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ABSTRACT: This study outlines the development of an implicit-solvent model that
reproduces the behavior of colloidal nanoparticles at a fluid—fluid interface. The center
point of this formulation is the generalized quaternion-based orientational constraint
(QOCO) method. The model captures three major energetic characteristics that define
the nanoparticle configuration—position (orthogonal to the interfacial plane),
orientation, and inter-nanoparticle interaction. The framework encodes physically
relevant parameters that provide an intuitive means to simulate a broad spectrum of
interfacial conditions. Results show that for a wide range of shapes, our model is able to
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replicate the behavior of an isolated nanoparticle at an explicit fluid—fluid interface, both

qualitatively and often nearly quantitatively. Furthermore, the family of truncated cubes is used as a test bed to analyze the effect of
changes in the degree of truncation on the potential-of-mean-force landscape. Finally, our results for the self-assembly of an array of
cuboctahedra provide corroboration to the experimentally observed honeycomb and square lattices.

1. INTRODUCTION

The presence of a fluid—fluid interface imposes certain
restrictions on the position and orientation of a nanoparticle
(NP) that resides across or in close proximity to the interface-
dividing plane. This effect has been exploited to create long-
range, coherent assemblies of quasi-2D superstructures. These
structures are of particular interest because they are known to
possess strong correlations between their packing symmetries
(structure) and the displayed opto-electronic properties
(function). In particular, different NP shapes display a gamut
of orientation behavior depending on the interfacial conditions.
Multiple experimental' ™ and computational®™'* studies,
reported over the recent years, have aimed to develop a finer
control over NP interfacial assembly. However, most of these
computational studies have primarily focused on single-particle
behavior due to the high computational demands entailed in
simulating the surrounding fluids and the resulting interface.
This limitation prevents extensive computational examination of
the mechanism and energetics of the self-assembly process that
leads to the formation of superlattices possessing atomic
coherence across micrometer-sized grains.'” To help fill in this
gap, we put forth a theoretical framework, backed by explicit-
solvent simulation studies,'' that accounts for the effect of the
fluid—fluid interface on the NP using an effective overlaid
potential landscape. By eliminating the explicitly modeled
solvent molecules in favor of an implicit solvent, the number of
particles to be simulated is greatly reduced. The associated
reduction in computational expenses allows access to the self-
assembly process at meso-length scales (O(10%) the size of a
representative NP). Moreover, due to the high dimensional
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nature of the possible control parameters and conditions, a large
portion of this phase space remains unexplored. In this context,
implicit-solvent simulations can provide an effective means for
exploration of a wide range of interfacial conditions (determined
by the choice of solvents), NP choice (shapes and sizes), and
even meso-scale phenomena observed experimentally (like
defects and grain boundaries).

In a previous work,'' we chose intrinsic (y — z'— y
coordinate convention) Euler angles (¢, 6, y) to describe the
NP orientation. The advantage of this representation lies in the
isolation of the rotation about the global axis perpendicular to
the interface (¢). Since transformations around ¢ produce no
change in the NP orientation with respect to the interface, ¢ can
be factored out by leveraging the intrinsic cylindrical symmetry
about the interface normal. Direct application of the above idea
requires two independent springs to constrain the 6 and y
rotations as reported by Soligno and Vanmaekelbergh.'
However, the Euler angle formulation suffers from operational
difficulties such as the gimbal lock,"* leading to discontinuities at
the poles (6 = 0, 7). More importantly, analysis of the free-
energy (FE) plots for a range of NP shapes from explicit-solvent
simulations points to an underlying symmetry in the orientation
characteristics. We posit that the overall orientation bias
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function can be broken down into the sum of contributions from
individual particle shape features. Each feature therein
corresponds to a hypothetical (hkl) NP facet and comprises a
basis set. Here, an (hkl) facet represents (the miller indices of) a
crystallographic plane. It is important to note that the “biases”
applied to an NP in the implicit-solvent simulations are intended
to recreate the effect of the interface on the NP (orientation and
vertical position) behavior. These biases should not be confused
with those employed for the purpose of facilitating sampling
(like non-Boltzmann sampling).

We propose a generalized formulation based on generating a
potential-of-mean-force (PMF) function by superimposing the
orientation constraints for multiple relevant NP features.
Although all of the possible (hkl) features are relevant, some
contribute much more to the free-energy landscape. In this
context, the formulation of the orientation bias is analogous to a
Fourier series expansion with leading terms dominating local
behavior. Individual constraints [for each (hkl) feature] are
generated using the quaternion-based orientational constraint
(QOCO) method. The QOCO method is predicated on three
major known priors of the physical system. First, it enforces
rotational invariance about the global vertical axis to replicate
the cylindrical symmetry of the interface. Second, owing to a
quaternion implementation, any generated torque is a
continuous function across the entire rotation space. Lastly, it
factors out the equivalent orientations in rotationally symmetric
polyhedra.

In section 2, we outline the details of our heuristic formulation
and the QOCO method. In section 3.1, we demonstrate the
ability of the formulation to capture the orientation character-
istics of a wide range of polyhedral shapes using single- and
multiple-feature biases. Thereafter, in section 3.2, we explore the
underlying physical basis of the generated model parameter-
ization. We focus on two separate cases to justify our design
choices and to provide concrete examples for the parameter set.
First, we consider cantellated cubes with {110} and {111} facet
truncations, ranging from a cube (CU) to the rhombicubocta-
hedron (RCO). Then, we consider the series of {111} facet
truncations from a cuboctahedron (CO) to the truncated
octahedron (TO). We then discuss the geometric and energetic
basis for the dominant contribution from certain features.
Having established a physical correlation, we use the model to
analyze the effect of changes in NP shape on the orientation
characteristics. In section 3.3, we present preliminary results for
the self-assembly of an array of CO NPs (size of ~5 nm) at three
different interfacial conditions. To this end, a large number of
coarse-grained polybead NPs are simulated in a highly
parallelized molecular dgrnamics (MD) setting."' In agreement
with experiments,”'>~'® we observe the formation of bilayer
honeycomb and monolayer square lattices. Lastly, in section 4,
we provide some concluding remarks and comments on
potential limitations and extensions of our approach.

2. MODEL

We consider a biasing potential to describe the effective
interaction between the NP and the two fluids forming the
interface. The total bias applied to each NP, with shape S, is
given by

E(S,H,q) =E,(S, H,q) + E(S, 9 (1)

where H is the vertical position of the NP center-of-mass from
the interfacial plane, and the quaternion ¢ defines the
orientation of the NP from a fixed, arbitrary reference.
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2.1. Choice of the Bias Functions. The component biases,
vertical position (E,) and orientation (E,), are described as
follows.

1. Vertical position bias, E,; Due to the non-negligible
interfacial mixing region11 and thermal energy, the NP
vertical position is expected to fluctuate significantly
about the interfacial plane. This characteristic can be
captured by tethering the NP to the interfacial plane (at y
=0) using a spring.1 The harmonic potential, E,, is given
as

kv 2

2 @)

Typically, the orientation and vertical position of the NP

_ K,
EV(S, H, q) = g(sz H, q)?HZ =

at the interface are correlated. Previously, we have shown
that as the NP moves away from the interfacial plane, the
orientation preference changes. For the sake of simplicity,
we currently do not take this effect into account and hence
set the function g(S, H, q) as constant, thereby making the
E, and E, biases independent. The parameter k, is
extracted from the explicit-solvent simulation results
reported in ref 11 by fitting a parabola to the FE plot
[Figure 1a]. For example, for an RCO of edge length ¢ =

40, k, = 3.8k;—zT. Choosing this form of the harmonic

potential imposes a quasi-2D confinement on the NPs.
The infinitely deep well is convenient for simulations as it
prevents the desorption of NPs from the interface. If
needed, a different functional form can be used to more
closely reproduce the flat FE profile far from the interfacial
plane, e.g,, a harmonic potential with a switchover to a
constant value beyond an IHI cutoff, or a Gaussian (akin to
eq 3b below).

. Orientation bias, E;: The total orientation bias is defined
as a linear superposition of the single-feature potentials,
Et, f

Et(& ED = Z Et,f

fE€F

(3)

Similar to the vertical position bias, the form of the
single-feature potential could be harmonic

1 - 2
Et,f = zkt,f(am,f(q) - %,f) (3)

where k; (is the spring constant, @, () is defined as the
angle of closest approach, and a (is the equilibrium angle
(see details below).

We also consider a Gaussian form, with an additional

parameter, which has the advantage that the width (o))
and depth (ey) of the potential well can be controlled

independently
- 2
N G R
20'f
—Aozm,f2
= —epexp| ———
fEXP 2
207 (3b)

The feature space, F, is composed of all possible (hkI)
planes. In general, an (hkl) orientation implies that the
(hkl) facet is oriented parallel to the interface normal (i.e.,
facing vertically upward). Each single-feature potential,
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However, the model is general and should be applicable to cases
with disparate fluid-NP contact angles.

2.2. Quaternion-Based Orientational Constraint. Qua-
ternions represent a rotation between any two orientations in
3D space. Instead of performing a series of rotations about the
principal axes attached to the NP, the transformation between
the two orientations can be described by one rotation about a
specific, global axis. Quaternions also represent orientations in
terms of a rotation from some reference quaternion [typically
the identity quaternion, (1,0,0,0)]. Let q; - (wii) be a general NP
orientation with the (hkl) facet pointing vertically upward. The
angle of closest approach, a,,, ; is defined as the minimum angle
of rotation between the current orientation, q, and the feature
orientation, qg, while accounting for the rotational symmetries of
the shape. The method [illustrated in section I of the Supporting
Information] can be broken down into two sequential steps:

2.2.1. Conversion to the Axis-Angle Representation. In
terms of the intrinsic Euler angles, an orientation quaternion, g
can be defined as a composition of three subsequent rotations

COS(%) COS(%) COS(%)
0 0 0
o{3)] |
sSin| —
2 ) (0)
sSin| —
JL 2 JL B
(4)

The rotation from the current orientation q(¢, 6, y) to the
feature orientation Ge(¢ 0 yy) can be defined using a unit
quaternion, dy, in the axis-angle representation, as

q(p, 0, w) = (_i(/)qg‘_iv, =

=53 = cos| L) sin| Lo = d,, +d i+ d
f_qfq = COS§ > Sin > re = rf i,fl ;,f]

+ dk,flA( ()

where ais the angle of rotation about the unit vector £ = Ui+ V;
+ wk) representing the axis of rotation. An important part of the
method is to include the effect of cylindrical symmetry at the
interface by enforcing rotational invariance about the global
vertical axis. Since ¢) represents a rotation about the global
vertical axis, the transformation due to d; should leave ¢
unchanged. It can be shown that for ¢, = ¢

o _ A0 Ay/)
= s =2 1 —_— —
a; = p(q, §;) = 2cos (cos( 2 )cos( 2 ] ©
diy=sin¢ sin(—Azg )cos(—AZy/) — cos ¢ sin(—zf )sin(—AZy/)

PN AW
j‘f—COS > SN > (8)

AO Ay ) ( >0 ) (Ay/)
d, ; = cos ¢ sin| — |cos| — | + sin ¢ sin| — |sin| —
b / ( 2 ) ( 2 ¢sin S 2
)
where A0 =0 — 0, 20 = 0 + 0; Ay =y — y;. By construction, oy
is independent of ¢. Interestingly, eq 6 shows that a is also
independent of the absolute orientations and only depends on

the differences Af and Awy. The target orientation is an
interpolation between g and q through a rotation angle of Aa(
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=ap— q, f) about the same rotation axis, ry. As illustration, one
instance of the feature orientation, f = (111), is given by

‘_if<¢! COS_I %r %)

2.2.2. Symmetric Reduction. We also need to account for the
redundancy associated with equivalent orientations in sym-
metric polyhedra. There exists a set of , rotations E= {¢;i € {1,
.., 1,}}, any of which, when applied to an arbitrary orientation g,
generates an equivalent symmetry-preserving orientation. We
do not consider chiral inversions to maintain handedness of the
coordinate system. Using eq 6, the angle of closest approach can
be formalized as

am,f(ED = min p(‘-ial’ Eif)

i€{l,..,n,

(10)

For shapes with rotational chiral octahedral symmetries, there
exist (n, =) 24 such equivalents for each orientation. For such
cases, set E can be calculated as rotations to possible
combinations of principal axes 6 ( +x, —x, +y, — y, + z, — 2)
X4(+y,—y,+2z,—2) X 1(+z,—z) from (+x, +y, + z). Here,
+x refers to the positive direction of the global x-axis [typically
(1,0, 0)]. The function @,, ¢ has a lower bound of zero and an
upper bound based on the rotation symmetry of the f™ feature.
The upper bound for features {100} and {111} is

L~ 54.735°, where-

_ _ -1
max «, ,{100} = max aml{ln} = COos

V(o) v(0.) 3
as for {110}, it is max Ay (110) = oIt is important to note
v(0,w) 4

that the reduction operation must be performed in the higher
dimensional orientation space instead of the 2D projection
space of @ and . Although illustrated for the case of rotational
octahedral symmetry, the formulation is generalizable to any
symmetry.

In summary, for the current NP configuration q(¢, 6, y), the
following steps are performed for each relevant feature, f:

(a) Cylindrical symmetry of the interface: Factor out ¢) from
q to calculate the specific feature orientation G¢(¢, 65 y).

(b) Convert to a single rotation: Calculate the value of ayand
7¢ from the rotation quaternion d; = q; q

(c) Symmetric reduction: Repeat for all symmetric equiv-
alents to get @, fand 7, .

(d) Biasing potential: Calculate Aa,, (= a,, ;— aq, sin radians
and apply the bias E, (as an equivalent torque about the
corresponding axis 7, f

In the context of MD or Langevin dynamics, the above
calculations are to be performed at each time step to ensure that
torque is applied in the direction of closest approach to the
equilibrium orientation. Effectively, the symmetric reduction
operation ensures that each integration step includes a (greedy)
gradient descent toward the nearest equilibrium orientation.
Note that we have described here the method using the Euler
angle representation for rotations for the sake of simplicity and
to facilitate connections with previous work.'""'* The method
can also be implemented using a purely quaternion-based

approach.

3. DISCUSSION

3.1. Comparison to Explicit-Solvent Calculations. The
model, qualitatively and quantitatively, captures the behavior of
an isolated NP at an explicit fluid—fluid interface. The Gaussian
bias potential (eq 3b) is plotted for the RCO as a function of (6,
w) in Figure lc. The relevant parameter set comprising the
feature family {hkl}, spring constant (k; (,.;), equilibrium angle

https://dx.doi.org/10.1021/acs.jctc.0c00283
J. Chem. Theory Comput. 2020, 16, 5866—5875


http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00283/suppl_file/ct0c00283_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00283?ref=pdf

/2 3 /4

3w /4

/2 3 /4

Journal of Chemical Theory and Computation pubs.acs.org/JCTC
@o,{100}(1 = 0) = COS_I% | @o,{100}(n = 0.5) = § ao,q100y(n=1) = §
1
(a) 1 (b) (c)
i
i 5.0
= ' o E -
B ) 8 25 8 :
g = g
: 0.0 0.0
1

Spin angle, v’

Spin angle, v’

Spin angle, v’

T
|
1
1
|
|
|
1
|
|
|
|
|
1
1
|
|
|
1
|
|
|
|
|
1
|
1 w1
|
I
1
'
)
)
)
)
)
)
)
)

)

(@
3n/4
P, 3
g 2 —> £
: :
w/4

7/2 3 /4
Spin angle, v’

®
3r/4 | {0 a1}
‘:, 7.5
? F/.z - (. I .
= 2.5
&
il - 00

3n/4
Spin angle, v’

/2 3r/4

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
T
|
1
1
1
|
|
1
1
1
I
1
X
|
|
|
'
|
|
'
'
|
|
1
1
|
|
'
1
1
|
;
\ Spin angle, ¢

|
1
1
|
I
1
1
1
!
1
!

Figure 2. (a—c) Fitted bias PMF for representatives from the series of truncations from (a) CU (R* = 0.94) to (b) intermediate truncation of 5 = 0.5
(R*=0.97) to (c) uniform RCO (R* = 0.50). The top panel shows the generated single-feature {100} harmonic bias potentials to be compared to the
continuum model calculations (see main text) shown in the bottom left panel. The corresponding shapes at the interface are represented in bottom
right panels. The red, green, and yellow facets correspond to the {100}, {111}, and {110} truncations. The effect of truncation is captured by the
change in the equilibrium angle of approach @y, (190}- Due to the increased “roundedness” of the shape, both the FE and the bias potential become
flatter. The same layout is followed for the series of {111} truncations from (d) CO (R* = 0.75) to (e) intermediate truncation of 7 = 0.5 (R? = 0.93)
and finally to (f) uniform TO (R* = 0.82). The top panel in d—f represents the 2-feature [{111}, {110}] harmonic potential. The effect of truncation is

seen to correlate with a switchover in dominance of specific features.

(o, gy € [0, max (@, f)]), and potential well width parameter
0(4y) are presented in Table 1. The parameters were extracted
by fitting the function E, to the FE landscapes generated by
explicit-solvent calculations (details in section II of the
Supporting Information). Umbrella sampling (US)***" calcu-
lations were performed (analogous to those for the explicit-
solvent system in ref 11) for an isolated NP (with Langevin
dynamics) to validate the implicit-solvent formulation.

In most cases, the effect of the interface, as it pertains to
orientational behavior, is effectively captured by a single-feature
potential. As expected, including a second feature leads to a
better fit (Table 1) as seen in the increase in the corresponding
coefficient of determination, R* values (details in section II of the
Supporting Information). Moreover, using the Gaussian
potential, with a well of finite depth(=¢,) and width (~ay),
achieves a higher level of fitness than that for the harmonic
potential. The better fit is attributed to the finite nature of the
Gaussian potential well, wherein the potential decays to zero at
large angular differences (E, —0for Aa,, ;> O'f). In that regard,
this form of E, potential provides a more realistic description of

the short-ranged physical biases associated with the NP facets. In
contrast, the well depth/width imposed by a harmonic potential
is bounded by the limits of the a,, ; function. Note that for
relatively small values of Aa,, ;, eq 3b describes a shifted
harmonic-like potential with an effective spring constant k; 1

2
—Aam'f

Et,f = —kt,fO'fzexp >
ZGf

1
_kt,f6f2+ Ekt,anm,fz + O(Aam,f4)

Shift Harmonic ( 1 1)

In principle, the harmonic potential could be improved and
made closer to the Gaussian well by introducing a cutoff angle
(3rd parameter) beyond which the potential plateaus.

3.2, Effect of Change in Shape. Because our framework
encapsulates key mathematical symmetries of the physical
system, it has the ability to capture a wide range of NP
orientation behavior. Although generated empirically, the
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biasing functions can reveal physical insights into the interplay of
different feature effects that determine a final orientation
preference. For this and the following section, we illustrate our
calculations using the harmonic form of the orientational bias
potential. Although the harmonic form is less accurate than the
Gaussian model, this difference does not change the qualitative
features of the results (and conclusions thereof) or the physical
interpretation of the key parameters kt,f and a, f indeed, the
Gaussian model simply represents a higher order of fit as per the
analysis of eq 11.

Consider a general cantellated cube with {110} and {111}
facets. The vertices are given by permutations of
(£(1 + \/ﬁ), +1, +1). The parameter 7 € [0,1] represents
the series of truncations from a cube (at 7 = 0) to RCO (7 =1).
Instead of using the computationally intensive explicit-solvent
model, we use a continuum model formulation (details in
section III of the Supporting Information) to explore the serial
change in orientation preference from {111} (CU) to {110} to
{110} (RCO). This continuum model was shown'' to capture
the explicit-solvent FE landscapes of model NPs nearly
quantitatively. Using the harmonic form, we show that the
bias function (Figure 2a—c, top panel and Figure S3a)
reproduces the orientation characteristics of the entire series
as predicted by the continuum model (bottom-left panel).

From a physical standpoint, the orientation preference
originates, in part, from the tendency to reduce interfacial
contact between the two immiscible fluids. The NP achieves this
by maximizing its excluded volume from the interfacial mixing
region (equivalently, reducing the projected area of contact).
For a perfect cube, this tendency orients the {100} facets as far
away from the vertical as possible ( rr;ax) @, (100) X 54.735°). As

the cube becomes more rounded (i.e., relatively low value of

22 . . . .
asphericity™), there is a corresponding decrease in this
preference. The orientation preference of the entire series can
be studied in terms of the {100} feature potential. With
increasing #, the PMF [Figure 2, top panel] is reproduced by a
corresponding continuous decrease in aq (1003 (#7) from 54.735 to
30°

kt,{ 100}

En, q) = (am,{IOO}(ED - ao,{loo}(’?))z

(12)

Further, for a given NP volume, we expect an increase in
roundedness (increase in asphericity) to lead to a flatter FE
landscape. Here, flatness of a function can simply be defined in
terms of the difference between its maximum and the minimum
values in the domain. Indeed, the limiting behavior would
correspond to a flat (no orientation preference) landscape for a
spherical NP. The formulation captures this effect, consistent
with the theoretical and solvent-explicit calculations. Mathe-
matically, this originates from the bounds of a,, € [0, 54.735°],
wherein an intermediate value of a( = 30°) leads to a flatter («,,
— ay(n))* function as compared to the case with an extreme
value of a, (0 or 54.7°). This implies that the (a, — @y)*
function is roughly able to capture the effect of shape. The RCO
surface plot in Figure la also illustrates that the regions of
deviation correspond directly to the relevant features: the
pointed {1n0} edges of the otherwise rounded particle
contribute the most to the potential landscape minima (blue
regions). Comparing directly to the continuum model, the
parameter, k, ; captures the physical effect of the NP volume and
the implicit interfacial properties (e.g, surface tension®”'? or
internal energy per unit volume of the mixing region''). The
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bigger the particle and/or lower the degree of miscibility
between the two solvents, the higher the value of k; (or the well
depth, ¢; for a Gaussian potential) and vice-versa. It can be
shown, through a combination of analysis from the continuum
model and explicit-solvent simulations using polybead NP
surfaces, that the variations in FE with changes in NP size are
accounted for by the polybead model (see details in section V of
the Supporting Information). The polybead model, however,
suffers from only being able to change the NP size in discrete
steps (in increments of the bead diameter). This limitation could
be circumvented by changing the level of detail (beads per unit
length and/or bead diameter) at the expense of increased
computational load.

Similarly, consider the series of {111} truncations [Figure
2d—f and Figure S3b] from CO (at 7 = 0) to TO (5 = 1). The
vertices are given by permutations of ( + (1 +#),+ 1, + 1). The
PMF of the series can be described by the Fg = {{111}, {110}}
feature subset (details in section III of the Supporting
Information). For CO, the {111} feature potential (E,(;,,})
largely dominates the PMF landscape

[k, (111y = 123 and k; 1,0y = 5.45:—;]. However, as the {111}

truncation increases, the major deviations in the potential
landscape are caused by the pointed edges {110}. This leads to a
{110} feature-dominated landscape for high values of 5. The

spring constants for TO are k; (1,1, = 7.2, k; 110} = 28.3%.

The goodness-of-fit, R?, is reported for both series in the
Supporting Information (Figure S3).

3.3. Self-Assembly. A hollow-core polybead model'" is
used here to describe the faceted NP. The various facet types
({100}, {110}, {111}) of the NPs can be tuned to encode the
specific patchy behavior (see Figure 3). It is known that the
ligand binding energy is facet-specific and increases in the order
{100} < {110} < {111}; i.e., deprotection is fastest for the {100}
facet.¥** Therefore, in this study, we allow inter-NP epitaxial
connections through the {100} facets only. The interaction
between the (red) beads of two {100} surfaces is defined by the
cut and linearly shifted (12-6) Lennard-Jones potential, Uy,

=
<
N

30 § — exnar=0.1
. \ —— €NPN F:043
; : expyp=0.6
o0
=
B
-
<5
=]
)
[}
I
. . Uy(e=ey0=1) =
D P vic=0050=2)
® ) vuc-ooso- 0.0 05 L0 15 20 25
. Upcale =1,0=1) Ar — d{mo}[ﬂ]

Figure 3. (a) Polybead representation of an RCO with an edge size of
So. Assuming fast desorption of ligands from the {100} facets, NPs are
able to form epitaxial connections through the {100} facets (red beads)
only. The {110} and {111} (yellow and green, respectively) facet beads
are coarse-grained representations of the surface-bound ligands present
on these surfaces. Therefore, these beads interact with the other facet-
specific beads through a repulsive potential. The edge (brown) beads
are modeled like hard-core beads. (b) FE plotted as a function of the
distance between NP centers (Ar), shifted by the distance of closest
approach along the {100}—{100} contact (d;oo; = 5~/2 6 fora CO of

edge e = 50). Increasing the inter-NP interaction parameter, €Np, NPy
leads to increased stability of the epitaxial connection.

https://dx.doi.org/10.1021/acs.jctc.0c00283
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'(a) (b,

),

@ 7y

Figure 4. Assemblies of 1024 CO NPs at different interfacial conditions simulated with the solvent-implicit {111} harmonic bias. The particles are
colored to reflect their vertical distance from the interface from out-of- plane (most red) to on-the—interfacial-plane (white) to into-the-plane (most

blue). (a) Conditions corresponding to k, = 4—- B and k; 1111y = 25

Z closely representing the explicit-solvent conditions. A strong {111}

orientation preference coupled with a strong tendency to stay adsorbed to the interface leads to the formation of an unconnected monolayer. (b)

Reduction in the vertical bias, k, = 2kBT andk; (11, = =255 l et facilitating the formation of small domains with a honeycomb bilayer structure. (c) For

ksT
k,= Ly -and k; gy = 12 5 o 7, the system readily transformmg into square monolayer clusters.

(cutoff radius, r. 1 = 2.56, 6y = 6). The reduced units are
quantified based on the physical properties of a representative
solvent (see details in section IV of the Supporting Information)
such that € = 6.44 X 107! J, 6 = 0.55 nm, and 7 = 2.7 ps. The
presence of stabilizing ligands bound to the {110} and {111}
facets prevents inter-NP epitaxial connections from these
surfaces. The steric interactions between ligand-covered surfaces
of two NPs have been shown to be typically repulsive in
nature.””® Therefore, the beads belonging exclusively to the
{110} and {111} (yellow and green, respectively) are coarse-
grained to include the effect of the grafted ligands and interact
with other facet-specific beads (yellow, green, and red) through

a “bulky” and soft WCA-type repulsive potential*® (with oy = 26,
€x = 0.05¢, and truncated at r = 2'/%6y). Since the edge (brown)
beads can belong to multiple different facets, they are modeled
as hard-core-like (non-overlapping) spheres to prevent
ambiguous edge effects. The edge beads, therefore, interact
with all other bead types usm§ the WCA potential (with og = o,
€x = €, and truncated at r=2"%¢

We assume that the total PMF of an NP can be approximated
as the additive contributions of the inter-NP interactions and the
interfacial biases described in the previous sections. This
assumption is justified by the fact that the biasing potentials,
originating from the interactions between an isolated NP and the
fluids, attempt to maximize the NP interfacial “footprint” to
reduce the contact between the two immiscible fluids. These
potentials hence primarily operate over the NP interfacial
footprint and are, to the first approximation, independent from
the inter-NP interactions, which primarily operate laterally,
orthogonal to those footprints. Indeed, although NP—NP
contacts alter the solvent environment between those contacts,
the solvent environment normal to the NP footprint (which the
biases primarily capture) should be similar to that experienced
by an isolated NP.

The FE associated with the inter-NP distance is calculated
(using umbrella sampling”®*") for different values of the
Lennard-Jones interaction parameter, €xpp. For this purpose,
two CO NPs of edge e = 5o are simulated under the conditions

predicted by the explicit-solvent simulations, i.e., k, = 4 and

ki 111y = 25 & leadlng to a {111} facet-up preference. As seen
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in Figure 3b, increasing the value of expnp leads to formation
and subsequent deepening of an FE well at a distance
corresponding to the point of minimum energy (maximum
stability) of epitaxial bonding between two {100} facets. The
NPs, during their approach, need to overcome an FE barrier
associated with two competing transformations: either (1) an
orientation change from {111}-up to a {100}- or {110}-up or
(2) a vertical shift away from the interfacial plane. This
transformation is necessitated by the fact that the NPs in the
{111}-up orientation do not have available {100} facets to bond
along the interfacial plane.

Using a single-feature, harmonic {111} potential, we report
the assembly of an array of 1024 CO NPs (of edge 5o, i.e., a
diameter of ~5 nm) at three different interfacial conditions. The
system is simulated in the NVT ensemble with the LAMMPS®’
package. Particle trajectories are integrated using Langevin
dynamics to mimic the effect of Brownian diffusion in an implicit
solvent. The simulations are performed with a time step of 13.5
fs (0.0057), for a total of 135 ns. The Langevin thermostat
maintains the temperature, T*, at 0.85, with a relaxation time of
approximately 27 ps. The cross section of the simulation box
(parallel to the interface) has the dimensions 2776 X 2775 (0.15
pum X 0.15 ym) with periodic boundaries across them. To mimic
the gradual deprotection of the {100} facet, the inter-NP
interaction parameter in Uy; is ramped up from O to a final value
of exp, npy OVer the course of the simulation. For this case, we
chose a sufficiently high exp, xp = 0.6¢, to ultimately ensure
irreversible bonding as can be seen in Figure 3b. At this value of
€xp, npy the energy of interaction between two {100} facets at full
contact is —10 kgT or —0.5 X 107" J (see section V of the
Supporting Information).

First, we simulate the conditions predicted by the explicit-

. . kT kT
solvent calculations, ie., k, = 45 - and k, (1, = 25 —7 An
ra

unconnected monolayer is formed [Flgure 4a] with a strong
{111} preference characterized by an average value of (angle of
closest approach) @,, (111} & 5°. This is due to a relatively strong
{111} orientation bias that prevents in-plane bonding, in

tandem with a strong vertical bias that prevents out-of-plane

kT

movement. Lowering the vertical bias (k, = 2 B and

https://dx.doi.org/10.1021/acs.jctc.0c00283
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ki 111y = 25%), facilitates out-of-plane inter-NP bonding. In

this case, the system adopts a honeycomb bilayer configuration
[Figure 4b], split into multiple smaller domains. The average
value of the angle of closest approach is @,, (;;;3 & 5°. On the
other hand, maintaining a high vertical bias while reducing the

5T and ke (111 = 12.5%) leads to a

GZ
prompt transformation into a square monolayer [Figure 4c], the
structure that, given the conditions, expectedly maximizes inter-
NP bonding. In this case, @,, {111} & 52°, which is very far away
from the equilibrium value (@, (;;3) of 0.

Both the honeycomb and the square superstructures have
been reported extensively in experiments”'>~'% and simula-
tions'~ for nanocrystals of the lead chalcogenide (PbX) family.
As discussed briefly in section 3.2, the changes in conditions
(corresponding to theoretical parameters k,, k, and &yp\p) may
be indirectly achieved experimentally by tuning a wide range of
parameters such as the degree of miscibility of the two fluids, NP
shape, NP surface chemistry, surface ligand chemistry, etc. We
also note that a,, ;effectively embodies a single-valued measure
of the orientation of the NP while being invariant to the
rotational symmetries of the NP shape. This implies that it can
function as an adequate local orientational order parameter (or
be used as a parameter for a more complex one) for these
symmetric polyhedral shapes.

orientation bias (k, = 4

4. CONCLUSIONS

The overarching goal of this study is to develop a tool for
prediction of and control over the process of interfacial self-
assembly of colloidal nanoparticles (NP) into epitaxially
connected superlattices. We have developed an empirical
model to augment the standard Brownian dynamics of an NP
in a homogeneous fluid by including the effect of a planar fluid—
fluid interface. By eliminating the need to simulate the solvent,
we achieve a vast reduction in the number of particles to be
simulated. This makes the simulation of a significant number of
NPs (>1000) accessible for studies of phase behavior or
nucleation. The proposed method potentially provides an
efficient means to probe interfacial self-assembly to complement
present experiments and guide future ones. We introduced the
QOCO method to calculate the angle of closest approach (to
NP facet orientation), a key geometrical metric to describe NP
orientational behavior. This multistep method accounts for the
cylindrical symmetry of the planar interface and the rotational
symmetry of the particle shape, which ensure that the biasing
potential is applied consistently across all equivalent features.
We demonstrate the versatility of the formulation in capturing
all major orientation characteristics for a wide range of shapes.
The choice of feature space (Fs) encodes the information about
the physical symmetry into the model. For some cases, a single-
feature potential is sufficient to capture all the major orientation
characteristics. However, depending on the level of required
detail and complexity of the landscape, multiple features can be
easily applied. In principle, the method is generalizable to any
NP shape, and one could augment the (hkl) feature set to model
more complex shapes and symmetries. Conversion to a
quaternion-based formulation allows us to leverage the under-
lying symmetry in the orientational free-energy landscape to
achieve an overall reduction in the number of independent
torques applied by half. Also, independent controls on the
vertical and orientation biases allow the description of a wide
range of systems and conditions. The number of available
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degrees of freedom can be used to model fundamentally
different interfacial conditions (i.e., fluid—NP and fluid—fluid
surface tensions, NP size and shape, etc.).11

By studying the varying degrees of truncation for different NP
shapes, we provide justification for our choice of linear
combination of the feature potentials and a quadratic form of
the feature potentials (eq 3). However, the form of the
orientation bias is flexible and can be tuned to fit specific
applications. We also investigated a three-parameter Gaussian
bias potential (eq 3b). As seen in the corresponding R* values
(Table 1 and section III of the Supporting Information), this
form of the potential provides a considerable improvement over
the harmonic form. From an empirical viewpoint, the k, ¢
parameter can be seen as a measure of the relative contribution
of the f™ feature to the PMF landscape. However, we also show a
strong physical correlation among k, ; the NP size, and interfacial
properties. Similarly, we show that the chosen forms of the
function and the feature choice combine to capture the effect of
NP shape. Finally, we explored the deployment of our
formulation in the context of the self-assembly of a large array
of CO NPs. Our results show the existence of the honeycomb
bilayer and the square monolayer at different interfacial
conditions. These are consistent with the phases observed
experimentally and reported in recent simulation studies. In this
study, we have focused only on a specific case of NPs of size ~5
nm. However, it is worth noting that the combined effect of the
interplay of the orientation, vertical position preferences, and
the energy of bonding can lead to vastly different phase
behaviors for different NP sizes (see discussion in section V of
the Supporting Information).

Rather than using analytical biasing potentials, the raw
simulated FE landscape data could also be directly used (i.e., if
stored as tables) and deployed in multi-NP simulations by
employing a suitable tabular interpolation scheme (like piece-
wise cubic splines) to produce any required on-the-fly forces and
torques. The quaternion-based functional fits advocated here,
however, have the advantage of not only efficiently encapsulat-
ing the FE data (factoring out redundancies by incorporating the
system’s symmetries) and avoiding numerical discontinuities
but also providing a deeper understanding of the behavioral
trends with changes in particle shape or interfacial conditions
through the concomitant trends in a few physically meaningful
model parameters.

We observe that the degree of truncation introduces
significant changes in the NP orientation preference. Ongoing
simulations aim to collate and catalog the rich phase behavior of
multi-NP systems as a function of the parameters controlling
single-NP orientation preferences for different shapes. Within
the scope of this study, we have not considered the effect on NP
orientation of interactions of the NP surface or ligands with the
fluids. However, it is straightforward to show that the proposed
feature-based formulation can encode those characteristics too.
Additional studies could also examine the self-assembly of a
polydisperse mixture of similar shapes and sizes. Such efforts aim
to achieve a better understanding of the actual physical
conditions and processes accessible via experiments. As reported
before,'" as the NP moves away from the interfacial plane, the
orientation preference changes; hence, an added layer of
complexity would be to model the effect of change in orientation
preference with changing distance from the interfacial plane (eq
2). Further, targeted studies are warranted to test and refine the
assumption of additivity between inter-NP potentials and single-
NP biases as employed in our multi-NP assembly simulations.

https://dx.doi.org/10.1021/acs.jctc.0c00283
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Finally, the NPs could be simulated with added coarse-grained
ligand grafts to add a greater level of detail to the model.
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