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Rare events play a key role in many applications and numerous algo-
rithms have been proposed for estimating the probability of a rare event. How-
ever, relatively little is known on how to quantify the sensitivity of the rare
event’s probability with respect to model parameters. In this paper, instead of
the direct statistical estimation of rare event sensitivities, we develop novel
and general uncertainty quantification and sensitivity bounds which are not
tied to specific rare event simulation methods and which apply to families of
rare events. Our method is based on a recently derived variational representa-
tion for the family of Rényi divergences in terms of risk sensitive functionals
associated with the rare events under consideration. Inspired by the derived
bounds, we propose new sensitivity indices for rare events and relate them
to the moment generating function of the score function. The bounds scale in
such a way that we additionally develop sensitivity indices for large deviation
rate functions.

1. Introduction and main result. Rare events play an important role in a wide range
of applications. For example, in insurance, finance and risk management, rare events play
an outsized role due to potentially catastrophic consequences [31]. In queueing theory the
probability of a buffer overflow often needs to be estimated [33], and in molecular dynam-
ics, metastability effects play a crucial role in determining the behavior of the system [9].
Similarly, extreme value theory studies events and statistical samples which are far from the
typical observed [19]. There is a large body of literature on rare event simulation and many
different techniques have been developed to approximate the probability of a rare event. For
example, importance sampling [3, 18, 34] transforms the distribution of random variables in
order to make the rare event typical and corrects for bias using the likelihood ratio; interact-
ing particle systems methods [12, 13] use many (dependent) copies of the system to speed
the exploration of state space; splitting techniques [11, 21, 26, 40] decompose the problem of
a single rare event into a sequence of not so rare events; and so on. Closely related are mul-
tilevel methods inspired primarily by statistical mechanics considerations, for example, [30],
as well as by rare events involving barrier crossing in molecular simulation, for example, [20,
37].

In this paper we are primarily interested in the problem of uncertainty quantification (UQ)
and in particular sensitivity analysis for rare events, a problem of practical importance when-
ever there is uncertainty in the parameters of the model or even in the model itself. This
problem has rarely been addressed in the literature despite the fact that the statistics of rare
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events are often heavily influenced by the particular values of model parameters. The case of
Poisson processes in the context of importance sampling for risk models was considered in
[4, 39], while more recent work, [1], proposed importance sampling combined with splitting
techniques in the context of Gaussian models and Malliavin calculus. Some examples using
the likelihood ratio method are also discussed in [14].

Our approach in this paper is not based on any specific algorithm for rare event simulation
but rather on novel information theoretic bounds. These bounds allow us to define a new
sensitivity index that is independent of the particular event. Instead, the bounds hold for
all rare events with probability above any fixed threshold. Specifically we utilize the Rényi
family of relative entropies (a.k.a. Rényi divergence) as a measure of uncertainty between
probability distributions and a new variational representation for risk-sensitive functionals in
terms of Rényi relative entropy, derived by Atar et al. [5], to obtain general bounds on the
uncertainty quantification and sensitivity analysis of families of rare events.

We first introduce the main objects of interest, namely sensitivity indices for probabilities
of rare events, and discuss the challenges involved in their estimation. We then present the
main result of the paper: bounds on the sensitivity indices for the families of events whose
probability is at least e~ where M is any fixed rare event threshold. At this stage we
assume the degree of rarity is characterized by M but later on a large deviation parameter
will be introduced in Section 7.

Gradient sensitivity indices for rare events. Let P? be a family of probability measures
parameterized by a vector 8 € RX. We assume that PY « R where R is a reference measure

and we denote by p? = ddL}: the corresponding family of densities. We also assume that the
mapping 0 — p?(x) satisfies suitable differentiability and integrability conditions in order to
interchange integration and differentiation. For a rare event A with 0 < P?(A) <« 1 we define
the sensitivity index in the direction v € RX by

v Ve PY(A)
PY(A)

(1) $%(A) =vTVglog PY(A) = ,
which describes the relative change of the quantity of interest PY(A) with respect to the
parameter 0 in the v direction.

One of the simplest ways to estimate the sensitivity index (1) is by considering finite
difference approximations for each partial derivative, that is, considering all coordinate unit
directionsv=¢; e RX, i =1,2,..., K:

log P9+¢¢i (A) —log PY(A)

2) So(A) ~
&

However, the cost of implementing such an approximation can be prohibitive, given the cost
of estimating the small probabilities poteei (A),i=1,2,..., K. A variant of the likelihood
ratio method can at least partially address this issue, as we discuss next.

Likelihood ratio method for rare events. The gradient sensitivity for expected values of
observables can be computed using various methods, such as the likelihood ratio method and
infinitesimal perturbation analysis; see, for example, [3]. While these methods are in princi-
ple applicable to the problem of computing the rare event sensitivity index (1) (as we show
next in the context of likelihood ratio), they still require the use of some form of accelerated
Monte Carlo simulation, for example, importance sampling [3], to (possibly) obtain accept-
able performance when rare events are involved.

We define the score function for the parametric family P? by

3) W (x) := Vg log p (x),
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with the convention that W?(x) = 0 if p?(x) = 0. We also denote by PleA the probability
P? conditioned on the event A, that is, P& (dx) = P+WXA (x)p9 (x)R(dx), where x4 is the
indicator function.

Under suitable conditions to ensure the interchangeability between integrals and deriva-
tives, the sensitivity index for the rare event A given in (1) can be rewritten as

vI'Vo [y p?dR T [, WP dPY
PlA)  PYA)

An algorithm that estimates (4) by combining the likelihood ratio method with importance
sampling through interacting particles was recently developed in [14]. Both approaches, (2)
and (4), are feasible only when an accelerated Monte Carlo scheme appropriate to the partic-
ular event A has been designed. Therefore, sensitivity analysis methods for rare events which
would apply to a whole class of events A (or more generally expected values which are sen-
sitive to rare events), would be a more practical computational tool. One approach to this end
is to derive upper and lower bounds for Sf (A) that can serve as new sensitivity indices. These
are of course less accurate, but may be much easier to compute, and can be used to identify
those parameters for which greater accuracy is not needed. We show next that the well-known
Cramér—Rao type bounds are not useful for the sensitivity analysis of rare events.

) S5 (A) =

_ T wx/0
—EP&[U w ]

Failure of Cramér—Rao type bounds. The sensitivity index for a regular, that is, non-
rare, observable has the form VgE po[ f]1 =Epo[ f W?]. This can be easily bounded using the
Cramér—Rao inequality [25], that is,

VT Ve ps[£1] < \/Varps [ 1,07 F(P)v,

where F(P%) =E po [W? (W?)T] is the Fisher information matrix. Applying the Cramér—Rao
bound to a rare event A yields

1 1— PY(A)
5) |89(A)] = Pe—(mmpg [xav? W?]| < Pe—w,/vT}"(Pg)v.

Unfortunately, this (naive) sensitivity bound is rather useless since it scales as P?(A)~
This can be very large for a rare event A, while one expects the sensitivity index to be of
order O(1).

1/2.

Information-based sensitivity indices for rare events. In view of the difficulty of directly
approximating (1), the main contribution in this paper is to develop information-based bounds
for the sensitivity indices defined in (1) that apply to families of rare events. The bounds
involve only a single risk-sensitive functional for the score function W¢. While this quantity
must be approximated, the bound does not require a different rare event sampler for each
distinct rare event. One of the main results proved in this paper is presented next, while
complete technical assumptions on P are given in Section 4.

Main result: Sensitivity bounds and a sensitivity index for rare events. For 0 < M < 00
let
Ay =1{A:P'(A)=eM)

denote the sets, parametrized by the positive constant M, of all events which are equally
probable (or rather equally rare if M >> 0). Then, for any A € Ay we have

(6) IV (M) < S5(A) <TI0 (M),
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where
{ HY (+a)+M

(7) 70 (M) :=+ inf
’ o

a>0

} with HY (@) = log E ps [ "'].

(Note that Hl? () is the cumulant generating function for the score function W defined in
(3).) Furthermore, denoting by Pg the exponential family of tilted measures

0
dp, _eavTWG—Hf(a)’

dpP®
we have
d
(8) 70 (M) = —H’(a) =Eps [vT W]
’ do a=ta4 ot

Here a1 are determined by
R(PY,, | P') =M.

and R(Q || P) denotes the relative entropy of Q with respect to P. See Figure 1 for a graph-
ical depiction of the characterization of o 4.

The proposed rare event sensitivity indices (7) are bounds for the gradient-based indices
(1). They do not require a rare event sampler for each rare event A, as one readily sees in
the definition of (7) or (8), and they apply to the entire class Ay, of rare events, that is for
the probability level sets for the parametric model P?. Intuitively, Ig .+ (M) balances between
the rarity of the event as quantified by M and the cost to be paid in order to make the event
less rare as quantified by HUQ (o). Note also that, due to the monotonicity of (7) in M, the rare
event sensitivity indices Iﬁ #(M) actually characterize the sensitivity of the model P? for
each family

Ay i=1{A:PY(A) > ™M),

that is, all events which are less rare than the threshold e~ . In this sense, the bounds (6)
present similar computational advantages and trade-offs as other sensitivity bounds for typical
observables (not rare event dependent), such as the Cramér—Rao information bounds, see (5).
Namely they are less accurate than the exact gradient-based indices (1), but they can be
used to determine insensitive parameters and directions v, without requiring recalculation for
different events A. We present a simple demonstration of such an insensitivity analysis based
on the bounds (6) in the last example of Section 6.

Additionally, in ordinary Cramér—Rao bounds, the sensitivity of the parametric model is
encoded into the Fisher information matrix (the variance of the score function), for rare event
the cumulant generating function of the score function plays a central role. Since the cumulant
generating function controls rare events (as in Cramér’s theorem) our bounds show that the
rare events associated to the score function control the sensitivity of all rare events. The
question of the tightness of the sensitivity bounds will be addressed in [6], which discusses
the UQ and sensitivity analysis for more general risk-sensitive functionals.

For a practical implementation of the bound one can use concentration equalities [8] in a
similar manner to UQ bounds for regular observables, [23], and obtain easily computable but
less accurate bounds, see Section 5. As the bound involves the moment generating function
of the score function, the rare event simulation techniques mentioned at the beginning of
the Introduction could also in principle be used to solve the optimization problem in the
sensitivity indices. We plan to revisit this issue in a follow-up publication.

The paper is organized as follows. In Section 2 we begin with the study of an optimiza-
tion problem which appears several times throughout the paper and then proceed with the
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definition and the properties of the Rényi divergence. In Section 3 we derive our main UQ
bounds based on the Rényi divergence optimized over its parameter. We then derive in Sec-
tion 4 information inequalities for the sensitivity indices. In Section 5 we discuss the practical
implementation of the sensitivity indices for rare events, via concentration inequalities or via
numerical estimation. We illustrate our results on several distributions from the exponential
family in Section 6, and in Section 7, we present sensitivity bounds for large deviation rate
functions.

2. Mathematical preliminaries.

2.1. An optimization problem. In order to obtain optimal UQ bounds we have to con-
sider a certain optimization problem involving cumulant generating functions. We note that
a bound function with similar structure has been derived and studied recently in [10, 17, 28],
and we slightly generalize and reformulate those results in this section.

Let X be a Polish space, B(X) the associated Borel o-algebra and denote by P(X) the
set of all probability measures on (X, B(X)). Given a probability measure P € P(X) and
a measurable function g : XY — R consider the moment generating function Ep[e*8] with
a € R. We will assume that g is such that the moment generating function is finite in a
neighborhood of the origin and denote the space of such functions by £.

DEFINITION 1. A measurable function g : X — R belongs to the set £ if and only if
there exists &g > 0 such that E p[e*%08] < o0.

If g € £ then as is well known g has finite moments of all orders, see also the discussion
the Appendix.

DEFINITION 2. Given P € P(X) and g € £ the cumulant generating function of g is
given by
H(a) :=logEp[e*¢].
A family of probability measures naturally associated to H («) is the exponential family Py

given by

dﬁ — eag—H(oe)
dP ’
which is well defined if H («) < o0.

In the Appendix, we summarize various useful properties of cumulant generating func-
tions. These will be needed to study the following minimization problems, which arise in the
definition of the sensitivity indices introduced in Section 1.

PROPOSITION 3. Let P € P(X) and g € £ with g not a constant P-a.s. Suppose
(d—,dy) is the largest open set such that H(x) < oo forall @ € (d_, dy).

1. For any M > 0 the optimization problems
. H(Fo)+M
inf ———
a>0 o

have unique minimizers a™ € [0, 2d+]. Let M+ be defined by
J— 1 / _
My = }Hﬁii taH (a) — H(xa).

o

Then the minimizers a4 = o+ (M) are finite for M < My and oy (M) = +dy if M > M.
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2. Ifax (M) < xdy then

HEop)+M _ . HED)+M
= 1n
o4 a>0 o

9) =+4+H (fay) = :I:IEPMi [gl,

where ay (M) is strictly increasing in M and is determined by the equation
(10) R(Pioy | P)=M.
3. My is finite in two distinct cases.

(a) If £d+ < oo (in which case g is unbounded above/below) My is finite if
limy_+4, H(fa) := H(d+) < 00 and limy—, 14, TH'(£a) := £H'(d+) < 00, and for
M > My we have
.. HEo)+M Hdy)+M M- M,

f = =+4E .

;r>10 o :|:d:|: Fay [g] + :i:d:t

(b) If £d+ = o0 and My is finite then g is P-a.s. bounded above/below and for M >
My we have

(1)

H(£ M
inf HEO)+M =esssup{tg(x)}.
a>0 o XeX

(12)

PROOF. The proof of Proposition 3 can be found in the Appendix. A geometric depiction
of the Proposition when M < M is shown in Figure 1(a). U

Unless the random variable g is symmetric, in general the two optimization problems are
not related to each other since they involve the cumulant generating function for o > 0 and
o < 0 respectively.

REMARK 4. An alternative characterization of the minimizers uses the Legendre—
Fenchel transform of H («),

L(8) = sup{ad — H(a)},

aeR

which is a convex function with a mimimum equal to O that is attained at Ep[g]. The opti-
mality condition (10) for e+ can be written, equivalently, as

M = L(+81) where§+ =+H'(+oy).

Thus the set of values of M for which a finite minimizer exists corresponds to the possible
level sets for L(5) (the rate function in Cramér’s theorem [15]), provided L(§) is strictly
convex.

If the function g is centered, thatis, Ep[g] = 0, then when M = O the minimizers are o =
0 and we can expand o+ as a Taylor series in the variable «/ M as the following proposition

shows, which was proved in [17], Lemma 2.10, and will be useful for nonrare events.

PROPOSITION 5 (Linearization). If g € £ with Ep[g] = 0 then we have

H(+a) + M
inf LEDTM N arp(e)M + OM),
a>0 o
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A H(o)+M .

(@) -- -H/(aa) it

FI1G. 1. (a) Graphical representation of (9) which depicts the relation between the minimum of (H («) + M)/«
(solid line) and the derivative of cumulant generating function, H'(a) (dashed line). Using the fact that
infy~o(H(—a) + M)/a = —sup,, .o(H () + M)/, we display the relation for a_ at the third quadrant. Note
that both minimizers are attained at the intersections of the two curves, however, the two branches are generally
not symmetric resulting in different values (i.e., ay # a_). (b) Graphical representation of Remark 4 which re-
lates the optimal values of (H () + M) /o with the Legendre transform of the cumulant generating function. For
demonstration clarity, we assume that E[g] = 0 so that L(8) > 0 and L(§) =0 if and only if § = 0.

2.2. Rényi divergence, relative entropy, and a variational principle. In this section, we
discuss the concepts of Rényi divergence and associated variational representations and dual-
ity formulas. These tools provide the mathematical foundations for the uncertainty quantifi-
cation and sensitivity analysis methods introduced in the subsequent sections.

Given P, Q € P(X), we pick a reference measure R € P(X’), such that P << R and 0 «
R (i.e., P and Q are absolutely continuous with respect to R). Denote by p = d R P (resp. g =

—R) the Radon—Nikodym derivative of P (resp. Q) with respect to the reference measure R.

Then, for o > 0, a # 1, the Rényi divergence of degree o of O with respect to P is defined
by (cf. [5, 29])

q .
—— 1o (=)*dP ifQ«Pora<l,
Ra(Q 1 P)i=a@—1) o0 p

+00 otherwise,

and is independent of the choice of the reference measure R. Another common definition of
Rényi divergence utilizes the factor _— (cf. [32, 36, 38]) instead of _—— a( ——17- When P and Q
are mutually absolutely continuous, Renyl divergence can be written w1th0ut reference to a
reference measure as

_ 1 doN“_ 1 dQ
(13) Ra(Q|P)= 2D long[(dP) } ~ e -1 logEp [exp{oelog 1P ”
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where the rightmost expression reveals that Rényi divergence is proportional to the cumulant
(or log- moment) generating function for the logarithm of the Radon—-Nikodym derivative
(.e., log ) The definition of Rényi divergence is extended to o = 1 by letting R, (Q ||
P)= R(Q | P), where R(Q || P) is the relative entropy (or Kullback—Leibler divergence)
defined by

/ T1o0sdap ito< P,
pq>0 D p
+00 otherwise,

RQ I P):=

and we have limy .1 Ro(Q || P) =R(Q || P).In view of (13) we can also extend Ry (Q || P)
to negative values of « if Q and P are mutually absolutely continuous. Due to our convention
for the definition of Ry (Q || P) we have the symmetry Ry (Q || P) = Ri—«(P || Q) and
thus, in particular, Ro(Q || P) = R(P || Q). Further properties of the Rényi divergence can
be found, for example, in [22, 36, 38].

A variational formula in terms of Rényi divergence, recently derived in [10], Theorem 2.1,
will play a central role in this paper.

THEOREM 6 (Variational representation involving Rényi divergence). Let 8,y € R\ {0}
with B <y and let P € P(X). For any bounded and measurable [ : X — R we have

1 1
— Bf1= ; — f -
(14) ﬁlogEQ[e ]_Pelgfx){y logEp[e” ]+ ﬁR @ P)}
(15) llogIEQ[er] = sup {llogEP[eﬂ 1- —R (P I Q)}
Y PeP(X) y—»5

REMARK 7. The variational representation formula (15) is a generalization of the
Donsker—Varadhan variational formula involving relative entropy (also know as the Gibbs
variational principle) [16, 35]. Indeed taking y =1 and § — 0 in (15) we obtain the well-
known formula
(16) logEp[e/]= sup {Ep[f1—-R(P | O}

PeP(X)
Note that the variational formula (16) serves as the basis of the UQ theory for typical events
developed in [10, 17, 23, 24].

3. UQ bounds for rare events. Let P, Q € P(X) and g : X — R be a measurable func-
tion. It is convenient to think of Q as the “true” probabilistic model and of P as a “nominal”
or “reference” model. By Theorem 6, equation (14), we have the upper bound

(17) %ngQ[ he] < llong[eyg] + ;ﬂR Q| P),

which constitutes an upper bound for risk-sensitive observables (i.e., where tail events mat-
ter). The upper bound consists of two terms; one being an estimate of the risk-sensitive ob-
servable under the “nominal” model and the second term being the cost to be paid for the
substitution of the “true” model, here, quantified by the Rényi divergence.

By taking the limit 8 — O, it formally holds that

1 1
(18) Eolgl = ;IOgEP[eyg] + ;R(Q I P),

which is an upper bound for typical (i.e., not risk-sensitive) observables. This upper bound
(18) was the starting point for deriving UQ and sensitivity bounds for typical observables in
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[10, 17, 23, 24, 28]. Here we derive respective bounds for log-probabilities of rare events,
which form a particular class of risk-sensitive observables. In other words, we are interested
in bounding quantities of the form log Q(A) —log P(A). The following theorem summarizes
the UQ bounds for rare events.

THEOREM 8. (a) Fix P,Q € P(X) and let A € B(X) be such that P(A) > 0 and
Q(A) > 0. Then

1
suI()){—(a + DRy 1 (P Q)+ alog P(A)}

(19)

<log Q(A) —log P(A) < ing{aRaH(Q I P)— log P(A)}-

+1
(b) If P and Q are mutually absolutely continuous, then (19) can be rewritten as

__[logEp[(44)*] —log P(A)
— 1nf{ }
o

a>0

(20)

ogEp[(99)*] - log P(A)}

<logQ(A) —log P(A) < inf{
a>1 o

PROOF. (a) We first prove the upper bound. By setting § =« and y =« + 1 in (17), we
get

1
—1 E 8] <
o logEg[e™] <

1
T logEp [e©@D8] + Ryi1(Q || P).

By taking « > 0 and considering g =0 on A, g = —M on A° and then sending M — oo, the
above inequality becomes

1 1
—log Q(A) < log P(A) + Re+1(Q || P).
o a—+1

Multiplying with o and subtracting log P(A), we have

log Q(A) —log P(A) <aRet1(Q || P) — log P(A).

a+1

Since this holds for all « > 0, the upper bound in (19) is proved. For the lower bound, we
reverse Q and P in (17) and proceed as in the upper bound.
(b) Substituting the Rényi formula (13) in (19), we get

loeE dp et 11 P(A
sup{ 1o (G5) [+ g oz P ]

1
<log Q(A) —log P(A) < inf{
a>0|l o +

Equivalently,

{—ll E [(d—P)a}—f-ll P(A)}
il (ag) e

<log Q(A) —log P(A) < 1nf{—10ng[(leJ> } — élog P(A)},

which is exactly (20). U
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We turn next to determining the optimal « in (20) using the results from Section 2.1. We
select the function g = log % € £, whose cumulant generating function is

@1) H(a) = logEp[e® o2 7],

As is readily apparent from the bound (20), in order to obtain nontrivial upper and lower
bounds we should assume H («) is finite in an open neighborhood of the interval [0, 1]. If we
assume this then the function H («) has the following elementary properties:

1. HO)=H(1)=0.
2. H(O)=-R(P | Q), H (1) =R(Q || P).
3. More generally for any o we have

dQ
@) H'(@ = Bp,|log 5 | = R(E | )= R(, 11 O
where P, is the exponential family given by

dP o, l—a
(23) @ _ q°p ‘
dR  [q%p'~@dR

The family P, interpolates between P and Q since Pp = P and P; = Q.

Using these properties, as well as Proposition 3 we obtain the following, explicit UQ
bounds for all rare events A such that —log P(A) = M.

THEOREM 9 (UQ bounds for rare events). Let P, Q € P(X) be mutually absolutely
continuous and assume that H () given in (21) is finite for o in a neighborhood of [0, 1].
Let My, 0 < M1 < 00, be the constants given in Proposition 3 (with g = log %). For any
A € B(X) with P(A) =e M > 0 with M < My we have

0 ifM<R(Q| P),
24 ~R(P-o_ 1 Q) =log Q(A) =
(24) ( I Q) <log O( )<{—R(Pa+ 0 ifM=>=RQI| P),

where aL = ar (M) are the (unique) solutions of

(25) R(Piay || P) =M = —log P(A).

PROOF. With H(«) given in (21) and setting M = —log P(A), part (b) of Theorem 8 is
rewritten as

(26) — inf

a>0

{W}SIOgQ(A)+MSian

a>

{H(al-ﬁ—M}'

The lower bound is then an immediate consequence of Proposition 3 together with (22) and
(25).

However, the upper bound involves a modified calculation since the infimum is taken only
over o > 1. We first note that the corresponding minimization of the quantity

@7 Ba:; M) = O TM

arising also in the proof of Proposition 3, for example, (62), separates into two distinct cases.
Indeed, for any @ > 1 we have

eH'@) -H@-M 1-HO-HDH-M _REQ|P)-M

(28) B'(a: M) = : . Ay

o o o
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using the Properties 1-3 above for H («) and the fact that o H'(«) — H («) is a strictly in-
creasing function of « in [0, 00).
First, (28) implies that if

(29) R(Q || P) > M = —log P(A),

then B(«; M) is strictly increasing in o, hence the infimum on the upper bound of (26) occurs
at @ = 1. In this case, using that H(1) = 0, we obtain that

H M
(30) inf{L} =M.
a>1 o
On the other hand, if we have
(31) RO P)<M=—logP(A),

then B(«; M) has a unique minimum, and the minimizer (equivalently, the minimizer of the
upper bound of (26)) occurs at the unique finite root o4 = o4 (M) > 1, namely

H(ax)+M
o

(32) inf {

a>1

} — H'(ay) =M —R(Pa, || Q).

We now combine (30) and (32) with the upper bound of (26) to obtain (24).
Note that the upper bound in (24) is not discontinuous in M since for M = R(P | Q),
a4 =1 and by Property 3 we have that Py = Q; thus R(Py, | Q) =R(Q || 0)=0. 0

REMARK 10. We obtain the trivial bound log Q(A) < 0 in Theorem 9 when the true
measure Q is (relatively) too far from the reference model P. This relative “distance” (see
(29) and (31)) is quantified by the ratio % which is required to be less than 1 to obtain
an informative upper bound in (24).

REMARK 11. We can interpret the condition for o+ in (25) by noting that the measure
P conditioned on the rare event A, P4 satisfies R(Pj4 || P) = —log P(A). Theorem 9 states
that one should find the proper mixtures of P and Q (as described by P4, ) so that R(P+q, ||
P)="TR(Pa |l P). The bounds for —log Q(A) are then simply R(P+q, || O).

Finally, we note that a much cruder UQ bound than (19) can be obtained by considering
the upper lower bounds obtained by taking o = oo in (19). Indeed, we can consider the
alternative definition of Rényi divergence [38]

Dy (Q || P)=aRa(Q |l P),
and accordingly rewrite (19) for D, (Q || P). Noting that

g
D P) =suplog—,
o (Q Il P) suplog 7 p
also referred to as worst-case regret, [38], we can bound (19) from above and below by
selecting o = oo. This substitution obviously yields a less sharp version of (19), namely the
(trivial) bound

d d
(33) )}gﬁglogd—g = —Deo(P || Q) <log Q(A) —log P(A) = Do (Q || P) =§161210g d—IQJ-

Note that this bound is valid if M+ < oo and M > M4, as long as log Z—IQJ is bounded from
above/below.
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4. Sensitivity indices for rare events. In this section we consider a parametric family
of probability measures P? € P(X) with 6 € RK and we assume P? « R, where R is a
reference measure in P (X)) and with density p’ = d = - We further assume that the mapping
6 — pY(x) is twice differentiable with respect to @ for all x € X' together with a suitable
integrability condition on log p? (x) to allow the interchange of integral and derivatives. The
sensitivity index for a rare event A € B(X) (with P(A) > 0) in the direction v € RX is then
given by

log P/1¢V(A) —log P?(A)
&

Epo[xavT W]
P(A)

(34  SYA) = lim =Ep [v Two = :
where W9 = Vj log p? is the score of the probability measure P?, see also (4).

Here, we derive computationally tractable bounds on the sensitivity indices SY(A) and
corresponding new rare event sensitivity indices Ig,i’ starting from the UQ bounds presented
in Section 3.

By considering the measures Q = P?+¢V and P = P? we have that log

thus it is natural to rescale the parameter « according to

dPg = O(e) and

o
(35) o=
€

Taking ¢ — 0 we obtain a nontrivial bound for the sensitivity indices as the following The-
orem shows. Next, in order to state our results we require the cumulant generating function

for the score function W defined in (3):
HY (@) =10gE po [e“”TWg].
This cumulant generating function has the following elementary properties:

1. (H)(0)=Eps[vT W/]=0.
2 (HQ)”(O) = v Eps [W/ (W) T v = v F(P?)v where F(P?) denotes the Fisher infor-
mation matrix for the parametric family P?.
3. More generally we have

(H) (@) = Epo [0 W],
where P(f is the exponential family with
dP9 eavTW9 H‘g(a)

dP?

THEOREM 12. Assume that the mapping 0 — p?(x) is C* for all x € X and that for
each ag > 0 there exists 5 > 0 such that

/
Epe [eaovTVg 10gp9+0l0% SUPjg_g/|<s |vTVg log p? vl] < oo,

Then

(36) — inf

a>0

{ HY (—a) —log P?(A) }

HY (o) — log P"(A)}
- :

< S0(A) < inf {
o> (07

PROOF. Rewriting (20) for P?*¢¥ and P? and substituting o from (35), we get the upper
bound

0+¢cv

log P9+e7(A) —log P?(A) <

’

{logE pole dogp"**—logp")) _ 100 P(’(A)}

ap/€
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valid for all op > €. Dividing by ¢, sending ¢ — 0, and then infimizing on «g, we get

1
lim —(log PY*¢(A) — log P?(A))

e—>0¢&

limg o log B ps [e # (027" =102 2] 100 PO (A) }

< inf {
(o))

>0

In order to complete the proof of the upper bound we have to interchange between the limit
and the integral. This is justified by the dominated convergence theorem since we have from
Taylor’s theorem that

4
eag%(logp“”—logp") _ eao(vTV@ logpg-i-%vTV(g log p?" v)
/
< eao(vTV9 log p9+% SUP|g_g/| <5 \UTVH2 log p? v))

for some 6’ in the interval defined by the points 6 and 6 + gv and for & < 8. Therefore,

Ay < g 10ZEp[e0 Y] — log P (A)
v T >0 o

which establishes the upper bound in (36). The lower bound in (36) is proved similarly. [J

Using (9) and (10) from Proposition 3 to evaluate the infimum in (36), we obtain a repre-
sentation of the bounds.

THEOREM 13 (Sensitivity indices for rare events).  Under the same assumptions as in
Theorem 12 consider the family
Ay ={A: PY(A) > ™M)}

of all events A which are less rare than a specified threshold e . Then there exists M. such
that for M < My and any A € Ay we have

37) Iy (M) < S5(A) <I) (M),
where
6
(38) I0 (M) =+ ing{H’)(in} =Eps_ [v" W]

and oy are determined by

R(PY,, || P!)=M.

Similarly to Theorem 13, the rare event sensitivity indices If’i(M ) characterize the sen-
sitivity of the model PY for each M-level set Ay =1{A: log P?(A) = —M}, that is, corre-
sponding to all events which are equally rare and characterized by M.

The new sensitivity indices defined in (38) are in general less sharp than the gradient-based
indices Sf (A) in (34), due to the inequalities (37). However, they do not require a rare event
sampler for each rare event A, as one readily sees by comparing (4) to (38). In fact the indices
Iﬁvi(M ) are identical for the entire classes of rare events in .4, or in .A,;. In this sense, they
present similar computational advantages and trade-offs as other sensitivity indices for typical
observables (not rare event-dependent), such as Fisher information bounds, [17]; in particular,
they are less sharp but can be used to efficiently screen out insensitive parameters in directions
v in parameter space, that is, directions v where Ifii(M )=E P, [vI W?] ~ 0; we refer for

such sensitivity screening results to [2], at least for typical events and observables.
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5. Bounds and approximations for the rare event sensitivity indices If’ +(M). The
upper and lower bounds in Theorem 12 and the representation of the sensitivity indices in
Theorem 13 suggest at least two approaches to practically implement the indices Ifii(M ).
The first one is based on concentration inequalities, while the second one relies on the di-
rect statistical and numerical estimation of the indices If,i(M ). We next discuss the first
approach.

Concentration inequalities. Concentration inequalities, that is, explicit bounds of the
probability of tail events, are often obtained via a Chernoff bound by using computable upper
bounds on the cumulant generating function of the random variable. Such upper bounds typ-
ically involve only a few features of the underlying random variable such as mean, variance,
bounds, higher moments, and so on, see for instance [8].

Here we can naturally use such inequalities to provide simplified and computable bounds
for the variational formula for the sensitivity index, namely

HY (xa) +M}
a b

I0 (M) =+ inf{
a>0
by bounding the cumulant generating function of the score function
HY (@) = logE ps [e“”TWg].

We provide two such examples, by making the assumption that the score function is bounded.
One can prove similar results in the same spirit by using different assumptions on the tail
behavior of the score function, for example, if we assume that the score vIW? is a sub-
Gaussian or a sub-Poissonian random variable [8].

A similar use of various concentration inequalities in order to obtain computable uncer-
tainty quantification bounds for ordinary observables was proposed recently in [23].

THEOREM 14 (Bernstein sensitivity bounds for rare events). We consider the same as-
sumptions as in Theorem 12; we further assume

sup I wh (x) < b,
xeXxX

for some by, > 0. Furthermore, let
F(P) = pu[ W (W')]

be the Fisher information matrix for the parametric family P?. Then, we have the following
two bounds on the cumulant generating function of the score function (3), HUQ (o), and the
sensitivity index If’ L (M):

(a) For all @ > 0 we have the concentration inequality

T P9
(39) HE (@) = log E po [ W'] < LT EV

— b2 ¢ (bva) ’

where ¢p(x) =e* —x — 1.
(b) Using the notation of Theorem 13, we have, for all M < M+,

(40) I0 (M) <byM + /20T F(P)uM.
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PROOF. (a) Follows immediately from Theorem 2.9 in [8] by noting that E po w? =0,
therefore we have that Var ps wTw?) = UTEPe (WO WHT v =vT F(P)v.
(b) First we note that ¢ (x) < z(f—ix), for 0 < x < 1. Therefore, part (a) implies that

{Hf(a)+M}

41 7% (M) := inf
(41) vt (M) in .

< inf {vT}"(PQ)v
>0

T O<bya<l

o? n M}
2(1 —bya)  «a )

We next change variables to ¢ = (bya)~! > 1, and then it is easy to show that the minimum

T 0
occurs at ¢* =1+ b1 %

“4n. O

. We conclude by substituting into the right-hand side of

REMARK 15 (A Bennett sensitivity bound for rare events). A much tighter concentration
inequality than (39) is given by the Bennett inequality in [15], Lemma 2.4.1; see also Figure 2.
Here, using again that [E ps W? =0 and Var po wTw?) = vT F(P?)v, we have that

2 2
0 _ avT w? by 2 (o
(42) Hy(a) =logEpo[e = 10g<m exp(—ao; /by) + b2 o2 eXP(Olbu)),

v v

for all « > 0 and where ovz is any upper bound of Var pe wTw?) =T F(P?)v. Therefore,
we can pick
o2:=vI F(P’)v and b, :=supv’ Wo(x).
xeX
Then, the corresponding bound on Z? (M) is not analytically tractable, however the result-

ing variational representation is one-dimensional and is trivial to find the optimal solution
numerically:

43 I (M)<'f{11 ( by (—a02/by) + o (b)>+M}
1m — 10 — EXpl—OOo —— EXpPX .
v,+ = ol g bv2+03 P v/ bv bv2+0v2 plady a

18 T T T T T T T

Bernstein
16 — — Bennett

- N W s~ O

Bound

zn}

FI1G. 2. Bernstein (solid) (40) and Bennett (dashed) (43) concentration inequality bounds for fixed values of

by and oy. The Bennett inequality is sharper and in fact it is also tight at M = oo where its asymptotic limit is

by > E Pl Tl Wg]. The inset plot zooms in near the origin where the event is not so rare and the bounds have
at

a behavior close to the linearized bound (dots) (45).
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REMARK 16 (Linearized bounds). If an event A is not rare, that is, P?(A4) ~ 1 or
—log PY(A) ~ 0, the calculation of the sensitivity indices vai(M ) is fairly trivial. Indeed,

we can expand the sensitivity index (38) in a power series in ,/—log P?(A), if we assume
that

(44) M =—log P’(A) < 1.

Then the sensitivity index in the bound (37) is approximated as

(45) I0 L (M) = £,/20T F(PO)vM + O(M),

where F(P?) is again the Fisher information matrix for the parametric family P?. The ex-
pansion (45) follows from the observation that E pe[Vy log p‘9] =0 and a direct application
of Proposition 5 together with the formula for (HUG )'(0) = v F(P?)v. We also note that the
Fisher information matrix arises when sensitivity bounds for ordinary observables are lin-
earized [17], Theorem 2.14. However, in order to get the bound in (45) two linearizations
were performed here; one capturing the closeness between P’V and P? and another cap-
turing that the event is actually not rare. Interestingly, the linearization (45) is also identical
to the dominant term in the Bernstein bound (40) for small M = —log P?(A), that is, when

20" F(P?)v
<— .
by

REMARK 17. Although the bounds (40) and (43) are less tight than the index If’ (M),
they are much easier to estimate than If’ 1 (M) since they only involve the sampling of the
Fisher information matrix 7 (P?), whose calculation does not entail rare event sampling. Fi-
nally, the sensitivity bounds (40) and (43) hold for any M and they are not just asymptotically
true in M, unlike the linearization (45) that requires (44), and in addition has an uncontrolled
higher order error term O (M).

Direct statistical estimation methods for Ig,i(M ). The two representations of the sen-
sitivity indices (38) in Theorem 13, either as a variational problem, or using the Kullback—
Leibler divergence suggest at least two approaches to estimate the indices Ig’i(M ) using
direct numerical simulation.

First, since the optimization problem in the variational representation in (38) is one-
dimensional, it is fairly trivial to solve numerically, hence the main roadblock is the esti-
mation of the cumulant generating function HY (+a). Existing numerical methods to tackle
either one of these problems already exist in the literature. For instance, for the calculation
of moment and cumulant generation functions can be performed using interacting particle
systems methods [12, 13] or splitting techniques [11, 21, 26, 40].

Using the alternative representation (38) of the minimizer Ifi(M ), namely,

(46) I . (M)=E Pl [vT W],

demonstrates the need to sample from the tilted measures PJ, .» Which in turn is also an

intimately related problem to estimating the cumulant generating function HUG (£a). When
Fo is fairly close to zero, the sampling distribution Pia . In (46) is a perturbation of P?;in
this case the free energy perturbation method, see [27], Section 2.4.1, can be used to simulate
efficiently Ig’i(M ). However, by Proposition 3, o4 (M) is increasing in M and thus when
M = —1log P?(A) grows, a1 in (46) can be large, see also the examples in Figure 2. In this
case P:Hta . In (46) is not necessarily a perturbation of P?. Multilevel Monte Carlo techniques
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such as chaining methods, see Section 11.6 in [7], or thermodynamic integration, as in Sec-
tion 3.1 in [27], or the RESTART method [11] could in principle be used in the calculation
of the indices (38).

These issues are outside of the scope of this paper and we plan to return to this topic and
related implementations of the sensitivity indices in a follow-up publication.

6. Examples.

Exponential family of distributions. It is instructive to consider the example of exponen-
tial families, that is, the family of measures with densities p’ (x) given by

P (x) = T 1O—F©)

where #(x) is the vector of sufficient statistics and F(f) = logE R[eOT’]. The score function
is then given by

WO (x) = Vplog p’ (x) =1(x) = VF(6) =1 (x) — Epsl1],
and the cumulant generating function is given by

HY (@) :=1ogE ps [exp{av’ Viog p?}]
= log/exp{avT(t(x) —~ VF@®))}exp{6Tt(x) — F(8)}R(dx)

= log/exp{(av +0) Tt (x) — (F(©) +othVF(9))}R(dx)

= F(av+0) — F(0) —av Eps[t] = F(av +0) — F(8) —av! VF(8).

It is worth noting that the cumulant generating function is the Bregman divergence, [38],
associated with F at points ¢v + 6 and 6. This is an explicit quantification of the cost to be
paid for tilting the distribution in order to make the event less rare. Additionally, the tilted
measure PY has density

dPf

= explav’ (t(x) — Epa[t]) — H (@) + 67t (x) — F(9))

= exp{(@ +av)Tt(x) —F@ —|—ow)} = p9+av

and thus PY = P9+? also belongs to the same exponential family. Finally the optimal o4
are the solutions of the equation

log P(A) = —R(P*V || P%) = F(6 + av) — F(8) + av! VF(6 + av),
and the sensitivity bounds and corresponding indices Ig’i(M ) in Theorem 13 take the form

. I (M) =Epo-a[v"t] —Eps[v"1] < S7(A)
<Eporaps[v7t] —Eps[v7 1] =T0 , (M),

that is, they are expressed as the difference between the mean sufficient statistics under the
optimally tilted distributions and the mean sufficient statistics under the original distribution.

Finally, many exponential families have explicit formulas for the cumulant generating
function of the sufficient statistic. Thus, the sensitivity bounds as well as the two charac-
terizations of the optimal values o4 can be visualized. Figures 3(a)-3(d) show the upper
bound function, (H(«x) + M)/a, with H(x) := Hf (a) as well as the derivative of the cu-
mulant generating function for various distributions and various values of M. The minimizer
of the upper bound, o, can be geometrically characterized as the intersection of the upper
bound function and H’(«). Similar plots are obtained for the lower bound.



1524 DUPUIS, KATSOULAKIS, PANTAZIS AND REY-BELLET

40 50 u

Gaussian —H'(a) Poisson —H'(a)
35 —(H(a)+1)/a 45 ——(H(a)+1)/a
(H(a) +5)/a 40 (H(a)+5)/a
30 ——(H(a) +10)/a ——(H(a) +10)/a
(H(a) + 20)/a 35 (H(a) +20)/a
25 30
20 25
15 20
151
10
101
5r 5l
0 . . . . . . . . . ) 0 ! . . . . . . . )
0 1 2 3 4 (5} 6 7 8 9 10 0 0.5 1 1.5 o 25 3 3.5 4 4.5

(a) Gaussian distribution with € being the mean value over  (b) Poisson distribution with 6 being the logarithm of the
the variance. The density of Gaussian distribution is given = Poisson rate. The density of Poisson distribution is given
by p?(z) = €2~ F(®) where F(§) = 50292 with o2 being by p?(z) = e#2=F(©) where F(§) = €.

the variance.

2 10 '
Bernoulli —H'(a) centered Laplacian | —— H'(a)
1.8 ——(H(a) +0.01)/a —(H(a) +1)/a
16 (H(a)+0.05)/a 8 (H(a)+5)/a
. ——(H(a)+0.1)/a —— (H(a) +10)/a
14 (H(a) +0.2)/a (H(a) +20)/a
6l
1.2
1 4+
0.8
ol
0.6
0.4
0
0.2
0 . . . . . . . . . , - . . . . . . . . . ,
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
« «

(c) Bernoulli distribution with 6 being the logarithm of the =~ (d) Centered Laplacian distribution with 6 being the neg-
ratio p Wherep is the probability of success. The density  ative of the mean value. The density of centered Lapla-

ofBernoulh distribution is given by p? (z) = €2~ F(9) where cian diStribUtliOn is given by p?(z) = €f1*I=F(0) where
F(8) = log(1 + €7). F(0) = log(—7)-

FI1G. 3. Graphical representation of the upper bound function, (H (x) + M)/, and the derivative of cumulant
generating function, H' (@), for different members of the exponential family of distributions and various values
of M. We assume the positive direction (i.e., v = 1) thus H(x) := Hve () =F@ +a)— F@) —aF'(0). The
minimizer of the upper bound, a4 = a4 (M), is depicted as a black dot. Despite having a unique minimum, the
shape of the bound function varies significantly across the distributions.

Normal distribution. We next consider the specific case of a normal distribution and
demonstrate that the sensitivity bounds are easier to implement than the sampling of the rare
event and the corresponding likelihood ratio method for rare events, discussed in Section 1.
In this case we can consider the tail events such like A = {X > L} or any other rare event A
characterized by the parameter M,

M > —log PY(A) where P’ = N'(u,0?),
as well as the corresponding sensitivity index (4):
(48) S9(A) =IEP|9AUTW9 =IEP&[th(x)] —Epo[v"1].

On the other hand, we consider the bounds (47), where the optimal values of +« 4 are given
by the explicitely solvable equation

(49) R(PLy, | P') =M.
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In fact, using the notation of the exponential family we have that
PO = 1O-F® — (1, 02)  where t(x) = (x,x2/2).0 = (01, 62) = (/o> —o ).
Furthermore, for any unit vector v = (v, v2),
Wo(x) = (x — pu,x2/2 — (0> +?)/2) and
oI WO () = vi(x — ) + 02 (x/2 — (0 + 1?) /2).
Next we define the corresponding tilted distributions

Mn +a02v1 o2 )

1 —ac?v’ 1 —ac?v,

(50) R a(
Using the normality of the distributions P(f and P? we have

1 1 vl + §u2
R(P! | P* =_[7_1 log(1 — ao?va) + 2(7)}
(P I P7) 211 —ao?v +log(l —ao™v) + oo 1 —ao?v,
For instance, we can consider the solution of (49) in the case v = (1, 0). Then we obtain that
o+ =+/2M + 1/0 and by replacing it in (50) we have the tilted distributions for upper and
lower bounds in (47)

Pl,, =N(u+ovV2M+1,07).

Furthermore the bounds and the corresponding sensitivity indices in (47)—where Sg (A) is
given by (48)—take the following simple form:

(51) I9 (M) =+0v2M + 1.

It is worth noting that the upper and lower bounds Igi(M ) do not involve the sampling of
each specific rare event A as required by (48).

Finally, this example provides a demonstration of a parameter insensitivity analysis based
on the upper and lower bounds Zg,i(M ) in Theorem 13. Specifically, if ov/2M +1 K 1
in (51), then we readily obtain from Theorem 13 that the probability of the rare event A
is insensitive with respect to the parameter #; = u/o 2. This insensitivity is quantified by the
indices in (51) without having to calculate explicitly the gradient of log P?(A) in the direction
v=(1,0).

7. Sensitivity bounds for large deviation rate functions. Rare events are closely re-
lated to the theory of large deviations, [15, 16], and in this section we show how our sensitiv-
ity bounds and the sensitivity indices Zg,i(M ) in Theorem 13 are related to large deviation
rate functions. We first present a general framework which applies to any large deviation prin-
ciple, and subsequently we discuss more concrete problems, such as independent, identically
distributed (IID) and Markov sequences.

General result. Recall that a sequence of probability measures { P} on a Polish space X
satisfies a large deviation principle if there exists a lower-semicontinuous function / : X — R
with compact level sets such that for any Borel set A C X

1 1 _
(52) —1(A) <liminf —log P,(A) <limsup — log P,,(A) < —1(A),
n—oo n n—oo N

where, with A° denoting the interior of A and A the closure of A,

L(A)= inf 1(x),  T(A)=inf I (x).

xeA
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For “nice sets,” for example, open and convex, we have that 1(A) = I (A) in which case the
set A is called an /-continuity set, [15], although we do not need such an assumption here.
To perform the sensitivity analysis introduced in previous sections, we will consider a
parametric family P,‘:) of probability measures satisfying a large deviation principle with rate
function 7?; we also fix an event of interest denoted by A. We intend to obtain bounds on
the relative rate of change of the probability of the rare event A, which in view of the large

_ . o . —0
deviation principle (52) translates to bounds on the derivatives of the functions /" (A) and
19(A) with respect to 6. We assume that Pne has a density pﬁ with respect to some reference
measure R(dx); we consider the score function Wf = Vylog pﬁ (x), as well as the sensitivity
indices

(53) 9 ,(4) =vT Valog PY(A),

which we assume both to be well defined. Under the additional assumptions in Section 4, see
Theorem 12 and Theorem 13, we obtain the following sensitivity bounds:

HY  (—a) —log PY(A)

o

70, (M) < - info{ } < Sua(A)

(54)
Hg{n(a) —log PY(A)

o

< inf{

a>0

} <10, (M),
for all events A such that M > —log Pn@ (A), where
0 _ av’ w?
H, , () =1ogEps [e n].

All quantities are indexed by n to denote their dependence on the sequence of the probability
measures { P, }. Using (52) and (54) we obtain immediately the following result.

THEOREM 18 (Sensitivity indices and large deviation limits). Assume that the limit
hf(e) = lim Lo (@)
v T nsocop U
exists and define the rare event sensitivity indices
(55) 57(A) :=limsu 1Sf’ (A) s7(A) = liminflSQ (A)
v : n—>oop noun ’ 2y : n—o0 p Uil :

Then we have

. {hﬁ(—a) +1%(A)
— inf
o

o () +19<A>}

}Sgg(A)SES(A)S;r;%{ .

a>0
Furthermore, as in Theorem 13, we can define the sensitivity indices in terms of M-level sets
of the large deviation functionals (52):

(56) I . _(M):=— inf{

a>0

h (—a) —|—M}
a b

{hg(a)—i—M}

70 (M) := inf
o o

a>0

In order to obtain more precise and concrete results and representations of the sensitivity
indices we consider next some standard examples from the theory of large deviations.
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Sequences of IID random variables. For IID sequences one can, unsurprisingly, bound
the sensitivity of the large deviation rate function in terms of the moment generating function
of the score function.

THEOREM 19 (Sensitivity indices for IID random sequences). Let X be a random vec-
. . d . .- e NN T, 0 . g _ dp? _ .
tor taking values in R® with probability distribution P and density p” = 5 with re-
spect to some reference measure R. Assume that the score function W¢ = Vg log p? satis-
fies the integrability conditions of Theorem 12 with cumulant generating function Hve () =
T 0 . . T . o .

logIE po [e*V" W"1. Assume that the moment generating function E po [e* X1 is finite for & € R?
in the neighbourhood of the origin so that, if X;, i =1,2,... is a sequence of IID random
variables with common distribution P? then S, = % Y k—1 Xi satisfies a large deviation prin-
ciple with rate function

19(x) = sup {ATx —logEps [e’\TX]}.
reRd
The sensitivity indices defined in (55) then satisfy
HY (—a) + 17 (A)

o

Hf(ot)+19(z4)}

o

(57) — inf {

a>0

} <$(A) < (4) < im;{

Moreover, if I (A) < My (I%(A) < M_), where M. are as in Proposition 3, then there exist
finite a such that

(58) Epo [o" WO <s3(A) <57(A) < Eps, [vT W]

with

(59) R(PY, | PY)=17(4).  R(PY | P')=L(A),

and P is the measure with density % — oV WI—H] (@) Finally we can define sensitivity

indices If’oo’i similarly to (56).

PROOF. Let O, denote the distribution of Sn—” and Pne = P? x ... x PY the joint dis-
tribution of (X1, ..., X;;) which has density pz (x1, ..., x0) =114 p9 (x;) with respect to
R, =R x --- x R. We have then

_ 0 RS
Vglog 0, (A) = Vglog PV (x1,...,x,): - Y xi€Ay.
i=1
The score function for the probability Pn@ is given by

n
Wi (x1, ..., xn) = Volog pl(x1, ... x) =Y W (xp)
k=1

and thus we obtain
n
l log E pe [eavTW,?(Xl ..... Xn)] — l log IE ps |:l—[ eavTWH(Xk):| =logE ps [eavTW"(X)]'
n n n n
k=1

Using Theorem 12 and taking n — oo we obtain (57). Finally, using Proposition 3 we obtain
the representation (58) and (59). [
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Markov sequences. We can apply our results to any stochastic processes for which a
large deviation principle holds, but here we concentrate on the simplest case of discrete-time
Markov chains (DTMC) with finite state space where the rate function is easy to obtain and
we can dispense with technical assumptions. Let { Xz} be an irreducible finite-state Markov
chain with state space ¥ and transition matrix 7% (i, j) depending on a parameter vector 6 €
R*. We assume that 7% generates an ergodic Markov chain, that 7% (i, j) depends smoothly
on @ and that for any i € X the transition probabilities 7% (i, j) and 79+¢(i, j) are mutually
absolutely continuous for ¢ in a neighborhood of 0 and for all v € R¥ with |Jv|| = 1. We then
define the score function

Wi, j) = Velogn® (i, j),

if 79, j) > 0, and set it equal to O otherwise. We assume, for simplicity, that the Markov
chain starts in the (arbitrary) state xg. The joint probability distribution of the Markov chain
on the time interval from O to n is

6 0 6
Pn(xl""’xn)zn (X(),xl) X e X T (xn—l7xn)-

Forany f : ¥ — R, the sequence of random variables S, = % > i1 f(Xy) satisfies a large
deviation principle with a rate function which can be identified in terms of relative entropy
[16], Theorem 8.4.3, and the contraction principle for large deviations [16], Theorem 1.3.2.
Let I(i),i € ¥ denote a probability measure on the state space ¥ and let 7 (i, j) denote a
transition kernel on X. For 8 € R define

1°(g) = ;{n;{z R(@G. ) 7% )G Y F@DIG) =B,

T tiex iex

D I)H7(j, i) =1() fori € z}.

jeX

(60)

The second constraint in this definition implies that / is invariant under 7, while the first
constraint enforces that the mean of f under [ is 8. The rate function I = I?(B) is then the
minimum of a relative entropy cost for “tilting” from 7 to 7, so that the mean of f under
the stationary distribution of 7 is equal to 8. An alternative representation of 17 is as the
Legendre transform of the log A? (), where A? () is the maximal eigenvalue of the positive
matrix 7% (i, j)e* ), [15].

Now we can directly deduce from Theorem 18 the following result on rare event sensitivity
bounds for Markov sequences.

THEOREM 20 (Sensitivity indices for Markov sequences). Let {Xy}k=12.... be a ergodic
Markov chain on the finite state space X with transition probabilities 7% (i, j). Assume that
the transition probabilities 7% depend smoothly on 0 and that for all i € ¥, n%(i, j) and
7 e (i, j) are mutually absolutely continuous for € sufficiently small and ||v|| = 1. For
f X — R the sequence S, = % Y r—1 f(Xy) satisfies a large deviation principle with rate
function 1 %(B) given in (60) and we have the sensitivity bounds

{hi(—a) +19(A)
o

(61) — inf

a>0

hy (@) +19(A)}

<s7A) <5%(A <'f{
} $o(A) =5, (A) a0 o
where

1 n
hO(a) = lim —E pg [e"“’T 2=t WG(X"—I’X")].
n n
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We can represent hg (o) as the logarithm of the maximal eigenvalue of the matrix
p9 (i, j)e“”T weG,j ), Alternatively, consider the empirical measure for pairs (X;_1, X;), which
has the rate function

JA®a) =3 R(@G) 76 ))I0)
iex
whenever [ is stationary under 7 and [l ® w](i, j) = [(i)7 (i, j) (J is infinity otherwise).
Using this rate function, we can evaluate hg (), since by Varadhan’s lemma we have
lim ! log Epee“”T T WO X1, X))
n—-oon n
:sup{owT > WO PIOTG, )= Y0 R@EGE ) 176G :

Ljex iex
> 1G)RGD) =16) fori € £,
jex
Similarly to (60), this last variational problem is easily solved as a constrained convex pro-

gramming problem. We demonstrate such an implementation in the next example.
Indeed, as a concrete example to illustrate the previous results we consider a Markov chain

with five states with values —2, ..., 2. The transition probabilities are defined as
1 pP-1 Po P1
@2 HE®L e
I—p_1 1-po 1-p1 1

Let 6 =[p—_1, po, pl]T be the parameter vector and let {X;} be a Markov chain created
from the above transition laws, and let S, be the empirical average of X1, ..., X,,. We study
the tightness of the sensitivity bound for the event A = {S, = z}. Although A is not an /9-
continuity set, using the special lattice structure of the set of states in the support of the
empirical measure, we can easily show that lim,,_, o %log P,f (Sp =zn) = —19(2), as long as
Zn — Z, when each z,, is of the form i /n. The rate functional [ ?(z) is finite in the interval
[—1.5, 1.5] and infinite elsewhere due to the fact that the transitions from state 2 (resp. —2)
cannot happen more than n/2 times making % Yo xie[—1.51.5].

In Figure 4 we present the sensitivity indices and the associated sensitivity bounds for
various values of z and various perturbation vectors v. Similarly, in Figure 5 we depict the

Sensitivity Index —— Sensfivity Index
Sensitivity Bounds 0.4 v=10,1,0 Sensitivity Bounds

Sensitivity Index
Sensitivity Bounds

0.8

v =1[1,0,0] 0.2

—]

70440302

45 4 05 o0 05 41 15 45 4 05 0 05 1 15
z

FI1G. 4. Sensitivity index (55) (blue) and the associated sensitivity bounds in (61) (red) for various levels of
rare event probability as quantified by the variation in the values of z. Each panel corresponds to a different
perturbation vector v. From left to right the perturbation vectors are the three orthonormal unit vectors. Parameter
vector is kept fixed at 6 =[0.2,0.5, 0.717 . Inset plots zoom around the zero value for the sensitivity index.
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Sensitivity Index (+v) [ Sensitivity Index (+v) [ Sensitivity Index (+v)|]

— — = Sensitivity Index (-v) — — = Sensitivity Index (-v) — — = Sensitivity Index (-v)
Sensitivity Bounds

Sensitivity Bounds 1.5 Sensitivity Bounds 3

0y =0; =05

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 i 0.2 0.4 0.6 0.8
6, 0y 03

FI1G. 5. Sensitivity index for v and —v and the associated sensitivity bounds at different parameter regimes.
Both the rare event and the perturbation vector are kept fixed at x =1 and v = %[1, 1,17, In each panel, one

of the parameters is varying while the other two are kept constant. Evidently, sensitivity bounds tightly follow the
sensitivity indices in this demonstration.

sensitivity indices and the associated sensitivity bounds for various values of the parameter
vector. Both figures suggest that the sensitivity bounds are informative and tightly follow the
true values of the gradient sensitivity indices (55), which in the present setting coincide.

APPENDIX: PROPOSITION AND PROOFS

Let g € £ (see Definition 1) and denote by g+ = +essup{z£g(x)} its upper/lower bound
(we allow the value +00). Recall that H (o) = log[E p[¢“8] is the moment generating function
with Legendre transform L(§) = sup,cgr{ad — H(a)} and that P, is the exponential family
with ‘i,i; = e H(@)

PROPOSITION 21. For g € € we have

(a) The map H (o) is a convex function of «, is finite in an interval (d_,d1) with d_ <
0<dyand H(a) =00 fora ¢ [d—,d].

In the interval (d—, d) the map H («) is infinitely differentiable and strictly convex unless
g is constant P-a.s.; we have H'(«) =Ep, [g] and H" () = Varp,(g).

(b) The map L(8) is a convex, nonnegative and lower semicontinuous function of &
and L(Ep[g]) = 0. If g is not constant P-a.s. then L(38) is strictly convex in the inter-
val (H'(d_), H(dy)) and for any § € (H'(d_), H(dy)) there exists a € (d_, dy) such that
H'(a) =68 and

L(®)=aH (a) — H(a) =R(Py || P).

PROOF. These are standard results used in the theory of large deviations; see, for exam-
ple, [15], Lemma 2.2.5, Exercise 2.2.24. [

We turn next to the proof of Proposition 3. Most ingredients in the proof have appeared
in various recent papers by (some of) the authors and their collaborators [10, 17, 23]. The
formulation here is slightly different and since the results play a central role in the paper we
provide a proof for convenience and completeness.

PROOF OF PROPOSITION 3. First note that it is enough to prove the result for H ()
since the result for H (—«) is obtained by replacing g by —g.
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We first claim that automatically
H(dy) = lim H(a),
(XTd+

where H (d+) may be infinite. By monotone convergence
Ep[lig=0¢"] 1 Ep[1(g=0pe"¢]

as « 1 d4+. By dominated convergence

Ep[lig<0e™] L Ep[l{g<0e™**]
as a 1 d, and the claim follows. A very similar argument shows that H'(«) also has a limit
asa P dy.
Let
H M
(62) Bla: My = 1@+ M
We divide into cases. Always we have H (0) = 0.

1. g+ < 00. In this case H'(a) 1 g+ < o0 as o — oo and H'(0) < g4. If M = 0 then the
infimum is H’(0) and attained at o = 0. If M > O then let

aoH (0) —H(ax) — M

2

B'(a; M) =
o

for « > 0. The function a H' (o) — H (@) strictly increases from 0 at @ = 0 to some limit
M, > 0 at @ = 00, and the minimizer is at the unique finite root of « H' () — H(at) = M
for M < My and ay = oo for M > M.

2. g4+ = 00. In this case there are two subcases.

(a) dy = o0. In this case since g = 0o we have H'(a) + oo as o — oo and a H' () —
H(a) — oo as @ — o0. Since 0H'(0) — H(0) = 0, in all cases of M > 0 there is a unique
root to « H'(a) — H («) = M and hence a unique minimizer.

(b) d+ < 0o. We know that H'(a) converges as o 1 d to a well defined left-hand limit
which we call H'(dy) (note that this value could be oo). Thus we have that o H' () —
H () ranges from Q0 at @« =0to My =dyH'(dy) — H(dy). For M € [0, M) there is a
unique minimizer in [0, d4). For M > M_ the unique minimizer is at oy = d.

To conclude the proof we note that if @4 < d4 then
apH () — H(@y) = R(Po, | P) =M,
and thus
B(ay, M) =H'(ay) =Ep, [g]

which proves (9) and (10). Finally if d+ = oo and g is P-a.s. bounded above then the infimum
is equal to limgy—s oo H(@ and this establishes (12). If d4 < oo and M, < oo then the bound
takes the form (11). [
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