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This paper develops tools to obtain robust probabilistic estimates for
queueing models at the large deviations (LD) scale. These tools are based
on the recently introduced robust Rényi bounds, which provide LD estimates
(and more generally risk-sensitive (RS) cost estimates) that hold uniformly
over an uncertainty class of models, provided that the class is defined in terms
of Rényi divergence with respect to a reference model and that estimates are
available for the reference model. One very attractive quality of the approach
is that the class to which the estimates apply may consist of hard models, such
as highly non-Markovian models and ones for which the LD principle is not
available. Our treatment provides exact expressions as well as bounds on the
Rényi divergence rate on families of marked point processes, including as a
special case renewal processes. Another contribution is a general result that
translates robust RS control problems, where robustness is formulated via
Rényi divergence, to finite dimensional convex optimization problems, when
the control set is a finite dimensional convex set. The implications to queue-
ing are vast, as they apply in great generality. This is demonstrated on two
non-Markovian queueing models. One is the multiclass single-server queue
considered as a RS control problem, with scheduling as the control process
and exponential weighted queue length as cost. The second is the many-server
queue with reneging, with the probability of atypically large reneging count
as performance criterion. As far as LD analysis is concerned, no robust es-
timates or non-Markovian treatment were previously available for either of
these models.

1. Introduction. An approach for obtaining robust estimates on probabilistic models at
the large deviations (LD) scale, as well as on risk-sensitive (RS) functionals associated with
these models, has recently been proposed based on Rényi divergence (RD) estimates [3]. Ac-
cording to this approach, a family of models is considered that is defined in terms of RD with
respect to a reference model. A tool, that we call in this paper robust Rényi bounds (RRB),
is then used to translate LD probability estimates (and more generally, RS cost estimates)
on the reference model into ones which hold uniformly within this family. This approach is
particularly useful in cases when the reference model is one that is easier to analyze than the
collection of models on which robust bounds are desired. This paper applies these ideas to
queueing models.

Indeed, queueing forms an ideal domain of applicability of this approach, for two main
reasons. First, it is very often the case that Markovian queueing models are considerably eas-
ier to handle than non-Markovian ones. Among the many examples that strongly support this
assertion we mention (1) the M /M /n model for which the many-server law of large numbers
(LLN) limit is trivial as opposed to the G/G/n counterpart for which theory is involved and,
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in particular, limit processes lie in the space of measure valued trajectories [27]; similarly,
at the central limit theorem (CLT) scale, these two models give rise to merely a diffusion
on R [21] and a considerably more complicated, measure-valued diffusion [28], respectively.
(2) Queueing control problems, that in a Markovian setting can be analyzed and solved as
Markov decision processes (see numerous examples in [39]), but in a general setting, such
as when service times are nonexponential, require an infinite dimensional state descriptor
and are less tractable. Second, the robustness of estimates to perturbations in the underly-
ing distributions is important in applications. Exponential service distribution (necessary for
Markovity) is often assumed without good statistical evidence or physical reasoning. For ex-
ample, a detailed statistical study argues that there is a good fit of service time distributions
in call centers to lognormal [9], but there are far more papers on many-server scaling limits,
aimed at modelling large call centers, in which servers operate with exponential distributions
than ones treating more general distributions. In a much broader perspective, uncertainty in
the underlying distributions is a central issue in applying probabilistic queueing models to
real world systems.

To put LD estimates in a broader context of scaling limits as far as sensitivity to perturba-
tions in the underlying distributions is concerned, it should be mentioned that most LLN and
CLT results in the queueing literature are tolerant to such perturbations in the sense that the
limits depend only on first or first and second moments of the primitive data (the many-server
limit regime alluded to above is an exception). This has made these regimes attractive for
approximations and indeed provided motivation to study them. On the other hand, the LD
regime does not have obvious robustness properties, as probabilities of rare events are sensi-
tive to the assumed tails of the primitives. Consequently, model uncertainty issues and sensi-
tivity to distributional perturbations are much harder to deal with. As already mentioned, this
paper addresses these questions by developing the approach of [3] in the context of queueing
models.

The development in this paper, which involves performance measures that are determined
by rare events and bounds defined in terms of Rényi divergence, is analogous to prior work
that bounds ordinary performance measures in terms of Kullback-Leibler divergence (also
known as relative entropy). This approach originated in a robust optimal control framework
in [15, 34], and was subsequently rediscovered a number of times and much developed in
the literature [23, 30, 32]. The corresponding use in model uncertainty bounds and sensitivity
bounds appeared later, as in for example, [11, 16].

The literature on LD estimates for queueing models is rich. A partial list of works dealing
with non-Markovian queueing models is as follows. In [1], weak limit theorems are proved
for the behavior of a G/G/1 queue conditioned to exhibit an atypically large waiting time.
In [20] the tail behavior of the waiting time steady state distribution is identified for a large
class of single server queues. In [31], multiclass feedforward networks are studied at the
moderate deviations scale. In [36], the LD principle (LDP) is established and the rate function
is identified for the generalized Jackson network. See further references in these sources as
well as in the monographs [10, 19, 40] and the paper [13] for numerous results on a variety
of models in both Markovian and non-Markovian settings.

Sample path LDP of queueing models are particularly difficult in network settings, due
to the fact that these models have discontinuous statistics. References [13, 19, 31, 36, 40]
do succeed is addressing such LDP. Yet, even when tools such as LDP and formulas for the
rate function are available, a direct approach for obtaining estimates for an event of interest,
uniformly over a given family of models, may be notoriously hard, as it amounts to solving a
variational problem for each member in the family. Unlike such a naive approach, under the
approach based on RRB, LD estimates have to be studied only for the reference model. In
fact, the approach does not even require that the LDP holds for each model in the family.
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The rest of this paper is organized as follows. The general approach that uses RRB to get
robust estimates on families of models is summarized in Section 2. In the same section, an
outline of the use of these bounds for queueing models is provided, showing that for these
models the bounds heavily rely on estimating the Rényi divergence rate (an asymptotic nor-
malized version of the Rényi divergence) of a renewal process with respect to a Poisson. This
provides a motivation to study such estimates for various families of renewal processes. Re-
sults in this direction appear in Section 3. Perhaps surprisingly, it seems that such calculations
have not appeared before in the literature. In Section 4 we provide a general development on
RS control, and demonstrate it with a queueing example. Estimates on RS control are closely
related to LD estimates, and in this section we argue that they can be addressed by RRB.
A general result developed in Section 4.1 shows that a dramatic simplification occurs when
RRB is used for RS control problems, by which robust control estimates are transformed
into finite dimensional convex optimization problems when the control set is a finite dimen-
sional convex set. In Section 4.2, we analyze a queueing control problem using this approach.
The model considered is the multiclass G/G/1 queue, in which the control corresponds to
scheduling jobs from the various classes. As a reference model we use known RS control
estimates for the multiclass M /M /1. Finally, Section 5 provides a queueing example for our
robust approach to LD estimates. The example consists of a queueing model with reneging.
Whereas reneging from queues is a very active research field, little is known on LD estimates
beyond the Markovian setting. The robust LD estimates provided in this section are on both
the G/G/1 + G and the many-server G/G/n + G models. The reference model on which
they rely is the M /M /n + M, for which the sample path LDP has recently been developed
in [2].

2. Robust Rényi bounds. This section introduces the RRB and the approach that uses
these bounds to quantify robustness. The RRB are described in Section 2.1 and the form
they take under scaling is derived in Section 2.2. In Section 2.3 it is argued that in queueing
applications the Rényi divergence of a renewal process w.r.t. a Poisson is key in the use of
the approach, and the notion of Rényi divergence rate is introduced.

2.1. Rényi divergence. Fix a measurable space (S, F) and denote by P the set of proba-
bility measures on it. For P, O € P, the relative entropy is given by

dQ
log 240 ifQ< P
fogdp ¢ o<Pp,

+o0o otherwise.

R(QIIP)==

Introduced in [38] (see [29] for a comprehensive treatment), the Rényi divergence of degree

a > 1,for P, Q € P, is defined by

1 dO\®

—1 — ) dP if P,
Ra(QIP) = a@—1) ng(dp) o<

400 otherwise.

For o =1, one sets R1(Q|P) = R(Q]|| P). Whereas two different formulas are used for the
cases « = 1 and o > 1, it is a fact that o — Ry (Q| P) is continuous on [1, «*] provided
Ry+(Q||P) < oo for some o* > 1. To mention a few additional properties, one has that
o — o Ry is nondecreasing on [1, 00), and given o > 1, one always has R, (Q| P) > 0, and
R, (QO|P) =0if and only if Q = P. A property that is of crucial importance in our use of
Rényi divergence is its additivity for product measures, in the following sense:

(2.1) Ry (Q1 x O2]|P1 X P2) = Ry (Q1IP1) + Ry (Q2]| P2).
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It is well known that exponential integrals and relative entropy satisfy a convex duality
relation, stated as follows. Let Q € P. Then for any bounded measurable g : S — R,

2.2 1 8d0 = |: dP — R(P i|
2.2) og/e 0 ;g/g (PIQ)

An analogous relation has been shown for Rényi divergences ([3]; related calculations first
appeared in [18]). Namely, fix « > 1. Then

(2.3) l1ogfe0‘g dQ = sup|: ! 1og/e<“—1>g dP — RO,(P||Q)].
o pepla —1
The identity (2.3) may indeed be viewed as an extension of (2.2), as the latter is recovered by
taking the formal limit « |, 1 in the former.
Given P, Q and «, as well as an event A € F, it follows from (2.3) by taking g(x) =0
[resp., —M] for x € A [resp., x € A°] and sending M — oo, that

o
a—1

log P(A) —aRy(P[|Q)
(2.4)

o

-1
" log P(A) + (¢ — DRy (QIIP)

<logQ(A) <

(provided that P(A) > 0 and Q(A) > 0). The first inequality uses (2.3) as written, and the
second reverses the roles of P and Q. In words: the logarithmic probability of an event under
Q is estimated in terms of the same event under P and Rényi divergence. It is also a fact that
both inequalities in (2.4) are tight, in the sense that given «, Q and A one can find P that
makes them hold as equalities (with different P for each equality) [3].

The point of view of [3] is to regard (2.4) as perturbation bounds. Given a nominal model
P, (2.4) provides performance bounds on a true model Q in terms of performance under P
and divergence terms. The same is true in the more general case of a RS cost, namely

—1
2.5) log/e(“_”ng < “—log/e“gdp + (@ — DRa(Q]P).
o

In this paper we refer to (2.5) and its special case (2.4) as robust Rényi bounds (RRB).
If one fixes a reference model P and a family Q of true models Q defined by {Q :
(¢ — DRL(Q|IP) < r}, some r > 0, then for any A (2.4) gives suerglog 0(A) <
“T_l log P(A) + r. This expresses a uniform estimate on the performance under Q in Q in
terms of that under P and the size of the family (where the latter term is interpreted in terms
of Rényi divergence). Clearly, an analogous statement can be made for RS cost by appealing
to (2.5), and similarly for lower bounds, by working with R, (P | Q) instead of Ry(Q| P).

2.2. The RRB under scaling. 'What makes the RRB particularly useful is that they remain
meaningful under standard LD scaling. We first demonstrate this in a setting of IID random
variables (RVs), and then extend to a continuous time setting.

IID data. Let Z1,Z>,Z53... be a sequence of RVs, and let P and Q be two probability
measures that make this sequence IID. Let P, and Q, denote the corresponding laws of
Z"=(Z1,...,Z,). Foreachn,let A, be an event that is measurable on o {Z"}, the o -algebra
generated by Z". We are interested in

1
—log Q(An).
n
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By the IID assumption, we may appeal to (2.1), according to which Ry (Q,|P,) =
nRy(Q1]|Py). Thus by (2.4) we obtain the bounds

a 1
—log P(Ap) —aRy (P11 Q1)
a—1n

(2.6)
1 —11
< —log Q(Ay) < “7;10g P(A) + (@ — DRy (01| Py).

In these bounds, the divergence terms remain of order 1 under scaling, and so it is possible
to compare the asymptotic behavior of n1 log Q(A,) to that of n! log P(A;). Moreover,
while standard problems in the theory of LD are concerned with limits of these expressions,
we emphasize that the bounds (2.6) are valid for all n.

Regarding the normalized logarithmic probability as a performance measure in this set-
ting is indeed natural for studying probabilities of rare events. Thus our remark from Sec-
tion 2.1 regarding uniform estimates on logarithmic probabilities is relevant also for expo-
nential decay rates. That is, given r > 0, let Q consist of probability measures Q under
which X1, X5, ... are lID and (o« — 1) R, (Q1]| P1) <r.Then (2.6) gives

1 —11

sup —log Q(A,) < <2 log P(A,) +r.
QeQn o

Again, a similar remark holds for RS cost, and a lower bound is obtained similarly by working

with Ry (P11 Q1).

Beyond IID data. When the model is not based on an IID structure one can still apply
the RRB under scaling, but one must address the question whether the normalized Rényi
divergence term scales suitably. Let us present this issue in a continuous time setting that
better suits the aims of this paper. Let {Z;,r € R} be a stochastic process on the measur-
able space (S, F) and, thoughout this paper, for a general probability measure Q € P denote
QtZ =Qo Z|[_0}t] (when there is no room for confusion, the dependence on the process is
omitted from the notation). Then for any ¢ > 0, any event A; measurable on o {Z][o ]}, mea-
sure P and collection of measures Q, we have by (2.4)

1 11 1 77
2.7) sup —log 0(A)) < ——log P(A;) + (¢ — 1) sup =Ry (Q7 | PY).
QeQ! o geQ!
If the last term remains bounded as ¢t — oo then one obtains uniform LD estimates within
the family Q by LD estimates on the reference model P and the Rényi divergence term. This
method then remains effective in cases where the latter term can be computed or estimated.
For statements that involve the limit + — oo, we shall need a further piece of notation,
used throughout. Given a process Z on (S, F) and measures P, Q € P, the Rényi divergence
rate (RDR) of Q w.r.t. P associated with the process Z is defined by

. 1
rZ(Q||P) =limsup ~ Ry (QZ || P7).
t—oo

For a family Q of probability measures, let the RDR of Q w.r.t. P and of P w.rt. Q be
defined, respectively, by

rZ(Q||P) =limsup sup R (QZ | P7), rZ(P||Q) =limsup sup — R (P71 Q7).
t—00 QeQ 1—>0o0 QeQ

Again, the dependence on Z will be omitted when there is no confusion. With this notation,
we have

1 —1 1
(2.8) limsup sup — log 0(Ay) < < lim sup —log P(A;) + (¢ — l)r (9| P).

t—00 QGQ o t—00
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Often, the selection of P with which to apply the bound (2.7) or (2.8) is based on con-
siderations of tractability. If, for example, P is a model under which performance can be
explicitly computed then one may use the approach in order to obtain guaranteed bounds on
a set of possibly intractable models Q. Another consideration, that is especially relevant in
engineering applications, is that systems often operate under conditions that are distinct from
those they are designed for. For such systems, the bounds provide guarantees on their true
performance based on designed performance.

As a final general remark, given a particular event or a sequence of events that are of
interest, one can optimize over the parameter o for the tightest upper and lower bounds.
Namely, in both (2.7) and (2.8) one may take the infimum over @ > 1 on the right hand side.
This observation will be used in Section 4.

2.3. Queueing models. Queueing models are described in terms of service disciplines
and stochastic primitives, where the latter term usually refers to arrival processes, service
times, routing and other processes. The way in which we propose using the RRB based ap-
proach in the queueing context is by working with Rényi divergence estimates for the un-
derlying primitives rather than directly with the “state” processes that are used in describing
performance criteria (such as queue lengths, delay, idleness). This is particularly natural when
one views such models as dynamical systems driven by renewal processes or more general
counting processes (or yet more generally, as marked counting processes). To demonstrate
this point, we provide two examples.

First, consider the queue length process X; for a GI/GI/1 queue. In this single server queue,
arrivals follow a renewal process, denoted by A;, and service times are IID. Let S; denote the
potential service process: By the time the server is busy for ¢ units of time, S; jobs have
departed. Assuming here, for simplicity, that at time zero the server has no residual work, S;
is also a renewal process. The queue length satisfies the equations

t
Xi=Xo+ A= ST, Ti= [ 10 ds

For our purpose, the key property is that X|[o ) is fully determined by its initial condition
and the primitives Al[o ], S|[o,s] (this owes to the fact 7; <t for all ¢). Hence, if such a queue
is to be analyzed by comparison to M/M/1, the relevant Rényi divergence term dictating
events measurable w.r.t. X|[0,s1, 15 R (Q/|| P;), where Q; is the law of (A, S)|0,;] as a pair of
(independent) renewal processes and P; as a pair of Poisson processes.

Next consider a generalized Jackson network. This is a network of N service stations,
each having an external (possibly void) stream of arrivals, and upon departure from a service
station, jobs are routed probabilistically, according to a given substochastic N x N matrix, to
one of the service stations or to leave the system. Let {&; (k)} be {0, ey, ..., eny}-valued RVs
according to which these routings are determined: &;; (k) = 1 dictates that the kth i-departure
is routed to station j. All arrival processes and potential service processes are assumed to be
mutually independent renewals, that are also independent of the routing decision variables, &.
Denote by X;, E;, S; and D; the queue length, external arrival, potential service and departure
processes, associated with service station i for 1 <i < N. Let also D;; denote the counting
process of jobs departing from station i and routed back to station j. Finally, let A; denote
the counting process for total arrivals into station i, including external arrivals and reroutings.
Then the following equations are satisfied:

Xi=Xi0+A, —D;i=X;(0)+A; —S;oT;,

Ai:Ei+ZDjiv EZA 1{Xi>0}dta
J
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Dij = Rij o Dj, Rij =Y &j(k).
k=1

Thus the dependence of queue length on the stochastic primitives is far more complicated
than in the case of a single node. Yet, the key property alluded to above is valid in this
complicated scenario. That is, X;|[0, ¢], 1 <i < N, are dictated by their initial condition and
the primitives E;|[o,¢1, Sil{0,,] and (R;; o Si)lj0,r, 1 <i, j < N. A similar statement is valid
for the busyness processes T;, the counting processes D;;, etc.

The special case where E; and S; are Poisson is referred to as a Jackson network. In this
case, the queue length is a Markov process with state space Z%, and is far easier to analyze
than the non-Markovian model. The perturbation that is required for translating results on the
Markovian model to the more general one again has to do with a change of measure from
a Poisson to a renewal process. Once again, the perturbation can be expressed as a Rényi
divergence term, this time for each E; and S;, 1 <i < N. A term that takes into account the
routings (R;; o S;)|[0,] is required only if perturbations of the routing matrix are considered.
This is important as far as robust performance bounds are concerned, but note that it is not
required for turning a non-Markovian model into Markovian.

As mentioned above, the Markovian model is easier to handle than the non-Markovian
one. As far as LD results are concerned, the full LDP for the former was established via a
general approach by Dupuis and Ellis, as a special case of a large class of Markovian queueing
models [14]. Building on these results, the identification of the rate function was obtained by
[4] and by [22]. Expressions for the rate function in these two references were provided as
a finite-dimensional convex optimization problem, and as a recursive formula, respectively.
Denoting a rescaled version of X by X” =n~!X (n-), and letting P stand for the probability
measure that makes the primitives E; and S; independent Poisson processes, the LDP for
the Jackson network provides an upper bound in the form of a variational formula for the
asymptotic expression

1
y(P, F) =limsup —log P(X"|j0.1] € F),

n—oo N

where F is any closed (in the J; topology) set of paths mapping [0, 1] to Rﬁ. A typical set
of interestis F = {¢ : ¢(t) € M for some t € [0, 1]}, M = RQ’ — ZNZI[O, b;), expressing the
buffer overflow event: one of the queues X' exceeds a threshold b; some time during [0, 1],
an event that is rare for large n provided that the network is stable.

LDP is known also for the generalized (i.e., non-Markovian) Jackson network by [36],
where the rate function is identified in terms of an optimization problem, that is not in gen-
eral a convex optimization problem, and for which a recursive formula such as [22] is not
available. Considerably less is known on estimates at this scale which hold for a generalized
Jackson network uniformly w.r.t. the stochastic primitives within certain set. However, (2.8)
addresses precisely this question.

Indeed, to state the readily available corollary of (2.8), set

N N
re(QIP)=)"rl(QIP)+ > ry (QIP)
i=1 i=1
to be the sum of RDR over all primitive processes. Then given a collection Q, we have the
following uniform bound on generalized Jackson networks associated with Q € Q in terms
of performance of the Jackson network P, namely

—1
(2.9) sup (0. ) fiﬂfl{aT”P’F”(“‘ 1>ra<Q||P>}.
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As already mentioned, by the LDP, an upper bound on y (P, F) is known, in the form of a
variational formula. Therefore the usefulness of (2.9) depends on the ability to compute or
provide an effective bound also on the last term, that is, the RDR of a renewal process w.r.t.
a Poisson.

The case made above for the crucial importance of RDR estimates for the applicability
of the approach can be made in any scenario where a queueing model is representable as a
dynamical system driven by renewal processes or other counting processes, and in the special
case of Poisson driving processes is tractable (due to Markovity or for any other reason).
Therefore the usefulness of studying the RDR in relation to the proposed approach is broad.

3. Results on RDR. Calculations and bounds of entropy rate and Rényi entropy rate
have been studied for some families of stochastic processes, including Markov chains and
hidden Markov models [24, 33]. However, the questions that arise from the above discussion
are concerned with the RDR of marked point processes with respect to marked Poisson point
processes, also known as a Poisson random measure. To the best of our knowledge, estimates
on RDR for such models have not been studied before. In this section we present some results
in this direction. The marks of the reference Poisson point process we consider will take
values in some Polish space S and will have IID distributions given by some probability
measure ¢ on (S, B(S)), where B(S) denotes the Borel o-field on S. Denote by M g (S) the
space of finite measures on S equipped with the usual weak convergence topology. A marked
point process can be represented as a stochastic process {N;} with sample paths in Q2 =
D([0, 00) : MF(S)). A rate Ao Poisson marked point process with mark distribution ¢ is a
stochastic process {N;} such that (i) forall 0 <s <t < oo and A € B(S), N;(A) — Ns(A) is
a Poisson random variable with mean Ag(t — s)c(A); (ii) if for k e N, 0 <s; < 1; < 00 and
A;eB(S),i=1,2,...k {(si, ;] Xx A;}N {(Sj, l‘j] X AJ'} =g, forall 1 <i < j <k, then the
Poisson random variables {N;, (A;) — Ny;(A;), 1 <i <k} are mutually independent. We will
refer to Agds X ¢(dz) as the intensity measure of such a marked Poisson point process.

Let 7 = B(2) and abusing notation, let {N,};>¢ be the canonical coordinate process on
(2, F). Fix A9 € (0, 00) and ¢ € P(S). Let P be the unique probability measure on (€2, F)
under which N is a rate Ag marked Poisson process with mark distribution ¢. We will consider
the canonical filtration on (€2, ) which will be denoted as {F;};>0.

In this section we present two types of results: bounds on ry (Q|| P) for Q a family of
models (namely, probability measures on (€2, F)) and on r, (Q|| P) for a single model. This
is the content of Sections 3.1 and 3.2, respectively. The proofs of the results stated in these
two sections appear in Appendix A.1 and A.2, respectively.

3.1. Bounds on RDR for families of processes. This section provides bounds on r, (Q|| P)
for families Q of probability laws of counting processes where as before P is the probability
law of a marked Poisson process with intensity measure Agds X ¢(dz).

For x > 0 and o > 1 let k4 (x) denote the Rényi divergence of order « of a Poisson RV
with parameter x € (0, co) w.r.t. a Poisson RV with parameter 1. A direct computation gives

Y —ax+oa-—1

(3.1 ka0 =

Note that for every «, this function is nonnegative, strictly convex and vanishes uniquely at 1.

Denote by Vy the set of mappings v : Ry — R, such that v(x) — 0 as x — oo. Also,
denote by PF the predictable o-field on 2 x Ry and let 1 : 2 x Ry x § — (0, 00) be a
PF ® B(S)\ B(0, 00) measurable map. We will refer to such a map as a predictable process.
We will consider probability measures Q on (2, F) under which {N;} is a marked point
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process with intensity process A. Such a probability measure can be characterized as the
unique element of P(£2) under which for every bounded predictable process u and T < co

Ep[/ u(s,z)N(dsdz)] =Ep[/ u(S,Z))\(S,Z)dSS‘(dZ)}
[0,T1xS [0,T1xS

where we view N as a Mg ([0, T] x S)-valued random variable which is defined by the
relation N ((s, 1] x A) = N;(A) — Ng(A) for0 <s <t < T, A € B(S). We will be particularly
interested in the case where A(s, x) = X(s)w(x), where A : Q x Ry — (0,00) is a PF\
B(0, co)-measurable map (also referred to as a predictable process) and v : § — (0, 00)
is a B(S) \ B(0, co) measurable map satisfying [ ¥ (z)s(dz) = 1. This corresponds to the
setting in which, under Q, {N;} is a marked point process with points having IID distribution
¢(dz) =¥ (2)s(dz). In such a case, we will refer to (N, A) as a marked Cox process.

In the special case where S is a singleton {z*} (and so ¢(dz) = ¢(dz) = 8,+(dz)), {N;}
is simply a Cox process with intensity process )A»(‘) (see, e.g., [26], Section 1.1). In such a
case we will occasionally also refer to (N, ) as a Cox process. For a probability measure
Q on (2, .F) and ¢ € [0, 00), let Q{V =Qo N[B,lt] be the probability measure induced on
D([0, t] : ME(S)) by the canonical coordinate process. Motivation for the specific forms of
the families ©; considered in the theorem appears after the theorem statement.

THEOREM 3.1.

(1) Fix v € Vg and a > 1. Consider the collection Q1 of probability measures Q on
(2, F) under which (N, X) is a marked point process with intensity process A satisfying

T
(3.2) T_1/0 /Ska(x(;;z)>g(dz)dt§u+v(T), T >0,

for some constant u > 0. Then

. 1
re(Q1lIP) =limsup — sup Ry (QN|IPN) = uo.
t—>oo0 I Qe
(ii) Consider the collection Qy of probability measures Q on (2, F) under which (N, \)

is a marked point process with intensity process \ satisfying

A
(3.3) a<

Ao

for constants 0 <a <1 <b < oo. Then

(3.4 ra(Q2|IP) = (ko (@) V ko (D))o

As a special case, the identity holds for the family of measures under which the marks are
1ID (and independent of jump instants) with distribution W (z) ¢ (dz) and {N;(S)} is a delayed
renewal processes with hazard rate h (i.e., (N, h(s)y(2)) is a marked Cox process), and
a <™ < pforall (s,z) Ry x S.

(iii) Let v € Vy. Consider the collection Q3 of probability measures Q under which (N, A)
is a marked point process with intensity process ) satisfying (3.3) as well as

3.5 M —v(T) < l/ AMt,2)c(dz)dt <o+ v(T), T >0.
T Jio,T1xS

T]x

Then
roa (3| P) = (pka(a) + gka (b)) Ao,

where p= 3= and q = ;= .
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RDR R(Q2IIP) AND R(Q3IIP) RDR R(Q4IIP)
0.25 T T T T T T T 2 T T T T T
—R(Q2IIP) for a=0.4, b=1.4 —alpha0=10, u=2.0
——R(Q3IIP) for a=0.4, b=1.4 18| —alpha0=10, u=1.5
R(Q2IIP) for a=0.5, b=1.5 alpha0=10, u=1.0
— R(Q3IIP) for a=0.5, b=1.5| 16 |—alpha0=6, u=2.0
alpha0=6, u=1.5 .
02l 1 alpha0=_6, u=1.0
* _constraints

\ \ \ \ \ \ \ \ \ 02 \ \ \ \ \
1 15 2 25 3 35 4 4.5 5 55 6 1 2 3 4 5 6 7 8 9 10
alpha alpha

FI1G. 1. RDR for various families as a function of «. Left: ro (Qo|| P) and rq (Q3l| P) for different values of a
and b. Right: ro (Qq|| P) for different constraint pairs (o, u). In all cases, Loy = 1.

(iv) Let v € Vy and consider a collection Qq of probability measures under which (N, A)
is a marked point process with intensity process A satisfying (3.2) for some o = ag, as well
as (3.5). Then for all « € (1, ap),

)\0 _ =1
ra(QallP) = 5[((?!0% + D@0~ — 1] = (pka (0) + gkqa (c)) 20,
I _1
wherea =a(a—1), 00 =aplag—1), p=1—¢q,q = (@xou+1) *“~! and c = (@pu+ 1)*0-",

The proof appears in Section A.1. Figure 1 provides several numerical evaluations of the
RDR for families analyzed in Theorem 3.1.

REMARK 3.1. Items (i) and (ii) of the result are concerned with classes of marked point
processes for which a certain constraint is put on the size of perturbation of the stochastic in-
tensity. Note that for o = 2, the left hand side of (3.2) gives half the second moment centered
about 1 of the empirical distribution

1

— 8 dz)dt.
T 0.T]xS )\.(t,z)/)\.(]g( )

For other values of «, it provides different types of level dispersion about 1 that take the form
of higher order moments. In the same vein, (3.3) can be seen as a constraint on the L, norm
of of the same empirical distribution, centered about #.

The motivation behind parts (iii) and (iv) is that the reference value A¢ may play an addi-
tional role. If a parameter is regarded as a first order approximation, it may often mean that
over a long period of time it represents the true average. Clearly, this additional constraint
makes the class of models smaller than the classes from items (i) and (ii), and leads to tighter

bounds.

3.2. Bounds on RDR for a single renewal process. Recall that P is the unique probabil-
ity measure on (€2, F) under which the canonical coordinate process N is a marked Poisson
process with rate Ag and mark distribution ¢. In this section, for simplicity, we take Ag = 1.
Let Q be another probability measure on (€2, F) under which N is a marked renewal pro-
cess with mark distribution ¢(dz) = ¥ (z)s(dz) and inter-jump distribution 7r. Note that in
such a process the collection of jump-instants is independent of the collection of marks,
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and inter-jump times and marks are IID. We denote such a process as a (i, ¥)-marked re-
newal process. Assume that 7 has a density denoted by g, and let 4 denote the hazard rate,
h(x) =gx)/m[x,00), with h(x) =0 if m[x, co) = 0. Define, for x > 0,

(3.6) H(x) = /Ox(l — h(s))ds +logh(x) = x +log g(x),

with H (x) = —oo when g(x) =0.
To state the next result, let

y(s) = f SHOudy), seR,

. _ y(qa)Pld —1
v(p,q,a) = L, p.q=>1,

where v is the standard exponential distribution. Denote

Gy = inf P(p.q, ).
p.q=lip~l4q71=1

Also, let
B =log [ HaHONy), =G, i) € R,
and let 8* be the Legendre—Fenchel transform:

B (x) = Slip{(k,x) - BV}, xeR2

For 6 € (0, o0), denote
GPO)=0 sup [axs—B*@)],

xeR2:x1<h-!
G O) =0 sup[axs — B* (07!, x2)].
x2eR

Recall that réV(Q | P)=limsup,_, o %R(X(QiV I PIN). For z € R, we denote z+ =0V z. Then
we have the following upper bounds.

THEOREM 3.2. Assume that H = SUP,cR, H(x) < oo. Also suppose that c(a) =
[s(W*(z) — 1)s(dz) < oc. Then the following hold for o > 1.

(a)
oH
(3.7) Nopy < 1@
a(a—1)
(b)
N [GPTH + (@)
(3.8) ra (QIP) = = =

(c) If B is finite in a neighborhood of the origin, then
[SUPge(0.00) G& OT + c(@)
a(a—1) ’
(d) If B is finite in a neighborhood of the origin and y (s) < oo for all s <0, then

SUPge(0.00) G (O)]F + c(@)
ala—1)

(3.9) ra (QIIP) <

(3.10) rYolIp) < [
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The proof of this result appears in Section A.2.

REMARK 3.2. We now make some comments on the assumption and behavior of differ-
ent bounds in Theorem 3.2.

e For (3.9) and (3.10), the assumption that g is finite in a neighborhood of the origin is
needed to apply the strengthened Cramér’s theorem [12], Corollary 6.1.6, and Varadhan’s
integral lemma [12], Lemma 4.3.6. Unfortunately, if the support of 7 is not R, then H is
—oo0 at some place and B is not always finite around the origin.

e For (3.10), the assumption that y (s) < oo for all s < 0 (together with the requirement that
H < o0) rules out the possibility that 77 is Exponential(p) for p # 1.

e Since G (0) < G (0), the bound in (3.10) is clearly better than the bound in (3.9)
(though the former requires stronger assumptions). Also, the bounds in (3.8), (3.9) and
(3.10) are all better than the rough bound (3.7). This can be seen as follows.

For (3.8), since y(s) < eSﬁ, we have p(p,q, o) < %. Taking p — 1 gives G((xl) <

OlH_l

e .
For (3.9), note that for fixed 6 € (0, c0),

GP@O)=60  sup  [axa—B*()]

xeR2:0<x; <61

=0 sup [otxz— Sup{()»,x)—ﬂ()\)}]

xeR2:0<x; <61 reR2

=6 sup inf [ax — A1xp — Aoxz + B(A)]
(3 11) xeR2:0<x; <! reR?
<0 inf sup [ax2 — A1x1 — Aoxz + B(V)]

)‘GRZXER2:0§X|§9’1

=60 inf sup [—Aix1+ B0, )],

A]GROSXI 59_1

[A)™ +6B(1, )],

inf
)\.IGR
where the fifth line follows on observing that supxzeR[axz —Ax1 — A2x2 4+ B(A)] =00
when Ay # . If 0 < 6 < 1, taking A1 =01in (3.11) we have

G () <0p0,0) <aH <" —1.
If6>1,taking .1 =1 —6 <0in (3.11) we have
GP(0) < =21 +60B(1,a) =60 — 1 +0log Ep[eI ~DATHA)]
<0—1+aHO—0logh < —1,

where the last inequality becomes equality when 6 = ¢?H  Therefore SUPge(0,00) G¥P ) <

e _ 1 and (3.9) is better than (3.7). Finally, since (3.10) is better than (3.9), it is also
better than (3.7).

3.3. Examples. We now consider a few specific cases of 7. For simplicity these examples
are concerned with point processes without marks (namely, the case where ¢(dz) = §;+(dz)
and hence c(«) = 0 in Theorem 3.2). The first example is that of an exponential distribution.
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ExXAMPLE 3.1. Suppose 7 = Exp(p) withrate p > 1, namely g(x) = pe~?*. It turns out
that in this case the right sides of (3.9) and (3.10) are the same and in fact the 1nequahtles in
both cases can be replaced by equalities. Note that in this example y (s) = oo for s < ——
which violates the assumption required for (3.10) in part (d). Actually in (3.9) and (3. 10§ the
inequality can be changed to equality even for the case p € (0, 1]. However, we note that
H(x)=—(p—1)x +1logp — oo as x — oo when p € (0, 1], which violates the assumption
H < oo required for Theorem 3.2. Proofs of the above statements are given in Appendix A.3.
This example shows that the conditions assumed in Theorem 3.2 are not essential for the
result.

The second example is Gamma(k, p).

EXAMPLE 3.2. Suppose m = Gamma(k, p) with k > 1 and p > 1, namely g(x) =

F(k) xk=1e=PX for x > 0. For this example, computing an explicit expression for the Rényi

divergence is harder and thus we will make use of the bounds in Theorem 3.2. Since p > 1
and k > 1, e = g(x)e* is bounded from above. Also for A = (A1, A») in a sufficiently
small neighborhood of the origin,

BA) = log/ehxg(x))‘ze)‘”e_x dx

pF o\
=log/(—> x)‘Z(k_l)e_()\Zp_)tz_)&l'f'l)X dx
' (k)

o [( o )M L(1+ Aok — 1))
*\Tw) Tt — 1= #atD
So all assumptions for (3.9) hold. Note, however, that assumptions for (3.10) are not satis-
fied since y(s) = oo for s < —(p — DL Using Theorem 3.2(c) one can give the following

<o

explicit bound for the Rényi divergence rate by estimating supg¢ g, ) G,(xz) ©):

1
ra QIR = oo sup )G<2><0)
€(U,00

1 P +ak=1) ,\Fews _}
<zl ") b=l

Details of this calculation are given in Appendix A.3. When k = 1, namely when 7 is Exp(p),
the bound on the right side equals p* —a(p — 1) — 1 and the inequalities in the above display
are in fact equalities.

(3.12)

The next example can be used to obtain RDR bounds for certain types of phase-type dis-
tributions.

EXAMPLE 3.3. Suppose the density g(x) < Ce™?* for some o > 1. In this case, once
again, the assumptions for (3.10) are not satisfied in general. However, as we check below
the assumptions for (3.9) hold. First note that e/¥) = g(x)e* < Ce~ V¥ and since o > 1,
H < .

Next note that for A = (A1, Ap) such that 1 + (0 — 1) — A1 > 0, we have

B) = log/e'\‘xg(x)“e“xe_x dx

< logfcxze—(xza—xz—xlﬂ)x dx
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1
1+ X0 —-1)—1

=X2logC +log

< Q.

Thus we have verified that all the asuumptions needed for (3.9) are satisfied. Using Theo-
rem 3.2(c) one can give the following simple form bound for the quantity on the right side of

(3.9).

613 AOIP = s 6RO = [~ 1-alo - )]

(@ —1) ge(0,00) ale—1)

Details of this calculation are given in Appendix A.3.

4. Robust control of tail properties for a scheduling problem. When considering or-
dinary cost structures the variational representation for exponential integrals in terms of rel-
ative entropy is the starting point for a formulation of optimization and control design that
is robust with respect to model errors, where errors are measured by relative entropy dis-
tances. To be precise, one can formulate problems such that their solution gives the tightest
possible bounds on a given performance measure for a family of models, where the family is
defined by a relative entropy distance to a design model [34, 35]. Alternatively, one can fix
a desired performance bound, and find the control which gives the largest possible family of
models across which the performance criteria is guaranteed to hold. In this section we inves-
tigate analogous situations where in place of ordinary cost structures we use costs that are
determined by rare events, that is, risk-sensitive costs. Let (S, F) and P be as in Section 2.1.

4.1. A general approach. Let g : S — R be bounded and measurable. From the identity

1 M1
—log/e"‘gsz sup
o er_a—

log [ e« Ve dg - Ra<Q||P)],

valid for & > 1, one can easily obtain, forall 0 < 8 < y,

1 [ 1 1
4.1) —log/eyg dP = sup —1ogfeﬁng — —Ry(QllP)]

Y oepLB y—p 77
(extensions to unbounded g are also possible). Fix some risk sensitivity parameter 8 and a
class of models Q. Let

(4.2) f(@)=sup{Ra(QIIP): Q€ Q}, ae(l,00).
By appealing to (4.1) we can show the following.

THEOREM 4.1. Fix >0, g, P, Q and f as above. Then
Y

1 o _ FG=3) 1
sup —log Ege’® < inf F(B,y) where F(B,y)=|——+ + —logEpe’¢|.
0eo B v>B y=8 v

Moreover, y — F(B,1/y) is a convex function.

We propose using Theorem 4.1 as the basis for the formulation of optimization and control
problems, so that given a class O, an upper bound is obtained across Q for a RS control (or
optimization) problem. For certain problems we expect to be able to say more, which is that
the bound is tight in some sense. A controlled process X is considered with cost of the form
E[eP¢X)] where B is the sensitivity parameter. The RS control problem will be concerned
with E¢[eP¢X)] where a denotes a control or a parameter to be optimized over, and the
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robust version of this problem is one where a control a is sought to minimize the RS cost
uniformly in the family of models. In this context, Theorem 4.1 gives

1 G 1
(4.3) inf sup — log E‘éeﬁg < inf inf [77 + —log E;‘Jeyg].
a oco B ay>pLy—B8 v

Two highly attractive aspects of this bound are:

(i) it turns an oo-dimensional game into a finite dimensional minimization problem when
a is finite dimensional;

(ii) the minimization over y is tractable computationally, thanks to the convexity stated in
Theorem 4.1.

With regard to the optimization over a, that is of course related to the structure of the par-
ticular problem. However, it is worth noting that the difficulty of this problem is often related
to the difficulty of the ordinary analogue, that is, inf, E%g. For the example from queueing
presented below we see that the risk-sensitive optimization problem has a structure that is
very similar to that of the ordinary analogue. The function f is the element that distinguishes
this problem from its relative entropy/ordinary cost analogue, for which f is essentially a
constant. In some sense, f captures the critical, distribution dependent properties of the tail
behavior of Q. The only part of Theorem 4.1 that does not follow directly from (4.1) is the
last sentence, which we now address.

LEMMA 4.1. Let X be a nonzero nonnegative random variable. Then the function

m(0) =6log EX'/?

is convex in 6 > 0.

PROOF. It suffices to show that
m(0) < im(01) + (1 —A)m(62)

for every 61,6, € (0,00) and A € (0, 1), where 8 = 161 4+ (1 — A)6>. Assume without loss

of generality that m(6) < oo, m(6;) < co. Applying Holder’s inequality with p = A%l and

q= (l—aﬁ’ we have
L. Ap\1/p =20\ 1/q
m(@)=0logE[X¢X 7 | <Olog[(EXeP) 'P(EX 7 1)/7]
0 0
= —log EXV + Z10g EXY% = xm(6)) + (1 — 1)m(62).
p q
This completes the proof. [
LEMMA 4.2. ForO0O< B <y, let

G 1

hy) = +—log Epe’®,
14

where f () is defined by (4.2). Then the function h(p) = h(1/y) is convex in y € (0, 1/8),
that is, h(y) is convexin 1/y.

PROOFE. Since

Ra(Q||P) = ﬁ&g/(j—%)adﬂ
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we can write

yljR (QlIP)= lﬂLlL log/( )

Y- B
_11 dQ\ 77
= Eglog/‘(d—P) dP.
Therefore
~ d 1/(1-By) .
7 =h(1/7) = sup [ﬂ a-pne [(55) a +plog Ep([e]'7)],

From Lemma 4.1 we see that the last term is convex in y. Since 1 — 8y is just an affine
function of y, it follows from Lemma 4.1 again that the first term is also convex in y. This
completes the proof. [

4.2. A risk-sensitive scheduling control problem. 'We focus on one out of various RS con-
trol problems that are of interest in the multiclass G/G/1 setting. In this setting each arrival
requires a single service. A recurring theme in the literature is how to schedule service so as
to minimize delay or queue length costs. The need to cover general service time distributions
has been recognized many times in earlier work on this model. However, under RS cost, this
question has only been addressed in the Markovian setting. Our goal here is to show how the
perturbation bounds, specifically Theorem 4.1, can be used to yield performance guarantees
for the non-Markovian setting.

Let N denote the number of classes, and for i € {1,..., N} let X;, A; and S; denote the
ith queue length process, arrival process and potential service process. Then for each i, the
balance equation holds, namely

Xi(t) = Xi(0) + A; (t) — Si (Ui (1)),

where U;(¢) denotes the cumulative time devoted by the server to class i by time ¢. In partic-
ular, U; are nondecreasing, Lipschitz continuous with constant 1, and ) ; U;(t) < ¢ for all .
We regard A and S as primitive processes, and call X and U a state process and a control
process, respectively, if U is adapted to the filtration F; = o {A;(s), X;(s),s <t,i < N}.

It is assumed that A; and §; are mutually independent renewal processes. In the nth system,
A; and S; are replaced by AY = A;(n-) and S!' = §;(n-), and the corresponding control and
queue length processes are denoted by U" and X", respectively. Normalized queue length is
denoted by }_(;’ = n_lX;‘.

Fix T > 0 and constants ¢; > 0. For 8 > 0, denote

11 .
J"(U™; Q,B)= ;ElogEQeﬂZ,-cl»xi (1)

There is redundancy in the definition with respect to 8 and c¢;. We use the parameter § to be
consistent with Theorem 4.1, but one could let 8 = 1 without loss. Denote by P the Marko-
vian model, where A; and S; are Poisson processes with parameters A; and p;, respectively.
Denoting

V'(P.§)=inf]"(U"; P. ).
where the infimum ranges over control processes U”, the limit V (P, 8) = lim,, V" (P, 8) was

shown to exist and was characterized in [5] as the viscosity solution of a HIB equation. In [6]
it was proved that for zero initial conditions one has V < S~!WT, where

N
_ o S At
W—W(ﬁ)—%g;(k, uii)®,
1=
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u={ue Rﬁ D u <1}, )A\i =i (ef — 1) and i =pi(1— e—Bci) It was also shown in [6]
that when e ~#¢ < A; /uu; for all i the bound is tight, that is, V(8) = B~ WT. In this case, it
is asymptotically optimal to prioritize according to the index p; (1 — e~#¢), regardless of T,
with larger values given priority.

Let P be fixed as above, and consider a family Q defined via part (ii) of Theorem 3.1. That
is, letting /; 1 and h; 5 stand for the hazard rates for A; and S;, respectively, assume that
hi () <biy, gz < hia () <

(4.4) ai,1 <
' Ai Mi

for some constants 0 < a; ; < b; j. Denote by Q% and Py the law of (A", §")|[0,7] under Q
and P. Then by (3.4), for all Q € O,

Ro(Q7 1 P7) < nT fo(a),
where
fo@) =) [ka(ai1) V ka(bi )i + ) _[ka(ai2) V ke (bi2) i
i i
[we recall ky (x) = [x* —xa + o — 1]/a(a — 1) introduced in (3.1)]. Thus Theorem 4.1 may
be applied with f(«) =nT fy(). Denoting
V*(Q, B) =inf sup J"(U"; Q, B),
Ull QEQ

we have by Theorem 4.1 that, for all #,

. . [ThGE _[ThGE
@9 Vi@ <[ SEE e p)| = [ SRR vy |

As mentioned above, for each y, limsup, V"(P,y) < y_l W(y)T (according to Theo-
rem 2.1 of [6]). Hence we obtain the following upper bound.

THEOREM 4.2. For each B, one has

foGEp) N W(y)]T

(4.6) limsup V"(Q, B) < B(Q, B) = inf[ v v

y>B

PROOF. To deduce (4.6) from (4.5), let ¢ > 0 be given and let yp be e-optimal for the
RHS of (4.6). Then use (4.5) with the infimum over y replaced by the substitution y = yy.
Taking the limit and using the aforementioned limit result for V" (P, yy), then sending ¢ — 0,
gives (4.6). U

We now show that using the last result one can identify a policy for which the robust bound
(4.6) is valid.

REMARK 4.1. The robust bound derived in Theorem 4.2 can in fact be achieved by an
index policy. Given 8 and ¢ > 0, let y* be an e-minimizer of the RHS of (4.6). Let us show
that prioritizing queues according to the index w;(1 — e‘y*ci) (rather than p;(1 — e A%))
guarantees the uniform bound

limsup sup J"(U™"; Q, B) < B(Q, B) + &,
n QeQ
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where U*" denotes the control corresponding to the above mentioned index. To see this, note
that by Theorem 4.1, when U*" is implemented one has for all n

Tfo(;15) Tfo(+5)

Jl’l(U*Jl; Q’ ﬁ) S lnf[ ,B + Jn(U*,n; P, y)] 5 [ )4 5 + Jn(U*,n; P, y*)i|’
v>p y =8

and since by [6], under the fixed priority U™" one has that J"(U*"; P, y*) converges to

(y*)~'TW(y*), the claim follows.

Define £(x) = xlogx — x 4+ 1 for x > 0. When B is small a natural assumption to make
on the a; x and b; j, consistent with the fact that the Rényi rate k, (x) becomes the relative
entropy rate £(x) as o | 1,isthata; x <1 < b; x and £(a; ) = €(b; k) so long as £(b; x) <1,
and a; x = 01if £(b; ) > 1. In this case one can show that the bounds are also tight in a precise
sense, which is that there exists a model in @ such that the two sides differ by no more than
error term that vanishes as 8 | 0 and which can be calculated.

As pointed out above, the robust RS control policy thus obtained prioritizes according to
an index that is distinct from that used for the reference model. This illustrates an important
aspect of the general approach of using Theorem 4.1 and (4.3), namely that there is more to
this approach than directly applying the Rényi bounds to the state process obtained under the
optimal RS control for the reference model P. Indeed, the latter approach would give rise
to a control for (Q, B) that agrees with that for (P, 8). Instead, the minimization problem
(4.3) allows for the control (and consequently the state process) to differ from the one that
is optimal for (P, B) by allowing freedom in choosing the sensitivity parameter y. Thus y
is selected to best fit the family Q, which may indeed result in a control policy that is not
optimal for the “reference problem” (P, B).

EXAMPLE 4.1. We evaluate the bound B(Q, ) of (4.6) numerically. We consider an
example with five classes, with data A = (1,1.5,1.8,2,2) and u = (8, 10, 12,9, 14). The
overall traffic intensity p =) ; % is p = 0.790. The relative costs ¢; are taken to be ¢ =
(0.3,0.2,0.2,0.1, 0.2), and the time horizon T = 1.

First the reference model is considered. When Q is a singleton consisting of the model P,
the bound is B(Q, B) = ,8_] W(B) = V(B). This function is shown in blue is Figure 2 (left),
for 8 in the range [0, 15].

Consider the family determined by (4.4), witha; 1 =a;2 =1—8 and b; 1 =b;j2 =146
for all i, for § = 0.65. Recall that this corresponds to a family of models driven by renewal
processes, where the interarrival and service time distributions have hazard rates that deviate
from the respective Poisson rates of the reference model by at most 65%. Moreover, according
to Theorem 3.1(ii), this may also stand for a family of models where the driving processes are
Cox, for which the stochastic intensities deviate from those of the reference model by at most
65%. This family is denoted by Q> (for it corresponds to part (ii) of Theorem 3.1). In Figure 2
(left) the bound B(Q3, B) the RS cost for this family is shown in solid black line. A dotted
black line shows the bound B(Q>, 8) where now the parameter § is taken as § = 0.15.

Next, consider the family of models, denoted by Q3, for which the driving processes are
as in Theorem 3.1(iii). These are Cox processes which, in addition to bounds on the devi-
ation from the reference Poisson rates, the stochastic intensities satisfy a long run average
constraint. For example, the potential service process for class 1 has stochastic intensity that
deviates from 11 by at most §, and in addition is constrained to have a long run average equal
to w1. In Figure 2 (left), the bound B(Q3, 8) is shown in solid red line and in dotted red line
for § = 0.65 and § = 0.15, respectively. As expected, the bounds for Q3 are smaller than for
O, and they are smaller for § = 0.15 than they are for § = 0.65.
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RS bounds with traffic intensity = 0.395

35

RS bounds with traffic intensity = 0.790

—B(Q2,beta) for delta=0.65 ——B(Q2,beta) for delta=0.65
——B(Q3,beta) for delta=0.65 18 |- |—— B(Q3,beta) for delta=0.65

30 |+weree- B(Q2,beta) for delta=0.15 I B B(Q2,beta) for delta=0.15
........ B(Q3,beta) for delta=0.15 16 |-+ B(Q3,beta) for delta=0.15
—— W(beta)/beta —— W(beta)/beta

beta beta

FIG. 2. Robust risk-sensitive bounds for the scheduling problem.

Finally, all five graphs are repeated in Figure 2 (right) with a different A, namely A =
(0.5,0.75,0.9, 1, 1) (leaving the remaining parameters unchanged) in which case p = 0.395.
The queueing system is more stable in this case, and the performance guarantees, as measures
by the RS cost bounds, are smaller as expected.

5. Robust LD estimates for queueing models with reneging. In this section we study
a multiserver queue with reneging, under a scaling where the number of servers n and the
arrival process grow proportionally. This scaling has been referred to as a many-server scal-
ing, studied for the first time in [21], for CLT asymptotics in the case of exponential servers,
and then in the context of general service times in [25, 27, 28, 37] (for LLN and CLT asymp-
totics). For models that accommodate reneging, it is natural to define performance in terms of
the reneging count. This was addressed recently in [2], where the large time, large n asymp-
totics of the probability of atypically large reneging count was identified precisely. These re-
sults were concerned with the Markovian M/M /1 + M and M /M /n + M models. Whereas
the results of [2] identify exact LD asymptotics for one particular model, our interest here is
in the spirit of robust bounds, in estimates that are uniform within families of models, that are
moreover non-Markovian. The results from [2] will serve us as reference for these uniform
bounds.

Treating general service time distributions via a Markovian reference model relies, accord-
ing to our approach, on Rényi divergence estimates of the underlying primitives, which in this
case are given by the potential service processes for each server. This is precisely where our
results from Section 3 on divergence of various counting processes w.r.t. Poisson become
useful. A similar remark holds for other primitives of the model, namely arrival and patience
times. Specifying server characteristics by means of a counting process that lies in a given
Rényi radius about some nominal Poisson gives room for modelling servers as different from
one another. In fact, in this framework there is no benefit to requiring that servers be statis-
tically identical. This gives rise to a set of models much more rich than G/G/n + G, that
accommodates (a) heterogeneous servers, and (b) time varying processing capacities.

Whereas item (a) above allows for distinct probabilistic characteristics for each server, our
approach is to express the degree of uncertainty (w.r.t. service times distributions) on equal
terms for all servers. This should not be confused with models suchas G/G/nor G/G/n+G
where all servers operate under the same distribution. This modelling approach is perhaps
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more satisfactory than models like G/G/n in situations where there is no information that
distinguishes between servers but at the same time there is no reason to believe that all are
identical. An analogous remark is valid for modelling patience of different customers.

5.1. Model and performance measure.

5.1.1. Model equations. Customers arrive at the system with service requirement that
can be handled by any one of n parallel servers. They are queued if no servers are available
upon arrival, and renege if they are still in the queue at the time their patience expires. The
priority within the queue is according to FIFO. Determining which available server takes the
next customer is according to a fixed ordering of the servers.

Because, on the one hand, servers have different characteristics and, on the other hand,
customer reneging depends on their state (specifically, whether they are in the queue and for
how long), the model equations must account for the state of each server as well as the state
of each customer. Hence our system of equations will be based on a balance equation for each
server and one for each (of the infinitely many) customers.

The model equations are therefore somewhat complicated. However, because our approach
is based on the existence of a mapping from primitive processes to the full state of the system,
it is necessary to write down these equations so that a concrete mapping is indeed well de-
fined. Measure valued processes are often used for encoding the dynamics, however, it seems
less complicated in the current context to write balance equations, as we will. Also, we are
careful to write the equations without relying on an assumption that the underlying discrete
events occur one at a time; that is, they allow for the possibility of simultaneous arrival and
departure, simultaneous departures at different servers, etc. This assures that the mapping is
defined on the full path space of the primitive processes.

The customers are indexed by N, and a marked point process ) ; <y 6(7;, p,), With sample
paths in D([0, c0) : MF(]REF)) encodes their time of arrival 7; and their patience time P;.
With a slight abuse of notation, in what follows we refer to A = (T}, P;) as the marked
point process. It is assumed that 0 < 77 <7, < --- and P; > 0O for all i. Those customers i
with 7; = 0 are initially in the system. The n servers are indexed by [rn] = {1,...,n}, and a
counting process S; is associated with each server j € [n], representing its potential service
process. That s, S (¢) customers depart server j by the time this server has worked for # units
of time.

We start with a balance equation for each customer. For i € N, we have

Qi(1) = A;i(t) — KS™'(1) — Ri(1).

Here, the four processes Q;, A;, K iC“St and R; are {0, 1} valued, representing queueing, ar-
rival, routing and reneging, respectively, associated with customer i. Thus Q; (resp., A;,
K™t R;) takes the value 1 at time 7 if customer i in the queue at that time (resp., has arrived
prior to or at £, has been routed to service prior to or at ¢, has reneged prior to or at ¢). In
particular, we have A; (t) = l>7).

Next, a balance equation holds for each server j € [n], in the form

t
Bj(l‘) = Bj(O) + K;erv(t) — Dj(l‘), Dj(l‘) = Sj(/(; Bj(S)dS).

Here, B, K jsprv and D; are busyness, routing and departure processes associated with server
J, taking values in {0, 1}, Z and Z, respectively. Namely, B; takes the value 1 at ¢ if the
server is busy, and K ;er" and D; are counting processes for the number customers routed to
and, respectively, departing from server ;.
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The initial conditions are assumed to match and to satisfy a work conservation condition.
Namely, the number of customers initially in the system, X (0) = max{i : 7; = 0}, and the
number of servers initially busy, B(0) =) i Bj (0), satisty B(0) = X (0) A n.

Next we describe how the routing processes are determined so as to keep the aforemen-
tioned priority rules. To this end, we denote by

AV () =i € N:either Q;(t—) =1 or AA; (1) =1}
the set of customers available for routing at time ¢ and by
AV (1) ={j € [n] : either AD(t) =1 or B(t—) =0}
the set of servers available to serve at this time, where for a real valued cadlag function f on
[0, 00), Af(s) = f(s) — f(s—). The number of customers to be routed at time ¢ is given by
K (1) = #AVSU(1) A#AVYV (1),

In terms of K (¢), one determines which customers i are routed to service, and which servers
J admit new customers at time ¢, according to

1 ifi e AVESr), #{i' e AVE™SU(1) i’ <i) < K (1),
0 otherwise,

Ieicust(t) — {

1 if j e AV (), #{j e AVS™V(1) 1 j < j} < K@),
0 otherwise.

K1) = [
The corresponding counting processes are given by

Kicust(t) — Z Ieicust(s)’

S<t

serv _ > SETV
K1) =) K¥(s).
sS<t
To determine R;, note that reneging occurs at time 7; + P;, but only on the event that the
customer is in the queue at that time. Thus

1 ift>T; + P; and KS™Y(T; + P;) =0,

R, (1) =
i(®) 0 otherwise.

According to this definition, if routing of a customer to service and reneging potentially occur
at the same time, priority is given to routing.

Finally, the total queue length, number of busy servers, arrival count, departure count,
reneging count and routing count are given, respectively, by

Q=) 0, B=) Bj, A=) A, D=} Dj
i J i J
R=3R. K=Y K=Y K
i i J

The state of the system is the process X = {A;, Q;, KiC“St, R;, Bj, K;erv, D;,Q,B,A,D,
R, K}.

The primitive processes A = (T;, P;) and S; determine the state of the system. Proving this
amounts to showing that there exists a unique solution to the set of all equations that appear
in this subsection; we skip the details of the elementary proof of this fact. An additional
important fact that we state without proof is a causality property, namely that for any ¢,
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{X(s) : s €0, t]} is measurable on the sigma field corresponding to the primitive data up to
time ¢, namely o {(T;, P;)1{7,<;), Sj(s),s <t, j € [n]}.

It is assumed throughout that the potential service processes S; are mutually independent,
and that, moreover, the initial data ({B;(0)}en, X (0)), the service primitive {S;} jen and the
customer primitive A are mutually independent, for each model Q in the family of models Q
to be considered.

5.1.2. LD scaling and performance measure. We now consider a sequence of models
indexed by n € N. It is convenient to assume, as we will, that the primitives §; are given for
all j € N, and that for the nth system, one takes S;? = S§j, j € [n]. Similarly, for the arrival
process, it is convenient to start with a single sequence A = (T;, P;) and obtain the arrival
process for the nth system, A" = (T, P/"), via T" = n~'T; and P/" = P;. The transformation
of arrival times reflects acceleration of arrivals, performed in order to keep a constant traffic
intensity as n increases by balancing the increase of processing capacity due to the growing
number of servers. The patience times, however, are not accelerated. This is in agreement
with literature on many server scaling at LLN and CLT regimes, such as [7, 8, 25]. The
superscript n is attached to all processes involved in the nth system.

Our main interest is in the LD behavior of the reneging count R". In the special case of
Markovian model, the large time average rate of overall reneging can be obtained by simple
LLN considerations. That is, assume that for some A, u, 6 > 0, the rate of arrivals is given
by An, the total service rate by un, and the per-customer reneging rate by 6. Consider an
overloaded system, A > p. Then the reneging stabilizes the system at an equilibrium around
xn for which A = p 4+ 6x. Hence the long time average reneging rate is given by yp = 0x =
0 ATTM = A — U, and thus for y > yp, the event that the long time average reneging rate exceeds
y is rare.

For a general model Q and an arbitrary y > 0, define the decay rate

R (t
x(@Q, )/)—hmsuphmsup_log(@< ) y),
tn

t—00 n—oo

and for a collection of models QO let

1 R"(
x(Q, )/)—hmsuphmsup—log sup @< t() - y).
n

n—oo In QeQ

Bounds on x (9, y) will be based on known bounds on yx (P, ), where IP stands for the
aforementioned Markovian model (i.e., M/M/n + M), and y > yyp.

THEOREM 5.1 ([2]). Assume A > . Let C(y) =A(1 —z7 ") 4+ u(1 —z) — y logz, where

VY2 +Haur—y

2p

z=z(y) =
Then x (P, y) = —C(y), fory > y.
5.2. Robust bounds.

5.2.1. Robust bounds in general form. For a collection of models O, the marked point
process A" = (T, P!"), with A} = {(T", P") : T* <}, which encodes arrival and patience
processes, is assumed to satisfy the RDR bound

1
(5.1) hmsuphmsup— sup Ry (QO.A”I[0 t]||]P’oA"|[0 t]) (1),

t—oo n—oo Nt QeQ
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where r( ) is an a-dependent constant. The probabilistic characteristics of the servers are
encoded in the service processes S, that are taken to satisfy a similar bound, uniform in j,

1 —_ —
(5.2) lim sup — sup sup Ry (Q o Sj|[0}l]||[p>o Sj'[o,lr]) <r®.
t—oo I QeQ jeN

THEOREM 5.2. Assume (5.1) and (5.2). Then we have, for every y > yy, the estimate

x(Qy)=B(Q.y)= ;gfl[—“T_lay) +(@— D" +r§3>)].

PROOF. Clearly, the event (tfn)~'R"(t) > y is measurable on o{Z"(s) : s € [0, 1]},
hence on the sigma field corresponding to the primitives, o {A{, S;(s) : s € [0,1], j € [n]}.
Hence by (2.7),

sup—lo Q(Rn:) )/)fa_lilogIP’(R::)>V)

QeQ In o tn

+ (o — 1)— sup |: a(@oAn|[_0’lt]||IP’oAn|[_0’lt])
" Qeg

n
+ Y R(Qo Sj|[_()},] IPo Sj|[_0}t]):|,
Jj=1

using the assumed mutual independence of the different service processes S;, as well as their
independence from .4". Taking the limit superior in 7, then in ¢, and using Theorem 5.1 and
assumptions (5.1) and (5.2), gives

-1
x(Q,y) < —aTC(J/) + (=D +r?).

The result follows on optimizing over «. [

5.2.2. Examples. First we provide examples where uncertainty classes are in the spirit
of Theorem 3.1. In the reference model PP, arrivals are Poisson(n}), patience times are
exponential (), and individual service rates are y = 1.

EXAMPLE 5.1. Consider the family of models, Q;, corresponding to the setting of Theo-
rem 3.1(ii), where all potential service processes are Cox processes with stochastic intensities
a < X;j(-) <b,forsomeconstants 0 <a <1 <b <ooandall j € N. Alternatively, (again, see
Theorem 3.1(ii)) the service processes are renewals with service time distribution for which
the hazard rate satisfies a < h;(-) < b for each server j € N. As already mentioned, the po-
tential service processes are assumed to be mutually independent, but they are not assumed to
be identically distributed. However, the distributions associated with all servers are assumed
to lie within the same uncertainty class, namely the one determined by the bounds a and b.
For arrival and patience distributions, recall that A" = (T;", P/') are taken as rescaled ver-
sions of A = (T;, P;). Our assumptions are that 7; is a Cox process with stochastic intensity
Aoy < A ( ) < barr, and the distributions of the patience times P; have distributions v; (z) ¢ (dz)
satlsfymg the bound apye < ¥; () < bpat, Where ¢ is the distribution of an exponential(¢) RV
c(dz) =0e %4z,

For the potential service processes, consider Theorem 3.1(ii) in the special case of no
marks. Then, for each server j,

sup Ry(Qo S; |[0;]||P°S |[01])< sup Ry (Q0N|[0t]||PON|[0t])
Qe QeQ 2
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where Q3 denotes the class from Theorem 3.1(ii), of all probability measures that make N
a Cox process with stochastic intensity a < A(-) < b (taking Ao = 1 in (3.3), in line with the
assumption that u = 1 under the reference model). Taking the supremum over j we obtain
from Theorem 3.1(ii) that (5.2) holds with r$ = kg (a) V kg (b).

Next, to use the same theorem for the arrival and patience distributions, note first that
a< % < b, where & = Qarrapa and b= barrbpat. Consequently, we obtain (5.1) with
rdD = ko (@) V ko (D).

Appealing to Theorem (5.2), we obtain the estimate

-1 A
x(Q2,y) =< inf [—aTC(V) + (@ = D(ka(@) V ko (B)) 2 + (& — D) (ka(a) v ka(b))]

As a second and third uncertainty classes, denoted by O3 and Q4, we take families of
measures corresponding to Theorem 3.1(iii) and 3.1(iv), respectively. In both Q3 and Qy, the
arrival and patience are taken as in Q5. As for service time distributions, in Q3 consider Cox
processes for which the stochastic intensity satisfies the long time average constraint (3.5)
(with 1o = 1) and the constraint @ < A ;(-) < b. In Q4, the stochastic intensity satisfies (3.5)
and the constraint (3.2) for some o = «¢ and u. The bounds obtained in these cases are

_1 .
X(Qa.7) = inf [~ “2C0) + (@ = Dlkal@) V ke B2+ (@ = D(pha(@) + ko )]
p= 1};—;34’ q=4—,>and

— a—1

x(Qs4,y) < inf [—a—lc(y) + (o — D (ko (@) V ko (D)) 1+ l[(560u + 1)t — 1]],
ae(l,ap) o o

where O_t() = Ot()(O(() — 1).

For a numerical example we take the following numerical values. Since the reference ser-
vice rates are normalized to 1, the reference system will be overloaded in A > 1. We take
A = 2. The corresponding LLN reneging rate is 9 = 1. As bounds on intensities we take
a=d=1-8andb=b=1+3, where § =0.3.

Figure 3 (left) gives graphs of B(Q>, y) and B3(Q3, y) corresponding to the families O
and 93, as well as x (P, y) = —C(y) for reference (the exact decay rate under IP). In addition
to the families Q) and Q3, we consider families Q/z and Q’3 defined analogously to Q> and
Q3, respectively, but where uncertainty is associated with the service processes only, hence
rél) is taken to be 0. The corresponding bounds B(Q),y) and B(Qj, y) are also shown in
Figure 3 (left).

Whereas the above example is based on RDR bounds for families of processes (Theo-
rem 3.1), the following is based, in addition, on our RDR bounds for specific renewal distri-
butions (Theorem 3.2).

EXAMPLE 5.2. We consider a family, denoted Qr, where all servers operate according
to Gamma distributions. More precisely, service time distribution for server j is I'(k;, p;),
kj>1, pj > 1, and a subset F C [1, 00) x (1, 00) is given for which (k;, p;) € F for all j.
The assumptions on the arrival and patience process, A, are as in Example 5.1. Then by the
bound on RDR for the Gamma distribution stated in Example 3.2, the bound (5.2) is valid
with

) =rPE) = sup 1Pk p),
(k,p)eF



ROBUST LD BOUNDS 1085

Robust reneging bounds UB(Q2), UB(Q3) ) Robust reneging bounds UB(QGamma)

— UB(Q2,gamma) — UB(QGamma), 1<k<1.1, 1<rho<1.1
— UB(Q3,gamma) — UB(QGamma), 1<k<1.5, 1<rho<1.5

20 e UB(Q2prime,gamma) A e UB(QGammaprime), 1<k<1.1, 1<rho<1.1
------- UB(Q3prime,gamma) -+ UB(QGammaprime), 1<k<1.5, 1<rho<1.5
—chi(P,gamma) — chi(P,gamma)

25 | | | , , , , 2 | | | | | , ,

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
gamma gamma

FI1G. 3. Robust bounds for the reneging problem.

where we denote

F(+ak—1)) ak)”‘”lk” —a(p—1—1

2k 0= ("o

As a consequence,
x(Qr,y) < Di{r;ti[—aT_lC(V) + (@ — D) (ke (@) V ko (D)1 + (@ — 1)r0<l2>(F)].

Figure 3 (right) gives graphs of B(Qr) for Qr for two parameter ranges, namely (k, p) €
[1,1.1]1 x[1, 1.1] and (k, p) € [1, 1.5] x [1, 1.5]. The parameters A, a, b are taken to be A =2
a=1-8b=1+8, where § =0.3.

Finally, we also consider Q/F defined as Qr but where uncertainty is associated with the
service processes only (rél) = 0). The corresponding bounds are also shown in Figure 3
(right), with the same ranges of parameters (k, p).

Once again, x (P, y) is also plotted for reference.

6. Concluding remarks. The techniques developed in this paper are not limited to
queueing models. The basic bound (2.8) can be used in far broader dynamical system settings.
In the most general terms, its usefulness relies on the ability to provide (1) a LD estimate un-
der some reference measure P (the first term on the RHS of (2.8)) and (2) a computation of,
or an effective upper bound on, the RDR for a family of models of interest (second term on
the RHS of (2.8)). For example, if the dynamical systems are driven by point processes (like
in queueing applications), the relevant RDR need not correspond to renewal versus Poisson
like in this paper, but between families of point processes relevant to the application. Such
RDR estimates need to be developed.

The main viewpoint presented in this paper was to consider a reference model for which
computation is possible, and a family of models that need not be tractable. A different per-
spective, initiated in [17], is to use these bounds for sensitivity analysis of rare event prob-
abilities. This paper introduces new gradient based sensitivity indices that are meaningful at
the large deviations scale, and develops sensitivity bounds which do not require a rare event
sampler for each rare event. This quality is closely related to the fact that in (2.8) the differ-
ence in performance under two measures is bounded solely in terms of the Rényi divergence,
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and does not depend on the rare event A. This method of [17] arguably has an advantage over
more traditional approaches of direct statistical estimation of rare event sensitivities.

Finally, the robust bounds for RS control developed in Section 4.1 are valid in far greater
generality than for queueing applications, as we have indeed emphasized in that section. As
long as the function F' in Theorem 4.1 can be computed (or estimated) for a given design
model P and a specified family of models Q, the robust bounds established in this result are
available.

APPENDIX

A.1. Proofs of results from Section 3.1. PROOF OF THEOREM 3.1. (i) For T > 0, the
Radon-Nikodym (RN) derivative of QIIY Ww.I.t. P%V is given by (see [26], Theorem 2.31)

(A1) Ap—e” Ji0.71xs A1) =20)5 (d2) di+ fig 115 log 2% )N(a'tdz)

Raising this expression to the power « gives

A, )a l —o

- [[0 Tixs (A (2, z)“ko_o‘—ko)g(dz) dt—i-fm Txs 10g N(dtdz)

o
A7 =

(A.2) % ef[O,T]Xs(x(t,z)“k(')’“—ak(r,z)—l—(a—l)A())g(dz)dt

Atz
_ MTef[O.T]XSAoa(a—l)ka(%)g(dz)dt’

where the process

ayl—a

o o A(s,2)
M, = ¢ Joaxs 6.0 ko =05 (d2) ds+ [, r]xslogziN(deZ), 0<t<T

is a P-(local) martingale. By the hypothesis on A(-), forall Q € Q; and all T,
f ko (X(1,2)/20)5(d2)dt < T (u+ v(T)).
[0,T]xS

Hence RO,(Q]TV ||P%V ) < (u + v(T))T Ag. Consequently, by the definition of the RDR, and
since v(T) — 0, ro(Q1 || P) is bounded above by uXy. Equality follows on taking A (¢, z) to
be the constant A for which ko (A1 /Xo) = u.

(i) Fix Q € Q,. By the convexity of k,, the property (3.3) implies that for all ¢,
ko (M(t,2)/10) < ky(a) V ky(b), which using (A.2) yields

Ro(Q1|IPr) < [ka(a) V ko (D)]A0T.

This shows that ry (Q2|| P) < (kg (a) V kq(b))Ao. The equality in (3.4) now follows by taking
AL, 2) =akrgor A(t,z) = bAyg.

As for the claim regarding delayed renewal processes, it is well known (see, e.g., [26],
Exercise 2.14) that the RN derivative is given by
(A3) Ay = ¢ orxsBODV@ =305 @) di+f s log PO N @)
where V; =1t — ty,(5) is the backward recurrence time. Hence the process A(f,z) =
h(V;2)¥(2) is the intensity process for the marked point process N, satisfying the hypothesis
a< % < b. The result now follows from the first part of (ii).

(>iii) Fix Q € Q3. Since ky (x) is convex, we have

X —a b—x
ko(x) < b—kot(b) + ——ky(a).
—a b—a
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Therefore
At,2) At,2)
1 A(t,z)) 1 (—M —a b— v >
— dz)dt < — —k b—i-ik a dz)dt
T Jio.T1xs a( Ao (@2) T Jio.rixs\ b—a a(0) b— (@) )5 (dz)
AoJrAv(T) —a bh— AO_AU(T)
<2 k() +—"k
= bh—a a(b) + b—a ala@)
v(T) (kg (a) + ko (D))
= pky(a) + gko (b) +
ro(b —a)
by (3.5). It then follows from (A.2) and the P-(local) martingale property of M that
11 v(T) (kg (a) + ko (D))

log Ep[A%] < (Pka(a) + gke (b)) Ao +

Ta(@—1) b—a
Taking the supremum over Q € Q3 and the limsup as 7 — o0, it follows that r (Q3|| P) <
(pky(a) 4+ gky (b)) Ao. To obtain the asserted equality, take, for each T, deterministic A(-) that
takes the value alg (resp., brg) on [0, pT) (resp., [pT, T]).

(iv) Fix 1 <o < ag. Let Q € Q4 and let X(-) be the normalized intensity process A() =
A(-)/Ao. Then for all T > 0,

1 ]
T ko (A1, 2)) s (d2) dt <+ v(T),
[0,T]xS

v(T)
AO

Denote by G the collection of all (deterministic) maps f : Ry x S — Ry such that for all
T € (0,00)

1 _
‘— )»(t,z)g(dZ)dt—l‘Sﬁ(T)=
[0,T]xS

1
T o r1es ko (f (2, 2))s(dz)dt <u+v(T),
(A.4) [0,T]x

‘— S, y)s(dy)dr — 1‘ <u(T)
and let

UT=sup{f ka(f(t,z))g(dz)dt:feg}.
[0.T]xS

Since the normalized stochastic intensity A(-) is in G a.s., f[o,T]xS ko (A(t,2))c(dz)dt < Uy,

for every T'. Consequently, by (A.2), AT < Mrper@@=DUT for every T. Since M is a non-
negative local martingale,

1 1 roUT
AS ————log Ep[A%] < .
(A-5) Ta@_ D ebrlrrl=—

We now compute Ur. To this end, for f € G, let the measure u = 7 be the corresponding
empirical measure on [0, 7] x S, namely,

1
w(B) = 7 0.71xS l{f(;,z)eg}g(dz) dt, Be B([O, OO))
Let the pth moment of 1« be denoted by m (1) = f[o o) xPdp(x). Thenby (A.4), (kgy, 1) =
Jkoydp <u+v(T) and |m () — 1| < v(T). The computation proceeds in two steps. First
we solve the problem of maximizing m (1) under the constraints that m () and mg, (1)
are given. Then we translate it into the problem of maximizing [k, (x)d(x) subject to the
constraints (A.4).
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Leta, b, k, [ be positive constants satisfyinga +b =, ka =1,lb=apand k' +171 = 1.
Using Holder inequality,

ma) = [ 3% dpe) = [ 25 dp) <m0 e (0.

Solving for a, b, k,l gives k = 2‘8:;, | = 0&0__11 (and a = k=, b = agl~'). Moreover, the

inequality is tight, specifically
(A.6) p(dx) = péo(dx) + gdc(dx),

1 _1

1 1
satisfies it with equality, with 1 — p=¢g =m|C “~! and ¢ = C*~!, where C = n:n—“lo (note:
using the inequality m?o < my, itis easy to check that g < 1).
Next, recalling the notation ¢ = o (o — 1) and @ = og(ag — 1),

1
(ko p1) = E(ma(u) —am(pn) +ao—1)
< é(mmm”kmao(u)”’ —ami(p) + o —1)
1
=~ [m1 ()" @0k 1) + eiom 1 () — a0 + 1) — ey () + o = 1],

We now use the fact that v € V), and the assumed bounds on m1 (1) and (ke,, #). We obtain

(ke 1) < é[(&ou DY 1]+ 5(T)

for suitable v € V), which depends on the parameter but not on ©. Combining with (A.5),
1
T a(@—1)
Taking supremum over Q € Q4 and the limsup as T — oo gives

A =1
log E[AT] < EO[(&OM + Do T — 1] 4+ x0(T).

A a-
ra(Q41 P) < X[ (@ou + oo T — 1],
o

Finally, equality is obtained by selecting, for each 7', a deterministic A(-) that agrees with

(A.6) in the sense that the empirical measure 4 corresponding to A = A /A is given by (A.6).
O

A.2. Proofs of results from Section 3.2. Before presenting the proof of Theorem 3.2,
we state and prove the following lemma. Recall the notation P¥ and QV from Section 3.1.
Let 0 =19 < 1] < 72 < --- denote the occurrence times of the point process N and let for
i eN, Aj =1, — 1;_1. Write N; for N;(S) for short when there is no ambiguity.

LEMMA A.l. Assume that H = SUP,cR, H(x) < oo. Also suppose that c(a) =

Js(W*(z) — 1)s(dz) < oo. Then for every a > 1,
c(a)

N,
p log Ep[eo’zi:tl HAD 4 ———— 1 0,(1)

1 Mooy
¢ RalQ1P; )_oz(a—l) a@—1)

ast — oQ.

PROOF. For fixed r > 0, let n; = ty,+1 = inf{s > 7 : Ny > N;}. Then n; is a {Fs}s>0-
N
stopping time. Recall the notation A; = Z%"

pling theorem it follows that Ep(A;,) =1 %or every t > 0 and for every s > 0 and A € F,,,
Ep(1aAy) =Ep(laAsny) =Ep(1aAs) =Eg(1a).

and the expression (A.3). By the optional sam-
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By a monotone class argument we now have that, with K; = Nyx,,(S) for s > 0 and G =
O{KS .S Z 0}’
Ep[lAAm] = EQ[IA] VA e g

Since o {N; : 0 <s <t} is contained in o {K : s > 0}, by the data processing inequality [29],
Theorem 1.24 and Corollary 1.29, and [41], Section II, we have

Ro(Q1PY) = Ra(Q o Nig | P o Nig )
log Ep[A° ]
< Re(Qo(Ky:s =01 |Po(K,:s=>0)") < —o P nd
a(a—1)

Denote by {&;} the sequence of marks associated with the point process.
Using the expression of A; in (A.3) and the definition of H in (3.6), we have

Ni+1

A2 =exp<o{ > (/j (1—h(Vy))ds +logh(ti — ti—1) +10g1ﬂ($i)>}

i=1 -l

Ni+1 Ni+1
=exp{oz Z H(Ai)}exp{a Z logw(&)}, t>0.

Since marks are independent of jump instants and H is bounded from above, we have
% log EpAj, = ; log Ep[e® it HAD 4 ; log Ep[e® Vit gV &N 4 o, (1).
Also, by standard Laplace transform formulas (see, e.g., [26], Example 1.16)
% log Ep[e®Zit1 98V E)] = c(@) + 0 (1).
The result follows. [

PROOF OF THEOREM 3.2. (a) From Lemma A.1

cla)

wa—1) +o0:(1).

1 Ny .
(A7) ;Ra(QfVHPtN) = ~log Ep[e® Xt HAD] 4

1
ala—1)
Bounding H (A;) by H, we have Ep[e? Zitt HOD| < Ep[e@ANi] = o1 =D 314 there-
fore
fimsup | Ru(0) 17 < € 1 @)
1msup — S ——
A T

This gives the bound (3.7).

Ny
For parts (b), (c) and (d), we will need a more careful analysis of Ep[e* Yo H (A7, under
different assumptions.
Fix 0 < ¢g < ¢1 and write

(A8)  Ep[e*Zti HAN] = 3 Ep[1 e Zi=t HAD] = 0o(1) + 01(1) + 0a(0),
k=0

where

k .
Qo) = > Ep[ln=kje®Zim HAD],

k<cot
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k .
010)= ¥ Epliyme S 0],

k>cit
k .
Q)= 3 Ep[liy=het == TE0],

cot<k<cyt

Using the bound Qg (#) < e“ﬁcot, we have
1 _
(A9) lim sup A log Qo(t) < aHcop.
t

For bounding Q(¢), write

_ k
01(1) < Z e“er_t— <cge ! Z o Hk ik kg~ k_f

k>cit k>cqt

where Stirling’s approximation is used, and c is a universal constant. Using t/k < 1/c; for
the summands in the above display, we have

01(1) <cye™ - e Mhetert,

k>ct

For ¢; > 2¢*H+1 we have cl_leo”g”'1 < % and Q1(t) < cg. Hence
1 —
(A.10) lim sup A log Q1(1) <0 Vep > 240+,
t

We now estimate Q»(t), using different approaches under different assumptions in parts
(b), (c) and (d).
(b) Note that

1 1
;log 0>(t) < ;log<((c1 —co)t+1) max Ep[ly,=xe” Yo H(Ai)])

kelcot,ct]

1 k
D+ =1 Epl1in _pre®2i=1 H(AD]
=o/(1) + nge[fg)%lt] p[lin,=kje ]

Recall that y(s) = Epe*# (2D for s e R. Let p > 0 and ¢ > 0 be such that 1/p 4+ 1/g = 1.
Then for each k € [cot, c11],

Ep[lin,—tye® Zi=1 HAD] < P(N, = )7y (qe)*/4
= (e~"t* /KNPy (q)t1e
< (e t*egekkk= )l/py(qa)k/q
Letting 6 =k/t

1 CHa 10 o 0 0
—log Ep[1{n,=tye® ==t 1] < —— + Zlogt + = — —log(61) + —log ¥ (qat) + 0 (1)
t PP P P q

6—-1 6 0
= —— — —logh + — logy (qe) + 0 (1).
p p q
We now maximize the sum of the first three terms on the last line over 6 (with p and ¢ fixed).
The maximum is attained at 0 = y (qga)?/9. If we plug in this value of # we obtain that the
maximum is given by

y(qa)P/4 —1
e =7(p.q, ).
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As aresult,
1
limsup — log Q2 () < inf P(p.q.0) =G
t t pg>1:ip~l+g1=1
Combining this with the bounds (A.7), (A.8), (A.9) and (A.10) gives
3 (1
H G
eip <[ 0 vov ] c@
a—1 ala —1) ale—1)

Sending ¢y — 0 and ¢; — oo gives (3.8).
(c) Given ¢ > 0 let co =69 <6 < --- < 67 = c1 be a finite partition of [co, c1] satisfying
0j —0j_1=¢forall j < J. Then

1 1 .
(A.11) limsup — log Q2(#) < max limsup —log Q3 (1),
t t 1<j<J ¢ t
where
. " |
Qé ) = EP[I{Oi—1t§N,<0jz}€a Zisi H(A’)].

Fix j < J. Denote n = [6;_;1]. Let Sn = 1 Aj and SH 1 H(A;). Use bar to de-
note the normalized sum, as in S, =n~'5,. Slnce Bis ﬁmte ina nelghborhood of the origin,
by Cramér’s theorem, (Sn, Sf ) has LDP with a good rate function (see, e.g., [12], Corol-
lary 6.1.6) 8*. Note that {0j1t < N; <0t} C {ngj;lﬂ <t, SngtJ > t}. Then

i 7 n . 7 H
(A12) Qé(t) = eaHetEP[l{S"Qj_lﬂ §I,S|'9jﬂ zt}ea Li=i H(Al)] < eaHgtEP[l{Snfl}eaS" ]

Let g be the upper semicontinuous function defined as g(x1, x2) =0 for 0 < x| < 9 1 and

ng(5n-5) Hence

g(x1,x2) = —oo otherwise. Then 15, <) <e
Qé(t) < eaﬁatEP[en(agf—l—g(S“n,Sf))]‘

Since H < oo the conditions of Varadhan’s integral lemma (see, e.g., [12], Lemma 4.3.6) are
valid and hence

1 ; _
limsup —log Q}(t) <aHe +6;_ sup [axs — B (x)]
(A.13) 0o xeR20<xr, <67,

<aHe +GPH;-1).
From this and (A 11) we have

lim Sllp - log 02(1) < max lim sup - log Qz(z) <aHs+ sup GP(0).

6€lco,c1]
Combining this with the bounds (A.7), (A.8), (A.9) and (A.10) and sending ¢ — 0 gives
7 (2)
. 1 Hco (0) c(a)
limsup — Ry (QN | PN) < [ sup } .
¢t a—1 0elco,cr] @ — 1) a(a—1)

Sending c¢o — 0 and ¢; — oo gives (3.9).

(d) Letm = |0;1] and Sy, S,Iﬂ"l s Sms SmH be defined in a similar manner as in part (c). Once
more we use the fact that (S,,, Sm ) has a LDP with a rate function 8*. Note that besides the
bound (A.12), we also have, with p~ ! + ¢~ =1, p,qg > 1,

Qé(t) = (EP[I{Sn<t Sm>t}epa2f” 1 H(A )])1/17

(A.14)
—qa Zi:N,—H H(A,-)])l/q.

X (EP[l{gjfllfN;<9jt}e
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For the first term on the right hand side, we apply Varadhan’s integral lemma as in the proof
of part (c) and get

1 m ) 0
limsup —log(Ep[1(s,<,5,>r1e"™ Ziz H(A’)])l/p <L sup  [paxs— )]
4 4 p xeRzlesz’l

For the second term on the right hand side of (A.14), we have

. 1 —gaym D1
hmsup?log(Ep[l{gjflthKth}e WZ,:N,HH(A,)]) /q
t

| .
< limsup — log([(Qj —0j—Dt+1] max [y(—qo)] k)
t qt

0j_1t<k<0;t
1
< limsup ” log([et + 11([y (—q)]*" v 1))
t

_ log"y(=qa)
q

Combining these two bounds with (A.14) gives
1 : 1 loot v (—
limsup —log 03(1) <6;  sup [axz - —ﬂ*(x)] L log y(=q)
! P

xelRZ:xlzej_l

Combining this with (A.13), we have

. 1 j - ' N
lim sup ; log Q3(1) < (aHs +6;_ sup [ax2— B (x)])
t

xERZ:Olefejill
1 log™ y (—
A <9j sup [axz — —ﬁ*(x)i| + ws).
xeRZ:xlsz_l p 4q
Since p > 1, we have
. 1 j
lim sup " log 05 ()
t

logt y(—qa)
q

- 1
<aHe+ 8+9j< sup [axz——ﬂ*(x)}
p

xeR2:0<x; <6,

(A.15) A sup [axz — %Ig*(x)D

xeRZ:xlzﬂj_l

_ lo + — 1
SWHHMHQJ- sup < sup [axz——ﬂ*(x)}
q 0€l0;-1.0;] \xeR2:0<x, <6~ p

1

Aosp an-p))
xeR2:x;>6-1 14

where the second inequality uses the fact that for a function r defined on R and constants

a < b, one has

sup r(y) A sup r(y) < sup( sup r(y) A sup r(y)).

y€(—00,b] y€la,00) z€la,b] “ye(—00,z] yelz,00)



ROBUST LD BOUNDS 1093

Since x — xp — % B*(x) is a concave function on R, the last term in (A.15) equals

1
6; sup sup [axz — —,8*(9_1, xz)]

0€lb;_1.0;1x2€R p
0
<—— sup 6O sup|ax;— —,B 67", x2)
9] 1 0elf;_1,0;1 x2eR

< (1 + j—o) sup 6 sup [Otm - —,3 G 2)}

96[91‘,1,9 ] xzeR
From this, (A.11) and (A.15), letting
G (p.6) =0 sup |arxs - —ﬂ 07" x) |
szR

we have
. 1 : 1 j
limsup —log Q»(r) < max limsup —log Q5 (¢)
P t 1<j<J t t

- logTy(— €
5&H€+w8+(1+—> sup GS)(]?,@).
q 0€lco,ci]

Combining this with the bounds (A.7), (A.8), (A.9) and (A.10) and sending ¢ — 0 gives

(3)
(p, 9)} c(@)
+ .
a(a—1)

1 Hco
limsup — R QN||PN < |:— vOVv sup
t t a( ! ! ) a—1 8elco.ci] ala—1)

Now we claim that

(A.16) lim sup GP(p.0)= sup G 0).

P=>1oe(co,er] felco,ci]

Once this claim is verified, sending p — 1, co — 0 and ¢; — oo gives (3.10).
It remains to prove the claim (A.16). First note that for any 6y € [cp, c¢1] and x € R,

liminf sup G(3)(p 0) > 11m1nf90[ax2 — —,B 6y ,xz)] =6p[axy — ,3*(90_1,)62)].
p=1 gefeg,c]
Taking supremum over x> € R and 6y € [cop, c1] gives

(A.17) liminf sup GO (p,0)= sup GO ().
P=1 fefeg,cr] €lco,c1]
Since B* is a good rate function, we can find kg € (—o0, 0) such that, for all p € [1/2, 2],
3
SUPpeiey.c;) G& (P160) = Ko

Next we show limsup,,_, | Supy(ey.c;] G& (P+0) < SUPyeiep.c;] G (©). For p € [1/2,2],
p#1,let0), €[co, c1] and x,, € R be such that

(A.18) ko< sup GP(p,0) <6, [axzp——ﬁ ©, ,xzp)]+|p—1|-

0€lco,c1]

From g* > 0 we have x; , > k0 B(0, Ay) for each A, > 0, and

B(0, 12) < oo for all Ay > 0, we have limy,_, o infy, cr W = 00. This shows that x; ,
is bounded from above, since if x5 , — 00 as p — 1 then from (A.18) we must have

. :8*(9_1’)52,]7)
limsup ———— < 0,«a
p—1 pPX2,p
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which is a contradiction. Hence x2 , < k1 for some k| < oo and therefgre the sequence
{(6,, xf )} is bounded. Assume without loss of generality that (6, xf ) — (0, x2) € [co, c1] X
R along the whole subsequence. Then

1
limsup sup GO (p,0) <lim sup<9p [axz,,, ——p*6, " xz,,,)] +|p— 1|)
p

p—1 6¢€lcp,cq] p—1

ol vss 1 *(n—1
_Q[axz 11[1711)1r11fﬁ (Qp ,xz,p)]

<0[aky — (07", %2)]
< sup G((f) ),
O€lco,c1]
where the second inequality follows from the lower semicontinuity of 8*. Combining this
with (A.17) gives the claim (A.16). This completes the proof. [

A.3. Proofs of results from Section 3.3. In this section we provide details of some of
the calculations that were omitted from Section 3.3.

PROOFS OF STATEMENTS IN EXAMPLE 3.1. We first consider the case p > 1 and show
that the right sides of (3.9) and (3.10) are the same and the inequalities in both cases can be
replaced by equalities.

Note that h(x) = p >0, H(x) = —(p — Dx + logp <logp < oo and B is finite in a
neighborhood of the origin, namely all assumptions for (3.9) hold. Then, as follows from
(A.1), (A.2) in the Appendix,

a(1—p)t+aN; logp]

1
TRa(01IIPY) = [log Ep[Af] = log Ep[e

1
ala—1)

S S O 1
—a(a_l)[p —1—a(p—1)].

o(a— 1)t

Thus from Theorem 3.2(c) p® — 1 —a(p — 1) < supy(g.00y G (6). Now we show the reverse
inequality.
If0>1+a(p—1), takingA; =1 +a(p— 1) —0 <0in (3.11) gives

GP ) < -2 +60B0, @) =—1—a(p—1)+6 +0log Ep[ell=ATeloer]
=—1l—a(p—1)+0+0[alogp —logfh] < p* —1—a(p—1),

where the last inequality becomes equality when 8 = p*. If 0 <6 < 1 + a(p — 1), taking
A1 =01in (3.11) gives

o

GP () <0B(0, ) = Olog Ep[e— P~ DATI020] — g |og ﬁ
0%
<[1+a(p—1)]log————
[1+a(p = Dllog

where the last inequality follows from the fact that p* = (1 + (p — 1)* > 1 +a(p — 1).
Using £(x) = xlogx — x + 1 > 0, the term on the right side of the last display can be written
as

1 —1
—p“ﬁ(#) —[l+a(p=D]+p*<p*—=1—a(p—1).
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Therefore SUPge(0.00) G((xz) @) < p“—1—a(p —1). Thus we have shown that the inequality

in (3.9) is in fact an equality. From this and the observation that G&z) ) > fo) (0) we see
that in (3.10) also the inequality can be replaced with an equality.

Consider now the case p € (0, 1]. We show that once more the right sides of (3.9) and
(3.10) are the same and the inequalities in both cases can be replaced by equalities. The proof
of SUPge(0,00) Gg,z) @) <p*—1—a(p—1) for (3.9) is exactly as before. For (3.10), observe
first that

B(ri, A2) =ralogp —log[l — A1 +A2(p—1)], 1—2A1+i(p—1)>0,
B*(x1,logp — (p — x1) =x1 — 1 —logx;, x1>0.

Therefore
1
sup G0) = G (6) = o sup [ a2 — (g0 )|
0e(0,00) x2eR 1Y
-1 1 1
G R PR
p* p* p*
o P — 1 o
=p [a<10gp— e )— (p——1+10gp >]=—a(p—l)—1+p ,
and hence
I -1
LHS(3.10) = © P =1 _ RHS(3.10)= RHS(3.9). -
ala—1)

PROOF OF (3.12) IN EXAMPLE 3.2. We will use Theorem 3.2(c) and establish (3.12) by
estimating supye g, o) GY ).

If 6 > {T90=3, taking A1 = 1 +a(p — 1) =01 + a(k — )] <01in (3.11) gives

GP0) < =1 + 6B, )

=—1l—a(p—1D+0[l+ak—1)] +0{ozklog,0+log<r(1 ok - 1))>

(I"(k))~

— (14 ak — 1)) log[0(1 + a(k — 1))]}

|
< (F(l +oatk—1)) ak) R wlp—1)—1,
(I" (k)
where the last inequality is attained for 6 = 6* that satisfies
A+ oatk—
(I"(k))«
Ita(p=1)

One can check that 6* is indeed greater than or equal to 5 ai=D)
left hand side in (A.19) is decreasing in 6. So it suffices to check

ra+ate— 1)))
—(1+ak—1)log[(1+a(p—1))]>0
This is equivalent to checking 8(0, o) > 0. But this is immediate since

o
B0, a) = log/(g(x)ex)ae_x dx > 10g<f gx)ete™ dx) =0
by Holder’s inequality.

(A.19) aklogp —|—log< 1))> —(I+atk—1)log[6*(14+ak—1))]=

To see this, note that the

aklogp + log(
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If0 <0 < {$2%=1 taking 1 =0 in (3.11) gives

G2 (6) <68(0,a)

' +atk—1))
(A.20) = G[ak logp + 10g< T )

— (I +atk—1)log(l +a(p — 1))]

Since the left hand side in (A.19) is decreasing in 6, the expression obtained by replacing 6
by lliz((f:ll)) in this term is nonnegative, which shows that the term on the right side of (A.20)

is nonnegative. Therefore

1+a(p—1)
1+ak—1)

G(z)(0)< F(]—I—a(k—l)))

(I"(k))®

— (I +atk—1)log(l +a(p - 1))]

[aklogp + log(

r(+ak—1) ak)lm'm}

=—[1+a(p— 1)]10g{[1 talp - 1)]/( (T (k)

B _(F(l +alk—1) ak)wlk-n

(T'(k))«
r(1+alk—1) ak>m>
e([1 —1
el eto - 01/ (S
L1 +atk—1) ak) TRt
-1 —1
(1 oo = ]+ (<
I +ak—1)) ak>m o D1
5( (T (k)" “=D=1
where the third line uses the equality
(A.21) —alog(a/b) = —bl(a/b) —a+b.

Combining the above estimates with Theorem 3.2(c) we now have that when 7 =
Gamma(k, p) withk>1and p > 1

1
N 2
ry (O|IP) < sup G, (0)
* fe(0.00) 2l —1) ¢

1 F+ak=1) ,\Fes ]
i o) R

PROOF OF (3.13) IN EXAMPLE 3.3. Consider first 0 > 1 4+ « (o0 — 1). In this case, taking
M=1l4a(c—1)—60<0in(3.11), we have

GPO)<—r+08001,0) <—1—a(c—1)+0+0[alogC —logf] < C* —1—a(o — 1),

where the last inequality is attained when 6 = C*. Note that C“ is indeed in the range [1 +
a(o — 1), 00). To see this note that

C
1:/g(x)dx§/Ce_”dx=—

o
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which shows that

(A.22) C*>0%=(+0—-D>1+a(oc—1).
Now consider the case 0 <0 < 1 +a(o — 1). In this case, taking A1 =0in (3.11), we have
(2) CO[ o
G70)<60B0,a)<flog——— < |1 —1|log————,
£©) =0p0.0) =0log - <[ +ale — D]log

where the last inequality follows from (A.22). Recalling £(x) = x logx —x 4+ 1 > 0 and using
the equality in (A.21) once more, from the last display we have for all0 <8 <1 +a(oc — 1)
l+a(oc—1)

CO{
Combining the above estimates with Theorem 3.2(c) we have the bound (3.13) on RDR for
this class of models. [

G((f)(Q)S—C“K< )—[1+a(a—1)]+c“5c“—1—a(a—l).
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