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A B S T R A C T   

Ridesourcing platforms recently introduced the “schedule a ride” service where passengers may 
reserve (book-ahead) a ride in advance of their trip. Reservations give platforms precise infor
mation that describes the start time and location of anticipated future trips; in turn, platforms can 
use this information to adjust the availability and spatial distribution of the driver supply. In this 
article, we propose a framework for modeling/analyzing reservations in time-varying stochastic 
ridesourcing systems. We consider that the driver supply is distributed over a network of 
geographic regions and that book-ahead rides have reach time priority over non-reserved rides. 
First, we propose a state-dependent admission control policy that assigns drivers to passengers; 
this policy ensures that the reach time service requirement would be attained for book-ahead 
rides. Second, given the admission control policy and reservations information in each region, 
we predict the “target” number of drivers that is required (in the future) to probabilistically 
guarantee the reach time service requirement for stochastic non-reserved rides. Third, we propose 
a reactive dispatching/rebalancing mechanism that determines the adjustments to the driver 
supply that are needed to maintain the targets across regions. For a specific reach time quality of 
service, simulation results using data from Lyft rides in Manhattan exhibit how the number of idle 
drivers decreases with the fraction of book-ahead rides. We also observe that the non-stationary 
demand (ride request) rate varies significantly across time; this rapid variation further illustrates 
that time-dependent models are needed for operational analysis of ridesourcing systems.   

1. Introduction 

Recent growth of ridesourcing services is further exacerbating fleet management challenges associated with dynamic and spatially 
asymmetric passenger demands. Ridesourcing platforms (e.g., Uber and Lyft) need to locate a sufficient number of drivers near 
anticipated passenger demand to reduce the reach time (i.e., the customer wait time between ride request and the arrival of a driver). 
However, an abundance of drivers may lead to increased driver idle time. Thus, with the objective of guaranteeing low customer 
waiting times and low driver idle time, the following questions arise: how many drivers should a ridesourcing platform supply?, and, 
how should the platform spatially manage idle drivers based on anticipated demand?. 

In this article, the primary objective is to investigate the role of book-ahead/reserved rides in the management of driver supply. 
Reservations give precise information characterizing the start time and location of anticipated trips; in turn, the platform can use this 
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information to adjust the availability and spatial distribution of its driver supply. Thus, given a reach time service requirement that the 
platform seeks to maintain, we analyze the impact of reservations on the number of drivers supplied throughout the network. 
Moreover, since passengers that schedule a ride in advance expect the driver to arrive within a desired pickup window, our analysis 
incorporates such priority of book-ahead rides over non-reserved rides. 

In practice, ridesourcing platforms have several control levers that they can use to manage driver supply. These levers include 
earning guarantees for new drivers, bonuses, and heat maps that show high demand locations where drivers earn more due to surge 
pricing (Lyft, 2019a; Lyft, 2019c). In addition, as implemented by Lyft in New York City, platforms can restrict the number of active 
drivers or force them to drive towards high demand areas if they wish to remain online (Lyft, 2019b). 

The proposed supply management framework parallels existing research on ridesourcing systems (Wang and Yang, 2019; Lei et al., 
2019; Djavadian and Chow, 2017). The majority of existing studies assume a fixed number of driver supply and/or steady-state 
(equilibrium) conditions. However, it is increasingly apparent that demand and supply patterns in ridesourcing systems are time- 
varying. In addition, these variations in demand and supply occur at a fast pace, and the system may never attain a steady state 
equilibrium. 

Thus, our proposed framework for analyzing reservations in ridesourcing systems focuses on the transient nature of time-varying 
stochastic demand/supply patterns. Precisely, for any future point in time, we seek to probabilistically characterize the total num
ber of active (non-idle) drivers; this time-dependent probabilistic characterization is determined by the fraction of book-ahead rides, 
the stochasticity of non-reserved rides, the anticipated time-varying profile of book-ahead rides, and control policies that aim to 
maintain reach time priority for book-ahead rides. In more detail, as shown in Fig. 1, the proposed framework consists of the following 
three components for managing driver supply:  

1. We develop a state-dependent admission control policy that assigns drivers to passengers. The objective of this control policy is to 
guarantee the reach time service requirement for book-ahead rides. Effectively, the admission control policy ensures that there is a 
sufficient number of drivers near the location of anticipated book-ahead rides such that the driver can reach the passenger within 
the pickup window.  

2. Given this admission control policy and reservations information, we predict the “target” number of drivers that is required (in the 
future) to probabilistically guarantee the reach time service requirement for stochastic non-reserved rides. The target computations 
are derived from an upper bound on the time-dependent probability that a non-reserved ride will experience waiting times in excess 
of the reach time service requirement, and this upper bound can be evaluated using transient analysis of Mt/GI/∞ queues.  

3. We develop a minimum cost flow driver dispatching/rebalancing mechanism that seeks to maintain the targets across regions. In 
particular, due to the transition of drivers across geographic regions and the associated passenger demand patterns, the driver 
supply in a specific region may deviate from the predicted target. Thus, the proposed minimum cost flow mechanism determines 
the adjustments to the driver supply that are needed to maintain the targets throughout the network. 

The remainder of this article proceeds as follows: In Section 2 we review related work addressing the operation of ridesourcing 
systems. Section 3 describes the proposed model for analyzing time-dependent ridesourcing dynamics. Section 4 presents the 
admission control policy. Section 5 derives an upper bound on the performance of the admission control policy and computes the target 
supply. Section 6 presents the driver dispatching/rebalancing mechanism. Section 7 exhibits simulation results using data from Lyft 
operations in Manhattan. Section 8 concludes the article. 

2. Related Work 

Ridesourcing platforms are aggressively implementing supply and demand management strategies that drive their expansion into 
new markets (Nie, 2017). These strategies can be broadly classified into one or more of the following categories: pricing, fleet sizing, 

Fig. 1. Proposed framework for assigning drivers to passengers to guarantee the arrival of drivers to book-ahead rides within the pickup window, 
computing the target supply, and rebalancing drivers across regions to maintain the targets. 
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empty vehicle routing (rebalancing), or matching passengers to drivers. Apart from increasing their market share, platforms seek to 
improve their operational efficiency by minimizing the spatio-temporal mismatch between supply and demand (Zuniga-Garcia et al., 
2020). In this section, we provide a brief survey of existing methods that are used to analyze the operations of ridesourcing platforms. 

2.1. Equilibrium analysis of ridesourcing systems 

The majority of existing studies on ridesourcing systems focus on analyzing interactions between driver supply and passenger 
demand under static equilibrium conditions. These studies seek to evaluate the market share of ridesourcing platforms, competition 
among platforms, and the impact of ridesourcing platforms on traffic congestion (Di and Ban, 2019; Bahat and Bekhor, 2016; Wang 
et al., 2018; Ban et al., 2019; Qian and Ukkusuri, 2017). In addition, following Yang and Yang (2011), researchers examined the 
relationship between customer wait time, driver search time, and the corresponding matching rate at market equilibrium (Zha et al., 
2016; Xu et al., 2019). Recently, Di et al. (2018) incorporated ridesharing user equilibrium in a network design problem; Zha et al. 
(2018) proposed an equilibrium model to investigate the impact of surge pricing on driver work hours; Zhang and Nie (2019) studied 
passenger pooling under market equilibrium for different platform objectives and regulations; and Rasulkhani and Chow (2019) 
generalized a static many-to-one assignment game that finds equilibrium through matching passengers to a set of routes. While static 
equilibrium analysis provides valuable strategic decision-making insights, it fails to address stochasticity and time-dependence in 
ridesourcing dynamics. 

2.2. Steady state analysis of stochasticity in ridesourcing systems 

To investigate stochasticity in demand/supply management, researchers have developed queueing theoretic models for ride
sourcing systems. In particular, closed queueing networks were used to analyze rebalancing and pricing policies (Banerjee et al., 2017; 
Braverman et al., 2019; Zhang and Pavone, 2016). In these closed queueing networks, the difficulty in designing supply management 
strategies arises from equilibrium (steady-state) constraints that result in high dimensional non-convex problems (Banerjee et al., 
2017). Other queueing based approaches include a double-ended queue to characterize stochasticity in matching (Xu et al., 2019) and 
an M/G/N queue where each driver is considered to be a server (Li et al., 2019). Spatial stochasticity associated with matching was also 
investigated using Poisson processes to describe the distribution of drivers near a passenger (Zhang and Nie, 2019; Zhang et al., 2019; 
Chen et al., 2019). The previously mentioned studies focus on steady-state (equilibrium) analysis that disregards the time-dependent 
variability in demand/supply patterns. Furthermore, temporal variations in demand/supply patterns may occur rapidly, and the 
system may not attain the steady-state equilibrium conditions (Ozkan and Ward, 2019; Braverman et al., 2019). In addition, policies 
generated from steady-state optimization in closed queueing networks are open-loop (static); this implies that the policies do not react 
to the time-dependent stochastic state of the system. 

2.3. Time-varying ridesourcing dynamics 

The importance of time dynamics has been emphasized in recent articles that design time-dependent demand/supply management 
strategies (Ramezani and Nourinejad, 2018). Wang et al. (2019) proposed a dynamic user equilibrium approach for determining the 
optimal time-varying driver compensation rate. Similarly, Nourinejad and Ramezani (2019) developed a dynamic model to study 
pricing strategies; their model allows for pricing strategies that incur losses to the platform over short time periods (driver wage greater 
than trip fare), and they emphasized that time-invariant static equilibrium models are not capable of analyzing such policies. An 
alternative dynamic model was proposed by Daganzo and Ouyang (2019); however, the authors focus on the steady-state performance 
of their model. While these models can be used to analyze time-dependent policies, the authors do not explicitly consider the spatio- 
temporal stochasticity that results in the mismatch between supply and demand. 

2.4. Analysis of stochasticity in time-varying ridesourcing dynamics 

The most common approach for analyzing time-dependent stochasticity in ridesourcing systems is to apply steady-state probabi
listic analysis over fixed time intervals. However, in the context of driver rebalancing, experimental analysis by Braverman et al. 
(2019) suggests that the time needed to converge to steady-state (equilibrium) in ridesourcing systems is on the order of 10 h. Thus, 
since parameters (e.g., passenger arrival rate) vary over much shorter time intervals, the system would not reach the steady-state 
condition. Subsequently, Braverman et al. (2019) proposed a time-dependent look-ahead policy that can be used to make rebalanc
ing decisions at any point in time. Recent studies that addressed operational challenges in ridesourcing systems also advocate for 
transient analysis instead of steady-state models (Ozkan and Ward, 2019; Nourinejad and Ramezani, 2019). 

Another limitation of steady-state policies is that they are independent of the system state. In particular, those policies are based on 
probabilistic predictions over entire time intervals, and they do not react to the stochastic system state that is realized at a specific time 
within the time interval. In contrast, state-dependent policies react to the observed fluctuations in the stochastic system state (Banerjee 
et al., 2018). 

Our study falls into this category of analyzing time-dependent stochasticity in ridesourcing systems. 
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• First, we propose a state-dependent admission control policy that reacts to the observed ride requests and available driver supply. 
This admission control policy ensures that the reach time service requirement is attained for book-ahead rides by choosing which 
driver to assign to every realized non-reserved ride request.  

• Second, in a predictive approach over an upcoming time-interval, we provide an upper bound on the performance of the state- 
dependent admission control policy; precisely, the performance of the policy is measured in terms of the probability that the 
reach time service requirement would be violated for a non-reserved ride. In contrast to steady-state methods, we use transient 
analysis of Mt/GI/∞ to determine the aforementioned upper bound at any point in time throughout the window. In other words, we 
derive a time-dependent upper bound on the probability of reach time violation for non-reserved rides. Subsequently, we use the 
time-averaged value of the upper bound to compute the “target” number of drivers that is required during the upcoming time 
window; thus, this target limits the probability of reach time service violation to be within a desired performance level.  

• Third, we propose another reactive state-dependent policy for dispatching/rebalancing drivers across multiple regions. Given the 
predicted “target” supply for an upcoming time window, the minimum cost flow dispatching/rebalancing policy seeks to maintain 
the targets across multiple regions. For a specific system state at some time within the time window, the dispatching/rebalancing 
mechanism determines the number of idle drivers that should transition to adjacent regions to maintain the targets. 

3. System Model 

In this section, we describe a general model for time-varying dynamics in ridesourcing systems. The proposed model represents the 
number of future active rides that initiate in a region. A ride/driver is active from the moment the driver is dispatched to pick up the 
passenger until the trip is completed. For non-reserved rides, the ride becomes active at the same time as the request is initiated. On the 
other hand, for book-ahead rides, there is a lag between the time that the request is initiated and the time that the drivers is dispatched 
to pick up the passenger. While active, drivers are associated with the passenger and can not take on other requests. The ride duration 
(service time) is the time spent while the driver is active which includes the pick up time. A ride starts when the driver becomes active 
and ends when the driver is idle again. 

The active rides are represented over a set of geographic regions R = {1, ..,m}. These regions are sufficiently small that if a ride 
request initiates in a region and the assigned driver is operating in the same region, then the reach time is within a desired service level. 
In other words, if we want the reach time to be under 10 min, then the time it takes to drive from any point to any other point within the 
defined region should be under 10 min. 

Consequently, we incorporate reservations by providing reach-time priority for book-ahead rides. In particular, for a driver to 
arrive within the book-ahead ride pickup window, the driver must be geographically close to the passenger at the anticipated trip start 
time. Thus, we consider that book-ahead ride requests must be assigned a driver from within the same region in which the request 
initiates, and that satisfying the reach time service requirement for book-ahead rides is equivalent to a driver arriving to the passenger 
within the pickup window. In Section 4, we design an admission control policy that guarantees that book-ahead rides will be assigned a 
driver from within the same region. 

In the proposed ridesourcing model, we do not explicitly analyze ridesharing (i.e., passenger pooling); however, the predicted 
number of active rides would be a conservative estimate on the corresponding value in ridesharing systems. Furthermore, for tractable 

Fig. 2. System model characterizing the cumulative number of rides that will be active in the future at time t ∈ (kw, (k + 1)w]. Arrows pointing 
upwards indicate ride start time. Arrows pointing downwards indicate ride completion. Solid lines correspond to fP,k

r (t), dotted lines correspond to 
fBA,k

r (t), and dashed lines correspond to Nk
r (t). Non-reserved requests marked with an “X” are blocked requests. 
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target computations, we examine each region separately. In other words, the admission control and corresponding targets assume 
passengers remain within the zone, disregarding the variation in destinations. Then, to account for the spatial distribution of passenger 
destinations and the associated movement of drivers across regions, we implement a min-cost flow rebalancing methods that maintains 
the targets across regions. Note that the targets themselves represent a desired number of drivers that is determined by passenger 
demand; this implies that the targets do not depend on the stochasticity of drivers entering and exiting the system. 

We proceed by describing the model for active rides in each region (Fig. 2). For each region, this model consists of processes 
representing book-ahead rides and non-reserved stochastic rides. The processes form the basis of subsequent sections that discuss the 
admission control policy and the computation of targets (Table 1). 

3.1. Time-varying profiles representing rides that will be active in the future 

In each region r ∈ R, we represent ridesourcing dynamics over future time windows of length w. At the beginning of each window k, 
corresponding to time interval (kw, (k + 1)w], the ridesourcing platform can characterize three processes (two deterministic and one 
stochastic) that will be realized during the upcoming window (kw, (k + 1)w]. The processes represent active drivers at time t ∈ (kw, (k +

1)w] that are serving requests initiated within the region. 
First, we assume that the platform knows the anticipated start time for book-ahead rides that will initiate during window k. We also 

assume that the platform can accurately estimate the corresponding ride duration (i.e. the platform has full trip information for future 
book-ahead rides). Thus, at the start of window k, the platform can characterize the deterministic process {fBA,k

r (t) : t ∈ (kw, (k + 1)w]}

that represents the number of active drivers at time t associated with book-ahead trips that will initiate in region r within window k. 

Table 1 
Table of Notation & Definitions  

active driver ≜  drivers are active from the moment they are dispatched to pick up a passenger and until the passenger leaves the vehicle 

idle driver ≜  driver waiting to be dispatched (not active) 

ride initiation/ 
start 

≜  time driver is dispatched to pick up passenger 

ride completion ≜  time passenger leaves vehicle 

ride duration ≜  total time while driver is active (includes pick up time) 

R ≜  set of regions {1, .., r, ..,m}

window k ≜  time window (kw, (k + 1)w]

w ≜  duration of time window 

ck
r  ≜  target number of drivers in region r during window k that would probabilistically guarantee a desired reach time service level 

fP,k
r (t) ≜  deterministic process representing active drivers at time t ∈ (kw, (k + 1)w] that are serving requests which initiated in r during previous 

time windows  

fBA,k
r (t) ≜  deterministic process representing active drivers at time t ∈ (kw, (k + 1)w] that are associated with book-ahead trips that initiate within 

window (kw, (k + 1)w] in region r  

Nk
r (t) ≜  stochastic process representing active drivers at time t ∈ (kw, (k + 1)w] that are associated with admitted stochastic non-reserved rides 

that initiate within window (kw, (k + 1)w] in region r  

λk
r (t) ≜  demand rate at which stochastic non-reserved ride requests initiate during window k in region r 

gk
r (⋅) ≜  probability density function characterizing the ride duration (completion time - trip request time) of stochastic non-reserved rides that 

appear during window k in region r 
Gk

r (⋅) ≜  cumulative density function of gk
r (⋅)

fA(τi),k
r (t) ≜  active drivers at time t ∈ (τi,min{τi + Di, (k + 1)w}] corresponding to non-reserved rides that were previously admitted between (kw, τi]

in region r  
τi  ≜  arrival time of the ith non-reserved ride request  
Di  ≜  ride duration of the ith non-reserved ride  
γi  ≜  indicator function/random variable characterizing the event that the ith non-reserved ride request is admitted  

Bk
r  ≜  average blocking probability during window k in region r 

δ  ≜  desired reach time quality of service for non-reserved rides (upper bound on the average blocking probability) 

Nk,∞
r (t′) ≜  number of busy servers at time t′ ∈ (0,w] in a transient Mt/GI/∞ queue that starts empty at t′ = 0; equivalently, the number of active 

non-reserved rides assuming that all stochastic non-reserved requests are admitted  

ρk
r (t′) ≜  time-dependent mean/variance of the Poisson distribution characterizing Nk,∞

r (t′) at time t′ ∈ (0,w]

ar  ≜  number of active drivers in region r 

er  ≜  number of idle drivers in region r 

sv
r  ≜  virtual supply in region r representing drivers in excess of the target ck

r that can be removed from region r  

dv
r  ≜  virtual demand in region r representing drivers that should be added to region r to meet the target ck

r  

Δr  ≜  if region r has virtual demand, then Δr = −dv
r ; otherwise, if the region has virtual supply, then Δr = sv

r  

hij  ≜  recommended driver transitions between region i and j 

1{⋅} ≜  indicator function or random variable  
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Second, at the beginning of time window (kw, (k + 1)w], currently active drivers serving rides that started in region r prior to time 
t = kw are known to the platform. For those previously observed trips, we assume that the platform can accurately estimate the trip 
completion time. Thus, at the start of window k, the platform can characterize the deterministic process {fP,k

r (t) : t ∈ (kw, (k + 1)w]}. 
This process represents the number of active drivers at time t that are serving rides started in region r during previous time windows. In 
other words, those are previously observed rides that haven’t ended yet and may correspond to either passenger type (book-ahead or 
non-reserved). 

Third, at the beginning of window k, the platform also anticipates non-reserved stochastic rides that will arise throughout the 
upcoming window in region r. For those rides, we assume that the platform can estimate the demand (ride request) rate 
{λk

r (t) : t ∈ (kw, (k + 1)w]}. We also assume that the platform can estimate a general distribution gk
r (⋅) that corresponds to the ride 

duration (the CDF of gk
r (⋅) is Gk

r (⋅)), and we consider that the duration of any specific non-reserved trip is independent of other trips. 
Then, we define a stochastic process {Nk

r (t) : t ∈ (kw, (k + 1)w]} that represents the number of active drivers at time t associated with 
admitted stochastic rides which initiate in region r during window k. In this case, a non-reserved ride request would be admitted if it is 
assigned a driver from within the same region. 

The deterministic processes {fP,k
r (t), fBA,k

r (t) : t ∈ (kw, (k + 1)w]} and the stochastic process {Nk
r (t) : t ∈ (kw, (k + 1)w]}are illustrated 

in Fig. 2. The figure shows the cumulative number of active drivers at time t ∈ (kw, (k + 1)w]}. 
The next section describes the admission control policy that decides whether to admit non-reserved rides based on the difference 

between the predicted targets and the number of active drivers. The admission control policy is state-dependent such that the 
admission decision is determined for each ride request once the request is observed. In more detail, the admission decision depends on 
the current known state of the system for the entire duration that the observed ride will be active. Given this policy, we discuss in 
Section 5 how the targets are evaluated at the beginning of the window. However, to compute the targets, we refer to the predicted 
future system state under the control policy, and we resort to a probabilistic characterization of the anticipated non-reserved rides (i.e., 
we further analyze the stochastic process {Nk

r (t) : t ∈ (kw, (k + 1)w]}). In other words, the admission control policy uses the targets in 
determining the deterministic admission decisions while the targets are evaluated using the predicted stochastic system state that will 
arise under the control policy. Then, in Section 6, we present the driver dispatching and rebalancing mechanism that maintains the 
targets given the observed demand patterns. Fig. 3 illustrates the relationship between different components of this article and the time 
at which those components would be implemented. 

4. Admission Control Policy 

In this section, we present an admission control policy that is used to assign drivers to realized non-reserved ride requests. In each 
region, when a non-reserved ride request is observed, the proposed state-dependent control policy determines whether the request 
should be admitted or blocked. If the request is admitted, then a driver from within the same region is assigned to serve the request. 

The admission decision is based on the supply in the region, the anticipated book-ahead rides, and the previously admitted non- 
reserved rides. In particular, the policy seeks to guarantee that a driver from within the same region would be available to serve 
anticipated future book-ahead rides. Thus, admission control aims to guarantee that drivers arrive within the pickup window for future 
book-ahead rides. Since the same policy is implemented for each region, we restrict our discussion in this section to a single region 

Fig. 3. Implementation of the proposed framework across time windows.  
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r ∈ R. 
At any time t ∈ (kw, (k + 1)w], the admission control policy determines if idle drivers will be available in the region by comparing 

the number of active rides to the target supply ck
r . The target supply ck

r , illustrated in Fig. 2, is the total number of drivers associated with 
region r during window k; this total includes drivers that are serving ride requests initiated in region r and drivers idling in region r. The 
target ck

r represents a desired level of driver supply that would probabilistically guarantee the reach time service requirement for non- 
reserved rides (Section 5). The admission control policy assumes that the targets ck

r will be maintained in each region r throughout the 
time window k. For tractable computation, the admission control policy also assumes that the passengers destinations remain within 
the region (in Section 6, we devise a driver dispatching/rebalancing mechanism that considers the spatial distribution of demand and 
seeks to maintain the target across regions). 

4.1. Policy Implementation 

A non-reserved ride request is admitted if, upon admission, the total number of active rides does not exceed the target supply for the 
entire ride duration. Once a non-reserved ride request is observed, the associated ride duration would be also revealed to the platform. 
Then, there are two cases where the admission control policy would block the non-reserved ride request: (1) There are not enough 
available drivers within the region at the time of request initiation; this is illustrated in Fig. 2 at time tb

1, where the sum 
Nk

r (tb
1)+fBA,k

r (tb1)+fP,k
r (tb1) is equal to the target ck

r . In other words, admission of the non-reserved ride would result in the total number 
of active rides exceeding the target supply at the time of request initiation. (2) Admission of the non-reserved ride would result in reach 
time service violation for an anticipated book-ahead ride; in Fig. 2, admission of the non-reserved ride request that initiates at time tb

2 
would lead to reach time violation for the book-ahead trip that initiates at t☆ (considering that the observed ride duration of the request 
that initiates at tb2 extends beyond t☆). In other words, if the non-reserved ride was admitted at tb

2, then at t☆ (just before the book-ahead 
request is anticipated) the sum Nk

r (t☆)+fBA,k
r (t☆)+fP,k

r (t☆) would be equal to the target supply ck
r ; this implies that the total number of 

active rides would exceed the target supply when the book-ahead ride at t☆ starts (equivalently, the book-ahead ride would not be 
assigned a driver from within the same region). 

In more detail, let τi be the arrival time of the ith non-reserved ride request, and let Di be the corresponding ride duration. In 
addition, let γi be an indicator function that takes the value one if the ith non-reserved ride request is admitted. Eq. 1 gives the 
expression for γi (i.e., Eq. 1 represents the condition for admission). In Eq. 1, fA(τi),k

r (t) represents previously admitted non-reserved rides 
that would be active at time t ∈ (τi,min{τi + Di, (k + 1)w} ]. In other words, fA(τi),k

r (t) represents previously admitted non-reserved rides 
that would be active during the time that the ith non-reserved ride request is being served. Note that the projected ride duration of the ith 

non-reserved user is restricted to t ∈ (τi,min{τi + Di, (k + 1)w}]instead of t ∈ (τi, τi + Di]since admission control decisions are made per 
window k (i.e., the rides whose duration extends beyond t = (k+1)w would become part of fP,k+1

r (t)). 

γi = 1
{

1 + f P,k
r (t) + f BA,k

r (t) + f A(τi),k
r (t)⩽ck

r , ∀t ∈ (τi,min{τi + Di, (k + 1)w} ]
}

(1)  

If we let τn and Dn be the arrival time and ride duration of the nth previously observed non-reserved ride (where n ∈ {1,…, i−1}), we 
can express fA(τi),k

r (t) as shown in Eq. 2. In this equation, 1{τn +Dn > t} takes the value one if the nth previously observed non-reserved 
ride would be active at time t, and γn takes the value one if the nth non-reserved request was admitted. 

f A(τi),k
r (t) =

∑i−1

n=1
1{τn +Dn > t}γn, t ∈ (τi,min{τi + Di, (k + 1)w} ] (2)  

We emphasize that the control policy is state-dependent and applied upon the receipt of each ride request; this implies that the state of 
the system is deterministic and all the variables (including τn,Dn,γn,f

A(τi),k
r (t),τi,Di,γi) are known at time τi. Then, the admission decision 

for the ith non-reserved user follows directly from evaluating expressions 1 and 2. 
A non-reserved ride request that is blocked may be assigned a driver from an external region (i.e., the passenger will experience a 

long wait time). Alternatively, blocked non-reserved requests may be dropped from the system, where this indicates a passenger 
canceling the ride due to the extended wait time. In the simulation experiments (Section 7), we follow the latter approach. 

5. Target Supply for Probabilistically Guaranteeing the Reach Time Quality of Service 

While the admission control policy is a state-dependent policy that is applied during the time window (kw, (k + 1)w], it is based on 
the target supply ck

r that is determined at the beginning of the time window t = kw. For a specific region r, the target ck
r represents the 

total number of drivers that is required during window k to probabilistically guarantee the reach time service requirement for non- 
reserved rides. Drivers are considered to be associated with a region if they are either serving requests that initiated in the region 
or they are idle within the region. In this section, we discuss how the targets can be computed at the beginning of the time window. 
First, we derive a time-dependent upper bound on the blocking probability corresponding to the admission control policy. Then, we 
determine the target number of drivers that limits the time-averaged blocking probability to be below a certain quality of service 
threshold. In turn, limiting the time-averaged blocking probability is equivalent to limiting the probability of reach time violation for 
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non-reserved ride requests. 
In Eqs. 1 and 2, representing the admission control policy when the ith non-reserved ride request is received, the values of all the 

variables are known (for every non-reserved ride request that was previously received, the trip information would have been revealed 
to the platform). However, at the beginning of the time window, the platform would not know the arrival time, ride duration, and 
admission decision of a future non-reserved request. Therefore, at the beginning of the time window, τn,Dn, γn, f

A(τi),k
r (t), τi,Di, γi are all 

random variables. To express the probability of admission, we can re-write Eq. 1 as shown in Eq. 3. Hence, Eq. 4 represents the 
probability that the ith non-reserved ride request would be blocked. 

P(γi = 1) = P
(
1 + f P,k

r (t) + f BA,k
r (t) + f A(τi),k

r (t)⩽ck
r , ∀t ∈ (τi,min{τi + Di, (k + 1)w} ]

)
(3)  

P(γi = 0) = 1 − P(γi = 1) =

P
(
∃t ∈ (τi,min{τi + Di, (k + 1)w}] : 1 + f P,k

r (t) + f BA,k
r (t) + f A(τi),k

r (t) > ck
r

)
=

P
(

∃t ∈ (τi,min{τi + Di, (k + 1)w}] : 1 + f P,k
r (t) + f BA,k

r (t) +
∑i−1

n=1
1{τn + Dn > t}γn > ck

r

) (4)  

Observe that for predictive target computations, fA(τi),k
r (t) =

∑i−1
n=11{τn +Dn > t}γn represents stochastic non-reserved ride requests that 

will be admitted between (kw, τi] and will be active at time t ∈ (τi,min{τi + Di, (k + 1)w} ]. Recall that future stochastic non-reserved 
ride requests appear at a demand rate {λk

r (t) : t ∈ (kw, (k + 1)w]}and the corresponding ride durations are generally distributed ac
cording to a distribution gk

r (⋅). Previously, we defined the stochastic process {Nk
r (t) : t ∈ (kw, (k + 1)w]} that represents the number of 

future active drivers associated with admitted non-reserved rides. Notice that Nk
r (τi) = fA(τi),k

r (τi) is the number of admitted non- 
reserved ride requests that will be active at time τi. However, for t ∈ (τi,min{τi + Di, (k + 1)w} ],Nk

r (t) ∕= fA(τi),k
r (t) since Nk

r (t) in
cludes non-reserved ride requests that will be admitted between (kw, t] while fA(τi),k

r (t) is restricted to non-reserved ride requests 
admitted between (kw, τi]. 

To determine the target supply ck
r , we need to evaluate the blocking probability expression in Eq. 4 for different values of ck

r . 
However, this probability expression is difficult to analyze due to the dependence of γi (admission of ith non-reserved request) on the 
random variables τn,Dn (arrival time, ride duration) and γn (admission) associated with previously arriving non-reserved ride requests 
n ∈ {1,…, i−1}. In addition, the arrival time τi of the ith non-reserved ride request also depends on the arrival time τn of all previous 
requests. Moreover, the correlations between the random variables have to be considered over the entire time interval (τi,min{τi + Di,

(k + 1)w}] and this interval also has time-varying functions fP,k
r (t) and fBA,k

r (t) that impact the admission probability. 
Thus, instead of attempting to evaluate Eq. 4, we provide an upper bound on the blocking probability. In particular, let {Nk,∞

r (t) :
t ∈ (kw, (k + 1)w]} be the number of busy servers in a transient Mt/GI/∞ queue that starts empty at the beginning of the window t =

kw, where the arrivals to the Mt/GI/∞ queue appear according to a Poisson process with rate {λk
r (t) : t ∈ (kw, (k + 1)w]}and the service 

distribution is gk
r (⋅). 

Theorem 1. The blocking probability, P(γi = 0), for the ith stochastic non-reserved ride request that appears at time τi is bounded 

above by P
(

Nk,∞
r (τi)⩾ck

r − maxt∈(τi ,(k+1)w]

[
fP,k

r (t) + fBA,k
r (t)

] )

Proof. See Appendix A. 

Given this upper bound in Theorem 1, we can limit the blocking probability at time τi to be below a certain quality of service 
threshold δ by ensuring that the upper bound is below δ (as shown in Inequality 5). Importantly, while P(γi = 0) is difficult to evaluate 
as mentioned earlier, the upper bound can be evaluated for any value ck

r and at any time τi using transient analysis of Mt/GI/∞ queues 
(Section 5.1). Subsequently, after illustrating how the upper bound can be evaluated at any time for a specific value of ck

r , we discuss 
(Section 5.2) how to use this upper bound to determine the target supply, where the target supply is the minimal ck

r that limits the time- 
averaged blocking probability to be below the threshold δ. 

P(γi = 0)⩽P
(

Nk,∞
r (τi)⩾ck

r − max
t∈(τi ,(k+1)w]

[
f P,k

r (t) + f BA,k
r (t)

]
)

⩽δ (5)  

5.1. Time-Dependent Distribution of the Number of Busy Servers in an Mt/GI/∞ Queue 

To evaluate the upper bound P
(

Nk,∞
r (τi)⩾ck

r − maxt∈(τi ,(k+1)w]

[
fP,k

r (t) + fBA,k
r (t)

] )
at time τi and for a specific ck

r , we use a graphical 

approach that was first recognized by Prékopa (1958) and was subsequently further discussed in articles that analyze Mt/GI/∞ queues 
(Foley, 1982; Eick et al., 1993). We show that the number of busy servers in an Mt/GI/∞ queue that starts empty, Nk,∞

r (τi), has a time- 
dependent Poisson distribution, and we derive the time-dependent mean associated with this distribution. Thus, since 

maxt∈(τi ,(k+1)w]

[
fP,k

r (t) + fBA,k
r (t)

]
and ck

r are known values at time τi, evaluating the upper bound is equivalent to computing the prob

ability that a Poisson random variable is greater than or equal to a constant. 
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Referring to Fig. 4, consider stochastic arrivals to an Mt/GI/∞ queue such that xj denotes the jth arrival time according to the 
Poisson process and sj denotes the corresponding generally distributed service time. In time window (kw, (k + 1)w], the Mt/GI/∞ 
queue is initially empty at time kw. 

We can think of (xj, sj) as a random point in the two-dimensional plane (kw, (k + 1)w] × [0,∞) that represents the arrival time and 
service duration. For any two-dimensional set S in (kw, (k + 1)w] × [0,∞), the number of points in the set represents random sampling 
of the arrivals Poisson process; thus, the number of points in the set S is Poisson distributed. We also know that disjoint two-dimensional 
sets correspond to independent sampling of a Poisson process; this implies that the number of points in each set is independent of other 
disjoint sets. 

Furthermore, considering an infinitesimal two-dimensional square set with an area ds(dx), we can see that the mean number of 
points in that set is λk

r (x)dx
(
gk

r (s)(ds)
)
; this implies that the intensity of the two-dimensional Poisson distribution is λk

r (x)gk
r (s). Thus, the 

distribution of points defined as (arrival time, service duration) is Poisson over the two-dimensional space, and the mean number of 
points for any set S is given by 

∫

Sλk
r (x)gk

r (s)dsdx. 
To determine the mean number of busy servers ρk

r (t), we evaluate the integral 
∫

Sλk
r (x)gk

r (s)dsdx over the shaded area illustrated in 
Fig. 4. This shaded area represents arrivals to the Mt/GI/∞ queue since time kw that have not yet completed at time t. The resulting 
expression for ρk

r (t) is given in Eq. 6. If we further consider that the arrival rate λk
r (x) is constant over the time window such that λk

r (x) =

λk
r , the expression for ρk

r (t) simplifies as shown in Eq. 7. 
Thus, within each window, Nk,∞

r (τi) is Poisson distributed with a time-dependent mean ρk
r (τi). Given a specific value ck

r , we can use 
this characterization of Nk,∞

r (τi) to evaluate the upper bound at any time τi. 

ρk
r(t) =

∫ t

kw

∫ ∞

t−x
λk

r(x)g
k
r(s)dsdx (6)  

ρk
r(t) =

∫ t

kw

∫ ∞

t−x
λk

r gk
r(s)dsdx

= λk
r

[

t − kw −

∫ t−kw

0
Gk

r(x)dx
] (7)  

5.2. Target Predictions for Bounding the Time-Averaged Blocking Probability 

Knowing that we can evaluate the upper bound on the blocking probability at any time and for any ck
r , we now investigate the 

minimal value of ck
r that limits the time-averaged blocking probability to be below a threshold δ. This minimal ck

r will be referred to as 
the target, and it represents the number of drivers that the platform seeks to supply during the upcoming time window to limit reach 
time service violations (i.e., to limit the fraction of non-reserved requests whose reach time will exceed the reach time service 
requirement). 

Precisely, the time-averaged blocking probability in region r ∈ R during window (kw, (k + 1)w] is given in Eq. 8, where γt is an 
indicator random variable that takes the value one if a passenger that arrives at time t would be admitted. Since Poisson arrivals see 
time averages (PASTA property), the time-averaged blocking probability is equivalent to the blocking probability of a typical non- 
reserved ride request that appears between (kw, (k + 1)w]. Then, the target ck

r is the desired number of drivers that restricts this 
time-averaged blocking probability. In other words, the target ck

r is the desired number of drivers that limits the blocking probability of 
a typical non-reserved ride request that will appear during the upcoming window. As previously mentioned, evaluating the blocking 
probability in Eq. 8 is challenging. Thus, to compute the target, we use the time-averaged value of the upper bound in Theorem 1. As 
shown in Inequality 9, if we find the value of ck

r that limits the time-averaged upper bound to be less than the threshold δ, then this ck
r 

will also limit the time-averaged blocking probability to be less than δ. 

Fig. 4. Service time vs. arrival time associated with a transient Mt/GI/∞ queue that starts empty at time kw. Since there are an infinite number of 
servers, all arrivals start being serviced immediately. The dotted diagonal lines represent the decrease in remaining service time as the user is being 
served. For any time t, the number of users still being served is equal to the number of diagonal lines that intersect a vertical line from t; equiv
alently, the number of users still being served at t is the number of points in the shaded area. 
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Bk
r =

1
w

∫ (k+1)w

kw
P(γt = 0)dt (8)  

Bk
r⩽

1
w

∫ (k+1)w

kw
P
(

Nk,∞
r (t)⩾ck

r − max
t̂∈(t,(k+1)w]

[
f P,k

r ( t̂) + f BA,k
r ( t̂ )

]
)

dt⩽δ (9)  

Therefore, as shown in Eq. 10, we seek the minimal value ck
r that restricts Bk

r to be less than or equal to the threshold δ. In Eq. 10, 
observe that the time-averaged upper bound on the blocking probability decreases monotonically with increasing values of c; 
consequently, since c must be a non-negative integer, we can iterate through increasing integer values of c until we find the minimal 
target ck

r that ensures that the time-averaged blocking probability is less than δ (alternatively, we may use faster line search tech
niques). Note that just as we can evaluate the upper bound in Theorem 1 for a specific value of c and at a specific time (Section 5.1), we 
can evaluate the time-averaged upper bound for a specific value of c using numerical integration. 

ck
r = min

c⩾0, c∈Z
[c :

1
w

∫ (k+1)w

kw
P
(

Nk,∞
r (t)⩾c − max

t̂∈(t,(k+1)w]

[
f P,k

r (̂t) + f BA,k
r (̂t)

]
)

dt⩽δ
] (10)  

The targets ck
r are computed for every region r ∈ R at the beginning of window k (i.e., at time t = kw). If the number of drivers supplied 

by the platform in each region (either idling in the region or serving requests that initiate in the region) is equal to the corresponding 
target, then the blocking probability for future non-reserved requests would be less than the threshold δ. Thus, if the targets are 
provided in each region, the reach time service requirement is probabilistically guaranteed for stochastic non-reserved rides (for book- 
ahead rides, the reach time service requirement is guaranteed based on the admission control policy in Section 4). Apart from target 
computations, the upper bound on the blocking probability can be used as a performance measure for the admission control policy, 
where performance of the policy refers to the probability of reach time service violation (for a given level of driver supply). 

6. Driver Dispatching & Rebalancing Mechanism 

In this section, we develop a driver dispatching and rebalancing mechanism that aims to maintain the targets across multiple 
regions. The targets computed in Section 5 represent a desired level of driver supply such that providing the targets in a region 
probabilistically guarantees the reach time service requirement for non-reserved ride requests. In practice, within the time window 
(kw, (k + 1)w], drivers serving requests that initiated in a region r ∈ R may finish their trips in other regions. Similarly, drivers serving 
requests that initiated in an external region r′ ∈ R⧹{r} may finish their trip in region r. Thus, the number of drivers associated with each 
region may deviate from the corresponding target ck

r due to observed origin–destination trip patterns. This section presents a dis
patching/rebalancing mechanism that computes the minimum number of driver transitions that achieve the targets, where only idle 
drivers are allowed to transition between adjacent regions. We show that the proposed optimization formulation reduces to a minimum 
cost flow formulation on a transformed network of regions. 

In more detail, consider that at some time t the platform aims to determine the necessary driver transitions that maintain the 
targets. In this section, all the defined variables represent the network conditions at time t; this time t could be either at the beginning of 
time window (kw, (k + 1)w] or within the window. For every region i, let ai be the number of active drivers serving requests initiated in 
the region, and let ei be the number of idle drivers in the region. In addition, for every region, define a virtual supply sv

i as shown in Eq. 
11, where the virtual supply represents the number of excess drivers (beyond the target) that can transition to adjacent regions. The 
virtual supply sv

i is limited by the number of idle drivers in the region; thus, it is the minimum of the idle drivers ei and the number of 
drivers in excess of the target (ai + ei)−ck

i . Similarly, define a virtual demand dv
i as shown in Eq. 12, where the virtual demand rep

resents the number of additional drivers needed in region i to meet the target ck
i at time t. Furthermore, for every region i, define Δi as 

shown in Eq. 13, where Δi represents either the demand (expressed as a negative value) or the supply. 

sv
i =

{
min
{

ei, (ai + ei) − ck
i

}
if ck

i − (ai + ei)⩽0
0 otherwise

(11)  

dv
i =

{
ck

i − (ai + ei) if ck
i − (ai + ei)〉0

0 otherwise
(12)  

Δi =

{
−
[
ck

i − (ai + ei)
]

if ck
i − (ai + ei)〉0

min
{

ei, (ai + ei) − ck
i

}
otherwise

(13)  

For the regions defined in Section 3, we construct a directed network G = (R,E). The set of regions R corresponds to the nodes of the 
network. The set of edges E includes links (i, j) and (j, i) for every pair of adjacent regions i and j (see original network in Fig. 5). Define 
hij as the number of drivers that need to transition from region i to the adjacent region j on link (i, j). The platform rebalancing 
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optimization formulation is shown in Eqs. (14)–(18). In this formulation, the platform seeks to minimize the number of driver tran
sitions (objective 14) while ensuring that the targets are maintained (constraint 15). In particular, constraint 15 specifies that the 
difference between drivers leaving a region and drivers arriving to a region should match the supply/demand in the region. Constraint 
16 restricts the number of drivers leaving a region to the number of idle drivers in the region; in other words, this constraint ensures 
that the optimal solution to formulation (14)–(18) (if it exists) describes the number of idle drivers transitions to adjacent regions (i.e., 
idle drivers do not transition across multiple regions). The remaining constraints 17 and 18 ensure that the decision variables hij are 
non-negative integers. 

min
hij :(i,j)∈E

∑

(i,j)∈E

hij (14)  

s.t.
∑

j:(i,j)∈E

hij −
∑

j:(j,i)∈E

hji = Δi ∀i ∈ R (15)  

∑

j:(i,j)∈E

hij⩽ei ∀i ∈ R (16)  

hij⩾0 ∀(i, j) ∈ E (17)  

hij ∈ Z ∀(i, j) ∈ E (18)  

In formulation (14)–(18), unless the total supply matches the total demand (
∑

i∈Rsv
i =

∑
i∈Rdv

i ) and the network is strongly connected, 
the optimization problem may not have a feasible solution. Thus, we consider instead the revised formulation (19)–(24), where hi 
corresponds to drivers added/removed from region i by adjusting the total number of drivers in the network. Since adding or removing 
drivers would be costly to the platform (e.g., requires incentivizing new drivers or taking drivers offline), we associate a high cost M 
with such transitions. As a result, in the optimal solution to formulation (19)–(24), the total number of drivers is adjusted only if the 
targets could not be maintained internally via transitions of idle drivers across adjacent regions. 

min
hij :(i,j)∈E, hi :i∈R

∑

(i,j)∈E

hij +M
∑

i∈R
|hi| (19)  

s.t.
∑

j:(i,j)∈E

hij −
∑

j:(j,i)∈E

hji + hi = Δi ∀i ∈ R (20)  

∑

j:(i,j)∈E

hij⩽ei ∀i ∈ R (21) 

Fig. 5. Network transformation corresponding to the minimum cost flow program, where solving the integer program (19)–(24) using the original 
network is equivalent to solving the minimum cost flow program (42)–(44) using the transformed network. Each link in the transformed network is 
associated with a (cost, capacity) label. Each node in the transformed network is either a supply, demand, or transmission node such that values of bp 

in constraint 43 are within the squares. 
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hij⩾0 ∀(i, j) ∈ E (22)  

hij ∈ Z ∀(i, j) ∈ E (23)  

hi ∈ Z ∀i ∈ R (24)  

Let hi• and h•i be defined as in Eqs. 25 and 26. In this case, h•i corresponds to drivers added to region i ∈ R by adjusting the total number 
of drivers, and hi• corresponds to drivers removed from region i ∈ R by adjusting the total number of drivers (i.e., hi• represents drivers 
that can be removed from the system to avoid having excess idle drivers). 

hi• =

{
hi if hi > 0
0 otherwise (25)  

h•i =

{
|hi| if hi < 0
0 otherwise (26)  

Moreover, for notational convenience in mapping the problem to a min-cost flow reformulation, define for each region i ∈ R variables 
hii☆ that represent the total number of drivers leaving region i to adjacent regions (Eq. 27). In addition, for each link (i, j) ∈ E, define 
variables hi☆ j = hij. Thus, we can define hii☆ in terms of hi☆ j as in Eq. 28. Since hij is a non-negative integer for all (i,j) ∈ E, we have that 
hii☆ and hi☆ j are non-negative integers as well. 

hii☆ =
∑

j:(i,j)∈E

hij ∀i ∈ R (27)  

=
∑

j:(i,j)∈E

hi☆ j ∀i ∈ R
(28)  

In Appendix B, through a sequence of reformulations, we show that optimization Problem (19)–(24) reduces to the formulation (29)– 
(41). 

minhi☆ j :(i,j)∈E, hi• ,h•i ,hii☆ :i∈R, h

∑

i∈R
hii☆ +M

∑

i∈R
[hi• + h•i] (29)  

s.t. hii☆ −
∑

j:(j,i)∈E

hj☆ i + hi• − h•i = Δi ∀i ∈ R (30)  

∑

i∈R
h•i + h =

∑

i∈R
dv

i (31)  

−

[
∑

i∈R
hi• + h

]

= −
∑

i∈R
sv

i (32)  

∑

j:(i,j)∈E

hi☆ j − hii☆ = 0 ∀i ∈ R (33)  

0⩽hii☆ ⩽ei ∀i ∈ R (34)  

hi☆ j⩾0 ∀(i, j) ∈ E (35)  

hi•, h•i⩾0 ∀i ∈ R (36)  

h⩾0 (37)  

hii☆ ∈ Z ∀i ∈ R (38)  

hi☆ j ∈ Z ∀(i, j) ∈ E (39)  

hi•, h•i ∈ Z ∀i ∈ R (40)  

h ∈ Z (41)  

Consider the standard minimum cost flow problem given in formulation (42)–(44) for a network G′ = (V,A) (Ahuja et al., 1993; 
Wolsey, 1998), where cpq is the cost of a unit flow on link (p, q) ∈ A, xpq are decision variables corresponding to flows on each link (p,
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q) ∈ A, bp is the equivalent of supply/demand at node p, and upq is an upper bound on the flows xpq (i.e., capacity of link (p,q) ∈ A). A 
necessary condition for feasibility of the optimization problem is 

∑
p∈Vbp = 0. 

min
xpq :(p,q)∈A

∑

(p,q)∈A

cpqxpq (42)  

s.t.
∑

{q:(p,q)∈A}

xpq −
∑

{q:(q,p)∈A}

xqp = bp ∀p ∈ V (43)  

0⩽xpq⩽upq ∀(p, q) ∈ A (44)  

Apart from the integrality constraints, the formulation (29)–(41) has the same structure as the minimum cost flow optimization 
Problem (42)–(44); this implies that the constraint matrix associated with formulation (29)–(41) is totally unimodular. Thus, since Δi,

dv
i , sv

i , and ei are all integer values, each extreme point in the constraint set will be integral. Then, solving the linear programming 
relaxation in (45)–(53) will give us the integer optimal solution of optimization Problem (29)–(41). 

minhi☆ j :(i,j)∈E, hi• ,h•i ,hii☆ :i∈R, h

∑

i∈R
hii☆ +M

∑

i∈R
[hi• + h•i] (45)  

s.t. hii☆ −
∑

j:(j,i)∈E

hj☆ i + hi• − h•i = Δi ∀i ∈ R (46)  

∑

i∈R
h•i + h =

∑

i∈R
dv

i (47)  

−

[
∑

i∈R
hi• + h

]

= −
∑

i∈R
sv

i (48)  

∑

j:(i,j)∈E

hi☆ j − hii☆ = 0 ∀i ∈ R (49)  

0⩽hii☆ ⩽ei ∀i ∈ R (50)  

hi☆ j⩾0 ∀(i, j) ∈ E (51)  

hi•, h•i⩾0 ∀i ∈ R (52)  

h⩾0 (53)  

The linear program (45)–(53) can be mapped to a minimum cost flow program (42)–(44) applied on a transformed network illustrated 
in Fig. 5. In particular, consider a source node SO where links (SO, i) that connect SO to region i ∈ R dispatch flows h•i. In addition, 
consider a sink node SI where links (i, SI) that connect region i ∈ R to SI dispatch flows hi•. Let h represent the flow between SO and SI. 
Then, observe that constraint 46 is equivalent to constraint 43 at all un-starred nodes in the network transformation of Fig. 5. Similarly, 
constraint 49 is equivalent to constraint 43 at all starred nodes. Constraint 47 corresponds to constraint 43 applied at the source node 
SO, and constraint 48 corresponds to constraint 43 applied at the sink node SI. In the network transformation, each link is associated 
with a (cost, capacity) label. Observe that the objective function 45 can be obtained by plugging the link costs and flow variables in the 
minimum cost flow objective function 42. Also, observe that constraints (50)–(53)are the link capacity constraints 44 in the trans
formed network. Furthermore, by definition, 

∑
i∈RΔi +

∑
i∈Rdv

i −
∑

i∈Rsv
i = 0; this implies that the necessary condition for feasibility in 

the minimum cost flow program (
∑

p∈Vbp = 0) is satisfied. Thus, solving the linear program (45)–(53) is equivalent to solving the 
minimum cost flow program (42)–(44) using the transformed network. 

Consequently, since the integer program (19)–(24) reduces to formulation (45)–(53), then solving the integer program (19)–(24) 
on the original network (Fig. 5) is equivalent to solving the minimum cost flow program (42)–(44) on the illustrated transformed 
network. As a minimum cost flow program, the driver dispatching and rebalancing optimization problem can be solved in polynomial 
time. The optimal solution of the optimization program represents recommended idle driver transitions that are needed to maintain the 
targets across regions. Specifically, the optimal solution includes idle drivers that should transition to adjacent regions and idle drivers 
that should be added to the network by adjusting the total number of drivers in the system. In addition, the optimal solution also 
includes excess idle drivers that can be removed from the system. 

7. Simulation Results 

In this section, we present experimental results using data from Lyft operations in Manhattan, NYC on Friday December 14th, 2018 
(NYCTLC, 2019). We consider trips that started between 16:00–19:00 (local time) in four regions. The regions chosen roughly 
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correspond to four sections of the city as illustrated in Fig. 6 (1-lower Manhattan, 2-midtown Manhattan, 3-upper west side, and 4- 
upper east side). For time windows of duration w = 20 minutes, we use trip initiation and completion time data available on the 
New York City Taxi and Limousine Commission website to characterize the processes {fP,k

r (t), fBA,k
r (t),Nk

r (t) : t ∈ (kw, (k + 1)w]}. Our 
primary findings suggest that an increase in the fraction of book-ahead rides leads to a reduction in the total number of drivers that are 
needed to probabilistically guarantee the reach time service requirement. This reduction in the total number of drivers is also asso
ciated with a lower number of idling drivers (i.e., an increase in the driver utilization rate). 

7.1. System model specification and comparison to observed data 

The process {fP,k
r (t) : t ∈ (kw, (k + 1)w]} is generated at the beginning of every window k. Specifically, using the available data, 

fP,k
r (t) represents previously observed rides that initiated in region r prior to t = kw and will be active at time t ∈ (kw, (k + 1)w]. 

To generate the process {fBA,k
r (t) : t ∈ (kw, (k + 1)w]} from the New York City data, we randomly sample a fraction pBA of the trips 

that start during window k in region r. We choose to generate fBA,k
r (t) as the fraction of anticipated rides since we are interested in 

analyzing the change in the target number of drivers as the fraction of book-ahead rides increases. 
As for the stochastic process {Nk

r (t) : t ∈ (kw, (k + 1)w]}, at the beginning of each window k, we calibrate the demand rate λk
r 

corresponding to ride requests that will appear during the upcoming window in region r. In the following simulation, for simplicity, the 
demand rate varies across time-windows but is assumed constant within each time window; however, the proposed framework can be 
implemented using time-dependent demand rate functions by evaluating Eq. 6. Moreover, even with window-constant demand rates, 
the Poisson distribution describing active drivers is time-varying within each window such that the mean is given by Eq. 7. We 
emphasize that this transient analysis does not assume an equilibrium or steady-state conditions in any time window. The arrival rate 
for region 2 is shown in Fig. 7; as observed, the demand rate increases rapidly showing the need for non-equilibrium methods. For the 
distribution gk

r (⋅) representing ride duration, we use the empirical distribution that is derived from the observed rides in each region. 
Note that to analyze the change in the target number of drivers with increasing book-ahead rides, we effectively assume that the arrival 
rate of non-reserved ride requests is (1−pBA)λk

r (where a fraction pBA of the anticipated trips that will initiate during window k are book- 
ahead rides). 

As illustrated in Fig. 8, the proposed model for predicting the number of active rides (Section 3) accurately represents the observed 
data. In this Figure, for comparison with observed trip data, we consider that all rides are admitted and that there are no book-ahead 
rides (effectively assuming Nk

r (t) = Nk,∞
r (t)). Recall that Nk

r (t) represents the predicted non-reserved ride requests that will appear 
during window k; in contrast, during window k + 1, the process fP,k+1

r (t) consists of observed trips (as given in the data) that differ from 
the previously predicted trips. 

7.2. Upper bound on the blocking probability 

To evaluate how tight is the upper bound in Inequality 22, we implement the admission control policy in region 2 and average the 
observed proportion of blocked rides Bk

r across time windows. For this upper bound numerical analysis, the assumptions involved in 
target evaluation and admission control apply; specifically, the total supply (active and idle) is maintained at the target level, drivers 

Fig. 6. Manhattan divided into four regions.  
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switch between active and idle within the region, and non-reserved rides are blocked if upon admission the total number of active rides 
would exceed the target at some point in time throughout the ride duration. Fig. 9 shows the variation in the blocking proportion Bk

r 

relative to the upper bound δ. As observed, the blocking proportion Bk
r increases with larger tolerance values. We also observe that the 

blocking proportion increases with the fraction of book-ahead rides pBA as a result of fewer idle drivers being available for non-reserved 
rides. 

7.3. Target computations, admission control, and minimum cost flow dispatching/rebalancing 

Then, to account for the spatial distribution of demand and the variation in supply across regions, we implement the proposed 
framework in Sections 3,2,3,4,5,6 (see Fig. 3). In particular, we demand moves between regions and that the supply deviates from the 
target, and we implement the min. cost flow to maintain the target. 

Fig. 7. Arrival rate for ride requests that initiate in region 2.  

Fig. 8. Predicted total number of active rides vs. observed number of active rides, where predictions were made over time windows with a duration 
of 20 min. The error bars correspond to one standard deviation of the time-dependent Poisson distribution characterizing Nk,∞

r . In this figure, to 
compare with the observed trip data, we assume that all rides are admitted (i.e., we consider that Nk

r (t) = Nk,∞
r (t)). 

Fig. 9. The change in observed blocking proportion Bk
r and the ratio Bk

r /δ relative to the upper bound δ.  
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First, as mentioned in Section 7.1, we characterize the processes {fP,k
r (t), fBA,k

r (t),Nk
r (t) : t ∈ (kw, (k + 1)w]} representing the pre

dicted number of active rides in each region r. Then, using the upper bound on the time-dependent blocking probability of the 
admission control policy, we determine the target number of drivers associated with every region r during the upcoming window. After 
that, at the beginning of the time window, we apply the driver dispatching/rebalancing mechanism to attain the targets across regions. 
Then, throughout the time window, for every non-reserved ride request that is received, we implement the admission control policy to 
determine whether the request should be admitted or blocked; the received non-reserved ride requests are directly retrieved from the 
New York City data (as opposed to the predictions Nk

r (t)). We also implement the driver dispatching/rebalancing mechanism halfway 
through the time window. However, at the beginning of the time window we allow for total adjustments of the driver supply while 
halfway through the window we consider that only existing idle drivers can transition across adjacent regions. This process is then 
repeated for every time window. 

For simulation purposes, we disregard the stochasticity of drivers entering and exiting the system across time windows. However, 
the admission control policy, target computations, and subsequent driver dispatching policy allow for a time-varying and stochastic 
variation in the supply that is joining or leaving the platform. In fact, target evaluation is based on the demand process and the 
admission control assumes that the target is maintained throughout the time window. Even if the actual supply deviates from the 
target, the admission control policy is still implemented by finding if there are any idle drivers and measuring the change in idle drivers 
relative to the target. On the other hand, the driver dispatching is only concerned with the instantaneous state of the supply relative to 
the target. 

Note that the presented driver rebalancing strategy only uses information from the current time window. In other words, while the 
proposed state-dependent strategy does not assume steady-state conditions in a time-varying environment, it does not look into future 
windows to determine the current rebalancing recommendations. Alternative policies that predict future dynamics multiple windows 
in advance may also be effective since they would have more information on the anticipated variation in driver supply. 

We apply the same framework for different fractions of book-ahead rides and record the target ck
r across windows. In Fig. 10, we 

illustrate the change in targets for different fractions of book-ahead rides. In particular, we measure the time-averaged target cr for 
increasing values of pBA and different quality of service thresholds δ (as defined in Section 5.2, δ bounds the time-averaged blocking 
probability such that a lower value of δ indicates a higher quality of service). As expected, we observe that the target number of drivers 
increases with decreasing δ; this result implies that a larger number of drivers is needed to guarantee the reach time service 
requirement for a greater fraction of non-reserved ride requests. We also observe that the target number of drivers decreases as the 
fraction of book-ahead rides increases. The decrease in targets indicates that the number of drivers needed decreases with more in
formation on anticipated trips. 

For the simulation setting, the ratio of internal driver transitions 
∑

(i,j)∈Ehij to the total flows (
∑

(i,j)∈Ehij +
∑

i∈R|hi|) was approxi
mately 0.5 when averaged across min-cost flow evaluations. The recommended external flows reflect the additional drivers needed to 
satisfy increasing demand (Fig. 7). This ratio depends on the demand rates, frequency of driver rebalancing, and the spatial distribution 
of regions. All these parameters would vary between different areas and time periods. 

As the target decreases with increasing fractions of book-ahead rides, the number of idling drivers in the system also decreases. 
Fig. 11 illustrates the average number of idling drivers for different reservation levels. We observe that when pBA = 0.9 the average 
number of idle drivers can be up to 17.3 less than the corresponding value when pBA = 0.0. This reduction in the number of idle drivers 
with increasing pBA translates to a higher driver utilization rate. 

Fig. 12 illustrates the average number of rides that are blocked by the admission control policy (i.e., the reach time service 
requirement was not met for these rides). As shown, the average number of blocked rides increases with reservation levels. This in
crease in blocking results from the reduction in the overall number of drivers in the system. However, the fraction of blocked requests is 
(mostly) within the specified threshold δ = 0.01. For pBA = 0.9, the fraction of blocked requests slightly exceeds the level of service 

Fig. 10. Change in the time-averaged target number of drivers with an increase in the fraction of book-ahead rides (for different quality of service 
thresholds δ). For each data point (i.e., every (pBA, δ) pair), the plotted time-averaged target is the average of the corresponding value obtained from 
30 different iterations of the proposed framework, where this averaging is needed due to the randomness in generation of the book-ahead pro
file fBA,k

r (t). 
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threshold δ; this discrepancy may be attributed to the randomness in the system and the fact that the targets are not perfectly 
maintained throughout the entire time window. 

The previous analysis assumed perfect compliance with inter-regional driver transitions at the simulation-specific driver reba
lancing stages (beginning and mid-window). However, the drivers may not follow platform recommendations and that would result in 
greater difficulty maintaining the targets. Fig. 13 shows the number of blocked rides and fraction of blocked rides in the worst-case 
scenario where drivers do not follow inter-regional transition recommendations. As observed, the number of blocked rides almost 
doubles in some cases and the fraction of blocked rides also increases up to 3.5%. 

8. Conclusion 

In this article, we propose a model for transient analysis of stochasticity in ridesourcing systems. As opposed to steady-state 
equilibrium methods, we characterize the time-dependent state of the system and design control policies for managing driver sup
ply. Furthermore, we incorporate book-ahead rides (reservations) in our framework and analyze the impact of book-ahead rides on 
driver supply management. 

In more detail, we propose a state-dependent control policy that assigns drivers to observed ride requests with the objective of 
guaranteeing the reach time service requirement for book-ahead rides. Then, we derive a time-dependent upper bound on the per
formance of the control policy, where the performance of the policy is measured in terms of the probability of reach time service 
violations for non-reserved rides. Subsequently, this upper bound is used to determine the target number of drivers that probabilis
tically guarantees the reach time service requirement for non-reserved rides. The targets represent the total number of drivers that are 
associated with a region such that the drivers are either idling in the region or serving requests that initiate in the region. Then, 
considering a set of regions with different targets, we propose a driver dispatching/rebalancing optimization program that seeks to 
maintain the targets across regions. We show that the dispatching/rebalancing problem reduces to a minimum cost flow program that 
is solved on a transformed network. 

The key findings are as follows: (1) For the desired reach time quality of service, an increase in the fraction of book-ahead rides 
leads to a reduction in the total number of drivers required. (2) This reduction in the total number of drivers is associated with a 
decrease in the number of idling drivers. (3) Once the driver supply is decreased, there is a greater risk that the reach time service 
requirement will be violated for anticipated non-reserved rides. However, the fraction of rides that experience increased reach time 
beyond the reach time service requirement is within a specified threshold, where this threshold dictates the target number of required 
drivers. (4) For Lyft rides in Manhattan, we observe rapid variations in demand rates that emphasize the need for transient analysis of 
ridesourcing dynamics. 

The proposed model can be used for operation of ridesourcing systems. Specifically, the proposed control policy can be used for 
ensuring reach time priority for book-ahead rides, the target supply determines the number of drivers that would probabilistically 
guarantee the reach time service requirement for non-reserved rides, and the minimum cost flow program determines the necessary 
driver dispatching/rebalancing that is needed to maintain the targets. 

More importantly, the proposed model can inform policy decisions that seek to maximize driver welfare and to reduce congestion 
externalities associated with ridesourcing platforms. In particular, for a given quality of service and reach time service requirement, 
policy makers can determine if the ridesourcing platform is employing an excessive number of drivers by comparing the total number 
of drivers in the system to the target supply. In addition, our results suggest that policy makers should advocate for an increased 
fraction of book-ahead rides and supply management strategies that use this book-ahead information to reduce the number of idling 
drivers. 

Fig. 11. The number of idle drivers and the driver utilization rate 100*(active/(active + idle)) averaged across regions. The quality of service 
threshold δ is set at 0.01. 
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Appendix A. Appendix 

A.1. A. Theorem 1 Proof: 

Theorem. The blocking probability, P(γi = 0), for the ith stochastic non-reserved ride request that appears at time τi is bounded 

above by P
(

Nk,∞
r (τi)⩾ck

r − maxt∈(τi ,(k+1)w]

[
fP,k

r (t) + fBA,k
r (t)

] )
. 

Proof. We first start by deriving upper bounds on the blocking probability P(γi = 0) (Inequalities (56)–(58)). Then, through Eqs. 
(60)–(64), we show that the upper bound in Inequality 58 can be expressed in terms Nk,∞

r (τi), where Nk,∞
r (τi) is the number of busy 

servers at time τi in a transient Mt/GI/∞ queue that starts empty at the beginning of the time window. 

P(γi = 0) (54)  

= P

(

∃t ∈ (τi,min{τi + Di, (k + 1)w}] : 1 + f P,k
r (t) + f BA,k

r (t) +
∑i−1

n=1
1{τn + Dn > t}γn > ck

r

)

(55)  

⩽P

(

∃t ∈ (τi,min{τi + Di, (k + 1)w}] : 1 + f P,k
r (t) + f BA,k

r (t) +
∑i−1

n=1
1{τn + Dn > t} > ck

r

)

(56)  

Fig. 12. The number of blocked ride requests and the fraction of blocked requests 100*(blocked/(admitted + blocked)) averaged across regions. 
The quality of service threshold δ is set at 0.01. 

Fig. 13. For the case when idle drivers do not follow platform-recommended transitions between regions, we observe an increase in the number 
blocked rides and the fraction of blocked rides. The quality of service threshold δ is set at 0.01. 
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⩽P

(

∃t ∈ (τi, (k + 1)w] : 1 + f P,k
r (t) + f BA,k

r (t) +
∑i−1

n=1
1{τn + Dn > t} > ck

r

)

(57)  

⩽P

(

∃t ∈ (τi, (k + 1)w] : 1 + f P,k
r (t) + f BA,k

r (t) +
∑i−1

n=1
1{τn + Dn > τi} > ck

r

)

(58)  

Inequality 56 holds since we are considering that all requests that are received before the ith request are admitted (i.e, γn = 1 for all n ∈

{1,…, i−1}). 
Inequality 57 holds since we are expanding the time horizon until the end of the window. 
Inequality 58 follows since 

∑i−1
n=11{τn + Dn > τi}⩾

∑i−1
n=11{τn + Dn > t}. Specifically, the number of non-reserved ride requests that 

are received between (kw, τi] and are still active (being served) at time τi is at least as large as the corresponding number of non-reserved 
ride requests that are received between (kw, τi] and are still active at time t ∈ (τi, (k + 1)w] (i.e. t⩾τi). 

Then, we can rearrange the last expression in Inequality 58 as follows: 

P

(

∃t ∈ (τi, (k + 1)w] : 1 + f P,k
r (t) + f BA,k

r (t) +
∑i−1

n=1
1{τn + Dn > τi} > ck

r

)

(59)  

= 1−P

(

1 + f P,k
r (t) + f BA,k

r (t) +
∑i−1

n=1
1{τn + Dn > τi}⩽ck

r , ∀t ∈ (τi, (k + 1)w]

)

(60)  

= 1−P

(

1 + max
t∈(τi ,(k+1)w]

[
f P,k

r (t) + f BA,k
r (t)

]
+
∑i−1

n=1
1{τn + Dn > τi}⩽ck

r

)

(61)  

= P

(

1 + max
t∈(τi ,(k+1)w]

[
f P,k

r (t) + f BA,k
r (t)

]
+
∑i−1

n=1
1{τn + Dn > τi} > ck

r

)

(62)  

= P

(
∑i−1

n=1
1{τn + Dn > τi} > ck

r − max
t∈(τi ,(k+1)w]

[
f P,k

r (t) + f BA,k
r (t)

]
− 1

)

(63)  

= P

(
∑i−1

n=1
1{τn + Dn > τi}⩾ck

r − max
t∈(τi ,(k+1)w]

[
f P,k

r (t) + f BA,k
r (t)

]
)

(64)  

Equality 61 follows since fP,k
r (t)+fBA,k

r (t) are the only components that depend on t in expression 60, and if the sum 

1+fP,k
r (t)+fBA,k

r (t)+
∑i−1

n=11{τn +Dn > τi} is less than or equal to ck
r at ̃t = argmaxt∈(τi ,(k+1)w]

[
fP,k

r (t) + fBA,k
r (t)

]
, then the aforementioned 

sum is less than or equal to ck
r for all t ∈ (τi, (k + 1)w]. 

Equality 64 follows since 
∑i−1

n=11{τn + Dn > τi}, maxt∈(τi ,(k+1)w]

[
fP,k

r (t) + fBA,k
r (t)

]
, and ck

r are all integer values representing the 

number of active drivers or driver supply. 
Thus, 

P(γi = 0)⩽P

(
∑i−1

n=1
1{τn + Dn > τi}⩾ck

r − max
t∈(τi ,(k+1)w]

[
f P,k

r (t) + f BA,k
r (t)

]
)

(65)  

let Nk,∞
r (τi) =

∑i−1
n=11{τn + Dn > τi}, 

Then, 

P(γi = 0)⩽P
(

Nk,∞
r (τi)⩾ck

r − max
t∈(τi ,(k+1)w]

[
f P,k

r (t) + f BA,k
r (t)

]
)

(66)  

Nk,∞
r (τi) represents the number of stochastic non-reserved ride requests that are received between (kw, τi] and are active at time τi. 

Thus, Nk,∞
r (τi) is similar to Nk

r (τi) with the main difference being that Nk
r (τi) is restricted to admitted non-reserved ride requests while 

Nk,∞
r (τi) accounts for all received requests (i.e., Nk,∞

r (τi) assumes that all requests are admitted regardless of the admission control 
policy). As previously described, stochastic non-reserved ride requests start arriving after the beginning of the time window (t = kw) 
according to a Poisson process with demand rate {λk

r (t) : t ∈ (kw, (k + 1)w]}and their ride duration follows the general distribution 
gk

r (⋅). Then, the system corresponding to Nk,∞
r (τi) can be described as a transient Mt/GI/∞ queue that starts empty at t = kw, receives 

requests at the rate {λk
r (t) : t ∈ (kw, (k + 1)w]}, has a generally distributed service rate gk

r (⋅), and has an infinite number of servers (all 
requests are admitted). In this context, Nk,∞

r (τi) (the number of active rides at time τi) represents the number of busy servers at time τi in 
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the transient Mt/GI/∞ queue. 

B. Minimum Cost Flow Reformulations: 

Original Formulation: 

min
hij :(i,j)∈E, hi :i∈R

∑

(i,j)∈E

hij +M
∑

i∈R
|hi| (67)  

s.t.
∑

j:(i,j)∈E

hij −
∑

j:(j,i)∈E

hji + hi = Δi ∀i ∈ R (68)  

∑

j:(i,j)∈E

hij⩽ei ∀i ∈ R (69)  

hij⩾0 ∀(i, j) ∈ E (70)  

hij ∈ Z ∀(i, j) ∈ E (71)  

hi ∈ Z ∀i ∈ R (72)  

First, observe that formulation (67)–(72) can be rewritten in terms of hi• and h•i that are defined in Eqs. 73 and 74. The revised 
formulation is given in (75)–(81). In this case, h•i corresponds to drivers added to region i ∈ R by adjusting the total number of drivers, 
and hi• corresponds to drivers removed from region i ∈ R by adjusting the total number of drivers (i.e., hi• represents drivers that can be 
removed from the system to avoid having excess idle drivers). 

hi• =

{
hi if hi > 0
0 otherwise (73)  

h•i =

{
|hi| if hi < 0
0 otherwise (74)  

min
hij :(i,j)∈E, hi• ,h•i :i∈R

∑

(i,j)∈E

hij +M
∑

i∈R
[hi• + h•i] (75)  

s.t.
∑

j:(i,j)∈E

hij −
∑

j:(j,i)∈E

hji + hi• − h•i = Δi ∀i ∈ R (76)  

∑

j:(i,j)∈E

hij⩽ei ∀i ∈ R (77)  

hij⩾0 ∀(i, j) ∈ E (78)  

hi•, h•i⩾0 ∀i ∈ R (79)  

hij ∈ Z ∀(i, j) ∈ E (80)  

hi•, h•i ∈ Z ∀i ∈ R (81)  

Observe that due to the high costs associated with adjusting the total number of drivers, h•i⩽dv
i for every region i; this inequality implies 

that the amount of drivers added to region i is less than demand in the region. Similarly, for every region i,hi•⩽sv
i ; this inequality implies 

that the number of drivers disposed from region i (by adjusting the total number of drivers) is less than the virtual supply in the region. 
If we sum the latter two inequalities over all regions, we get inequalities 82 and 83. Then, we can rewrite those inequalities using slack 
variables as shown in Eqs. (84)–(86). 

∑

i∈R
h•i⩽

∑

i∈R
dv

i (82)  

∑

i∈R
hi•⩽

∑

i∈R
sv

i (83)  

∑

i∈R
h•i + hd =

∑

i∈R
dv

i (84)  
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∑

i∈R
hi• + hs =

∑

i∈R
sv

i (85)  

hd, hs⩾0 (86)  

Intuitively, hd is a slack variable that represents the demand that is satisfied through internal driver transitions (as opposed to adding 
external drivers h•i by adjusting the total number of drivers). Meanwhile, hs is a slack variable that represents the supply that is used to 
satisfy demand through internal driver transitions (as opposed to disposing off the supply hi• by adjusting the total number of drivers). 
Therefore, hd = hs. A more rigorous approach to show that the equality holds is as follows: 

Lemma. hd = hs = h 

Proof. First, we rearrange Eq. 84 to arrive at Eq. 87. Then, we can restrict the sum to regions where Δi < 0 since by definition dv
i = 0 if 

Δi⩾0, and since h•i⩽dv
i , then h•i = 0 if dv

i = 0 (where h•i⩾0 by definition). Thus, Δi⩾0 ⇒ dv
i = 0 ⇒ h•i = 0, and we can restrict the sum 

to Δi < 0 as shown in Eq. 88. 
Eq. 89 follows by definition of dv

i and Δi when Δi < 0. 
Eq. 90 follows by rearranging constraint 76. Note that since Δi < 0 then sv

i = 0 by definition, and since hi•⩽sv
i then hi• = 0. 

hd =
∑

i∈R
dv

i − h•i (87)  

=
∑

i∈R:Δi<0
dv

i − h•i (88)  

=
∑

i∈R:Δi<0
−Δi − h•i (89)  

=
∑

i∈R:Δi<0

[
∑

j:(j,i)∈E

hji −
∑

j:(i,j)∈E

hij

]

(90)  

Following a similar approach, we can define hs as illustrated in Eq. 91. 

hs =
∑

i∈R:Δi>0

[
∑

j:(i,j)∈E

hij −
∑

j:(j,i)∈E

hji

]

(91)  

Then, we can represent the difference between hd and hs as in Eq. 92. 
Observe that if Δi = 0, then 

∑
j:(j,i)∈Ehji =

∑
j:(i,j)∈Ehij, where this follows by constraint 76 (hi• = h•i = 0 since h•i⩽dv

i , hi•⩽sv
i and dv

i =

sv
i = Δi = 0). 

Thus, we can rearrange Eq. 92 to get Eq. 93. 
Then, we can rearrange Eq. 93 further to get Eqs. 94. Finally, note that 

∑
i∈R
∑

j:(j,i)∈Ehji is a summation over all links in the network, 
and similarly 

∑
i∈R
∑

j:(i,j)∈Ehijis a summation over all links in the network. This gives Eq. 95, which proves the lemma. 

hd − hs =
∑

i∈R:Δi<0

[
∑

j:(j,i)∈E

hji −
∑

j:(i,j)∈E

hij

]

−
∑

i∈R:Δi>0

[
∑

j:(i,j)∈E

hij −
∑

j:(j,i)∈E

hji

]

(92)  

=
∑

i∈R

[
∑

j:(j,i)∈E

hji −
∑

j:(i,j)∈E

hij

]
(93)  

=
∑

i∈R

∑

j:(j,i)∈E

hji −
∑

i∈R

∑

j:(i,j)∈E

hij
(94)  

=
∑

(i,j)∈E

hij −
∑

(i,j)∈E

hij = 0
(95)  

Subsequently, we can add Eqs. (84)–(86) as constraints in formulation (75)–(81), where we use h = hd = hs. The resulting formulation 
is shown in (96)–(106) (Eq. 85 is first multiplied by a negative sign and then added as a constraint). Note that h must be integer since, 
for each region i, sv

i , d
v
i , h•i, hi• are all integer. 

minhij :(i,j)∈E, hi• ,h•i :i∈R, h

∑

(i,j)∈E

hij +M
∑

i∈R
[hi• + h•i] (96) 
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s.t.
∑

j:(i,j)∈E

hij −
∑

j:(j,i)∈E

hji + hi• − h•i = Δi ∀i ∈ R (97)  

∑

j:(i,j)∈E

hij⩽ei ∀i ∈ R (98)  

∑

i∈R
h•i + h =

∑

i∈R
dv

i (99)  

−

[
∑

i∈R
hi• + h

]

= −
∑

i∈R
sv

i (100)  

hij⩾0 ∀(i, j) ∈ E (101)  

hi•, h•i⩾0 ∀i ∈ R (102)  

h⩾0 (103)  

hij ∈ Z ∀(i, j) ∈ E (104)  

hi•, h•i ∈ Z ∀i ∈ R (105)  

h ∈ Z (106)  

To map the problem to an equivalent min-cost flow formulation, for each region i ∈ R, we define variables hii☆ that represent the total 
number of drivers leaving region i to adjacent regions (Eq. 107). In addition, for each link (i,j) ∈ E, we define variables hi☆ j = hij. Thus, 
we can define hii☆ in terms of hi☆j as in Eq. 108. Since hij is a non-negative integer for all (i, j) ∈ E, we have that hii☆ and hi☆ j are non- 
negative integers as well. 

hii☆ =
∑

j:(i,j)∈E

hij ∀i ∈ R (107)  

=
∑

j:(i,j)∈E

hi☆ j ∀i ∈ R
(108)  

Then, we can express constraint 98 in terms of hii☆ as hii☆ ⩽ei for all regions i ∈ R. Moreover, we can express the sum of driver transitions 
across links (i, j) ∈ E as shown in Eq. 109. 

∑

(i,j)∈E

hij =
∑

i∈R

∑

j:(i,j)∈E

hij =
∑

i∈R
hii☆ (109)  

Therefore, we can reformulate optimization Problem (96)–(106) in terms of the newly defined variables as follows: Substitute Eq. 109 
in the objective function 96, replace the sum of drivers leaving a region to adjacent regions with hii☆ (as in Eq. 107), replace hij by hi☆ j 

and hji by hj☆ i, replace constraint 98 with hii☆ ⩽ei, add Eq. 108 to the constraints, add constraints that restrict hi☆ j to be non-negative 
integers for all (i, j) ∈ E, and add constraints that restrict hii☆ to be non-negative integers for all i ∈ R. The revised formulation is 
shown in (110)–(122). 

minhi☆ j :(i,j)∈E, hi• ,h•i ,hii☆ :i∈R, h

∑

i∈R
hii☆ +M

∑

i∈R
[hi• + h•i] (110)  

s.t. hii☆ −
∑

j:(j,i)∈E

hj☆ i + hi• − h•i = Δi ∀i ∈ R (111)  

∑

i∈R
h•i + h =

∑

i∈R
dv

i (112)  

−

[
∑

i∈R
hi• + h

]

= −
∑

i∈R
sv

i (113)  

∑

j:(i,j)∈E

hi☆ j − hii☆ = 0 ∀i ∈ R (114)  
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0⩽hii☆ ⩽ei ∀i ∈ R (115)  

hi☆ j⩾0 ∀(i, j) ∈ E (116)  

hi•, h•i⩾0 ∀i ∈ R (117)  

h⩾0 (118)  

hii☆ ∈ Z ∀i ∈ R (119)  

hi☆ j ∈ Z ∀(i, j) ∈ E (120)  

hi•, h•i ∈ Z ∀i ∈ R (121)  

h ∈ Z (122)  
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