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Biodiversity contributes to the ecological and climatic stability of the Amazon Basin'?,
butisincreasingly threatened by deforestation and fire**. Here we quantify these
impacts over the past two decades using remote-sensing estimates of fire and
deforestation and comprehensive range estimates of 11,514 plant species and 3,079
vertebrate species in the Amazon. Deforestation has led to large amounts of habitat
loss, and fires further exacerbate this already substantial impact on Amazonian
biodiversity. Since 2001,103,079-189,755 km? of Amazon rainforest has been
impacted by fires, potentially impacting the ranges of 77.3-85.2% of species that are
listed as threatened in this region®. The impacts of fire on the ranges of speciesin
Amazonia could be as high as 64%, and greater impacts are typically associated with
species that have restricted ranges. We find close associations between forest policy,
fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest
policies that were initiated in the mid-2000s corresponded to reduced rates of
burning. However, relaxed enforcement of these policies in 2019 has seemingly begun
toreverse this trend: approximately 4,253-10,343 km? of forest has been impacted by
fire, leading to some of the most severe potential impacts on biodiversity since 2009.
These results highlight the critical role of policy enforcement in the preservation of

biodiversity in the Amazon.

The Amazon Basin® supports around 40% of the world’s remaining
tropical forests’ and has a vital role in regulating the Earth’s climate®.
Amazonia contains10% of allknown species®and it has been estimated
that1,000 tree species canbe found in asingle square kilometre of the
forest®. Such high biodiversity also enhances ecosystem resilience
through functional diversity'® and influencing rates of secondary forest
recovery™, and has probably enabled Amazonia to remainrelatively sta-
ble and to buffer ecosystem functioningin the face of climate change'*.
However, continued degradation and loss of forest cover and biodiver-
sity therein could undermine ecosystemresilience and hasten anirre-
versible tipping point'%. Indeed, aloss of 20-25% of Amazonian forests
could precipitate arapid transition to savannah-like formations™*,
Since the 1960s, approximately 20% of Amazonian forest cover has
been lost as a result of deforestation and fires®. Forest loss is predicted
to reach 21-40% by 2050, and such habitat loss will have large impacts

onAmazonianbiodiversity'®”. In conjunction with ongoing habitat loss
due to deforestation, increasing fires in the Amazon potentially pose
another great threat to biodiversity*: because Amazonian species have
largely evolved in the absence of fire, they generally lack adaptations to
fire-related damage (ref.*® and references therein). Fires associated with
deforestationgenerally lead to atotal loss of forest habitat?, and the burn-
ing of felled vegetationimpairs regeneration and facilitates theinvasion
of exotic grasses®. Forest fires also have largely negative impacts on the
habitats and long-term fitness of species due to habitat degradation® >,
Repeated burning canresultin considerable speciesloss and turnover®%,
Burning canalsoinitiate aseries of positive feedbacks, includingincreases
indry fuel loads and midday temperatures, desiccation of biomass and
flammability of native forests at the edges of clearings®.

Firesinthe Amazon are collectively influenced by climate, deforesta-
tion, forest fragmentation, selective logging and forest policies® %,
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Fig.1|Overview of plant and vertebrate species richness and fire-impacted
forestinthe Amazon Basin. a, b, Richness map of plant (a) and vertebrate

(b) speciesinthe Amazon Basin.c, MODIS burned area (resampled to 10 km)
shows fire-impacted forest, with black representing non-forested areas masked
out fromthis study. Scale bar, 500 km. d-f, Examples of three species,
Allantoma kuhlmannii (d) (IUCN status: critically endangered), Opisthocomus
hoazin (hoatzin) (e) (IUCN status: least concern) and Ateles marginatus

Recent drought events in 2005, 2010 and 2015 have been associated
withincreasesin the detection of active fires®. Deforestation provides
amajor source of ignition and increases the flammability of remaining
forests by increasing edge density, raising regional temperatures and
reducing rainfall®. Logging operations canalso increase forest flamma-
bility by reducing the coverage of the forest leaf canopy and by altering
microclimates®?. Socioeconomic factors, governmental policy and
initiatives by non-governmental organizations are increasingly recog-
nized as major factors thatinfluence deforestation rates, and therefore
deforestation fires and forest fires in the Amazon®*. Beginning in the
mid-2000s and especially after 2008, a series of policies implemented
by the Brazilian government and international organizations resulted
inasubstantial reductionin deforestation rates until2018. The widely
reportedincreaseinsatellite-detected firesin 2019 has been attributed
to therelaxed enforcement of existing policies aimed at slowing defor-
estation’. Asalarge portion of the Amazon s located in Brazil, changes
indeforestation rates and policies in the nation have disproportionate
impacts on the Amazon rainforest.

Although fires in the Amazon have been broadly studied?, there
remains a gap in knowledge regarding how the increase in fires has
impacted Amazonian biodiversity. Inaddition to habitat loss resulting
from deforestation, we investigated the cumulative impact of fires
on the geographic ranges of species, which are correlated with spa-
tial requirements to maintain populations and biodiversity®; similar
approaches have beenusedin other large-scale studies of biodiversity
(for example, refs. **3%). We compiled satellite-detected fires across
forested areas in the Amazon (termed ‘fire-impacted forest” hereaf-
ter) and, to our knowledge, the most comprehensive collection of
range maps of Amazonian plant and vertebrate species to date (Fig. 1,
Extended Data Fig. 1; Methods). The satellite-detected fires include
deforestation fires and fires that spread into standing forests (forest
fires)®. Theimpacts of both types of fire on biodiversity are largely nega-
tive, due either to direct loss of habitat or to mortality of organisms,
as well as damage to or deficits in fitness of organisms in the areas in
which the fires occur (refs. '®2° 2 and references therein). We estimated
the extent of species’ ranges in the Amazonian forest that have been
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Fire-impacted forest

(white-cheeked spider monkey) (f) IUCN status: endangered), which are
estimated tohave36.7-37.7%,1.8-2.6% and 4.1-5.9% of their Amazonian
forestrangeimpacted, respectively. Photograph credits:d, adapted from

The New York Botanical Garden Herbarium undera CCBY 4.0 licence
(https://creativecommons.org/licenses/by/4.0/); e, Mathias M. Pires; f,
adapted from Rich Hoyer undera CCBY 2.0 licence (https://creativecommons.
org/licenses/by/2.0/).

exposed to and impacted by fires (hereafter termed ‘range impact’)
over the past two decades, and assessed how drought conditions and
policy changes in Brazil affected the temporal trend of fire-impacted
forestin the Amazon.

The impact of fires on biodiversity

We generated Amazonian biodiversity maps from range maps of 14,593
terrestrial plant and vertebrate species (Supplementary Discussion).
Range maps of 11,514 plant species were estimated by different algo-
rithms depending on the number of observation records per spe-
cies (Methods). For species with at least 10 spatially unique records
(n=7,526) we used a Poisson point process model. For species with 3-9
spatially unique records (n =2,590) we used arange-bagging algorithm.
For species with 1-2 spatially unique records (n =1,398), we included
the grid cellsin which records were found (at 10-kmresolution). Expert
range maps of 3,079 vertebrates were refined to reflect the extent of
suitable habitat by limiting the ranges of species to known elevational
ranges and habitat associations to produce more accurate estima-
tions. These maps provide conservative estimates of the potential
distributions of species based ontechniques that aim to minimize the
underlying uncertainties (Methods).

Using two remote-sensing products we estimate that, since 2001, a
total 0f103,079-189,755km? (2.2-4.1%) of the Amazon forest was poten-
tially impacted by fire, affecting the ranges of the majority of plant and
vertebrate species therein (Figs. 1, 2, Extended Data Fig.1). Up to 93.3-
95.5% of Amazonian plant and vertebrate species (13,608-13,931) might
have beenimpacted by fires, if only to aminor degree (Supplementary
Discussion; Extended Data Figs. 2, 3). However, many of these species
areknown fromasmall number of records and probably have restricted
ranges®. Indeed, the Amazon comprises numerous species (610) that
are considered threatened by the International Union for Conservation
of Nature (IUCN). Since 2001, a large fraction of these threatened spe-
cies have now experienced impacts of fire within their ranges: 236-264
IUCN:-listed plant species, 83-85 bird species, 53-55 mammal species,
5-9reptilespecies and 95-107 amphibian species. These values represent
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Fig.2|Cumulative effects of fire on biodiversity in the Amazon rainforest.
a,c, Theblackand grey shading represent the cumulative area of forest
impacted by fire based on MODIS burned areaand MODIS active fire,
respectively. Coloured areasrepresent the lower and upper bounds of
cumulative numbers of plant (a) and vertebrate (c) species rangesimpacted by
firesince2001. The silhouette of the tree is from http://phylopic.org/; the

arange that varies according to the remote-sensing products used to
assess the impact of fire (Supplementary Discussion).

The most pronounced species-levelimpacts are often associated with
species that have smaller ranges (Extended Data Fig. 2). For example,
fires may haveimpacted around 60% of the restricted range of Remijia
kuhlmannii(Rubiaceae) inthe southernBrazilian Amazon. Fire-impacted
forests over the past two decades have been mainly located in the ‘arc
of deforestation’ that spans the southern edge of the Amazon Basin®
(Fig. 1, Extended Data Fig. 1). The region that comprises this ‘arc’ has
been recently recognized as containing the widest range of evolution-
ary lineages of South American trees®. This is especially concerning
because phylogenetic diversity is positively associated with ecosystem
function®. Habitat alterationin this region has been pervasive and rapid,
and hasimpacted a considerable number of species (for example, there
are 263-700 species for which greater than 10% of their ranges within
the Amazonisimpacted; Fig. 2, Supplementary Discussion). These num-
bersare probably underestimates for several reasons: first, knowledge
of the spatial distribution of Amazonian biodiversity is limited by a
lack of biological collections and observations®; second, vertebrate
species represent only a small portion of the animal kingdom®*’; third,
remote sensing tends to underestimate the number and the extent
of forest fires (Methods); and fourth, historical (pre-2001) forest loss
and degradation were not considered here. Furthermore, species can

Cumulative area impacted by fire (km?)

silhouette of the monkey is courtesy of Mathias M. Pires. b, d, Therelationships
between the cumulative areaimpacted by fire (based on MODIS burned area)
and cumulative number of plant (b) and vertebrate (d) species. Coloured lines
represent predicted values of an ordinary least squares linear regressionand
grey bands define the two-sided 95% confidence interval (two-sided,
Pvalues=0.00).

become functionally extirpated well before they lose the entirety of their
range due to various factors (for example, demographic processes™).

Increasing impacts over time
Large areas of habitat loss through deforestation constitutes a major
threat to biodiversity in the Amazon, and similar amounts of habitat
arefurther degraded by fire (Fig. 2, Extended DataFigs. 2, 4, 5; see addi-
tional discussions in Supplementary Information). Over the past two
decades, the area of Amazonian forests that hasbeenimpacted by fire
hasfluctuated, but the potential area of newly impacted forest per year
has never decreased below between 889 and 3,127 km? (based on mod-
erateresolutionimaging spectroradiometer (MODIS) burned area and
activefire, respectively) (Fig. 2, Extended Data Table 1). Notably, both
the cumulative fire-impacted area and its impacts on species ranges
have continued to increase at a steady rate (Fig. 2a, ¢, Extended Data
Fig.3). The area of fire-impacted forest is tightly correlated with the
number of speciesimpacted (Fig. 2). For every 10,000 km?of forest that
experiences fire, an additional 27-37 plant species and 2-3 vertebrate
species that have more than10% of their ranges within the Amazon will
beimpacted (Fig. 2b, d).

Both drought and policy affect the area that experiences fire (Sup-
plementary Discussion). The amount of newly fire-impacted forest
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Fig.3|Newly fire-impacted forest in Brazil (based on MODIS burned area).
a, Fire-impacted forestarea thatis not explained by drought conditions. The
coloursrepresentdifferent policy regimes: pre-regulationsinlight red (mean
valueindarkred), regulationingrey (mean value inblack dashed line) and 2019
indarkblue. The yaxis represents the difference between actualareaand area
predicted by drought conditions calibrated by datafrom regulated years
(Methods). A positive value on the y axis represents more area than expected,
using theregulationyears asabaseline. b, Ascatter plot of newly
fire-impacted forestin Brazil and drought conditions (Standardized
Precipitation-Evapotranspiration Index (SPEI)); the lines represent the
ordinaryleastsquareslinear regression between fire-impacted forestand
drought conditions for the pre-regulation (red) and regulation (black)
periods.

area in Brazil corresponds to three distinct policy regimes: first, the
fire-impacted areawas larger during the pre-regulation period before
2008%*2, when forest policies were limited (early in this period) or
when the enforcement of new policies had yet to take full effect (later
in this period); second, the fire-impacted area was markedly reduced
during the regulation period 2009-2018 (with the exception of drought
years), when a series of policies aimed at reducing deforestation and
forest burning were implemented>®®*; and third, the fire-impacted
areaincreased in 2019, which coincided with a relaxation of enforce-
ment of those policies** by the Brazilian government during the first 8
months of theyear. A period of renewed policy enforcement beginning
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inSeptember2019* (Fig. 3, Extended DataFig. 6; Methods) saw monthly
fire-impacted forest area decrease once more. While droughtled toa
greater area of fire-impacted forest, enforcement of forest policy less-
ened the drought effect to 9-16% of that in the pre-regulation period
(Fig 3b, Extended Data Fig. 6, Extended Data Table 2). The majority
of the newly fire-impacted forest was inside the borders of Brazil
(mean =79%, s.d. =8-12%) (Extended Data Fig. 7). As aresult, policy
changes in Brazil have had alarge impact on the entire region, and
similar drought-related patterns were also observed for the entire
Amazon (Extended Data Table 2).

Theimpact of the 2019 fires

The year 2019 stands out as one of the most extreme years for biodi-
versity impacts since 2009, when forest regulations were enforced.
Thearea of fire-impacted forestin 2019 shows a shift between the first
8 months and the last 4 months of the year: it is higher than expec-
tations for the former and lower for the latter given drought condi-
tions, compared with the years under regulation (2009-2018) (Fig. 3,
Extended Data Fig. 6). This change coincides with the policy shiftin
Brazil, in which regulations were relaxed during the first 8 months
of 2019, after which extra efforts were devoted to control forest fires
beginning in September*. We estimate a total fire-impacted forest area
for 2019 of 4,253-10,343 km?; this is 463-1,193 km? (20-28%) higher
than expectations given the drought condition in 2019, reiterating
the findings in ref. * (Fig. 4, Extended Data Fig. 8). In 2019 alone, we
estimate that the ranges 0f12,064-12,801 plant and vertebrate species
experienced fire. Range impacts in 2019 were 19.6-28.0% higher for
plants and 28.6-34.6% higher for vertebrates than expected (Fig. 4,
Extended Data Fig. 8). These impacts are 1.42-2.58 times greater for
plantsand 1.39-2.53 times greater for vertebrates compared with 2014,
when the drought conditions were slightly worse. When we exclude
the effects of drought, the impact of fire on species’ ranges in 2019 is
greater than that during most of the regulation period (2009-2018),
excluding 2010 (Fig. 4, Extended Data Fig. 8).

In addition to the increased extent of fires that is associated with
the 2019 relaxation of forest-protection policies, the high estimated
impacts onbiodiversity could also be attributed to the locations of fires
in2019 (Fig.1, Extended Data Fig.1). Fires have increasingly impacted
moreinterior regions of the Brazilian Amazon, whereas previously they
had been mainly confined to the southeast. The spread of firesinto the
central Amazonislikely toincrease the extent ofimpacts on biodiver-
sity, astheseregions are generally more species-rich and contain many
species that are not present in southeastern Brazil.

The Amazon and global climate change

Climate change is likely to make drought increasingly common in
the Amazon Basin*¢. Our results show that although drought is an
important driver of total fire-impacted forest area in the Amazon,
drought effects can be significantly mitigated by forest policies (Fig. 3,
Extended Data Table 2, Extended DataFig. 6). We expect that the indi-
rectimpacts of fires, exacerbated by the effects of climate change and
drought*, are likely to continue to increase over time through positive
feedback. Additionally, deforestation—in combination with climate
change—might contribute toincreased frequency, intensity and extent
of droughts, thereby accelerating reductions in forest cover®. It has
been estimated that aloss 0f 20-25% of total forest cover in the Amazon
Basin might be enough to trigger a state-change tipping point from
tropical forest to savannah-like formations in eastern, southern and
central Amazonia'. Such a change could have catastrophicimpactson
regional biodiversity. Forest cover loss—if sufficiently extensive—can
resultin changes in local climate that, in turn, can affect the func-
tions of climates and ecosystems across the globe through ecoclimate
teleconnections*.



Pre-regulation

Regulation

7,500

5,000

2,500

~
II

Fire-impacted forest (km?) ®

-2,500

<

~
~
~ N .
Fire-impacted forest
~
<
~ ~
9-
| S~ —

- -
< -

0.20

0.1

o

0.05

o

Impacts on species ranges (%) v

-0.05

-

)O

0.15

0.10

0.0

(o]

o

Impacts on species ranges (%

-0.05

Vertebrates

3
O
Q/Q

Fig.4 |Newly fire-impacted forest areaand theimpacts on plantand
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Implications for future forest policy

Our study highlights a tight connection between policy and forest
fires, and shows how these factors can combine to impact biodiver-
sity.In 2019, the relaxation of deforestation policies in Brazil resulted
inincreased degradation of species ranges and habitats. However,
after national and international backlash against the increase in fires
betweenJune and August 2019, the Brazilian government again changed
course*, deploying the army to fight fires and once again ramping up
the enforcement of existing policy®. These findings show that effec-
tive policy and itsimplementation and enforcement are essential*® to
delay or prevent a tipping point” being reached in the Amazon that
would have potentially catastrophic regional and global consequences.

Conclusions

Habitat loss as a result of deforestation has profound negative impacts
onAmazonian biodiversity, and fires can exacerbate these already sub-
stantial impacts. There is a tight association between the cumulative
amount of forest experiencing fire and the impacts on biodiversity.
Over the past two decades, the ranges of the majority of Amazonian
species are likely to have been impacted in some way by fires. Many
of these impacted species are already considered by the IUCN to be

thedifference between actual values and the values predicted by drought
conditions calibrated by data from regulation years (Methods). Positive values
ontheyaxesindicate larger-than-expected values compared to those from
yearsunderregulation. The dotted lines representasmooth curvefitted to
valuesbased on theloess method.

threatened. Although the estimated impact of forest fires on biodiver-
sity has fluctuated over time, the cumulative impact has continued to
increase. As fires move closer to the heart of the Amazon Basin—which
is characterized by greater levels of diversity (Fig. 1a, b)—the impact
of fires on biodiversity will undoubtedly increase, even if the rate of
forest burning remains unchanged. Although regulations have been
effective in slowing the pace of burning and deforestation, relaxing
those regulations—as shown in Brazil in 2019—can quickly erase gains
made. Such policy reversals, incombination with more severe droughts,
are likely to accelerate the impacts of fire on Amazonian species and
destabilize therole of biodiversity in mitigating climate changein the
future. Our estimation of the fire-induced impacts on biodiversity
provides a scientific basis for future conservation and forest policy
in the Amazon Basin.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
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Methods

Fire, remote sensing and land cover

Werestricted the study areatothe Amazon Basin, using a refined bound-
ary of the Amazon®based on terrestrial ecoregions of the world™, and
only considered firesin areas that were forested between 2001-2019.
To do this, we overlaid the MODIS-derived fire detections of a focal
year with the forest land cover from the previous year. The MODIS
products uniquely provide a wide temporal coverage of our study
area (around 20 years) at the resolution®? of 463 m. This enabled us to
quantify fire-impacted forest and its consequences on the geographic
ranges of species each year.

We used two remote sensing products, MODISburned area(MCD64A1
v006) and MODIS active fire (MCD14ML v006), to quantify lower and
upper bounds on the amount of fire-impacted forest. We obtained
monthly burned arealayers (MCD64A1v006; https://Ipdaac.usgs.gov/
products/mcd64alv006/) at 463 m (colloquially referred to as 500 m)
spatial resolution fromJanuary 2002 to December 2019%, The MODIS
burnedarea product detects the approximate date of burning by locat-
ing the occurrence of rapid changes in daily surface reflectance time
series data. We also obtained the monthly active fire location product
(MCD14ML) from the University of Maryland (https://modis-fire.umd.
edu/). The MODIS active fire product detects land surface thermal
anomalies at the time of satellite overpass under relatively cloud-free
conditions using a contextual algorithm. We used vegetation fire with
high detection confidence (>80%) to avoid false or minor fire signals,
and converted the fire locations into monthly 927-m (or 1-km) raster
layers®. A fire-impacted cell derived from MODIS active fire indicates
atleast one fire occurred during the detecting window, and the fire is
usually large or hot enough to be detectable by the MODIS sensor®*. The
MODIS burned area and MODIS active fire products could represent
different degrees of fire impacts. The MODIS burned area algorithm
tends to detect fewer fire events than comparable active fire products
due toits more stringent detection criteria (hence our lower bound),
whereas the MODIS active fire could represent a broader estimation
of fire-impacted area in the Amazon (hence our upper bound). Fire
estimation from MODIS active fire was restricted to be conservative
using a high detection confidence (80%). We used both products to
estimate the possible range of fire-impacted forest in the Amazon
Basin. Although we did not directly distinguish between fire-impacted
forest derived from the two products, we determined the different
fates of the fire-impacted forest based on annual forest loss data (see
below). We aggregated the monthly pixel-level fire-impacted forest
into annual pixel-level fire-impacted forest (1 = burned, O = unburned).
We determined the pixels that were newly impacted by fire in a focal
year (thatis, notimpactedin any previous years since 2001), to reflect
the frontier of the fires.

We used annual forest fractional cover data of years 2001-2018 to
estimate fire-impacted forest. The annual forest fractional cover data
were resampled from MODIS Vegetation Continuous Fields (MOD44B
v006; https://Ipdaac.usgs.gov/products/mod44bv006/) at 232-m
(or 250-m) to 463-m resolution using the mean function. We further
refined our study area to forest pixels within the Amazon basin that had
atleast 60% tree cover atany year between2001-2018. This threshold
of 60% was also used in defining forest land coverin MODIS Land Cover
Type Product (MCD12Q1 v006; https://Ipdaac.usgs.gov/products/
mcdi12qlv006). The refined study area excluded non-forested areas
from the subsequentimpact analyses—such as previously deforested
area, farmland, shrubland or grassland—as our objective was to quantify
the fire-impacted forest, where the trees lack the adaptations needed
toresist fire-related damage!s*>°¢,

With these layers, we overlapped the newly fire-impacted forest
(resampled to 463 m) and annual forest fractional cover, and identified
pixels that experienced fire in afocal year that were classified as forest
pixels in the previous year. This procedure led to a series of layers of

annual newly fire-impacted forest, based on which we quantified the
cumulative area of fire-impacted forest across 2001-2019. Instead of
summarizing the fire-impacted forest using binary values (for example,
forest versus non-forest in land cover data), the tree cover percent-
ages within the refined study area were kept to get a more accurate
estimation of the fire-impacted forest. There is potential for multiple
types of land cover to coexist in one pixel (mixed pixels), which could
introduce errors of omission/commission. This is a recognized issue
with remote-sensing analyses, but its effect is minimized in this study
byrestricting the study areato areas where forestis the dominant land
coverinapixel. We calculated the sum of percentages across the pixels
of fire-impacted forest and transformed them into area in km?based
on the resolution of the raster layers. In addition, we calculated the
cumulative and newly fire-impacted forest at monthly scale across
2001-2019, using monthly fire-impacted forest of afocal year and forest
land cover in the previous year with a similar procedure.

The fire-impacted forest we compiled here essentially represents
satellite-detected firesamong forested areas. Compared with the ter-
minology inliterature, the fire-impacted forest we examined here could
include deforestation fires, as well as fires that spread into standing
forests (forest fires) and does not include fires in previously cleared
areas®. The impacts of both types of fire on biodiversity are largely
negative, due to loss of habitat and direct mortality of organisms as
well as damages to or deficits of fitness in organisms where the fires
occurred. Fires of either type create negative effects that go beyond the
immediate location and time at which the fire occurred. Deforestation
fires generally lead to atotal loss of the forest habitat by converting the
original forest to other land-cover types, especially cropland, which
is often the goal of deforestation fires. As a result, there has been an
increase in cropland along the arc of deforestation®. Although fire is
usually not the causal factor of the forest loss, the burning of felled
vegetation canimpair regeneration and facilitate the invasion of exotic
grasses, thusimpeding forest recovery”. The fires that encroach upon
and sometimes spread into standing forest can also rapidly damage
Amazon forests, the trees of which lack adaptations needed to resist
fire-related damage'®*>*®. For example, even light burns are known to
remove more than 70% of the sapling and vine populations®. Low to
medium severity fires can kill more than 50% of trees*® and almost all
of the larger woody lianas®***¢°, Fires could be catastrophic and lead to
90% annualized tree mortality when coupled with drought, as shown
instudies with experimental fires**!. The impacts of fires are not only
on plants but also on animals. Studies also show that wildfires drive
theimpoverishment of birds®*?and high-intensity fires can cause the
extinction of forest specialists®.

Distinguishing the different types of fire can facilitate the under-
standing of their impacts on biodiversity, but would need additional
dataand validations®* that are beyond the objective of this study. Alter-
natively, weresorted to using annual forest loss data to infer the fate of
forest associated with satellite-detected fires. Specifically, we obtained
annualforest loss layers fromref. 52 (http://earthenginepartners.apps-
pot.com/science-2013-global-forest) and resampled them from 30 m
to 463 m to obtain the percentage of forest loss per pixel using mean
function. By overlapping the annual percentage of forest loss with
the fire-impacted forest, we classified forest loss and fire-impacted
forest into (a) forest loss without fire, (b) fire-impacted forest with
forestloss, and (c) fire-impacted forest without forest loss. Such treat-
ment enables us to partition the total impact as fire-related impacts
versus non-fire related impacts (b + c versus a), or forest loss versus
fire-induced impacts without forest loss (a + b versus c). The forest
loss (a+b)is directly associated with the loss of forest habitat and thus
loss of species range. The fire-impacted forest without forest loss (c)
represents degraded forest habitat and thus degradation of species
range. We used the term ‘forestloss’ to reflect the observation of forest
changes by remote sensing. The class (a) could beinterpreted as a sub-
set of deforestation. The class (b) may be associated with deforestation
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(for example, slash and burn) or fire-induced forest loss. Our analysis
showed that forest loss without fire constituted a major driver for the
impact on Amazon forest and biodiversity (Extended Data Figs. 2,
5). The forest loss without fire was estimated to be 8,068-8,181 km?
yr™, the magnitude of which was comparable to fire-induced impacts
(5,425-9,987 km*yr™") (Extended Data Fig. 4). The difference was that
thefire-induced impacts were more variable among years (s.d. = 4,089-
6,972 km?yr™) than forest loss without fire (s.d. = 3,280-3,414 km?yr™).
We caution the interpretation of the relative proportion of forest loss
without fire versus fire-impacted forest. The size of the fire-impacted
forest was probably an underestimation for several reasons. MODIS
sensors cannot consistently detect small and less intense understory
fires in the Amazon®, whereas the area of these can be twice the area
of annual deforestation during severe drought years®. The use of
tree cover percentages within the refined study area (as opposed to
binary forest cover) also led to a more conservative estimation of the
fire-impacted forest. Our analysis included a one-year temporal win-
dow for aconservative estimation; thiswould notinclude delayed tree
mortality that could occur after fires*®¢; otherwise, the proportion of
fire-impacted forest with forest loss would be larger. Inference about
the fate of forest among the fire-impacted forest showed that a small
portionwas directly associated with forest loss (Extended DataFig. 4).
This proportion could be larger if a multi-year window were used, as
theimpactof fireis known to go beyond the year in whichit occurs .
However, we restricted our analysis to the same year to limit potential
uncertainties of the inferences. The large amount of forest loss without
fire echoes the findings that deforestation isa major threat to Amazo-
nianbiodiversity’. The large amount of fire-impacted forest without
forestloss also echoes therecent finding that forest degradation could
exceed deforestation in the Amazon®. We caution that our estimated
areas might not be directly comparable with similar studies using dif-
ferent methodologies, because estimates of impacted areadepend on
anumber of factors, including the specific remote-sensing products
and algorithms used®® and definition of concepts and categories®.

A caveat of our remote sensing-based approach is that it is difficult
to verify whether the MODIS-detected fire-impacted forest is totally
burned for the focal spatial range (Amazon Basin) and temporal extent
(the past two decades). Notably, the fire-impacted forest asidentified by
the MODIS sensors® was probably underestimated due to frequent cloud
cover and optically thick aerosols, as well as detection limitations of the
MODIS sensor and the algorithm. The MODIS sensors are more likely to
capture larger fires (and thus, larger impacts on biodiversity), and omit
smalland lessintense understory firesin the Amazon®”° that would have
relatively smaller impacts on biodiversity”. Besides excluding fires that
occurredinnon-forested areas, we also selected arelatively high detection
confidence (80%) for the active fire product to minimize false signals.

Thereis substantial empirical evidence that theimpact of fire on the
rainforest is not only local, but the impact of fires can also stretch far
beyond the immediate time and location at which the fire occurred,
suggesting that the impact could be passed to the whole pixel if the
pixel is not 100% burned. For example, deforestation and fires can
fragment forests and create more edges, which further thin the canopy,
reduce the fuel moisture within the forest interior, and subsequently
increase the likelihood and intensity of fires?®’> 7, These positive feed-
backs among fire, deforestation and forest fragmentation increases
thevulnerability of forest to future fires'®?”, Fires can have prolonged
effects ontreelifespan and fitness: when not directly killing trees, the
fires can weaken tree trunks and make them vulnerable to breakage
by windstorms?*”®. These analyses were performed within the Google
Earth Engine platform (accessed March 2021).

Plant and vertebrate range maps

Plant range maps

Data compilation and cleaning. For plants, we used species distribu-
tion models” to infer the geographic distributions of species based on

species occurrences and climate and soil characteristics. Plant occur-
rencerecords used for modelling were from the BIEN database (Botanical
Information and Ecology Network; http://bien.nceas.ucsb.edu/bien/
about/), whichis compiled viaalinked workflow that standardizes, inte-
grates, corrects and validates data fromdisparate data sources and data
formats. BIEN datainclude herbariumcollections, ecological plots and
surveys’ ¥, and trait observations from a large variety of sources. The
plantoccurrencesinthe BIEN database are the product of contributions
by 1,076 different data contributors, including numerous individual
herbariaand dataindexers of herbaria. The largest direct data contribu-
torstoBIEN include The Global Biodiversity Information Facility (GBIF),
the US Forest Inventory and Analysis National Program (FIA)®, Missouri
Botanical Garden, SpeciesLink, Tree flora of the Neotropical Region (Neo-
TropTree)®’, New York Botanical Garden and VegBank®°, The distribution
recordsin BIEN were compiled using PostgreSQL (v.10.17).

Taxon names associated with BIEN occurrence records were cor-
rected and standardized using the Taxonomic Name Resolution Service
(TNRS)*' with Tropicos, The Plant List and USDA Plants as taxonomic
references, and all other options at their default settings. In addition to
correcting misspellings, the TNRS updates synonymous matched names
to the current accepted name, according to the taxonomic sources
used. Whenavailableinthe original data, we alsoincluded family along
with the species name submitted to the TNRS; this additional informa-
tionenables the TNRS to detect homonyms (identical names referring
to different taxa) in different families. The declared political division
names of occurrences were standardized using the Geographic Name
Resolution Service (GNRS; http://bien.nceas.ucsb.edu/bien/tools/
gnrs/), which corrects spelling errors and standardizes names, codes
and abbreviationsin multiple languages to standard political divisions
inthe GeoNames gazetteer (https://www.geonames.org). Geographic
coordinates of occurrences are flagged as erroneous if they (1) fall out-
side the coordinate system (for example, longitude >180° or <-180°), (2)
contain suspect coordinate values (for example, latitude or longitude
exactly zero), (3) fallinthe ocean, (4) match apolitical division centroid
or (5) fall outside of a declared political division. Occurrence records
thatfall outside of aspecies’ native range are identified using the Native
Species Resolver (NSR; http://bien.nceas.ucsb.edu/bien/tools/nsr/),
which uses published checklists and endemism datato determineifthe
observedspeciesis nativeinagivenlocation. Observations are flagged
as potentially cultivated and removed from the observation data, on
the basis of (1) searching for direct information within the curatorial
note fields that the specimen is from a cultivated plant, (2) wildcard
searchesin the specimen descriptionandlocality fields suggesting that
the plantis cultivated or growing in alocation in which itis likely to be
cultivated (that is, keywords such ‘farm’ or ‘plantation’ or ‘campus’ in
the locality description, in any of several languages), or (3) any obser-
vation occurring within 3 km of a botanical garden or herbarium (the
latter are typicallyinurbanareas and associated with botanical gardens)
wasexcluded as potentially cultivated. Full details of the BIEN workflow
canbefound athttp://bien.nceas.ucsb.edu/bien/tools/and in multiple
references” *. The occurrences that coded as specimen, plot, literature
or checklistand passed taxonomic validation (http://bien.nceas.ucsb.
edu/bien/tools/tnrs/), geovalidation (http://bien.nceas.ucsb.edu/bien/
tools/gnrs/) and native/nonnative filters (http://bien.nceas.ucsb.edu/
bien/tools/nsr/) were used in the species distribution modelling.

On the basis of these cleaned data, additional steps were under-
takento prepare the datafor species distribution modelling. If multiple
records were found in a10-km grid cell, only one was retained. Such
thinning is recommended when modelling density of occurrence® (in
contrast to the density of individuals in which retaining each record
is critical”). The occurrences were thinned to reduce spatial autocor-
relation to ensure that all retained records were at least 20 km from
one another using the default thinning algorithm of spthin (v.0.2.0)%.

We further removed records that could be automatically identified
as obvious outliers. Outliers in geographic and environmental space
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were determined based ona Grubb’s outlier test with® P=1x10imple-
mented with the R package outliers (v.0.14)'%. For each test, we calcu-
lated the centroid of all records ingeographic or environmental space
respectively and then the distance from each point to the centroid.
Theone-sided Grubb’s test then determines whether the single largest
distance is an outlier relative to all other points. If it was determined
tobeanoutlier, the point was discarded. The test was repeated on the
remaining points until no points were determined outliers.

Environmental data. The geographic distributions of plant spe-
cies were modelled on six climate and five soil variables (correlation
coefficient |r| <0.7) at 10-km resolution: four bioclim variables from
WorldClim 2.0 (mean annual temperature, mean diurnal temperature
range, annual precipitation, precipitation seasonality)'®, two additional
climatic variables that represent seasonality of tropical regions based
onexpertrecommendations. To capture the precipitation peakinthe
warm and cold period, we calculated the ratio of precipitation in the
warmest quarter (BIO18) to sum of precipitationin the warmest quarter
andthe coldest quarter (BIO18+BI019), while the calculation of BIO18
and BI019 follows the method used by WorldClim'°% The soil variables
were resampled from 250 m (raw resolution) to 10 km, by averaging
values of the top four horizons of the soil data. To account for the effect
ofthedryseason length and the water deficit experienced by vegetation
during dry periods, we calculated an accumulated aridity index. The
five soil layers are depth tobedrock, proportion clay, proportionsiltin
the first four soil horizons, mean bulk density, and mean pHin the first
four soil horizons (SoilGrid; http://soilgrids.org), which are expected

toberelevant for large-scale biogeography patterns'®,

Speciesdistributionmodelling. For plant species with at least 10 spatially
uniquerecords, we used Poisson point process models fit with the R pack-
ageglmnet (v.4.0-2)', closely related to the popular Maxent algorithm'®,
For species with 3-9 spatially unique records, we used a range-bagging
algorithm'®, which uses anensemble of statistically generated convex hulls
inenvironmental space. For any species with1-2 spatially uniquerecords,
we used the cells in which records were found (at 10 km resolution) as its
range. Theselection of the algorithmsis based on the philosophy of using
amore conservative approach whenthere are fewer datafor model train-
ing. The list of plant species was further refined to the checklist in ref. '’
andthe species that had atleast 10% of their range within the Amazonian
forest, whichyielded 11,514 plant species (7,526 species with Poisson point
process model, 2,590 with range bagging, and 1,398).

Poisson point process models describe the spatially varyingintensity
of occurrencerecords asafunction of covariates. Aninhomogeneous
Poisson point process model describes this intensity, A, asalog-linear
function of environmental covariates X;at locations, with model param-
eters stored in vector f=(B,, Bi,....[5,)"**'”

log(A(s)) =B, + B X+ B+ ... + B po.

To fit Poisson point process models, the presence points are con-
trasted against background points sampled across the modelling
domain. For each plant species, we used the ecoregion in which its
occurrences fall and the closest ecoregions™® as the training and
projecting domain, from which 20,000 random backgrounds were
selected. For the Poisson point process models, different feature classes
were used depending on sample size: linear and quadratic features are
always selected, and the product features were used for species with
200 or more records. The regularization parameter was determined
based on 5-fold cross-validation with each fold, choosing a value one
standard deviation below the minimum deviance, which s the standard
choicebuiltinto the cv.glmnet function'®*. This approach enabled us to
find an‘optimal’ (in the sense of balancing overfitting with underfitting)
regularization parameter based on efficient computation of the entire
regularization path'®. Poisson point process models were fitted using

spatially stratified cross-validation™ using a custom stratification algo-

rithm. This algorithmis designed to (a) remove spatial autocorrelation
betweenrecordsto allow for more accurate performance statistics, (b)
avoid extrapolation to the extent possible by maximizing the amount
of environmental space spanned within each fold, and (c) enabling
species-specific scaling of the appropriate distance between records
needed to minimize spatial autocorrelation. Folds were generated by
first computing a k-means cluster on the coordinates of records, seek-
ing 25 clusters. These 25 spatial clusters were then randomly assigned
to five folds. If a species had fewer than 25 records, a smaller number
of groups was used based on sample size, and these were splitinto five
folds. This flexible approach accounts for variationin the spatial scale
of aggregation among species by using the cluster analysis. By splitting
into 25 groupsinitially (rather than 5) we obtain better environmental
coverage (atleast onaverage) withinafold and hence reduce artefacts
from extrapolation'. Because this fold assignment was the only sto-
chastic component in the modelling workflow, we set arandom seed
based on converting each species name to an integer to ensure that
all results are exactly reproducible. This resulted in five models per
species, which we then combined in an unweighted ensemble. This
ensemble prediction can be interpreted as a relative occurrence rate
that sums to 1 over the modelling domain'®. The models were only
projected to the training domains, thus avoiding model extrapola-
tion issues™. The threshold of 5% training omission rate was used to
transform the raw prediction into binary range maps. We evaluated the
model performances using three indices: partial areaunder the curve of
thereceiver operating characteristic (pAUC), true skill statistics (TSS),
and true positive rate (TPR) at the threshold of 5% training omission
rate (5% of training presences predicted as absences). We used pAUC
instead of traditional AUC to evaluate the model performance at high
sensitivity levels (percentage of correctly predicted presences), inour
case from 0.8 to 0.95, thus it is more appropriate for cases based on
thresholds™. We also calculated TSS, which is the sum of sensitivity
(true positive rate; proportion of known presences predicted present)
and specificity (true negative rate; proportion of known absences pre-
dicted absent)"®. Given that background points instead of absence data
were used, omission error (1 - sensitivity) is expected to have higher
importance than commission error (1 - specificity), so sensitivity was
included as another evaluation index. The evaluation index showed
robust performances of the models: 0.70 (s.d. = 0.09) for mean pAUC,
0.33 (s.d.=0.13) formean TSS and 0.84 (s.d. = 0.10) for sensitivity.
For specieswith 3to 9 unique points onthe 10 km grid, we produced
species distribution models with the range-bagging algorithm (origi-
nal version)'%¢. Presence data, environmental data preparation and
domain selection were based on the methods for Poisson point process
models. Range-bagging is an adaptation of machine learning meth-
ods that stochastically builds convex hulls in environmental space to
produce estimates of relative occurrence probability on a continuous
scale'®®. It provides some key advantages: it requires only presence
data, sampling bias is important only at range boundaries instead
of throughout the range, it can characterize discontinuous ranges
in geographic space, and it predicts variation in habitat suitability.
The model training randomly takes 33% of occurrences (to capture
the variation among samples) and two predictors (to decrease the
possible complexity of variable interactions, thus simpler models).
This procedure was repeated 100 times and ensembled as 100 voting
scores. The models were projected to the same training domains as
used for Poisson point process models. The continuous predictions of
the range-bagging algorithm were converted to binary maps for our
analysis with a threshold (0.165 of votes) that was chosen to ensure
that all presences were correctly predicted (true positive rate =1for
all species). On average, 14.9% (s.d. 13.5%) of background locations
in ecoregions in which a species occurs were predicted as occupied,
reflecting that spatial extrapolation was minimal for the vast majority
of species. Such alow threshold (0.165 of votes) predicts larger range
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sizes thanwould higher thresholds, which leads to more conservative
predictionsin our analysis about the proportion of range size impacted
by fire. In other words, a higher threshold and hence smaller range
size estimate would lead to more severe fire impacts estimated, and
we chose to be conservative about how these poorly sampled species
would influence our analysis. Owing to the small sample sizes (3-9
presences), we used range bagging as a simple first order estimate of
speciesranges to infer which locations on the landscape are similar to
those limited locations in which a species has been observed.

For species with 1-2 spatially unique records (n=1,398), we used the
10-kmresolution cells where records were found as the range. Suchmaps
shouldbe only cautiously interpreted as the species distribution owing
tolimited available data. Using conservative, ifimperfect, estimates of
poorly sampled species ranges was preferable to ignoring them entirely,
asmany of them are probably truly rare®. We do not expect the inclusion
of species with restricted ranges to bias our results, as their restricted
ranges are as likely to overlap with fires as not. Indeed, excluding such
species fromour analyses reduces boththe number of species with their
ranges impacted by fire (629-898) and the number of species that have
not had their rangesimpacted (500-769), inroughly equal proportions.
Allelse equal, underestimating species ranges is as likely toresultinan
underestimation of fireimpacts asitisto resultinan overestimation of
the proportion of range impacted. Along these lines, excluding species
with restricted ranges from our analyses did not influence our central
conclusions. It had a minimal effect on the temporal trend in cumula-
tive impacts and the proportion of plant species impacted by fire by
2019, which changed from 6.48-16.52% to 6.36-15.89% based on the
5% threshold, from 2.13-5.60% to1.67-4.81% for the 10% threshold, and
from 0.97-2.23 to0 0.50-1.69% for the 15% threshold.

Generally speaking, the workflow of species distribution models
constructed conservative estimates of species potential distributions
while minimizing the underlying uncertainties. The effort in cleaning
the occurrences of species, including cleaning taxonomic name based
on TNRS (this avoids erroneous species names and reduces the uncer-
tainties associated with those names), excluding cultivated records
(this helps to restrict the prediction to natural areas and reduces the
likelihood of overestimations), and excluding spatial and environmental
outliers (this helps to avoid extreme broad potential distributions).
The workflow incorporated a gradient of complexities based on the
amount of data, from the most conservative approach using spatial
buffer of species with 1-2 spatially unique records, to limited environ-
mentaliinferences based onrange bagging for species with 3-9 spatially
uniquerecords, to more liberal environmental inferences based on Pois-
son point process models for species with 10 or more spatially unique
records, within which group we further distinguished simpler and more
complex features for species with more or fewer presences. To minimize
the uncertainties, weimplemented 5-fold cross-validations and used the
ensembleaverageinthe prediction. Last, to minimize the uncertainties
during the inference process, we also restricted model predictions to
theecoregions used inmodel training. The workflow of species distribu-
tion modelling has been used in other global biodiversity studies""8,

Vertebrate range maps
For vertebrates, we used expert maps provided by the IUCN rather than
modelling species distributions, as these have been carefully vetted
by taxon specialists and offer comparatively complete coverage of
known species. Range polygons coded as ‘extant’ and ‘resident’ for
all species were obtained from the IUCN spatial data portal®"®. [UCN
range polygons were modified to reflect the extent of suitable habitat
by limiting the species range to the known elevational range and habitat
association as it has been shown that this allows for a more accurate
representation of species range area for analysis'?.

The dataset we compiled is expected to provide a comprehensive
estimation of biodiversity inthe Amazonto date. However, we lack data
for many of the species that areknownto occurinthe Amazon, and are

undoubtedly missing data for species that have yet to be discovered.
Our datadid notinclude 14% (n =1,949) of the plant speciesincludedin
arecently published checklist of Amazonian plants'”’. The distribution
maps were processedinR (v.3.5.1).

Quantifying the impact of fires on biodiversity

We restricted our study area to the Amazon forest, defined as at
least 60% forest cover in MODIS Vegetation Continuous Fields
(MOD44Bv006; see section 1) during 2001-2018 within the Amazon
Basin®. We first identified species that have over 10% of their range
within the Amazon forest, so as to exclude species that have large geo-
graphicranges or speciesthat havelittle of their ranges in the Amazon
forest. Withinthe Amazon forest, we overlapped fire-impacted forest
layers (resampled to 10 km using mean function) with species ranges.
For eachspecies, we quantified the cumulative impact (percentage of
aspecies’ range impacted by fire in Amazon forest) over 2002-2019.
We summarized the number of species that had any range impacted, or
for whichtherange beingimpacted withinthe Amazon forest reached
one or more of three thresholds (5, 10 or 15%). We also examined the
relationship between cumulative fire-impacted forest (predictor) and
the cumulative number of species affected (response) each year using
ordinary least squares linear regression.

Ground-based surveys before and after the fire could give us more
accurate knowledge about how fires haveimpacted biodiversity. But such
surveysareonly possible for afew case studies, and itis nearimpossible
to assess biodiversity in situ across the entire Amazon Basin. Building
upon nearly two decades of remote-sensing data across the Amazon and
alarge amount of species’ range maps, our study provided abasin-wide
estimate of the potential impacts of fires on biodiversity. Our estimates
should be on the conservative end of the uncertainty spectrum: the
MODIS remote-sensing products are more likely to capture larger fires
than small fires (including under canopy fires®>’°), and the size estima-
tions of species range also involves a series of conservative approaches.

Drought, policy and fire-impacted forest in the Amazon
Definition of three periods of policy regimes

We separated our study periodinto three policy regimes: before 2008,
2009-2018 and 2019. Policy periods were defined through analysis
and interpretation of the relevant literature. There are many policy
factors that influence deforestation and forest fires in the Amazon,
including government policy in Brazil and other countries in the Ama-
zon region and voluntary conservation initiatives spearheaded by
non-governmental organizations. Governmental policy varies greatly
across different countries in the Amazon region and also within coun-
tries depending on how laws and regulations are interpreted and
enforced at lower levels of government. Similarly, conservation initia-
tives advocated by non-governmental organizations and foreign gov-
ernments are voluntary and rely on market pressures and other tools
forimplementation. In this paper, our primary concern s the effect of
policy onbiodiversity and the potential effect of changes inregulatory
enforcement in 2019 by Brazil**, where the majority of Amazon forest
andfires arelocated (Extended DataFig. 7). Asaresult, thethree policy
regime periods selected are consistent with changesin policy regimesin
Brazil rather than the entire Amazonregion. The pre-regulation period
includesyears before 2008. During this period, specific policies to pre-
vent deforestation and forest fires were either yet to be implemented
orwere under development®>*2, The strict regulation period is 2009 to
2018. During this period, Brazil had strong policies in place and many of
the voluntary programs promoted by non-governmental organizations
were also fully functional®®*, There was then a retraction in the policy
regime in Brazil in 2019 as the new president relaxed enforcement of
official government policies from January through August***?'. From
September to the end of the typical burning season, Brazil responded
tointernational pressure and again enforced deforestation and forest
burning regulations*'?2, The first part of this period is a relaxation of



policies rather than a full removal of policies because voluntary pro-
grams outside of government control remained in place.

Drought conditions
Drought is a well-known factor that affects fires in the Amazon®. We
used Standardized Precipitation-Evapotranspiration Index (SPEI) to
quantify the drought conditionsin the Amazon'?. The SPEl is a multisca-
lar droughtindex based on climatic dataand hasbeen used instudying
forest dynamics and forest fires?*’%, The key advantage of SPEI over
another commonly used drought index (Standardized Precipitation
Index (SPI)) is the indirect incorporation of the effect of tempera-
ture, that is by accounting for potential evapotranspiration. The role
of heat-induced drought stress is associated with tree mortality and
forest fires®*'?®, Another drought index, the maximum climatological
water deficit (MCWD), has been used to study the relationship between
drought and the Amazon forest®. These indices were highly correlated in
ourstudyarea (r=0.77), thus we did notinclude MCWD in our analyses.
Monthly SPEI data were downloaded from the SPEI Global Drought
Monitor (https://spei.csic.es/map) and spatially and temporally aver-
aged for Brazilian portion of Amazon. We considered monthly SPEl at
five temporalscales (1, 3, 6, 9 and 12 months), to account for possible
lag effects between drought and fires®”. The yearly SPEl was calculated
as the mean of monthly SPEI based on 1-month SPEI for a focal year,
to represent the general drought condition of this year. The drought
index was paired with data of fire-impacted forest at monthly or yearly
scales in the regression analyses (see below).

Regression between drought, policy and impact on biodiversity

Policy, drought and thefire-impacted forest. We conducted ordinary
least squares linear regression using newly fire-impacted forest by year
as dependent variable and annual SPEI, policy regime (pre-regulation
(2003-2008) or regulation (2009-2018)), and their interaction term as
independent variables. The data used for this analysis started in 2002,
whichisthefirst year for whichthe datafor newly fire-impacted forests are
available. This analysis wasimplemented for the Brazilian portion of the
Amazonand for the whole Amazon. Seeresultsin Extended Data Table1.

Fire-impactedforest andimpact onbiodiversity in 2019 compared
with previous yearsin the Brazilian Amazon. We assessed the newly
fire-impacted forest at both monthly and yearly scales using the regula-
tion period (2009-2018) as abaseline. For the monthly scale analysis,
we preselected a9-month SPElamongthe five different scales. Specifi-
cally, we constructed linear mixed models using newly fire-impacted
forestas the dependent variable, with SPEl and policy regime as fixed
effects (pre-regulation or regulation), and using month as arandom
effect. The model using SPEI based on 9-month SPEI had the lowest
Akaike information criterion (AIC) value.

Weused theregulation period as the baseline and conducted ordinary
least squares linear regressions with data from the regulation period,
using monthly or yearly newly fire-impacted forest as dependent variable
and using monthly or yearly SPEl asindependent variable. We used cali-
brated models to predict the fire-impacted forest in the pre-regulation
period and 2019 given the drought conditions at monthly or yearly scales.
We further calculated the difference between the actual fire-impacted
forest and predicted fire-impacted forest. For example, the calculated
differences could be considered as residuals for the regulation years.
Seeresultsin Fig. 3a and Extended Data Fig. 6a for results on amonthly
scaleand Fig.3band Extended DataFig. 6b for the yearly scale. Inasimilar
manner, we compared the mean of species range impacted by fire at a
yearly scale. See results in Fig. 4 and Extended Data Fig. 8.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The plant occurrences from the BIEN database are accessible using
the RBIEN package (https://github.com/bmaitner/RBIEN). The cli-
matic data are accessible from http://worldclim.org and the soil data
are available from http://soilgrids.org. MODIS active fire and burned
areaproducts are available at http://modis-fire.umd.edu. The MODIS
Vegetation Continuous Fields dataare publicly available from https://
Ipdaac.usgs.gov/products/mod44bv006/. The annual forest loss
layers are available from http://earthenginepartners.appspot.com/
science-2013-global-forest. The plant range maps are accessible at
https://github.com/shandongfx/paper_Amazon_biodiversity_2021.
Thevertebrate range maps are available from https://www.iucnredlist.
org/resources/spatial-data-download. The SPEl dataare available from
SPEI Global Drought Monitor (https://spei.csic.es/map).

Code availability

The code to process the remote-sensing data is available at https://
github.com/shandongfx/paper_Amazon_biodiversity 2021.
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Extended DataFig.1|Fire-impacted forest and forestlossinthe Amazon
Basin. a-h, Visualization of fire-impacted forest (a, b), forest loss without fire
(c,d), fire-impacted forest with forestloss (e, f), and fire-impacted forest
without forestloss (g, h) inthe Amazon Basin based on MODIS burned area (left
panels) and active fire (right panels). Datain a-d are resampled from the 500m
(MODIS burned area) or1km (MODIS active fire) to 10 km resolution using

mean functionand thresholded at 0.01toillustrate the temporal dynamics.
Black represents non-forested areas masked out from this study. The
cumulative fire-impacted forest s classified into two categories: fire-impacted
forest with forestloss (e, f) and fire-impacted forest without forestloss (g, h).
Dataine-hareresampled to10 kmusing mean functiontoillustrate the
cumulative percentages of impacts.
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Extended DataFig.2|Scatter plot of species’ rangeimpacted by fire. Scatter plot of species’ range size in Amazon forest (x-axis) and percentage of total range
impacted by fire (red) and forest loss without fire (black) up to 2019 for plants (left panel) and vertebrates (right panel).
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Extended DataFig.3|Density plot of species’ cumulativerange impacted by fire. Density plot of species’ cumulative range impacted by fire. The different

coloursrepresent years 2001-2019. The x-axis is log10 transformed.
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Extended DataFig.4 |Summary of forestimpacts in the AmazonBasin. Areas of forestimpact in the Amazon Basin estimated from MODIS burned area (top)
and MODIS active fire (bottom).
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Basin. Cumulative effects of forestloss without fire onbiodiversityinthe Amazon ~ MODIS burned area) and cumulative number of b, plantand d, vertebrate species.
rainforest. Inthe left panels, the black and grey shading represent the cumulative Colouredlinesrepresent predicted values of an ordinary least squares linear
forestloss without firebased on MODIS burned areaand MODIS active fire, regression and grey bands define the two-sided 95% confidence interval
respectively. Coloured areasrepresent the lower and upper bounds of cumulative  (two-sided, p values=0.00). Thesilhouette of the treeis from http://phylopic.
numbersofa, plantandc, vertebrate species’ rangesimpacted. Right panels org/;silhouette of the monkey is courtesy of Mathias M. Pires.
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Extended DataFig. 6 |Fire-impacted forestin Brazil. Newly fire-impacted
forestinBrazil (based on MODIS active fire). ashows the area of fire-impacted
forest notexplained by drought conditions. Different colours represent years
fromdifferent policy regimes: pre-regulationsinlight red (meanvalueindark
red), regulationin grey (mean value in black dashed line),and 2019 in blue. The
y-axisrepresents the difference between actual area and area predicted by

drought conditions calibrated by data from regulation years (Methods). A
positive value on the y-axis represents more area than expected, using the
regulation years as abaseline.bshows ascatter plot of newly fire-impacted
forestinBraziland drought conditions (SPEI); Thelines represent the ordinary
leastsquares linear regression between fire-impacted forest and drought
conditions for pre-regulation (red) and regulation (black) respectively.
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orrangeimpacted by fire than the expectation using the regulationyearsasa
baseline. The dotted lines represent asmooth curvefitted to the values based
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Extended Data Table 1| Summary of fire-impacted forest

Fire impacted forest Fire-impacted forest with forest loss Fire-impacted forest without forest loss
Year MODIS MODIS MODIS MODIS MODIS MODIS
burned area active fire burned area active fire burned area active fire
cumulative | newly | cumulative | newly |cumulative| newly |cumulative| newly |cumulative| newly |cumulative | newly

2001 4513 4,513 3,505 3,505 2.300 2,300 1,136 1,136 2213 2213 2.369 2.369
2002 14,972 10,459 23,033 19,528 7.208 4,908 5,567 4431 7.764 5,551 17.466 15,096
2003 25,580 10,608 45,139 22,106 11,394 4,186 9.819 4,252 14,186 6.422 35.320 17.854
2004 37,236 11,655 68,990 23,851 16,409 5,015 14,878 5,060 20,827 6,640 54,112 18,792
2005 49,032 11,796 91,165 22,175 20,113 3,704 18,346 3,468 28919 8,092 72,819 18,707
2006 53.894 4.862| 103,527 12,362 21,975 1.863 20,144 1,798 31918 2.999 83.383 10,564
2007 64,317 10,423| 117.409 13,882 23,807 1,832 21,692 1,547 40,510 8,592 95,718 12,335
2008 66.654 2.337] 124341 6.932 24,549 742 22,475 783 42.105 1,595 101,866 6.149
2009 68.288 1,634 129653 5.312 24.820 271 22.860 385 43.467 1.363| 106.793 4,927
2010 79,777 11,490 140,954 11,301 26,376 1,555 24,041 1,181 53,402 9935 116,914 10,120
2011 81,547 1,770[ 144,938 3,984 26,701 326 24,439 398 54,846 1,445 120.499 3.586
2012 83.657 2.110] 150,582 5.644 27.575 873 25321 882 56,083 1237 125262 4.762
2013 84 546 889| 153,729 3,147 27,811 237 25,709 388 56,735 652| 128,020 2,759
2014 86,224 1,678 158,627 4,898 28,402 591 26,479 770 57.822 1,087 132,148 4,128
2015 90.395 4.171] 165422 6.795 29.255 853 27472 992 61,140 3318 137,951 5.802
2016 93,720 3325 171,309 5,887 31,187 1,932 29241 1,769 62,532 1,393 142,069 4,118
2017 97.693 3974 177431 6,121 33,500 2313 30,968 1,727 64,193 1,661 146463 4,394
2018 99.869 2.176] 182,651 5.220 34,375 875 32,082 1,114 65,494 1.301| 150,569 4.106
2019 103,079 3.210[ 189.755 7.105 36.146 1,771 33.874 1,792 66.932 1439 155882 5313

The cumulative and newly fire-impacted forest (km?) estimated from MODIS products.
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Extended Data Table 2 | Summary of regression analyses

(Intercept) Drought Regulation | Regulation* |[R? |N
(SPEI) Drought

Newly fire impacted forest 1600.28 -33991.65 1160.96 30897.81 0.82 |17
based on MODIS active fire (4220.4) (10196.92) (4665.54) (10713.62)
(Brazil) (0.71) (0.01) (0.81) (0.01)
Newly fire impacted forest 1208.89 -52643.52 2501.12 48199.77 0.88 |17
based on MODIS active fire (3429.19) (10734.83) (3940.94) (11339.6)
(Amazon) (0.73) (0.00) (0.54) (0.00)
Newly fire impacted forest -1410.11 -22612.66 1916 18952.76 0.84 |17
based on MODIS burned area | (2147.74) (5189.15) (2374.27) (5452.1)
(Brazil) (0.52) (0.00) (0.43) (0.00)
Newly fire impacted forest -505.36 -30768.31 1273.89 25419.41 0.69 | 17
based on MODIS burned area | (3373.64) (10560.94) (3877.1) (11155.91)
(Amazon) (0.88) (0.01) (0.75) (0.04)

Summary of ordinary least squares linear regressions (two-sided) using newly fire-impacted forest by year as dependent variable and annual Standardized Precipitation Evapotranspiration

Index (SPEI) and policy regime (pre-regulation or regulation) as independent variables. The estimated coefficients are followed by standard error and P value.
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Data collection  The distribution records in BIEN database were compiled using PostgreSQL (version 10.17).
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The plant occurrences from the BIEN database are accessible with the RBIEN package (https://github.com/bmaitner/RBIEN). The climatic data are accessible from
http://worldclim.org and the soil data are available from http://soilgrids.org. MODIS active fire and burned area products are available at http://modis-fire.umd.edu.
The MODIS Vegetation Continuous Fields data are available from https://Ipdaac.usgs.gov/products/mod44bv006/. The annual forest loss layers are publicly
available from http://earthenginepartners.appspot.com/science-2013-global-forest. The plant range maps are accessible from this repository (https://github.com/
shandongfx/paper_Amazon_biodiversity_2021). The vertebrate range maps are available from https://www.iucnredlist.org/resources/spatial-data-download. The
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Study description This manuscript studied the impact of forest fires on the distribution of plant and vertebrate species in the Amazon basin.

Research sample Four sources of remote sensing data were used: MODIS active fire and burned area products are publically available at http://modis-
fire.umd.edu. The MODIS Vegetation Continuous Fields data are publicly available from https://Ipdaac.usgs.gov/products/
mod44bv006/. The annual forest loss layers are publicly available from http://earthenginepartners.appspot.com/science-2013-
global-forest. The distribution maps of plant and vertebrate species were from BIEN database (Botanical Information and Ecology
Network; http://bien.nceas.ucsb.edu/bien/about/) and IUCN spatial data portal (https://www.iucnredlist.org/resources/spatial-data-
download).

Sampling strategy We restricted the study area to the Amazon Basin, using a refined boundary of Amazon based on terrestrial ecoregions of the world
(Olson et al. 2001; Flores et al. 2010). We only included plant species were recorded in a recently published checklist of Amazonian
plants (Cardoso et al. 2017) and that had distribution maps available. For vertebrates, we used IUCN-provided expert maps that have
been vetted by taxon specialists that offer comparatively complete coverage of known species. Range polygons coded as ‘extant” and
‘resident’ for all species were obtained from the IUCN spatial data portal.

Data collection The remote sensing data were processed using Google Earth Engine platform, by coauthors Z.L. and X.F. The distribution records in
BIEN were compiled from data contributors, led by coauthors B.B. and B.J.E. using PostgreSQL on a linux server. The generation of
plant distribution maps were led by coauthors C.M and X.F. in R (version 3.5.1) using a linux server. The vertebrate range maps were
download from IUCN website (https://www.iucnredlist.org/resources/spatial-data-download) and processed by coauthor P.R. in R
(version 3.5.1) using a desktop computer.

Timing and spatial scale We obtained monthly active fire and burned area, at 1km and 500m resolution respectively, from January 2001 to December 2019
across the Amazon Basin. We aggregated the monthly pixel-level burned area into annual pixel-level burned area (1-burned, 0-
unburned). We also obtained forest land cover data at 250 meter resolution from the MODIS Vegetation Continuous Fields data. We
obtained annual forest loss layers at 30 meter resolution. The spatial and temporal resolutions represent the highest resolution
available from those products. The temporal range represents the availability of data when this study was carried out.

Data exclusions We excluded plant species that are not recorded in a recently published checklist of Amazonian plants (Cardoso et al. 2017). We only
included species that have over 10% of their range within the Amazon forest, in order to exclude species with large geographic

ranges or species with little ranges in the Amazon forest.

Reproducibility Each step of the workflow has been implemented more than once and checked by two or more coauthors. When necessary, we used
a fixed seed for the random number generator. Therefore, the results are reproducible.

Randomization Our study does not involve assigning samples to different experimental groups, so randomization is not applicable to this study.

Blinding Our study is not experimental, so blinding is not applicable to this study.

Did the study involve field work? [ ] Yes X No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems

Methods
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