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a b s t r a c t

Developing efficient computational methods to assess the impact of external interventions on the
dynamics of a network model is an important problem in systems biology. This paper focuses on
quantifying the global changes that result from the application of an intervention to produce a desired
effect, which we define as the total effect of the intervention. The type of mathematical models that
we will consider are discrete dynamical systems which include the widely used Boolean networks
and their generalizations. The potential interventions can be represented by a set of nodes and edges
that can be manipulated to produce a desired effect on the system. We use a class of regulatory rules
called nested canalizing functions that frequently appear in published models and were inspired by the
concept of canalization in evolutionary biology. In this paper, we provide a polynomial normal form
based on the canalizing properties of regulatory functions. Using this polynomial normal form, we give
a set of formulas for counting the maximum number of transitions that will change in the state space
upon an edge deletion in the wiring diagram. These formulas rely on the canalizing structure of the
target function since the number of changed transitions depends on the canalizing layer that includes
the input to be deleted. We also present computations on random networks to compare the exact
number of changes with the upper bounds provided by our formulas. Finally, we provide statistics on
the sharpness of these upper bounds in random networks.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Boolean networks (BN) have been proposed as an appropriate
framework for modeling the state of cells due to their simplicity
and the variety of tools available for model analysis (Veliz-Cuba,
Jarrah, & Laubenbacher, 2010; Zañudo & Albert, 2015). However,
some complex gene interactions cannot be represented in the
Boolean setting and several generalizations of the Boolean ap-
proach have been developed (Thomas & D’Ari, 1990). Multistate
models, a generalization of the BN framework, where the genes
can attain more than two states have been proposed as appro-
priate models for capturing complex gene expression patterns,
such as consideration of three states (low, medium, and high). We
note that while in theory it is possible to develop models where
the variables can take on any number of possible states (possibly
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only restricted by the requirement that it needs to be a power of
a prime number so that the domain can have the structure of a
finite field), in practical applications this number is typically small
— rarely larger than 5.

A Gene Regulatory Network (GRN) is a representation of the
intricate relationships among genes, proteins, and other com-
pounds that are responsible for the expression levels of mRNA
and proteins. Boolean networks have been successfully used
to model and study the properties of GRN (Albert & Othmer,
2003; Li, Long, Lu, Ouyang, & Tang, 2004). In particular, Boolean
canalizing rules were introduced by S. Kauffman and collabora-
tors (Kauffman, Peterson, Samuelsson, & Troein, 2003, 2004) and
reflect the concept of canalization in evolutionary biology that
Waddington pioneered in 1942 (Waddington, 1957) – that organ-
isms evolve developmental robustness, producing an invariant
phenotype even under genetic or environmental perturbations.

In this article, we study the network-wide effect of an ex-
perimental intervention that either prevents a regulation from
happening or silences a node. Such intervention is modeled
through edge deletion and can be achieved via therapeutic drugs
that target a specific gene interaction (Campbell & Albert, 2019;
Choi, Shi, Jung, Chen, & Cho, 2012). In Murrugarra and Dimitrova
(2015) we introduced methods for quantifying side effects in
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Boolean networks. However, many of the more recently pub-
lished discrete dynamical models include variables that take on
more than two states due to the need for capturing mechanisms
that are not binary in nature (Chifman et al., 2017; Espinosa-
Soto, Padilla-Longoria, & Alvarez-Buylla, 2004; Remy et al., 2015;
Thieffry & Thomas, 1995; Zañudo, Scaltriti and Albert, 2017).
Consequently, Boolean nested and partially nested canalizing
functions were generalized to multistate (Kadelka, Li, Kuipers,
Adeyeye, & Laubenbacher, 2017; Murrugarra & Laubenbacher,
2011, 2012) which enables the possibility of capturing more
complex interactions among the genes in the network. Such
functions can be viewed as a discrete dynamical system with
a stratified structure which consists of hierarchical layers of
variables according to their relative influence over the system
dynamics.

The ability to quantify the global changes in the dynamics of
the network after an external perturbation has important appli-
cations. In the presence of external network modifications where
the topology of the network changes but the attractor structure
remains unchanged, it is still desirable to quantify the changes
in other aspects of the dynamics such as the transient time.
For instance, in evolutionary biology to simulate evolution one
often evolves an ensemble of networks (by performing muta-
tions, crossover, selection, etc.) for many generations (Wagner,
1996). At the end of the simulations, one measures the changes
in the evolved networks to compare with the features of the
original ensemble. In Wagner (1996), after simulated evolution,
the evolved networks had similar features to the original ones
such as the number of attractors and basin sizes. One feature
that had changed is the transient time (Wagner, 1996). The the-
oretical tools presented in this paper will be useful to measure
global changes even if the attractor structure is preserved after
an intervention.

There are several published control methods for Boolean net-
works such as Stable Motifs (Zañudo & Albert, 2015), Feedback
Vertex Sets (Zañudo, Yang and Albert, 2017), Minimal Hitting
Sets (Klamt, Saez-Rodriguez, Lindquist, Simeoni, & Gilles, 2006;
Vera-Licona, Bonnet, Barillot, & Zinovyev, 2013), and several oth-
ers (Gates & Rocha, 2016; Li, Yang, & Chu, 2015; Poret & Boissel,
2014; Qiu, Tamura, Ching, & Akutsu, 2014; Sordo Vieira, Lauben-
bacher, & Murrugarra, 2019; Zañudo, Scaltriti et al., 2017). While
these control methods focus on finding control interventions
that satisfy a control objective (e.g., to drive the system into a
specific attractor), there are very few studies of the total extent
of the consequences of applying a certain control action (beyond
satisfying the control objective). This paper contributes methods
for measuring the impact of the control actions on the dynamics
of multistate networks. The type of theoretical tools presented
here can help to discriminate control actions with minimal effect
on the state space. That is, even if we have different control
candidates that can achieve a certain objective, they might have
different impact on the dynamics of the network and we might
be interested in distinguishing the control action that produces
the least changes in the dynamics of the network.

The rest of the paper is structured as follows. In Section 2, we
introduce discrete dynamical systems and their representation
as polynomial dynamical systems. In Section 3 we define the
control actions for multistate networks. In Section 4 we provide
a polynomial normal form for discrete functions and then we use
this representation to derive a set of formulas for counting the
maximum number of transitions in the state space upon edge
deletions. In Section 5 we present computational results for ran-
dom networks. Finally, in Section 6, we provide the conclusions
of the paper.

2. Background

A discrete dynamical system can be defined as a dynamical
system that is discrete in time as well as in variable states. More
formally, consider a collection x1, . . . , xn of variables, each of
which can take on values in finite sets X1, . . . , Xn. Let X = X1 ⇥

· · · ⇥ Xn be their Cartesian product. A discrete dynamical system
in the variables x1, . . . , xn is a function

F = (f1, . . . , fn) : X ! X

where each coordinate function fi is a discrete function on a
subset of {x1, . . . , xn} which represents how the future value of
the ith variable depends on the present values of the variables.
If Xi = {0, 1}, then each fi is a Boolean rule and F is a Boolean
network.

In this article, for the purpose of exploiting the algebraic
properties of discrete functions, it is assumed that the variables
x1, . . . , xn take on values from a finite field F. Then using the fact
that any discrete function fi : Fn ! F can be represented as a
polynomial in x1, . . . , xn, that is fi 2 F[x1, . . . , xn], the discrete
network can be represented as F = (f1, . . . , fn) : Fn ! Fn where
each fi 2 F[x1, . . . , xn]. If any of the variables x1, . . . , xn take on
values from a set that cannot be directly identified with a finite
field, then it is straightforward to embed the system F : X ! X

into a system F̂ : Fn ! Fn, where X ⇢ Fn, while preserving the
attractor structure of F; see Veliz-Cuba et al. (2010).

Given a discrete network F = (f1, . . . , fn), a directed graph
W on n nodes x1, . . . , xn is associated to F as follows: there is
a directed edge in W from xj to xi if xj appears in fi, i.e. xj is in the
support of fi, written xj 2 supp(fi). In the context of a molecular
network model, this graph represents the wiring diagram of the
network.

The dynamics of a discrete network is given by the difference
equation x(t + 1) = F(x(t)); that is, the dynamics is generated by
iteration of F. More precisely, the dynamics of F is represented by
the state space graph S, defined as the graph with vertices in Fn

which has an edge from x 2 Fn to y 2 Fn if and only if y = F(x).
In this context, the problem of finding the states x 2 Fn where
the system will get stabilized is of particular importance. The
collection of these special points of the state space are called at-

tractors of a discrete network and elements of the attractors may
include steady states (fixed points), where F(x) = x, or cycles,
where Fr (x) = x for some integer r > 1. Attractors in network
modeling might represent cell types (Kauffman, 1969) or cellular
states such as apoptosis, proliferation, or cell senescence (Huang,
1999; Shmulevich & Dougherty, 2010).

3. Methods

Network interventions can be modeled through edge and node
manipulations and can be achieved via therapeutic drugs that
target a specific gene interaction (Campbell & Albert, 2019; Choi
et al., 2012). In Murrugarra and Dimitrova (2015) and Murrugarra,
Veliz-Cuba, Aguilar, and Laubenbacher (2016) we provided defi-
nitions for these actions in Boolean networks. These definitions
are usually used for encoding the control parameters with the
purpose of identifying control targets as shown in Murrugarra
et al. (2016). In this paper we will consider the deletion and
constant expression of edges in the multistate setting.

Throughout the paper, Si,j will be a subset of F and Qi,j(u) will
be the indicator functions of Si,j. That is, they return 1 when u is
in the set and 0 when u is not. The index i indicates the node xi

from which the edge begins and the second index j is used when
necessary to mark the function under consideration.
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3.1. Edge control in multistate networks

In the Boolean setting, the deletion of an edge was imple-
mented by setting an input to zero so that the interaction of
that input (represented by an edge) was being silenced. For the
multistate case, the silencing of the interaction will be applied
whenever the control variable is within a range of values of the
possible discrete values.

Definition 1 (Edge Deletion). Consider the edge xi ! xj in a wiring
diagram. For u 2 Si,j, the control of the edge xi ! xj consists of
manipulating the input variable xi for fj in the following way:

Fj(x, u) = fj(xj1 , . . . , (1 � Qi,j(u))xi, . . . , xjm ).

For each value of u 2 F we have the following control settings:

• For u 2 Si,j,

Fj(x, u) = fj(xj1 , . . . , xi = 0, . . . , xjm ).

That is, the control is active and the action represents the
removal of the edge xi ! xj.

• For u /2 Si,j,

Fj(x, u) = fj(xj1 , . . . , xi, . . . , xjm ).

That is, the control is not active.

We will also consider the constant expression of edges, which
we define as follows.

Definition 2 (Constant Expression). Consider the edge xi ! xj in
a wiring diagram and a 2 F. For u 2 Si,j, the control of the edge
xi ! xj consists of manipulating the input variable xi for fj in the
following way:

Fj(x, u) =

fj(xj1 , . . . , (1 � Qi,j(u))xi + aQi,j(u), . . . , xjm ).

For each value of u 2 F we have the following settings:

• For u 2 Si,j,

Fj(x, u) = fj(xj1 , . . . , xi = a, . . . , xjm ).

That is, the control is active and the action represents the
constant expression (to a) of the edge xi ! xj.

• For u /2 Si,j,

Fj(x, u) = fj(xj1 , . . . , xi, . . . , xjm ).

That is, the control is not active.

Remark 3. Node control of xi can be defined as setting the
function fi to a constant a 2 F.

4. Results

In this section we present a definition of k-canalizing functions
for the multistate case and then we characterize this functions
in terms of layers of canalizations. Subsequently, we use this
canalizing layers representation to derive an upper bound for the
number of changes in the state space of a discrete system upon
an edge deletion in the wiring diagram.

4.1. Multistate k-canalizing functions

In the following definition, we assume that � is a permutation
on {1, . . . , n}.

Definition 4. The function f : Fn ! F is a k-canalizing function

in the variable order x� (1), . . . , x� (k) with canalizing input sets

S1, . . . , Sk ⇢ F and canalizing output values b1, . . . , bk 2 F if it
can be represented in the form

f (x1, . . . , xn) =

8
>>>><

>>>>:

b1, if x� (1) 2 S1,
b2, if x� (1) /2 S1, x� (2) 2 S2,
...
bk, if x� (1) /2 S1, . . . , x� (k) 2 Sk,
g 6= bk, if x� (1) /2 S1, . . . , x� (k) /2 Sk,

(1)

where g = g(x� (k+1), . . . , x� (n)) is a multistate function on n � k

variables. When g is not a canalizing function, the integer k is
the canalizing depth of f . If g is not a constant function, then g is
called the core function of f and is denoted by PC .

Remark 5. Note that in Definition 4 we require that the function
g be unique when all the canalizing variables are not in their
corresponding canalizing input sets. As a result, a function could
be canalizing but not 1-canalizing, see Example 6.

Example 6. Let F = {0, 1, 2} and n = 2. Consider the function

f (x1, x2) = 1 + 2x21 + 2x2 + 2x21x2 + 2x22.

For this function x2 is canalizing (with S1 = {2}) because f (x1, 2)
= 1. However, f is not a 1-canalizing function because f (x1, 0) =

1 + 2x21 6= 2 + x
2
1 = f (x1, 1). Thus, even though x2 is canalizing

for f , the function f has no layers of canalization. Thus, PC = f .

4.2. Layers of canalization in multistate networks

In Theorem 7 we provide a polynomial normal description of
discrete functions. Basically, this theorem gives a partition of the
inputs of the function into canalizing and non-canalizing variables
and, within the canalizing ones, we categorize the input vari-
ables into layers of canalization. This theorem is a generalization
of a theorem in He and Macauley (2016) from Boolean to the
multistate case.

Let S ⇢ F be a subset of F and eQS(u) be the indicator function
of the complement of S. That is,

eQS(x) =

⇢
1 if x /2 S,
0 if x 2 S.

Theorem 7. Every multistate function can be uniquely written as

f (x1, . . . , xn) = M1(M2(. . . (Mr�1(MrPC+

Br ) + Br�1) . . .) + B2) + B1,
(2)

where Mi =
Q

ki

j=1
eQSi,j

, d = k1 + · · · + kr is the canalizing depth, PC

is a polynomial that has no canalizing variables, B1, B2, . . . , Br 2

F, and Br 6= 0. Each variable xi appears in exactly one of the

M1,M2, . . . ,Mr , PC .

Proof. If f (x1, . . . , xn) is non-canalizing, then PC = f . If f (x1, . . . ,
xn) is canalizing, then we proceed by induction. For n = 1, if f is
canalizing in xi but not 1-canalizing in xi, then we set PC = f . If
f is 1-canalizing in xi, then it can be written as f = eQS1 (xi) + B1
for some set S1 ⇢ F. Then f has the form of Eq. (2) by setting
M1 = eQS1 (xi) and PC = 1. For n = 2, if f (xi, xj) is not 1-canalizing
on any of its variables, then we set PC = f . If f is 1-canalizing
on xi, then f can be written as f (xi, xj) = M1(xi)g(xj) + B1 for
some g(xj). Then f has the form of Eq. (2) by setting PC = g .

3
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Now assume that Eq. (2) is true for any canalizing function that
is essential in at most n � 1 variables (that is, for all functions
that depend in at most n � 1 variables). Let f be a function that
is essential in n variables. If f is not 1-canalizing on any of its
variables, then we set PC = f . If f is 1-canalizing in xi1 , . . . , xik1

,
then f = M1g+B1, where M1 is the product of indicator functions
of the complements of sets Si1 , . . . , Sik1

⇢ F and g has n � k1

variables. If g has no canalizing variables, then f has the form
of Eq. (2) with PC = g . If g is canalizing, then by the inductive
hypothesis g can be written as

g = M2(. . . (Mr�1(MrPC + Br ) + Br�1) . . . ) + B2.

Thus, f has the form of Eq. (2).

Remark 8. For a multistate nested canalizing function, the for-
mula in Eq. (2) reduces to

f (x1, . . . , xn) = M1(M2(. . . (Mr�1(Br+1Mr+

Br ) + Br�1) . . .) + B2) + B1,
(3)

as was shown in Kadelka et al. (2017).

In the following example we describe a 2-canalizing function
with noncanalizing variables.

Example 9. Let F = {0, 1, 2} and n = 4. Consider the function

f (x1, x2, x3, x4) = 1 + x
2
1 + x

2
1x2 + 2x21x

2
2+

x
2
1x2x3 + 2x21x

2
2x3 + x

2
1x2x4 + 2x21x

2
2x4.

The function f can be written as in Eq. (2) as

f = (M1(M2(PC + 1) + 1) + 1),

where M1 = eQS1 (x1) = x
2
1, S1 = {0}, M2 = eQS2 (x2) = x2 + 2x22,

S2 = {0, 1}, and PC = x3 + x4. Thus f has two layers and
two noncanalizing variables. Note that f can also be written as
in Eq. (1) as

f (x1, x2, x3, x4) =

(1, if x1 2 S1 = {0},
2, if x1 /2 S1, x2 2 S2 = {0, 1},
PC , if x1 /2 S1, x2 /2 S2.

4.3. Upper bounds

Using the polynomial normal form of multistate functions
in Theorem 7, we derive a set of formulas for counting the
maximum number of transitions that will change in the state
space upon an edge deletion in the wiring diagram. The formulas
presented here are generalizations from the Boolean case to the
multistate setting of the formulas we presented in Murrugarra
and Dimitrova (2015).

For the next theorem, we are going to assume that the func-
tions of the discrete network F = (f1, . . . , fn) : Fn ! Fn are
written in the format of Theorem 7. That is, for t = 1, . . . , n the
coordinate function ft has the following form,

ft (x1, . . . , xn) = M
t

1(M
t

2(. . . (M
t

r�1(M
t

r
PC+

Br ) + Br�1) . . .) + B2) + B1,
(4)

where M
t

i
=

Q
ki

j=1
eQSj,t

, d = k1 + · · · + kr is the canalizing
depth, PC is a polynomial with no canalizing variables, B1, B2,
. . . , Br 2 F, and Br 6= 0. Each variable xi appears in exactly one of
M

t

1,M
t

2, . . . ,M
t

r
, PC .

Remark 10. Note that the function ft has r layers and there are
ki variables in each layer for i = 1, . . . , r .

In the following theorem, we assume that the canalizing input
sets are all of the same size for all the variables. In Theorem 13
we study the general case where the canalizing input sets of the
variables can be different.

Theorem 11. Let F = (f1, . . . , fn) : Fn ! Fn
be a multistate

network where ft is a k-canalizing function written as in Eq. (4) with

k1, . . . , kr the numbers of variables in layers 1, . . . , r, respectively.
Let xs be in the `th layer, where `  r and r is the number of layers.

Suppose that all canalizing variables have the same canalizing input

set S and that 0 2 S. Then, the maximum number of transitions in

the state space that will change upon deletion of xs ! xt is given

by

p
n�k1�···�k` (p � |S|)k1+···+k` . (5)

Proof. Let m = k1 +· · ·+ k`. The number of input vectors where
the other canalizing variables (not xs) of ft do not take on their
canalizing input is (p � |S|)m�1. For these input vectors, if xs was
already set to 0 or to any other of its canalizing values in S, then
the output of ft will not change as a result of deleting xs ! xt .
Finally, since we have n � m non-canalizing variables, the total
number of input vectors for which the output of ft can possibly
change is (p � |S|)m�1 (p � |S|)pn�m = (p � |S|)m p

n�m.

Remark 12. Note that from Eq. (5) that the number of variables
in each layer affects the number of changes and that there are
potentially more changes when the deletion happens in a more
dominant layer, see Examples 17–18.

Theorem 13. Let F = (f1, . . . , fn) : Fn ! Fn
be a multistate

network where ft is a k-canalizing function written as in Eq. (4) with

k1, . . . , kr the numbers of variables in layers 1, . . . , r, respectively.
Let xs be in the `th layer, `  r and r is the number of layers. The

maximum number of transitions in the state space that will change

upon deletion of xs ! xt is given by

p
n�k1�···�k` ·

0

@
`�1Y

i=1

kiY

j=1

(p � |Sj,t |)

1

A

0

B@
kỲ

j=1
j6=s

(p � |Sj,t |)

1

CA (p � R),

(6)

where

R =

⇢
|Ss,t | if 0 2 Ss,t

p � |Ss,t | if 0 /2 Ss,t .

Proof. The strategy is to first count the number of inputs that
do not contain values from the canalizing sets of the variables
in the first ` � 1 layers (that do not contain xs). Thus, the term
in the first line of Eq. (7) counts the number of non-canalizing
inputs in the previous layers to the layer containing xs; the term
inside the second set of parentheses of Eq. (7) counts the number
of non-canalizing inputs of the variables (except of xs) in the
layer containing xs; the last term in Eq. (7) counts the number of
non-canalizing inputs of xs. For the last term, notice that deleting
xs ! xt results in setting xs = 0 in ft . If 0 is in the canalizing
set of xs, Ss,t , then the rest of the values in Ss,t will yield the same
output as 0. Since |Ss,t |/p of the input values in the transition table
of ft contain a canalizing value for xs, it is the remaining p�|Ss,t |

p

of the table that can potentially change as a result of the edge
deletion. On the other hand, if 0 /2 Ss,t , then it is the inputs not
in Ss,t that have the potential to change the output as a result
of deleting xs ! xt which constitutes 1/p of the transition table,

4
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with p�1
p

of the table that can potentially change as a result of the
edge deletion. Thus, to obtain Eq. (6) we multiply the following
expressions:

p
n

p
k1+···+k`�1

·

0

@
`�1Y

i=1

kiY

j=1

(p � |Sj,t |)

1

A

0

B@ 1
p
k`�1

kỲ

j=1
j6=s

(p � |Sj,t |)

1

CA 1
p
(p � R) =

p
n�k1�···�k` ·

0

@
`�1Y

i=1

kiY

j=1

(p � |Sj,t |)

1

A

0

B@
kỲ

j=1
j6=s

(p � |Sj,t |)

1

CA (p � R),

(7)

Remark 14.

(1) The bound in Eq. (6) is sharp, see Examples 17–18.
(2) When p = 2, the formula in Eq. (6) reduces to

2n�k1�k2�···�kr .
(3) If instead of edge deletion, we consider constant expression

to a 2 F (see Definition 2) of xs ! xt , then the formula
in Eq. (6) remains the same except for R which becomes

R =

⇢
|Ss,t | if a 2 Ss,t

p � |Ss,t | if a /2 Ss,t .

Proposition 15. Let F = (f1, . . . , fn) : Fn ! Fn
be a multistate

network where ft is written as in Eq. (4). Let xs 2 supp(PC ). The
maximum number of transitions in the state space that will change

upon deletion of xs ! xt is

p
n�k1�···�kr�1

0

@
rY

i=1

kiY

j=1

(p � |Sj,t |)

1

A (p � 1). (8)

Remark 16.

(1) This upper bound is sharp.
(2) When p = 2, the expression reduces to 2n�d�1, where d is

the canalizing depth.
(3) If f has no canalizing variables, then Eq. (8) reduces to

p
n�1(p � 1).

5. Applications

To provide further insights into the results presented above
and to illustrate the use of the formulas here we present numer-
ical results for random networks where we compare the exact
number of changes to the upper bounds provided by the formulas.

For the next examples, we generated random networks with
scale-free structure using the Barabasi–Albert algorithm (Barabasi
& Albert, 1999). We note that the Barabasi–Albert algorithm
produces undirected edges but for our examples we need directed
edges. Thus, for each undirected edge between xi and xj, we
converted the edge xi�xj into either xi ! xj or xj ! xi at random.

Example 17 (Boolean Case). In order to calculate the exact number
of changes we use random networks with 10 nodes. For each
network, we selected the node with the maximum in-degree and
generated a random partition of its inputs to assign the canaliz-
ing layers. The functions of the other nodes were generated at
random.

Fig. 1. Statistics for the number of changes in the first layer of scale-free Boolean
networks. The x-axis shows the 100 networks that were randomly generated
and the y-axis shows the number of changes corresponding to a network in the
x-axis. In Fig. 2 we plot the differences between upper bounds and the exact
number of changes for these networks.

Fig. 2. Statistics for the differences between the upper bounds and the exact
number of changes for the networks in Fig. 1. In about 40% of the networks the
upper bounds match the exact number of changes.

In Fig. 1 we show statistics for the number of changes in the
first layer. The average maximum in-degree for the networks in
Fig. 1 is 4.14 (std = 1.07). The average number of variables in the
first layer is 2.61 (std = 1.5). The average number of changes in
the first layer is 221.28 (std = 168.363) and the average upper
bound is 259.04 (std = 201.562).

In Fig. 2 we present statistics of the number of changes as well
as the difference between the exact number of changes and the
upper bound provided by the formulas. For these networks, in
about 40% of the cases the upper bounds match the exact number
of changes.

In Fig. 3 we show statistics for the number of changes in the
second layer. The average maximum in-degree for the networks
in Fig. 3 is 4.8 (std = 1.07). The average number of variables in the
first layer is 1.67 (std = 0.93). The average number of variables
in the second layer is 2.13 (std = 0.75). The average number of
changes in the second layer is 86.0 (std = 62.7) and the average
upper bound is 100.64 (std = 78.88).

In Fig. 4 we present statistics of the number of changes as well
as the difference between the exact number of changes and the
upper bound provided by the formulas. For these networks, in
about 50% of the cases the upper bounds match the exact number
of changes.

From Figs. 2 and 4, we see that the bounds are slightly more
accurate when the edge intervention happens in a less dominant
layer.

Example 18 (Multistate Case). Here we also use random networks
with scale-free structure with p = 3 and n = 10 nodes. For each
network, we selected the node with the maximum in-degree and

5
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Fig. 3. Statistics for the number of changes in the second layer of scale-free
Boolean networks. The x-axis shows the 100 networks that were randomly
generated and the y-axis shows the number of changes corresponding to a
network in the x-axis. In Fig. 4 we plot the differences between upper bounds
and the exact number of changes for these networks.

Fig. 4. Statistics for the differences between the upper bounds and the exact
number of changes for the networks in Fig. 3. In about 50% of the networks the
upper bounds match the exact number of changes.

Fig. 5. Statistics for the number of changes in the first layer of scale-free
multistate networks. The x-axis shows the 100 networks that were randomly
generated and the y-axis shows the number of changes corresponding to a
network in the x-axis. In Fig. 6 we plot the differences between upper bounds
and the exact number of changes for these networks.

generated a random partition of its inputs to assign the canaliz-
ing layers. The functions of the other nodes were generated at
random.

In Fig. 5 we show statistics for the number of changes in the
first layer. The average maximum in-degree for the networks in
Fig. 5 is 4.05 (std = 0.88). The average number of variables in the
first layer is 2.28 (std = 1.16). The average number of changes in
the first layer is 17303.2 (std = 14739.4) and the average upper
bound is 17792.5 (std = 15220.6).

In Fig. 6 we present statistics of the difference between the
upper bounds provided by the formulas and the exact number of
changes. For these networks, in about 75% of the cases the upper
bounds match the exact number of changes.

Fig. 6. Statistics for the differences between the upper bounds and the exact
number of changes for the networks in Fig. 5. In about 75% of the networks
the upper bounds match the exact number of changes. The vertical axis is in
logarithmic scale.

Fig. 7. Statistics for the number of changes in the second layer of scale-free
multistate networks with p = 3 and n = 10 nodes. The x-axis shows the
100 networks that were randomly generated and the y-axis shows the number
of changes corresponding to a network in the x-axis. The vertical axis is in
logarithmic scale. In Fig. 8 we plot the differences between upper bounds and
the exact number of changes for these networks.

Fig. 8. Statistics for the differences between the upper bounds and the exact
number of changes for the networks in Fig. 7. In about 80% of the networks
the upper bounds match the exact number of changes. The vertical axis is in
logarithmic scale.

In Fig. 7 we show statistics for the number of changes in the
second layer. The average maximum in-degree for the networks
in Fig. 7 is 4.84 (std = 0.94). The average number of variables in
the first layer is 1.7 (std = 0.86). The average number of variables
in the second layer is 1.93 (std = 0.97). The average number of
changes in the second layer is 3946.68 (std = 3789.71) and the
average upper bound is 4056.48 (std = 3969.7).

In Fig. 8 we present statistics of the difference between the
upper bound provided by the formulas and the exact number of
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changes. For these networks, in about 80% of the cases the upper
bounds match the exact number of changes.

From Figs. 6 and 8, we see that the bounds are slightly more
accurate when the edge intervention happens in a less dominant
layer.

6. Conclusions

In this paper we present practical methods for quantifying the
global changes that result from an application of an external in-
tervention in the network, which we called the total effect of the
intervention. We emphasized that, while there are several meth-
ods for identifying control targets in discrete networks, there
have been very few studies focusing on the total extent of the
consequences of applying a certain control action (beyond satis-
fying the control objective). This paper contributes methods for
measuring the number of changed transitions in the state space
upon the application of an edge control in multistate networks.
The approach is based on a polynomial normal form description
of discrete functions that provides a way of categorizing the
inputs of the function and therefore of quantifying their impact
on the dynamics of the network. The main computational cost
of our approach is in obtaining the canalizing layers format of
the functions which we used to derive our formulas. Once the
functions are written in the layers format, it is straightforward
to apply the formulas to calculate the upper bound. We note
that obtaining the layers format could be a formidable task with
exponential complexity on the number of inputs in the worst
case but for the type of networks we are studying (i.e. biological
networks) we believe that our approach is still practical. We
applied our methods to randomly generated multistate models
and verified that in many cases the upper bounds provided by our
formulas were accurate. We also observed that the upper bounds
tend to be more accurate when the edge interventions happen in
a less dominant layer.
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