loess method.



Extended Data Table 1 | Summary of fire-impacted forest

The cumulative and newly fire-impacted forest (km2) estimated from MODIS products.
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Extended Data Table 2 | Summary of regression analyses

Summary of ordinary least squares linear regressions (two-sided) using newly fire-impacted forest by year as dependent variable and annual Standardized Precipitation Evapotranspiration 
Index (SPEI) and policy regime (pre-regulation or regulation) as independent variables. The estimated coefficients are followed by standard error and P value.
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Software and code
Policy information about availability of computer code

Data collection The distribution records in BIEN database were compiled using PostgreSQL (version 10.17).

Data analysis The remote sensing data were processed on Google Earth Engine (accessed March 2021). The R packages spthin (version 0.2.0) and outliers 
(version 0.14) were used in occurrence data cleaning. The algorithms glmnet (version 4.0-2) and range bagging (original version) were used in 
modeling plant distributions. The distribution maps were processed in R (version 3.5.1). The code is available from https://github.com/
shandongfx/paper_Amazon_biodiversity_2021. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The plant occurrences from the BIEN database are accessible with the RBIEN package (https://github.com/bmaitner/RBIEN). The climatic data are accessible from 
http://worldclim.org and the soil data are available from http://soilgrids.org. MODIS active fire and burned area products are available at http://modis-fire.umd.edu. 
The MODIS Vegetation Continuous Fields data are available from https://lpdaac.usgs.gov/products/mod44bv006/. The annual forest loss layers are publicly 
available from http://earthenginepartners.appspot.com/science-2013-global-forest. The plant range maps are accessible from this repository (https://github.com/
shandongfx/paper_Amazon_biodiversity_2021). The vertebrate range maps are available from https://www.iucnredlist.org/resources/spatial-data-download. The 
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SPEI data are available from SPEI Global Drought Monitor (https://spei.csic.es/map).  
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This manuscript studied the impact of forest fires on the distribution of plant and vertebrate species in the Amazon basin.

Research sample Four sources of remote sensing data were used: MODIS active fire and burned area products are publically available at http://modis-
fire.umd.edu. The MODIS Vegetation Continuous Fields data are publicly available from https://lpdaac.usgs.gov/products/
mod44bv006/. The annual forest loss layers are publicly available from http://earthenginepartners.appspot.com/science-2013-
global-forest. The distribution maps of plant and vertebrate species were from BIEN database (Botanical Information and Ecology 
Network; http://bien.nceas.ucsb.edu/bien/about/) and IUCN spatial data portal (https://www.iucnredlist.org/resources/spatial-data-
download).

Sampling strategy We restricted the study area to the Amazon Basin, using a refined boundary of Amazon based on terrestrial ecoregions of the world 
(Olson et al. 2001; Flores et al. 2010). We only included plant species were recorded in a recently published checklist of Amazonian 
plants (Cardoso et al. 2017) and that had distribution maps available. For vertebrates, we used IUCN-provided expert maps that have 
been vetted by taxon specialists that offer comparatively complete coverage of known species. Range polygons coded as ‘extant’ and 
‘resident’ for all species were obtained from the IUCN spatial data portal. 

Data collection The remote sensing data were processed using Google Earth Engine platform, by coauthors Z.L. and X.F. The distribution records in 
BIEN were compiled from data contributors, led by coauthors B.B. and B.J.E. using PostgreSQL on a linux server. The generation of 
plant distribution maps were led by coauthors C.M and X.F. in R (version 3.5.1) using a linux server. The vertebrate range maps were 
download from IUCN website (https://www.iucnredlist.org/resources/spatial-data-download) and processed by coauthor P.R. in R 
(version 3.5.1) using a desktop computer. 

Timing and spatial scale We obtained monthly active fire and burned area, at 1km and 500m resolution respectively, from January 2001 to December 2019 
across the Amazon Basin. We aggregated the monthly pixel-level burned area into annual pixel-level burned area (1-burned, 0-
unburned). We also obtained forest land cover data at 250 meter resolution from the MODIS Vegetation Continuous Fields data. We 
obtained annual forest loss layers at 30 meter resolution. The spatial and temporal resolutions represent the highest resolution 
available from those products. The temporal range represents the availability of data when this study was carried out.

Data exclusions We excluded plant species that are not recorded in a recently published checklist of Amazonian plants (Cardoso et al. 2017). We only 
included species that have over 10% of their range within the Amazon forest, in order to exclude species with large geographic 
ranges or species with little ranges in the Amazon forest. 

Reproducibility Each step of the workflow has been implemented more than once and checked by two or more coauthors. When necessary, we used 
a fixed seed for the random number generator. Therefore, the results are reproducible. 

Randomization Our study does not involve assigning samples to different experimental groups, so randomization is not applicable to this study.

Blinding Our study is not experimental, so blinding is not applicable to this study.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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