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Abstract—In recent years, smart grid communications (SGC)
has evolved to use new technologies not only for data delivery
but also for enhanced smart grid (SG) security and reliability.
Software Defined Networks (SDN) has proved to be a reliable and
efficient architecture for handling diverse communication systems
due to their ability to divide responsibilities of the network using
control plane and data plane. This paper presents a graph learning
approach for detecting and identifying Distributed Denial of Service
(DDoS) attacks in SDN-SGC systems (GLASS). GLASS is a two
phase framework that (1) detects if SDN-SGC is under DDoS
attack using supervised graph deep learning and then (2) identifies
the compromised entities using unsupervised learning methods.
Network performance statistics are used for modeling SDN-SGC
graphs, which train Graph Convolutional Neural Networks (GCN)
to extract latent representations caused by DDoS attacks. Finally,
spectral clustering is used to identify compromised entities. The
experimental results, obtained by analysis of an IEEE 118-bus
system, show the average throughput for compromised entities
is able to maintain 84% of normal traffic level with GLASS,
compared to achieving only 4% of normal throughput caused
by DDoS attacks on compromised entities without the GLASS
framework.

I. INTRODUCTION

The traditional power grid system is no longer a viable
option due to increasing user demand, upsurge in availability
of renewable energy resources, outdated infrastructure, and the
need for increased security and reliability. The Smart Grid (SG)
constitutes advanced technologies such as Supervisory Control
and Data Acquisition (SCADA), Advanced Metering Infrastruc-
ture (AMI), Plug-In Electric Vehicles (PEVs) and Renewable
Energy Resources (RERs), and offers a variety of new features
such as demand side management, a two-way communication
framework and real time pricing [1]. These additional features
and technologies in SG also create new challenges that have to
be addressed. RERs are expected to become a major source of
power in the SG by the year 2050. These renewable energy
resources are collected using different sources/technologies,
are often geographically distributed, disparate in nature and
operation, and have lower generation capacity in comparison
to the conventional energy resources. To efficiently couple the
conventional with the renewable energy resources, there is a
need for timely and reliable SG communication [2].

In addition, with new communication technology, there are
various kinds of cyber attacks that may occur such as Man-
In-The-Middle attacks, Jamming, Black hole attacks, Energy
Drain attacks, Sinkhole attacks, and Denial of Service attacks. A

successful cyber-attack on SG in the Ukraine during December
of 2016 caused a blackout which impacted 225,000 customers
[3]. Many cyber attacks also have the potential of leading SG
into total collapse [4]. A resilient SG should have the ability
to detect, identify and react to sudden system failures through
natural causes or intentional attacks on the network. For instance,
during Denial of Service attack on SG, a Phasor Measurement
Unit (PMU) or multiple PMUs might get compromised which
will result in the loss of measurement data from the relevant part
of the grid. In such cases, SG will lose the system observability
of all the associated substations in the grid, which might result
in temporary power outages or blackouts.

Software Defined Networks (SDN) has proved to be a reliable
and efficient architecture for handling diverse communication
systems. With its ability to separate data plane from the control
plane, SDN can provide control and management for various
SG entities such as utility, smart meters, and AMI, and play
an instrumental role in evolving SG to integrate new services,
resources, technologies and needs as the SG evolves. In this
paper, we propose a graph learning approach for an SDN based
SG security (GLASS) framework. GLASS adopts a two phase
strategy for detecting and identifying Distributed Denial of
Service (DDoS) attacks. To our knowledge, this is the first study
to use supervised and unsupervised graph learning approaches
to detect and identify cyber attacks in a SDN-SGC system. This
paper specifically makes the following contributions:

• Uses graph convolutional neural networks (GCN) to detect
DDoS attacks for various attack scenarios;

• Uses spectral clustering to identify DDoS compromised
entities; and

• Analyzes the impact of the detection, identification and mit-
igation of DDoS attacks on network performance (through-
put, transmission delay).

The remainder of the paper is organized as follows. Section II
provides background information on SDN-SGC architecture and
graph learning approaches. Section III provides details about the
proposed GLASS framework for DDoS detection and identifica-
tion. Results of a case study are discussed in Section IV. Finally,
Section V concludes the paper by summarizing results and
providing future research directions for the GLASS framework.



Fig. 1. System architecture for GLASS framework showing attack detection and identification steps

II. BACKGROUND INFORMATION

Traditionally, SG communications consisted of very low rate
exchange of serial data, and point-to-point data exchange be-
tween deterministic nodes. The incorporation of Phasor Mea-
surement Units (PMUs) and dynamic networking infrastruc-
ture has created heterogeneous network structures that simul-
taneously experience different types of events, requiring more
complex networking and control protocols. SG subsystems are
local agents, composed of Distributed Energy Storage Systems
(DESS), such as flywheels and grid-connected batteries, a Syn-
chronous Generator, a PMU and a Distributed State Estimator
(DSE). The PMUs in the smart grid communicate data to other
PMUs to coordinate and analyze energy performance measures
using reliable networking protocols such as Modbus RTU over
TCP/IP.

As mentioned previously, SDN is a networking paradigm
in which the forwarding hardware is decoupled from control
decisions. The network intelligence is logically centralized in
software-based controllers (the control plane), and the network
devices become simple packet forwarding devices (the data
plane) that can be programmed via an open interface. SDNs
help to assemble new services and infrastructure quickly to meet
dynamically changing environment objectives. Furthermore, the
software implementation of the control plane and the built-in
data collection mechanisms are excellent tools to implement
additional analysis layers for network control. Extracting knowl-
edge from collected data to understand and predict the state of
the SG network will be crucial to implement security manage-
ment in the SG. Our system will ingest network traffic perfor-
mance statistics and monitor the data for anomalies/attacks.

A. DDoS attacks in SDN-SGC

This work focuses on developing methods for detection and
mitigation of the Distributed Denial-of-Service (DDoS) cyber
attacks discussed in [5], [6]. During Denial-of-Service (DoS)

attacks, the attacker intentionally disrupts the transmission of
data to/from a given node through an excessive amount of
service requests to the victim node, consuming all available
resources. The impact factor of DoS attacks are high. This type
of attack increases network traffic at its victim node (i.e. arrival
rate) to consume the victim’s resources and extend queue length
resulting in an increase in wait times or transmission delays
as can be seen in [7]. This can cause nodes to shutdown, and
negatively effect the entire network as a whole. Distributed
Denial of Service (DDoS) has an even larger impact, since
the attack occurs from multiple nodes, resulting in a higher
arrival/attack rate. In the attack model considered, a PMU
subsystem may be attacked in order to hinder or disconnect it
from the rest of the network. If a PMU subsystem is attacked, the
slowed/halted communication of data could introduce substantial
errors into the SG system.

B. Supervised Learning using GCN

Supervised learning deals with the class of machine learning
problems in which we have a labelled dataset guiding the model
on what decisions to make while it is being trained. In these
problems, learning, or the adaptation of the model, is supervised
by the desired response. Traditional supervised deep learning
approaches such as Multilayer Perceptron Neural Networks,
Convolutional Neural Networks, etc cannot be directly applied
on graph based data as they fail to extract latent representations
from non-euclidean data generated by complex relationships
and interdependence between various entities in graphs [8].
Recently, many deep learning approaches have been extended
for graph based data, resulting in Graph Neural Networks, Graph
Convolutional Neural Networks, and Graph Auto-encoders [9].
The Graph Convolutional Neural Networks (GCN) [10] concept
was developed using concepts of convolutional neural networks
and Graph Neural Networks. GCN is useful for solving real
world problems such as link prediction, node classification and
graph classification. GCN aims to learn the hidden layer repre-



sentations that encode features of nodes, local graph structures
or even entire graphs.

C. Unsupervised Learning using Spectral Clustering

Unsupervised learning deals with the class of machine learn-
ing problems in which we do not have a labelled dataset to train
a model. Instead we rely on capturing undetected patterns in
the data through techniques like modeling probability densities,
extracting embeddings, calculating distance measures etc [11] .
One of the commonly used applications of unsupervised learning
is clustering. One of the most popular clustering algorithms is
Spectral Clustering, since it can be solved using simple linear
algebra libraries and often produces better results than traditional
clustering algorithms such as K-means algorithm [12]. Spectral
clustering is useful for identifying ”groups of nodes” which
show similar behavior in a graph. Spectral clustering relies on
weighted adjacency matrix of the graph to be indicative of
different behaviors exhibited by different groups of nodes, for
example, victim (compromised) nodes and normal nodes in the
network.

III. GLASS FRAMEWORK

In this section, we discuss the design of GLASS framework.

A. Graph modeling

We model SDN-SGC as a weighted undirected Graph G =
(V, E ,WV ,WE) with N number of PMUs in the SG consid-
ered as the node set V and the connections between them
considered as the edge set E . The quality of communication
between neighboring PMUs is quantified by various network
performance metrics such as transmission delay, throughput etc.
These performance metrics are used to form node attribute
matrix WV ∈ RN×fN and edge attribute matrix WE ∈ R|E|×fE ,
where fV and fE represent number of node attributes and edge
attributes respectively.

We divide the entire length of simulation into T number
of time steps and model SDN-SGC in each of these time
steps as Gt where t ∈ 1, 2, 3..., T . Gt varies in each time
step as WV and WE changes over time depending on the
communication between PMUs in the SG. At time step t, we
use the transmission delay between neighboring PMUs to form
Wt

E and the average transmission delay of a PMU with all of
its neighboring PMUs to form Wt

V . Note that WV and WE
should be designed using information from the network that is
representative of the problem at hand.

Let Wt
adj ∈ RN×N be the weighted adjacency matrix of

Gt formed such that wij is edge weight between PMUs i
and j if they are connected, else wij = 0. Let Wt

deg =
diag(d1, d2, ..., dN ) be weighted degree diagonal matrix such
that di =

∑︁N
j=1 wij . Let Y ∈ RT ×1 denote a true label vector

such that Yt = 1 if SDN-SGC network is under DDoS attack
in time step t, else Yt = 0.

B. DDoS detection

In the DDoS detection phase of our framework, we make
use of the concepts of neural networks on graphs to train
models that are guided to detect any intentional/unintentional
anomalous behavior in SDN-SGC network. The objective of this

phase is to detect whether a SDN-SGC network modeled by Gt

is under any DDoS attacks. We develop our DDoS detection
models based on the concepts of graph convolutional layers
and graph pooling proposed in [10], [13], [14]. As shown in
Fig.1, the graph information modeled from SDN-SGC network
is passed through multiple graph convolution layers, followed
by a single graph pooling layer which is followed by multiple
fully connected multilayer perceptron neural network layers and
finally by a sigmoid layer to generate the decision of whether
a given instance of SDN-SGC network modeled by Gt is under
attack or not.

1) Graph convolution (GCN) layers: Our implementation
of graph convolutional layers is based on the implementation
of GCN proposed in [10]. For a graph Gt with weighted
adjacency matrix Wt

adj and node attribute matrix Wt
V , each

graph convolutional layer outputs a matrix containing hidden
node level representations termed as a hidden feature matrix H,
which is defined as

H = f(Z ×Wt
V ×Θ) (1)

where Θ is the matrix of learnable parameters for a given graph
convolutional layer, f(.) is an activation function, and Z is
defined as

Z = IN + (˜︂Wt
deg)

−1
2 × ˜︂Wt

adj × (˜︂Wt
deg)

−1
2 . (2)

The weighted adjacency matrix, ˜︂Wt
adj, is defined as

˜︂Wt
adj = IN +Wt

adj (3)

where IN ∈ RN×N is an identity matrix and ˜︂Wt
deg is modified

weighted degree diagonal matrix calculated in a similar fashion
as Wt

deg, except using weights in ˜︂Wt
adj instead of Wt

adj.
2) Graph Pooling: The hidden feature matrix H contains

node level representations but we are interested in the graph
classification task which requires graph level representation
features. Graph pooling layers are useful in summarizing in-
formation from multiple H matrices which contains multiple
representations for each node into one feature representation for
the graph Gt. In our framework, we use mean pooling, a type
of graph pooling layer to obtain graph level representation gt

of graph Gt by considering mean values of all of its node level
representations.

3) Dense Neural Network layers: The graph level representa-
tion feature obtained from graph pooling layer is passed through
multiple dense (fully connected) neural network layers with
learnable weights succeeded by a sigmoid layer which completes
the DDoS detection model. The output of sigmoid layer is used
to predict whether Gt is under any DDoS attacks.

The pseudocode of the DDoS detection phase of the proposed
GLASS framework is presented in Procedure 1. Let graphs
belonging to Ttrain time steps be used for training and remaining
Ttest graphs for testing of DDoS attack detection model. Let the
model prediction vector for test data be Yp ∈ RTtest×1, where
Yp

t = 1 if Gt is predicted to be under any DDoS attacks, else
Yp

t = 0.



Procedure 1 DDoS detection
1: SDN-SGC network → G (Section III.A).

2: Train DDoS detection model:
Input: G, Wadj, Y

3: for Gt where t = 1 : Ttrain do
4: Calculate H using Eq. 1, 2 and 3 for each GCN layer.
5: Obtain gt by combining H from multiple GCN layers

using graph pooling.
6: Pass gt to fully connected layers and sigmoid layer.
7: Obtain error by comparing sigmoid layer output to Yt

8: Tune model parameter through back-propagating error
9: end for

Output: DDoS detection model with learned parameters.

10: Testing DDoS detection model:
Input: G, Wadj

11: for Gt where t = 1 : Ttest do
12: Obtain sigmoid layer output Yt

sigmoid through learned
model parameters

13: if Yt
sigmoid > 0.5 then

14: Yp
t = 1

15: else
16: Yp

t = 0
17: end if
18: end for
Output: Yp

C. DDoS identification

For the DDoS identification phase, we use spectral clustering
to identify compromised PMUs in Gt if Yp

t = 1. The intuition
behind this idea is that only if SDN-SGC network is under an
attack, then various PMUs (compromised and normal) exhibit
different structural patterns in the corresponding parts of the
network, and these underlying graph based patterns can be used
to separate compromised PMUs from normal (not compromised)
PMUs. It is crucial to notice that unless Yp

t = 1 for Gt,
unsupervised learning techniques will not be confidently able to
separate compromised PMUs from normal PMUs at time step t.
Hence, DDoS identification phase is always preceded by DDoS
detection step outlined in Procedure 1 if Yp

t = 1.
The main tools used in spectral clustering are Graph Laplacian

(L) matrices, which are developed based on spectral graph the-
ory. Normalized Graph Laplacian of a graph Gt with weighted
adjacency matrix Wt

adj and weighted degree diagonal matrix
Wt

deg is calculated as

Lt = IN − (Wt
deg)

−1 ×Wt
adj (4)

where IN ∈ RN×N is an identity matrix. Eigenvectors and
Eigenvalues obtained through spectral decomposition of Lt

are used in conjunction with traditional k-means algorithm to
divide compromised PMUs and normal PMUs in the SDN-SGC
network. We classify all the PMUs in SG into 3 groups as
following:

• Primary victims (Vpv) - Set of PMUs which are directly
targeted during DDoS attacks.

• Secondary victims (Vsv) - Set of PMUs which are con-
nected to primary victims (1-hop neighbors). These are of
interest to us as DDoS attacks on primary victims have
considerable impact on PMUs connected to them.

• Normal PMUs (Vn) - Set of PMUs which are neither
primary victims nor secondary victims in the SG.

The pseudocode of the DDoS identification phase of the
proposed GLASS framework for a time step t is presented in
Procedure 2. The value of k is set to be three as we want to
identify three groups of PMUs namely primary victims, sec-
ondary victims and normal PMUs through DDoS identification
phase. After identifying three groups of PMUs, we calculate
mean network performance using either average throughput
(µTH

[︁
.
]︁
) or average transmission delay (µTD

[︁
.
]︁
) of each group

and use their values to label all three groups. The intuition
is that attacked PMUs would usually have higher performance
deterioration than normal PMUs.

Procedure 2 DDoS identification
Input: Wt

adj, Wt
deg, Yp

t, k = 3

1: if Yp
t = 1 then

2: Calculate Graph Laplacian Lt using Eq. 4
3: Compute first k eigenvectors u1, ..., uk of Lt corre-

sponding to k of its smallest eigenvalues
4: Form U ∈ RN×k containing vectors u1, ..., uk

5: For i = 1, 2, ...,N , let ai ∈ Rk be the vector corre-
sponding to ith row of U

6: Cluster vector points (ai)i=1,...,N ∈ Rk with k-means
algorithm into Vt

n, Vt
pv, Vt

sv ∋
(︁
µTH

[︁
Vt
n

]︁
> µTH

[︁
Vt
sv

]︁
>

µTH

[︁
Vt
pv

]︁)︁
OR

(︁
µTD

[︁
Vt
n

]︁
< µTD

[︁
Vt
sv

]︁
< µTD

[︁
Vt
pv

]︁)︁
7: else
8: consider all PMUs V ∈ Vt

n

9: end if
Output: Vt

n, Vt
pv, Vt

sv

IV. RESULTS AND DISCUSSIONS

A. Implementation tools

Network performance statistics (i.e. transmission delays, and
throughput) are generated using mininet and extensions to
emulate the communication layer of IEEE 118-bus power grid
system that commonly uses IEEE C37.118.2 or IEC 61850 over
TCP/IP communication schemes. In this environment, anoma-
lous network traffic (i.e. DoS attack) is generated using the tools,
such as hping3 [7], to initiate TCP flooding attacks. In general,
the packet arrival rate for the victim node is increased during
the periods where DoS attacks take place. This action consumes
network resources on the victim node resulting in an increase
in transmission delays and decrease in throughput. Network
performance metrics are recorded using network monitoring
tools such as sflow-rt, t-shark, or wireshark and the open
network operating system (ONOS) is used as the SDN controller.
The implementation of the proposed GLASS framework and



TABLE I
GLASS FRAMEWORK RESULTS FOR IEEE 118-BUS BASED SDN-SGC NETWORK

Attack severity |Vpv|
DDoS detection DDoS identification

Accuracy Precision Recall F1-score TCR ACR

µ ± σsd µ ± σsd µ ± σsd µ ± σsd µ ± σsd µ ± σsd

Low
1 97.01 ± 0.58 98.19 ± 0.56 95.80 ± 0.56 96.97 ± 0.60 99.86 ± 03.64 74.38 ± 39.55

5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 96.28 ± 08.21 100.0 ± 0.0

10 99.98 ± 0.05 99.96 ± 0.09 100.0 ± 0.0 99.98 ± 0.49 88.61 ± 10.58 100.0 ± 0.0

High
1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.80 ± 04.46 83.79 ± 35.20

5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

10 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.59 ± 02.34

evaluation of results was conducted using Python libraries such
as StellarGraph [15], NumPy, Pandas, SciPy, Matplotlib and
Scikit-learn in the Anaconda environment.

B. Data description

In this data set, DDoS attacks are simulated for a SDN-SGC
network. In a total of 3000 (T ) time steps (each time step
constitutes a data sample which contains 118 data points, one
for each bus) considered, DDoS attacks are introduced in 50%
of the total samples, with each attack lasting for ten consecutive
samples. The resultant data set (overall 354,000 data points) of
this type has half the samples with DDoS attacks and another
half with normal network performance samples. While training,
we use same number of normal and attacked samples to train the
GCN model to reduce class wise bias. In each of the attacked
samples, a variation of (i.e. 1, 5, 10) buses were randomly chosen
to be attacked. The network performance statistics generated
for the communication layer were based on the M/M/c queue,
i.e., c ≥ 1, where packet arrivals were modelled after Poisson
distribution and transmission delays were inherently modelled
after the exponential distribution. The throughput is measured
as the actual amount of information (i.e. network packets) that
can flow through a connection at a given time, and transmission
delay is measured as the time taken for packet to be transmitted
between two PMUs.

C. Numerical results

The SDN-SGC network considered in this case study is based
on IEEE 118-bus system. It contains 118 nodes (1 for each bus)
and 186 network links (1 for each branch), with connections
between them as considered in [16]. The performance of the
proposed DDoS detection phase of the GLASS framework
is evaluated using popular classification metrics [17] such as
Accuracy, Precision, Recall and F1-score, while we define
two metrics namely True Compromised Ratio (TCR) and All
Compromised Ratio (ACR) for evaluating performance of DDoS
identification phase of GLASS framework as the former popular
metrics doesn’t provide complete picture for the performance of
an unsupervised learning algorithm such as spectral clustering.
True Compromised Ratio (TCR) is calculated as the percentage

ratio of compromised nodes identified correctly in Gt. All Com-
promised Ratio (ACR) is calculated as the percentage ratio of
identified nodes truly belonging to the set of true compromised
nodes in Gt.

The mean (µ) and standard deviation (σsd) values of accuracy,
precision, recall and F1-score summarized for 10 different sets
of training and testing data, and the mean (µ) and standard
deviation (σsd) values of TCR and ACR summarized ∀Gt where
t = 1 : Ttest are presented in Table I. |Vpv| in Table I indicates
number of PMUs directly targeted during DDoS attacks. A
total of 3000 (T ) graphs (354,000 data points) were used for
implementing steps mentioned in Procedures 1 and 2. The node
attribute matrix is formed using average transmission delay
associated with PMUs in the network. The GCN model trained
during the detection phase is formed by 2 graph convolution
layers each with 64 units and dropout of 0.2 to reduce the chance
of overfitting, 2 fully connected layers with 32 and 16 units, and
a sigmoid layer with all the layers containing ReLu activation
function. The model is trained for 50 epochs with repeated
stratified k-fold (5 folds, 2 repeats) technique. We have tested
our framework for a variety of attack scenarios by considering
low and high attack severity levels, and the number of directly
attacked PMUs (primary victims) varying among 1,5 and 10.
The values in Table I show that the proposed GLASS framework
detects whether a given SDN-SGC network is under any DDoS
attacks with high accuracy, precision, recall and F1-score, and
also correctly identifies the compromised PMUs with high TCR
and ACR values for all the attack scenarios.

D. Impact of attacks and mitigation on network performance

Network traffic/performance statistics collected by third party
monitoring tools are stored in a database (InfluxDB, AWS, etc.)
for analysis and/or extracted by a separate controller [18] tasked
with hosting network security applications, like the proposed
GLASS framework. Mitigation is applied by sending updated
flow policies to the main SDN controller’s northbound interface
for reconfiguring the flow tables in switches. The controller
limits the flow of TCP SYN packets to the compromised nodes,
which improves the network performance considerably [19].

Figures 2 and 3 shows the variation of network performance
in terms of average throughput and average transmission delay



Fig. 2. Average throughput due to DDoS attacks and mitigation

for normal traffic to the nodes, for compromised nodes during
DDoS attacks and after mitigation is applied to the compro-
mised nodes, as identified by GLASS framework. The average
throughput decreases drastically (4% of the normal traffic level)
when subjected to DDoS attacks, but is improved (84% of the
normal traffic level) after the mitigation policy is applied to the
compromised nodes identified by the GLASS framework. Sim-
ilarly, average transmission delay increases drastically (1415%
of normal traffic delay) during DDoS attacks but is decreased
closer to pre-attack levels (121% of normal traffic level) through
the mitigation policy assisted by GLASS framework.

Fig. 3. Average transmission delay due to DDoS attacks and mitigation

V. CONCLUSIONS

This paper presents GLASS: A graph learning approach to
detect and identify DDoS attacks in SDN-SGC system. The
proposed framework works in two phases namely, DDoS detec-
tion and DDoS identification. DDoS detection employs graph
convolutional networks designed for graph level classification
tasks to detect whether a given SDN-SGC network is under any
DDoS attacks. If DDoS attacks are detected from the first phase,
DDoS identification phase which employs spectral clustering is
then used to identify compromised entities in the network so
that mitigation policies can be applied to improve the network
performance degraded due to DDoS attacks. Experimental re-
sults show that the use of proposed GLASS framework resulted

in improvement of network performance statistics such as av-
erage throughput and average transmission delay. The GLASS
framework learns latent representations in the network caused
due to introduction of DDoS attacks through supervised graph
based deep learning and unsupervised spectral graph clustering
approaches. In future work, the GLASS framework will be
extended to learn latent representations in the network from
unintentional factors like system failures (component malfunc-
tion) or intentional cyber attacks, such as False Data Injections,
Jamming, and Man-In-The-Middle attack etc.
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