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Abstract—Although millimeter wave (mmWave) is a promising technology in 5G communication, its severe path attenuation and
susceptibility to line-of-sight (LOS) blockage result in much more unpredictable outages than traditional technologies. This special
propagation property raises a significant challenge to the mobility management in mmWave cellular networks. Since conventional
handover policies purely rely on the measurement of signal strength, they would cause a large number of unnecessary handovers
due to the frequent short-term LOS blockage by obstacles, imposing high signaling and energy overhead. In this paper, we propose two
novel handover mechanisms to reduce unnecessary handovers by carefully deciding the next base station (BS) a user should handover
to, so that the new user-BS connection after the handover can last as long as possible. Without prior knowledge of user’s mobility and
environment, the proposed handover mechanisms exploit the empirical distribution of user’s post-handover trajectory and LOS blockage,
learned online through a multi-armed bandit (MAB) framework. Depending on the contexts extracted from RSS information, two different
MAB problems for handover are formulated, which focus on spatial and space-time contexts, respectively, The results of numerical
simulations demonstrate that the proposed contextual handover mechanisms significantly outperform existing counterparts on reducing
handovers in all simulated scenarios.

Index Terms—millimeter wave, ultra-dense cellular network, handover management, spatial and space-time context, multi-armed
bandit.
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INTRODUCTION

essary or could have been avoided if the UE had made

s one of the fundamental technologies in the upcoming
5G cellular networks, millimeter wave (mmWave) can
provide abundant bandwidth for wireless service through
the line-of-sight (LOS) path because of its 10-to-100s GHz
level frequency. However, a big challenge for mmWave to
be utilized in practical cellular networks is that mmWave
communication heavily relies on the LOS path, but this path
is susceptible to blockage by obstacles (e.g., tree-tops, pedes-
trians, and buildings) with the movement of the user. Due to
its short wavelength, once the LOS is blocked, the mmWave
signal will not be able to penetrate through or circumvent
around the obstacle, leading to sudden significant drop of
the received signal (a.k.a. outage), which urges the user
equipment (UE) to handover to another base station (BS) in
order to maintain the connection. As such, it has been shown
in the literature that the handover frequency in mmWave
cellular networks is much higher than that in current 4G
systems [1]. Moreover, in an ultra-dense network, when
handover is needed, there are typically multiple candidate
BSs that could be chosen to handover to. Therefore, efficient
mobility and handover management is an inherent chal-
lenge that needs to be addressed in ultra-dense mmWave
cellular networks.
Although handovers are frequent in mmWave systems,
it has been shown that about 61% handovers are unnec-
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a better choice regarding which BS it should handover to
[2]. Reducing unnecessary handovers not only avoids high
signaling overhead in the network but also makes an on-
going communication connection smoother. Conventional
handover mechanisms are based on measurement of signal
strength, and do not perform well in mmWave networks
since it may cause “short-sighted” handover decision. For
example, a BS with the highest signal strength would be
chosen by conventional solutions as the handover target
even if the LOS link associated with it will be lost in the
next second after the handover. Instead, if another BS that
has a lower signal strength but a longer unobstructed time
for its LOS path were selected, a redundant handover could
have been avoided. Therefore, an optimal handover policy
should take into account not only the current instantaneous
state of the candidate BSs, but also the future change of state,
so as to reach a “far-sighted” handover decision.

The study on reducing unnecessary handover in
mmWave cellular networks has been just started. The au-
thors in [3] introduced a handover strategy based on report
tables that were built by BSs to track the stability of their
surrounding channels. By analyzing the report tables, the
decision maker could make a good handover decision by
choosing the BS with high stability of channels to avoid
a possible handover again in the very near future. The
authors in [4] developed a Recursive Least Square (RLS)
based algorithm to predict the received signal strength (RSS)
of BS and chooses the BSs with the largest predicted RSSs.
Some works attempted to reduce the handover frequency
by employing statistical predictive models such as finite



state Markov chain [5] and Markov decision process (MDP)
[6] to predict the possibility of an outage in the next time
slot based on the current channel state. Some others pro-
posed to solve this problem by utilizing machine-learning
based frameworks [7]-[10]. Furthermore, [11] developed a
geometry-based blockage prediction method to eliminate
unnecessary handovers caused by short-term LOS blockage.

Although the above works make outstanding contribu-
tions in this field and provide enlightenment to our study,
there is still space to improve. First, many existing handover
strategies, especially those based on statistical predictive
models (e.g.,, MDP [6]), require the pre-knowledge or as-
sumption on the distribution of the channel state, so there
is no guarantee that they can be readily applied in a ultra-
dense cellular network [7]. Second, many strategies have
specific requirements, e.g., antenna array equipped at UE
and exhaustive direction search [3], assumption of known
mobility of UE [8] and time-consuming offline training
[10]. Third, few of these strategies explicitly consider the
contextual relationship between LOS link, user’s movement,
and obstacles. Clearly, the unobstructed time for a LOS
link is essentially determined by user’s movement trajectory
and the distribution of LOS blockage after the handover.
Therefore, a handover policy could have been improved by
exploiting user’s post-handover mobility trajectory and LOS
blockage, but the issue is that the realization of these infor-
mation cannot be assumed at the moment of handover. One
straightforward way to address this problem is to predict
the user’s post-handover trajectory based on her trajectory
before the handover. However, this solution requires exact
location information of the user (i.e., geo-coordinates of UE’s
location), which is not always available/practical in reality.

In this paper, we propose two handover mechanisms
that addresses these challenges by exploiting the empiri-
cal distribution of user’s post-handover trajectory and LOS
blockage. This empirical knowledge orientated handover
mechanisms are based on the following logic: if a handover
policy is optimal for a handover, then it is quite likely to be
also optimal for other handovers of the same features. Here,
the features, which describe the context or environment of
user’s communication, are defined by some representative
characteristics related to user’s post-handover trajectory and
LOS blockage. The feature acts as a label to group similar
handovers, to which a common handover decision optimal
to this group will be applied. Taking into account several
fundamental attributes of handovers, including the user’s
mobility, the environment, and the consequent unobstructed
time for LOS path, we develop a novel partitioning scheme to
extract key features in the space and time domains based
on the UE’s RSS information. With the assistance of these
features, the proposed handover mechanisms depending
on the availability of the features can significantly increase
the lifetime of the LOS link after each handover without
requiring any exact location information of the users.

In our mechanisms, the empirical knowledge is learned
online through a multi-armed bandit (MAB) framework,
with the intention to maximize the expectation of the unob-
structed time for user-BS connection after each handover. In
particular, the centralized controller of the cellular system
maintains an individual MAB process for each block. A
block, which indicates a specific Euclidian area in the net-
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work, is used as the spatial feature of handover (definition
will be given shortly). All UEs within the same block will
see the same set of BSs. These available BSs are treated as
the arms of the MAB process associated with the block,
and choosing a BS as the handover destination is viewed
as a play. When a handover is triggered, the system firstly
identifies the block in which the UE resides, so as to identify
the particular MAB process associated with that block. It
then chooses a BS as the UE’s handover destination among
all available BSs of that MAB according to their accumulated
rewards. Handing over to this BS, the UE will receive an
instantaneous reward (definition will be clear shortly) from
its communication with the BS. This reward will be reported
to the system by the UE at the moment of its next handover.
This reward is used to update the accumulated reward of
the serving BS for the corresponding MAB process, which is
used to guide future handovers of the same spatial feature.
We propose two BS-selection algorithms to ensures that
the above learning process will converge, and a user can
maximize its expected reward by selecting the right BS
according to the proposed algorithms. In contrast to the
aforementioned trajectory prediction method, an advantage
of our mechanisms is that they do not require user’s exact lo-
cation information. Instead, user’s coarse-grained mobility
information, which differentiates handovers with the areas
where the handovers occur and the user’s general moving
directions, is used as context in our algorithm to collect
rewards. In practice, this coarse-grained information could
be represented as the collection of RSSs from surrounding
BSs, and hence is considered practical according to 3GPP
[12]. Note that the purpose why we introduce to use a
collection of RSSs is to differentiate the UEs with different
features, but not really figure out their exact geographic
locations or moving directions.

In the literature, our work is most related to the SMART
scheme [7] and a similar one [8], which also use a reinforce-
ment learning framework to guide BS-selection in handover.
The main difference between our work and SMART is
that our MAB learning model considers various features
of handover to better characterize the accumulated knowl-
edge, while SMART is completely independent from user’s
individual characteristics. Our performance evaluation sim-
ulates SMART as a counterpart scheme and shows that
the proposed mechanisms outperform SMART significantly.
In addition, [13] also proposed a MAB-based algorithm
to optimize wireless handover problem. Our work differs
from it in the following two aspects. First, the handover
problem discussed in [13] is optimized by fine tuning the
threshold defined in event A2, i.e.,, a handover will be
triggered whenever the received signal strength goes be-
low a pre-defined threshold [12]. This traditional setting
is not suitable for mmWave cellular network due to its
special propagation property. Second, the cellular network
considered in [13] consists of non-overlapped cells. When
an event A2 occurs, the UE has only one target BS to which
it can switch and there is no need to choose among multiple
candidate BSs. This setting does not consider the property
of ultra-dense network. In particular, with overlapped cells,
how to choose proper BS among multiple candidates is an
important decision. Therefore, the method proposed in [13]
cannot solve the problem considered in our work. Moreover,



although [14], [15] considered similar context in handover
management, they had their own limitations. Specifically,
the handover method proposed in [14] focuses on elabo-
rately tuning handover parameters and is not suitable for
handover in mmWave band, just like that in [13]. Besides,
this method requires auxiliary devices to collect user’s pre-
cise speed information. Although [15] proposed a context-
aware handover policy without using any positioning sys-
tems, the aim of their work is to avoid exhaustively beam-
searching to reduce handover delay, which is different with
ours. Finally, this paper is an extension of our preliminary
work in [16], which only learns and exploits the spatial
information of past handovers. In contrast, this paper com-
prehensively considers both the spatial and temporal features
of handovers to provide better solutions to the handover
problem in ultra-dense mmWave cellular networks.

The rest of this paper is organized as follows. In Section
2, an overview of the related works are proposed. Section 3
introduces the models of channel propagation, the blockage
and the mobility. In Section 4, the online learning frame-
work of the two contextual handover mechanisms is de-
scribed. Section 5 and Section 6 propose two MAB-based BS-
selection algorithms for these two handover mechanisms,
respectively. In Section 7, we give the complexity analysis
of the proposed mechanisms. In Section 8, the results of a
series of simulations in various scenarios and discussions
are provided. Finally, we conclude our work in Section 9.

2 RELATED WORKS

Our work is related to two fields: (1) handover strategies for
mmWave cellular networks, and (2) machine learning based
methods for handover in wireless communication.

2.1 Handover Strategies for mmWave Networks

Research on handover management in mmWave cellular
networks is in its infancy and the results are preliminary.
With the aim to compensate the large propagation path
loss and high susceptibility to blockage, existing methods
include multiple (parallel) connectivity and single sequen-
tial connectivity. The former maintains simultaneous beam-
forming from multiple base stations to a user, so that the
user is still under cover if its LOS to one base station is lost
[3], [4], [17]-[19]. The latter beamforms to the user from a
single base station at a time, but will handover to a next base
station when the current connection is lost [20]-[24]. None
of these methods provide a satisfactory solution to the prob-
lem. The multiple connectivity method has low efficiency
in the beam utilization, because not every beam that has
been allocated to the user is always needed to maintain the
connection at all time. Meanwhile, the method also suffers
from multi-fold user capacity loss, as each user now requires
N beams, which could have been used to serve N users. On
the other hand, the single sequential connectivity method
suffers from long handover delay, since the initial access
of the new beam requires expensive signaling and long
training time [25]. Some works improve the handover delay
by employing statistical predictive models such as finite-
state Markov chain [14], [26] and Markov decision process
(MDP) [6], [27] to predict the possibility of an outage in the
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next time slot based on the current channel state. Moreover,
[15] introduced a linear-regression based direction of pass
detection algorithm to reduce handover delay. In addition,
content caching technique has been utilized to lower han-
dover failure rate and smooth handover [28]-[30].

2.2 Machine Learning Based Methods for Handover

Machine learning provides another promising tool to im-
prove handover decision. In particular, the authors in [31]
introduced a partially blind handover scheme that uses
embedded XGBoost classifier to predict the success rate of
handover. In [32], the authors employed deep learning (DL)
framework to predict upcoming failure events and imple-
ment proactive handover based on historical beamforming
vectors. However, they did not describe how it works in
multi-user scenario. In [33], the authors built a convolutional
neural network to predict the signal power that will be
received in a short time. But their solution relies on costly
camera device, which is not scalable in practice.

Moreover, the authors in [7] introduced a reinforcement-
learning (RL) based handover policy to reduce the number
of handovers in HetNet. In [34], the authors utilized RL
to predict user’s mobility and applied proactive handover
to improve the throughput. However, their method needs
user’s velocity and location information obtained via a
dedicated tracking device. In [8], the authors considered a
communication system consisted of users and unmanned
aerial vehicles (UAVs), and proposed a user association
algorithm based on RL to reduce redundant handovers.

As an integration of DL and RL, deep reinforcement
learning (DRL) is also utilized to reduce handover frequency
in wireless communication. In [9], the authors proposed an
asynchronous multi-user DRL scheme with a deep neural
network (DNN) as handover controller to reduce handover
frequency. This scheme requires user’s geographical infor-
mation and uses this information as the feature to partition
UEs by K-means clustering algorithm. Similarly, the authors
in [10] proposed a handover scheme based on deep Q-
network. Different from [9], [10] utilized the historical re-
ceived uplink SINR on APs to characterize the UE’s state
and leveraged the convolutional neural network and the
recurrent neural network to extract UE’s features.

2.3 Discussion

Upon the plentiful research results in the related fields, the
limitations of the existing works and the specific contribu-
tions of ours can be summarized as follows:

o Few of the existing research explicitly considers the
impact of distributions of user’s mobility and LOS
blockage on handover frequency in mmWave cel-
lular networks. Most research in the literature uses
throughput [7], [14], [17], [19], [34], or delay [6],
[15], [26], [27], or failure rate [18], [28]-[32] as the
evaluation criteria for handover policy. Rather than
these metrics, we focus on the unobstructed time for
a LOS link which more directly reflects the quality of
a handover decision due to directivity of mmWave
communication. The estimation of the unobstructed



LOS time requires certain knowledge of user’s post-
handover trajectory and LOS blockage, whose acqui-
sition has not been studied in the literature.

e Most of the existing solutions have specific require-
ments, for example, the prior knowledge on the dis-
tribution of channel state [6] and user’s mobility [9],
[14], [27], [31], or auxiliary devices to obtain user’s
movement information [13], [33], [34]. However, such
requirements cannot always be satisfied in practice.
Hence, we propose two novel handover mechanisms
which leverage the available RSS information to ex-
tract user’s spatial and temporal features to guide
the handover decision without any pre-knowledge
on user’s exact mobility information.

o We propose an online learning framework based on
MAB process with low computational complexity.
This online learning has a simple structure which
requirs no offline training phase or hyper-parameter
tuning, hence is easy to implement.

In summary, we propose two novel online-learning-
based contextual handover mechanisms, which can learn
the empirical distribution of user’s post-handover trajectory
and LOS blockage, and use the learning outcome to reduce
unnecessary handovers in ultra-dense mmWave cellular
networks. Depending on the availability of information, two
different MAB formulations are proposed for the learning,
one focused on features of handover events in the space
domain, and the other on features in both the space and
the time domains. Two effective BS-selection algorithms are
developed for these two mechanisms, respectively. More-
over, in order to address the issue caused by high-dimension
feature of handover in a complex scenario, a novel acceler-
ation technique is presented to increase the efficiency of the
algorithms. Note that, none of these proposed mechanisms
requires the knowledge of user’s exact (or fine-grained)
mobility information.

3 SYSTEM MODEL

Consider a cellular network N consisting of a set of
mmWave small cell base stations (SBSs), denoted as S. These
SBSs are randomly distributed in the network to provide
high throughput by LOS links to UEs in small cells. Actually,
SBSs and macro base stations (MBSs) always coexist to
provide reliable wireless service. Since MBS can provide
larger coverage and is flexible to obstacles because of its
conventional sub-6 GHz band, it is used for transmission
of control signals and acts as a substitution whenever no
LOS link is available. A centralized controller (CC) takes
charge of handover in this network. In order to investigate
the characteristics of handover in the mmWave domain, we
only focus on the interaction between SBS and UE in this
paper. The switch between SBS and MBS, as well as the
interaction between MBS and UE, are not within the scope
of our discussion.

3.1 Propagation Model

In this paper, we assume that the channel of a mmWave
SBS is described by 3GPP Standard probabilistic LOS model.
According to [7], [35], the statistic path loss model is

PL(d)[dB] = o+ 108log;o(d) +&,€ ~ N(0,07), (1)
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where d is the distance between the transmitter and the
receiver in meters, & and (3 are the least square fittings of
floating intercept and slope respectively over the measured
distances, and & represents a lognormal shadowing with
variance o2. Since inter-user interference can be ignored
in mmWave band, we only model the signal-to-noise ratio
(SNR) of the signal received by the UE n from the SBS k € S
as [7]
P, x G x PL(d)™*!
P, ’
where Py, is the transmit power of SBS k, P, is the noise
power and G is the antenna gain. The antenna gain in
mmWave communication highly depends on the direction
of beams formed by transmitter and receiver. Since we
assume that SBS is equipped with directional antennas
with a sectorized gain pattern while UE is equipped with
ominidirectional antennas, the antenna gain G is actually a
function of the angle of departure w from the SBS to the UE.
According to [36], this function can be represented by

Gmax’
Gw) = {G .

SNRE =

()

if |w| < ws
otherwise, ©)
where Gax is the main lobe gain, Gy, is the side lobe gain,
and ws is the main lobe width of the SBS. We assume that
perfect beam tracking technique can be used to maintain
mmWave link [7]. Therefore, the UE could always be in the
main lobe and have main lobe gain as long as its LOS path
to the SBS is not blocked.

We assume that a SBS is able to generate at most Unax
beams at the same time (i.e., it can transmit to at most Uy«
UEs simultaneously), and all served UEs equally share its
bandwidth. The downlink transmission rate of a UE n that
a SBS k is transmitting to can be calculated as follows:

hk

n

B
= —log, (1 + SNRE), @
Uy

where B,, is the bandwidth of SBS k£ and U}, is the number
of UEs simultaneously served by SBS k.

3.2 Blockage and Mobility Model

Since mmWave signal is highly vulnerable to obstacles, we
assume that the transmission rate of a LOS link will drop
to zero immediately when the link is blocked. In our simu-
lations, a user is modeled with random moving speed and
direction, while an obstacle is modeled as a circle with fixed
radius and location. Given a LOS link and a set of randomly
distributed obstacles, the link is blocked whenever there
is an obstacle to which the distance from the link is less
than its radius. This modeling could be used to represent
any fixed obstacle, such as tree-top, advertising board and
building. Note that our proposed mechanisms and their
analysis do not make any assumption on the blockage and
mobility models. In other words, they are general enough
to work under any blockage and mobility models that may
appear in realistic applications. The main reason why we
select this model is because it is easy to simulate but still
general enough. Even though we assume a unified radius
for all obstacles in our simulations, this assumption does not
undermine the generality of the obstacle model in the sense
that the blockage time caused by an arbitrary obstacle to an



arbitrary user in our model is still a random variable. This
is because this blockage time depends on not only the size
of the obstacle, but also the distance between the obstacle
and the user, and the user’s moving direction and speed,
which are randomly distributed in the model. Therefore,
this model has already been able to capture the fundamental
effects of heterogeneous blockage time that could have been
caused by a more complicated obstacle model. Moreover,
in this paper we mainly consider the static-obstacle and
mobile-user scenario. The more challenging mobile-obstacle
scenario is out of the scope of this paper and will be
considered in our future work.

Moreover, we do not consider any communication
through non-LOS (NLOS) in this work. Although recently
there have been commercial tests, e.g., those from Qual-
comm [37], Samsung [38], and NI [39], that show the fea-
sibility of using NLOS for communication when there is
no LOS, simply switching the beam to a NLOS component
of the mmWave channel when the LOS is blocked [40]-
[43] may not always be a good solution to our handover
problem. In particular, recent field measurements in New
York City by NYU have shown that for all the frequencies
of practical interest in the mmWave cellular band (28, 38,
and 73 GHz), the strength of a NLOS is in general at least
20 to 30 dB weaker than that of the LOS at typical outdoor
communication ranges. Due to the huge difference in the
path loss between LOS and NLOS, switching beams to
NLOS may either lead to a transmission rate that is orders of
magnitude lower than the LOS rate if transmission power is
not increased, or cause a huge spike in power consumption
if one wishes to retain a comparable transmission rate.
Clearly, rather than simply switching to the NLOS, a more
sophisticated cross-layer mechanism that can mobilize the
rich networking resources embedded in the dense deploy-
ment of mmWave cells, e.g., by handover when possible to
another base station or a relay that has a new LOS with the
user, may avoid the above weaknesses and thus constitutes
a more desirable solution. Hence, we do not consider the
effect of reflected signal by obstacles in this work.

4 ONLINE LEARNING OF CONTEXTUAL HAN-
DOVER MECHANISMS

Within the six handover events defined by 3GPP standard,
we focus on the BS selection for Event A2 (i.e., a handover
will be triggered whenever the received signal strength
goes below a pre-defined threshold [12]), since handover
triggered by A2 is common but challenging in mmWave
band. At a high level, the framework of the proposed MAB-
based online learning of contextual handover mechanisms
is illustrated in Fig. 1, and elaborated in the following.

4.1 Spatial Contextual Handover Mechanism (SCH)
4.1.1 Signal Space Partitioning Scheme

During a handover, instead of picking the BS that has
the highest instantaneous RSS, we prefer a BS that has
the longest connection time for its LOS link subject to a
minimum RSS requirement. The unobstructed time of LOS
link is determined by user’s post-handover trajectory and
the distribution of obstacles around that trajectory. These
two key factors are closely related to the area where the

Fig. 1. Framework of online learning of contextual handover mecha-
nisms

handover event occurs. In another word, the geographic
area where a handover occurs should be considered as a
spatial feature of the handover when making BS selection.
Unfortunately, this spatial feature of handover cannot be
directly obtained without precise location information, i.e.
geo-coordinate. In order to observe this spatial feature with-
out any auxiliary locating device, in this subsection, we
introduce a signal space partitioning scheme, which leverages
the UE’s RSS information as a label to characterize each
handover. This setting allows handovers to be differentiated
by the areas where they occur.

The idea of this scheme comes from the observation
that the collection of signals received from surrounding
SBSs could be leveraged as a reference of UE’s location.
Specifically, in an ultra-dense 5G network, it is common that
multiple mmWave small cells overlap. Therefore, a UE n at
any location is likely to receive from multiple surrounding
mmWave SBSs, which form the available BS set S,,. All SBSs
k € S,,, associated with the SNRs at the UE received from
them, constitute a signal vector for UE n, denoted by wv,,.
Each entry v, € wv, is a quantized version of the SNRj
received from SBS k according to the following quantizating
criterion: choose J quantizing thresholds {eq,...,ej_1},
where J is a parameter and e¢;, < e;,,0 < j1 <jo <J -1,
then define the quantized SNR as

J7 if SNRk 2 €j—-1,
VE = j, if €51 < SNRk < ey, 1< j <J- 1, (5)
0, if SNRy, < eo.

In this way, any instance of signal vector v,, corresponds to a
certain geographic area where UE n instantaneously locates.
We use an example shown in Fig. 2 to illustrate the idea.

In Fig. 2, we consider three SBSs, A, B and C, whose
small cells overlap. Note that the small cell of a SBS, which
is represented by a dotted circle, indicates the region within
which a UE is able to receive from the SBS, i.e., the RSS
is above the minimum required threshold. So here we
are considering a binary quantization case where a single
quantizating threshold e exists. There are 9 UEs distributed
in the network. If a UE is in the small cell of a SBS and
there is no blockage on the LOS between the UE and that
SBS, the UE’s quantized SNR corresponding to the SBS is 1,
otherwise 0. In this setting, all UEs’ signal vectors are listed
in Table 1. It is easy to see that UEs at different locations
receive different signal vectors, hence have different spatial



Fig. 2. lllustration of signal space partition

TABLE 1
Signal vectors

UE guanélzed Sé\T R Signal Vector
1 1710 0 100
2 |01 0 010
3 1010 1 001
4 1|1 0 110
5 110 1 101
6 011 1 011
7 1)1 1 111
8 1(0 0 100
9 |00 0 000

features. In particular, note that UE 8 does not have the same
signal vector as UE 4, even though both of them reside in
the overlap between the small cells of SBS A and SBS B. This
disparity in received signal vector arises from the blockage
of the LOS between SBS B and UE 8 caused by the obstacle.
Instead, UE 8 has the same signal vector as UE 1, also due to
the blockage of the obstacle. As a result, UE 1 and UE 8 are
considered to have the same spatial feature in our model.

According to our signal space partitioning scheme,
whenever a handover is triggered, the CC collects the UE’s
instantaneous RSS and identify its signal vector which in-
dicates the area where the handover event occurs. Indeed,
the proposed partitioning takes place in the signal space.
Because the signal path loss is related to signal propagation
distance, the partition in the signal space naturally leads
to a partition in the Euclidian space, referred as blocks. In
this way, each signal vector corresponds to a unique block.
Rather than directly identifying the specific location of a
UE, the main goal of the proposed partitioning scheme is
to identify UEs with the same spatial feature (i.e., residing
in the same block) by assigning them the same block Id
(i.e., the Id of the block that the UE is currently residing in).
Different block Ids will be assigned to the UE as it moves
and receives different signal vectors.

The information about the blocks, such as the amount
and the size, referred as the granularity of partition, is
determined by the chosen quantization thresholds as well
as the distribution of SBS and obstacles. This partitioning
scheme does not rely on any pre-knowledge or assumption
on these blocks. Instead, the knowledge on the blocks is
grown incrementally. In particular, the CC keeps a block
set storing the Ids of the blocks that have been identified.
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Initially, the block set is empty. Once the CC receives a new
signal vector from a UE that has never been observed before,
this means a new block is identified, and the CC assigns a
unique Id to the new block and add it into the block set.
When more blocks are identified, the CC will have more
complete knowledge on the blocks.

4.1.2 Spatial Contextual BS-Selection based on Empirical
Knowledge of Post-handover Trajectory

In SCH mechanism, given M blocks (each corresponding to
a signal vector), the CC maintains M independent MAB pro-
cesses, each serving a block by selecting SBS for handover
events happening in that block. In particular, suppose a UE
in block g; € G, where G denotes the set of blocks, is able
to receive from n; SBSs, denoted by set S;. Then the MAB
process for block g; has n; arms, each representing a distinct
SBS in S;. The MAB process maintains an accumulated re-
ward for each arm. As will be clear shortly, for arm k, where
1 < k < n;, this accumulated reward is calculated by taking
into account the rewards received by all historical UEs who
switched to SBS k£ in past handovers that happened in block
gi, so it reflects the mean reward a future UE is expected to
receive if it switches to SBS k after a handover in block g;.

The spatial feature of handover provides the CC an
access to coarsely locate each handover in the network.
Different with the handover mechanism in [7] which treats
all handovers with no difference and applies a unique RL
process, the SCH maintains multiple MAB processes and
utilizes the spatial feature of each handover as a context
to indicate which MAB process should be enabled. With
the MAB process corresponding to a specific block, an
incoming UE that handovers in that block will be switched
to the particular SBS whose representing arm presents the
highest accumulated reward among all arms. Our MAB
construct ensures that when the algorithm converges, the
regret between the SBS selected by the algorithm and the
SBS selected optimally in the hindsight will be minimized.
The actual reward received by this UE, which reflects the
actual unobstructed LOS connection time between the previ-
ous handover and the next handover, will be computed and
reported to the MAB process at the CC to update the accu-
mulated reward of the relevant arm when the next handover
is due. Clearly, the computation of the accumulated reward
for each arm in block g; is based on all historical realizations
of UE’s post-handover trajectories for handovers in g;, and
hence it is an expectation over the empirical distribution of
UE’s post-handover trajectory.

4.2 Space-Time Contextual Handover Mechanism
(STCH)
4.2.1 Temporal Feature Extraction

The UE’s mobility is reflected by not only its instantaneous
location, but also its moving direction. A single block Id
identified by the signal space partitioning scheme can only
label out the coarse-grained location of UE, but cannot
indicate the moving direction. Hence, we propose to use
a sequence of block Ids, i.e., a block concatenation, as a
label to identify UE’s moving direction. In particular, the CC
maintains a block concatenation for each UE, which records
the blocks that the UE has passed in chronological order. It



reflects the change of the UE’s location over time and hence
can be used as a label representing the UE’s coarse-grained
moving direction (or trajectory) in the past. In a short time
horizon, a UE’s moving direction in the near future should
be closely related to its moving direction in the past. This
correlation between the near future and the past is the basis
for the STCH to make a better handover decision.

Take the handover events shown in Fig. 3 as an example,
where we suppose UEs 1, 2 and 3, each with its own moving
direction indicated by the corresponding arrow, have to
hand over in block a. We also assume that all three UEs
are able to receive adequate signals from SBSs A, B and
C at this moment. Under the SCH mechanism, these three
UEs receive the same signal vector and will be treated
homogeneously, and therefore will all be handed over to the
same SBS, e.g., say SBS C. Clearly, this is not the best han-
dover decision when UE’s moving direction is concerned. In
particular, as UE 2 will be subsequently getting away from
SBS C and getting closer to SBS B, handover to SBS B should
be a better decision for UE 2. This could save UE 2 from an
(unnecessary) handover from SBS C to SBS B in a later time
if it chooses to handover to SBS C at this moment. Similarly,
handover to SBS A is a better choice for UE 3, as it could
save the UE from an (unnecessary) handover from SBS C
to SBS A in the near future if the UE hands over to SBS
C in the first place. Using the concatenation of historical
block Ids as a label allows us to better classify those UEs
with the same spatial feature but are moving along different
directions according to their pre-handover trajectories, and
hence offers an opportunity to better tailor the handover
decisions for them. For example, with the block concatena-
tion of each UE, we are able to know that UE 1, 2 and 3
come from block d, b and c, respectively. By considering
their past moving directions, and also based on the learned
reward statistics for each handover option related to each
past moving direction, the CC could hand over these UEs to
SBSs C, B and A, respectively, and hence a better handover
decision for the UEs. Note that the introduction of block
concatenation is not to really predict UE’s moving direction,
but to differentiate UEs with different moving directions
according to their pre-handover trajectories. Although this
concatenation-based moving direction is coarse-grained, it
still provides us valuable information to further differentiate
UEs with the same spatial feature. Obviously, with finer
partition granularity of the signal space and longer block
concatenation, the concatenation-based moving direction is
more differentiable. As will be clear shortly, even with a very
simple one-step-look-back label construct, i.e., each concate-
nation only contains the current block Id and the most recent
one the UE just traversed, the handover performance can be
significantly improved.

In general, the concatenation of historical block Ids can
be implemented as a stack, where the bottom stores the Id
of the first block which the UE has traversed, while the
top stores that of the block where the UE currently resides.
Specifically, let g,, denote the block concatenation of UE
n. Whenever the UE enters a different block, for example,
moving from block g; to g;, the CC pushes g; into g,.
When UE n needs to handover, the g, is used to indicate
its moving direction. The block concatenation g, extends
the observation of handover from the space domain to the
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Fig. 3. Differentiation of UEs’ moving directions

time domain, and is referred to as the temporal feature of the
handover. Because maintaining the entire block-traversing
history for every UE is expensive, we will only focus on
its simplest one-step-look-back special case, which has low
cost and is easy to implement. In particular, for the one-step-
look-back construct, let g,, = (g, , gn), where g,, denotes the
block where UE n currently resides, while g,; denotes the
immediate preceding block to the current one.

There are mainly two reasons for us to apply this one-
step-look-back construct: (1) Avoid the “curse of dimension-
alit”. Since every distinct permutation of block Ids could be
treated as an instance of block concatenation which is used
as an individual space-time context of a handover, if the size
of block concatenation is large, there will be a huge number
of contexts for a single block. For example, suppose each
block has average p preceding blocks and the size of block
concatenation is L, there are totally O(p~~!) distinct space-
time contexts for each handover, which are not manipulable.
However, if the one-step-look-back construct is applied,
there are only p contexts need to be considered. (2) Save
storage. Obviously, compared with keeping the entire block-
traversing history, which requires L storage units for each
UE, keeping only two block Ids will significantly reduce the
spatial complexity of the system.

4.2.2 Space-Time Contextual BS-Selection Based on Em-
pirical Knowledge of Post-handover Trajectory

Given STCH mechanism and the space-time context of
handover, the CC maintains a space-time contextual MAB
process for each block to make BS-selection decision for
handover events happening in the block. In particular,
for any block g;, we define the set of its preceding blocks
G = {9, lgn = 9:,V&n = (9,,,9n),Yn € U} from all
block concatenations of all UEs, where U is the set of
UEs. The contextual MAB process corresponding to block
g; maintains a coefficient vector 6; ;. for each candidate (or
arm) SBS k € S;, where S; is the set of all available SBSs
a UE may handover to in block g;. The elements in 6, ,
each corresponding to a unique preceding block g; € Gy,
represent the expected rewards an UE in block g; can receive
by handing over to SBS k, considering that the UE has come
to g; from various (coarse-grained) directions, respectively
(i.e., one element per direction). As described in the previous
section, here each coarse-grained direction is represented by
an unique preceding block in G;.



Let x denote the context which reflects the temporal
feature g,, = (g,, , gn) of a handover event happening on UE
n in block g;. Given x and ; j, for Vk € S;, the MAB model
will calculate the expected reward for handing over to SBS k
as 7 ), = 07, where 0!, is the element in 6; j, corresponding
to precedin’g block g;. The actual handover decision is made
according to a specific criterion, e.g., choosing the SBS, say a,
with the largest expected reward. Once a decision is made,
the UE will be switched to and served by SBS a from then
on. When the LOS connection between the UE and SBS a is
lost, e.g., the propagation distance is too long or there is a
blockage, an actual reward r; , that represents the empirical
connection time will be calculated. Subsequently, x, a, and
;.o Will be used to update the expected rewards in 8, ,, as
will be described in details in Section 6.

4.3 Handover Trigger Condition

To guarantee the quality of service, the handover trigger
condition for a UE n associated with SBS k is described as

SNRE < SNRuyin — hys, (6)

where SNR iy is the minimum SNR required for a certain
service level, and hys is a hysteresis parameter for avoiding
frequent handover. Although how to select a proper value
for hys is an interesting issue, it is not the key point of
this paper. For simplicity, we set hys to be zero. Note that
any specific value of hys does not influence the proposed
handover mechanisms.

5 UCB-BASED BS-SELECTION ALGORITHM FOR
SCH

The partitioning scheme described in Section 4.1.1 provides
the CC the context which reflects the spatial feature of
handover and make BS-selection within an specific small
Euclidian area, say block. Since our goal is to find the SBS
which can bring the longest unobstructed time of LOS path
for each handover without prior knowledge, we model the
BS-selection in each block as a MAB problem in this section,
which is to identify which arm to pull in order to get
maximum reward after a given set of trials [44].

5.1 Stateless Multi-Armed Bandit Model

Given a block ¢g; (i = 1,..., M, where M is the number
of blocks), its corresponding signal vector indicates the
candidate SBS set S; for the UEs who reside in the block.
Let SNRY be the SNR received by a UE from SBS k in block
g, then S; is specified as

S; = {k | SNRY > SNRun, k € S}. @)

After the CC chooses a SBS k € S; for a handover which
happens in block g; in trial ¢ at time 7, the UE will be served
by SBS k until it needs another handover, suppose at time
7'. Then the UE receives an instantaneous reward associated
with SBS k in block g;, denoted as r k= 7' — 7. Since 7’
is an unknown random variable whlch is determined by
the realization of UE’s post-handover moblhty, including
moving trajectory and speed, the reward 7! isalsoaniid.
random variable. As there are no exp11c1t states of SBS as
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prior knowledge during handover in SCH, the SBS selection
in block g; is formulated by a stateless MAB model [44]
M; = {S;,pt .}, where k € S;, and pu!, is the expected
reward of SBS k in block g; in trial . ’

Denote a;; to be the SBS actually selected by the CC
following a certain policy, in block g; in trial ¢. The regret
of this policy up to trial 7', which is defined as the accumu-
lated difference between the reward obtained following this
policy and the optimal reward that could be obtained with
full knowledge, is

Rir = maxIE

T
Zrz k er,ai,t] . (8)
t=1

Based on the model M;, the handover decision problem in
block g; with the aim to choose the SBS which brings the
longest unobstructed LOS connection time, is equivalent to
find the optimal policy for the corresponding MAB problem
that minimizes the regret.

5.2 Estimation of Expected Reward

If full knowledge about the distribution of each SBS'’s re-
ward is known, the optimal policy is to choose the optimal
SBS k* = argmaxges; u;k for handover in block g; all
the time. Unfortunately, this assumption does not hold.
Therefore, the expected reward of SBS can only be esti-
mated based on historical observations [7]. Denote T} ;, and
ik (TF), as the number of times that SBS k is chosen and
the sample mean of reward of SBS k in block g;, respectively.
These two metrics are updated by an observation of reward
7t as follows:

Ty X Tig(Tik) + 75
Tir+1

Fip(Tip+1)= ; )

Ti,k = Ti7k + 1. (10)
Initially, we set T} , = 0 and 7; 5 (0) = 0. We use this sample
mean value 7; ;(7; ) as the estimation of the expected
reward of SBS k in block g;. Each instantaneous reward
obtained by any UE is used to update the corresponding
mean reward of its serving SBS.

Since the reward is defined as the length of the interval
between the moment when the current handover decision
is made and the moment when the next handover event
happens, it is related to the UE’s moving speed. In partic-
ular, given two UEs with the same moving trajectory and
the same handover decision for them, the one whose speed
is low will receive more reward than the other one whose
speed is high, because of its long LOS connection time. We
consider the random speed of UE as a factor contributing
to the randomness of reward of which the distribution can
be reflected by the statistic reward accumulated from the
past handovers. Therefore, there is no assumption on the
distribution of UE’s speed in the proposed mechanisms.
They can work under any assumption about the distribution
of UE’s speed in practice. In Section 8, we simulate a random
speed scenario in which a UE’s moving speed is randomly
distributed according to a Gaussian distribution.



5.3 Exploration and Exploitation

How to trade off exploration and exploitation is a key part
of trial design in MAB problem. On one hand, we should
not stick on the SBS with high sample mean to avoid being
trapped in a local optimum; on the other hand, continuously
trying different SBSs is also not a good idea since it impacts
the efficiency of the algorithm. In this section, we utilize
the widely-used UCB policy proposed by [45] to handle this
trade-off, since it can achieve logarithmic regret with low
computation complexity [7].

According to UCB, we set the index of SBS k in block g;

as ik (Tik) + 1/ 250,
of handovers happehed in the block. The first item acts as
the exploitation part, while the second item takes charge of
the exploration part. For an Event A2 occurring in block g;,

the CC selects the SBS k* satisfying
21In F; i
Tk |

where F; denotes the total number

k* = arg max (ri7k(Ti,k) + 11)

5.4 Dynamic Block Set Construction

In SCH, we maintain a MAB model for each block which
corresponds to an unique signal vector. However, as men-
tioned in Section 4.1.1, we are supposed to have no knowl-
edge about the signal space or block partition at the begin-
ning of the algorithm. Hence, we set the block set G = () ini-
tially. When a handover is triggered, the CC firstly calculates
the UE’s signal vector. If the signal vector has been observed
before, then the Id of the associated block is retrieved; if
not, this means that the block where the UE resides has
never been identified before. The CC then gives the new
identified block an unique Id, suppose to be gnew, and adds
gnew into G while keeping the mapping between the new
signal vector and the new block Id. Meanwhile, a new MAB
process for the new block is created. In this way, the block
set is built dynamically.

5.5 Acceleration Technique

Generally, when an Event A2 occurs on a LOS connection
which was built in block g; to serve a UE n by SBS k,
a reward r;; would be obtained and only 7;; would be
updated (time- and trial- related subscripts are omitted).
However, since the UE’s post-handover trajectory is realized
at this moment, we are able to update some other SBSs’
rewards on this trajectory simultaneously, by using the so-
called virtual update. Specifically, in the previous handover,
if the CC switched the UE n to SBS a in block g;, the CC
was also aware of the set of SBSs which were not selected,
denoted as Si,a = S;\{a}, and pretended to build a virtual
LOS link between the UE n and each k' € Si’a. During the
UE’s post-handover movement, in addition to checking the
handover trigger condition on the true LOS link, the CC
kept checking that on each virtual LOS link. If the virtual
LOS path between the UE n and the SBS &’ was blocked, the
observed reward r; ;- was calculated and used to update the
sample mean 7; s, although the corresponding handover
event did not truly occur.

By this virtual update, any trajectory of UE can be used
to update multiple sample means and the efficiency of
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the algorithm can be improved significantly. In particular,
suppose there are average Kj, candidate SBSs in a block
and SBS k is selected as a handover decision, in the post-
handover trajectory of the UE, the CC keeps the virtual
connections for the K3, — 1 unchosen SBSs and records
received virtual rewards. Suppose the CC averagely receives
K; virtual rewards in the post-handover trajectory, where
K, < Ky — 1, then the accumulated rewards K,; of the
unchosen SBSs, besides that of the chosen one, could be
simultaneously updated. It means that we are able to use
one training sample (i.e., the post-handover trajectory) to
update K{) + 1 accumulated rewards, which is supposed
to be achieved by using K{D + 1 individual samples if the
acceleration technique is not applied. In another word, the
learning efficiency is increased by K {) times by the accelera-
tion technique.

The UCB-based BS-selection algorithm for SCH is sum-
marized in Algorithm 1.

Algorithm 1: UCB-based BS-selection algorithm for
SCH
Input: Cellular network N which consists of a set S
of SBSs and a set of obstacles
G={;
while Event A2 handover trigger condition is met for a
UE n do
3 Record the current time 7;
Identify the block g; where UE n resides,
associated with the available SBS set S; C S;
if g; ¢ G then
T+ 0O;
Ty, k(O) <+~ 0;
F; «0;
G+ GUy;

No=

'S

© ® N G

10 | a; = argmaxpes; (fi,k(Ti,k) + %),
1 Switch the UE n to the SBS a;;
12 Observe the reward 7; ,, = 7/ — 7 when the next
handover occurs for UE n at time 7/;
_ T,k XTi,a; (T k) +7i,a,
13 Tia; (Tigp +1) < — o 2,
u | T Tip+1;
15 F,+ F;,+1;
16 Update 7 3 (Ti i + 1), Ty 4 and F; for k' € S; 4,
in the same way, if the virtual reward 7; j/ is
obtained;

6 LINUCB-BASED BS-SELECTION ALGORITHM
FOR STCH

According to STCH mechanism described in Section 4.2,
the awareness of temporal feature of handover is benefi-
cial for handover decision. In this section, we formulate
this decision as a contextual MAB problem and propose a
LinUCB-based BS-selection algorithm which considers the
time-space feature of handover for STCH.

6.1 Contextual Multi-Armed Bandit Model

The basic framework and regret analysis of a contextual
bandit algorithm are similar to the algorithm described in
Section 5. The main difference between them lies in that,



given the handovers with the same spatial feature, the for-
mer further identifies the temporal feature of each handover
and applies a personalized policy, while the latter treats
them with no difference and applies an identical policy.
The proposed BS-selection algorithm for STCH is based
on the LinUCB algorithm which has been widely utilized in
many industry fields [46], [47]. In trial ¢ (¢t = 1,2,3,....,T),
the algorithm observes the handover event to identify the
block g; where it occurs associated with the candidate SBS
set S;. The context (i.e., temporal feature of handover) x; &
with dimension of d;, which is associated with SBS k € S;,
is then extracted, and the details will be discussed in Section
6.2. According to [46], for all ¢, the expected reward received
from SBS k is linear in its d;-dimension context x; , with
unknown coefficient vector 6; ;, and is shown as
12)

.
Elrf p|xi ] = %5 Ok

The d;-dimension coefficient vectors 8; j, are adapted based
on the accumulated observations and used to guide the
future handover decision accompanied with the context
xf’k. Denote D; ;, as a m x d; matrix which consists of m
contexts observed previously for SBS £ in block g;, and c; i
as a m-dimension vector which indicates the rewards of the
m observations. The optimal 6 is estimated by applying
ridge regression to D; ;, and c; j:

_t o
Tik =

0, v = (D], Diy +14)"'D/ i, (13)

where 1, is a d;-dimension identity matrix. In each trial ¢ in
block g;, the algorithm chooses SBS

_ t Th L
@iy = argmax (Xi,k 0;1 + 0\ X5 1 Ai,kxi,k) (14)
7

as the handover result, where A;; = DIkDi,k + 14,
and n > 0 is the hyper-parameter. Specifically, the first
item in Eq. (14) is the predicted reward for SBS k, while

x; kTAz 1 Xy, indicates the standard deviation of reward.
Given previous observations, the algorithm chooses SBS
a;+ with the 0pt1mal expected reward according to x} ,. "
When the reward rl a;, 1S obtained, the new observation
(XF s 00 @it Thay,) 18 used to improve the BS-selection pol-
icy. The goal of the algorithm is also to find the optimal
policy to minimize the regret which is formulated as Eq. (8).
It has been proven that LinUCB algorithm has good ability
to implement exploitation-exploration trade-off [46].

6.2 Context Construction

The design of context for a contextual MAB model de-
pends on the characteristics of the specific problem. In our
handover problem, once there is a handover triggered, the
CC firstly identifies its spatial feature, i.e., the block where
it occurs, and then extract its temporal feature based on
the UE’s block concatenation. These features are then used
to construct the context of the proposed contextual MAB
model for STCH.

In particular, given the preceding blocks G;, defined in
Section 4.2.2, of any block g; and d; = |G|, i = 1,..., M,
we define the context associated with SBS k£ € S; for
any handover event requested by UE n in block g; in
trial ¢ is defined as a d;-dimension 0-1 vector, denoted by
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xt ) = (z}y,..., 7} 4,). Bach element zf; € x} ; corresponds
to a proceeding block gij € Gy, Where 9ij denotes the jth
preceding block in G;. Note that we consider that all SBS
k € S; share the same context construction. The value of
%, € x; ;. depends on the temporal feature of the handover,
say g. = (9,,,9n), which is indicated by the UE’s block
concatenation, where g, = g;. Specifically, =, = 1 if
9ij = 9, ,and xﬁj = 0 otherwise, where j = 1,...,d;.
Similar to SCH, the block set in STCH also needs to be
dynamically constructed during the algorithm, as described
in Section 5.4. The difference is, in SCH, the block identify-
ing is conducted only when a handover is triggered, while in
STCH, it is conducted all the time during UE’s movement in
order to keep updating UE’s block concatenation. Note that,
the set of preceding blocks G; of any block g; is also dy-
namically maintained. Due to the lack of prior knowledge,
initially we set G; = ), Vg; € G. During the procedure of
the algorithm, when given a preceding block g, associated
with a handover event occurring in block g;, we add it into
G; if g, ¢ G;. Meanwhile, the dimension of the temporal
feature of any handover event occurring in the block g; is
increased by 1, and the dimensions of related coefficients are
expended accordingly.

6.3 Acceleration Technique

The acceleration technique introduced in Section 5.5 can also
be applied to improve the efficiency of the LinUCB-based
BS-selection algorithm for STCH. Specifically, when handing
over a UE n to the chosen SBS, suppose to be SBS k, in block
g; in trial ¢ with context xz s the CC also build a virtual
connection from the UE to each SBS in S; & In the UE’s
post-handover trajectory, if a virtual connection between
the UE to a SBS = Si,k, is blocked, the instantaneous
virtual reward r2 i is obtained. Then the associated virtual
observation (x} ;,, k', 7} ;) is used to update the coefficients
for SBS k' in the LinUCB model of block gi- In this way,
not only the coefficients for SBS £, but also those for some
SBS k' € S,  can be updated by a single realization of UE’s
post-handover trajectory. As mentioned in Section 5.5, the
virtual update can fully exploit true experience to increase
the efficiency of the BS-selection algorithm.

The LinUCB-based BS-selection algorithm for STCH is
summarized in Algorithm 2.

7 COMPLEXITY ANALYSIS

The computation complexity includes spatial complexity
and temporal complexity. By complexity analysis, the total
costs of the system with the proposed algorithms consist of
the following three parts:

(1) MAB related cost. The CC maintains a MAB process
for each block. For an UCB-based BS-selection algo-
rithm, the spatial complexity is O(K},), where Ky,
is the average number of candidate SBSs in a block.
Specifically, each arm requires two storage units to
maintain its expected reward and its chosen times,
respectively. Moreover, the temporal complexity is
also O(K},), since the CC has to compute and search
for the biggest index among the arms, i.e., the candi-
date SBSs. Similarly, for a LinUCB-based BS-selection



algorithm, the temporal complexity is also O(K3,).
Due to the time-space context considered in STCH,
extra storage units are required to keep the feature-
related information for each arm, and the spatial
complexity is O(d,Kyp), where dp, is the average
dimension of the temporal feature of a handover in
a block. For the whole system, there are M/ MAB
processes, where M is the number of the blocks as
well as the signal vectors identified according to the
signal space partitioning scheme. Theoretically, the
amount of blocks are huge. Suppose there are K
SBSs in the network and J quantizing thresholds,
there exist totally (J + 1)¥ different signal vectors in
the signal space. However, because the propagation
range of mmWave signal is limited, the number of
the available SBSs for a UE is much smaller than that
of the whole SBSs. It means that the signal space is
sparse and the vast majority of the signal vectors will
not show up in practice. Therefore, the number of
MARB processes M < (J+1)%. Hence, the total MAB
related spatial complexity is O(M K},) for SCH, and
O(Mdy, Ky,) for STCH.

Algorithm 2: LinUCB-based BS-selection algorithm
for STCH

Input: Cellular network N which consists of a set S
of SBSs and a set of obstacles, n € R
G =1;
Keep tracking each UE n and updating its block
concatenation g, = (g,,,9n);
if g, ¢ G then
G,=0,d,=0;
An,k = wl bn,k = (Z);
G+~ GUgy;

while Event A2 handover trigger condition is met for
UE n do

8 | Identify the block g; where UE n resides,
associated with the available SBS set S; and the
corresponding trial number ¢;

9 | Retrieve g, = (g,,,gi) for UE n from the

N

N Ul = W

N

memory;
10 | ifg, ¢ G, then
1 A, i < [A; k|vo], where vy is a d;-dimension
zero vector;
12 Al [A],|v1], where v; is a
(d; + 1)-dimension vector, v; = [0, ...,0,1];
13 bi,k — [bi,k‘o]/'
14 d; + d; +1;
15 G, +—G;Ug,;

16 Observe context xi i from g, for all SBS k € S;;
17 éi,k — A;]ibi,k}

t t Tph t T A—1.t .
18 G Xig i +0X 0 ApXg

19 Choose SBS a; ; = arg maxyes, ¢, ,, and observe
areward r};

) ) t t T,
20 A%ai,t = Alvai,t + Xivai  Xikir 7

. . t t .
21 b%ai‘t — b17ai,t + ri,kxi,ai,t'

22 Update A; ;» and b; 5 for k' € SWM in the same
way, if the virtual reward 7} ;, is obtained;
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TABLE 2
Complexity Analysis
Temporal Spatial
Complexity Complexity
SCH O(M + Ky,) O(MKy, +U)
SCH with acceleration | O(M + K}) O(MKy, + UKy,)
STCH O(M + Ky,) O(Mdn Ky, +UL)
STCH with acceleration | O(M + K},) | O(Mdy Ky, + U(L + Ky))

(2) Block set related cost. Since the CC keeps the map-
ping between each block and its associated signal
vector, the spatial complexity to maintain the signal
vector and the blocks is O(M). When a handover
is triggered, the CC needs to retrieve the Id of the
block where the handover event occurs according
to a given signal vector. This search contributes the
temporal complexity of O(M).

(3) UE related cost. In order to support the BS-selection
algorithm, the CC needs to keep the reward informa-
tion for all UEs, and the spatial complexity is O(U),
where U is the average number of all UEs in the
network over time. If the acceleration technique, i.e.,
virtual update, is applied, the CC also needs to keep
checking the virtual LOS links and the extra spatial
complexity of O(UK},) is required to keep the virtual
rewards for all UEs. Especially, for STCH, the CC
also needs to keep a block concatenation for each
UE, which requires additional spatial complexity of
O(LU), where L is the size of the block concatena-
tion. When the one-step-back-look construct is used,
L could be reduced to 2.

To sum up, the total costs as well as the computation
complexity of the proposed schemes could be summarized
in Table 2.

The proposed algorithms only require additional costs
at the CC side and there is no much cost at the UE side.
The extra power consumption at the UE is to report RSS
information to the CC, but this power consumption is
minimal because of the small amount of data involved
in the report. Because the proposed MAB algorithm is an
online reinforcement learning algorithm, it does not require
an offline training before the algorithm can be deployed
online and start functioning. Instead, the algorithm can be
operational online at time 0. Moreover, since these schemes
only add temporal complexity which is linear in the number
of candidate SBSs, the impact on the latency is limited.

8 NUMERICAL SIMULATIONS

In this section, we evaluate the performances of two pro-
posed contextual handover mechanisms, SCH and STCH,
in various scenarios. Theoretically, the accumulated regret
is the common metric to evaluate a solution of a MAB
problem. However, in our problem, the optimal handover
decision in hindsight is difficult to compute due to the
large scale of the problem. Therefore, instead of comparing
directly with the ground-truth optimal solution, we take an
indirect but practical perspective and compare our proposed
(approximate) algorithms with other counterpart (approxi-
mate) schemes, i.e., Rate-first hanvover (RFH) and SMART,
over two new metrics, i.e., the average number of handovers
per UE (ANH) and the average lasting time per each LOS



connection (ALT), to gauge our achievable performance
gains over those schemes that are actually implementable
in practice. Specifically, in RFH, the BS that provides the
maximum transmission rate calculated by Equation (4) is
chosen as the handover result, while SMART proposes
a reinforcement-learning based BS-selection algorithm to
make handover decisions. We believe these two metrics,
ANH and ALT, can well reflect the average QoE of an
arbitrary user.

8.1 Simulation Settings

We consider a cellular network N that covers a 100(m) x
100(m) square region and consists of a certain number of
SBSs (100 by default) using mmWave band. In this setting,
we calculate pathloss, SNR and throughput according to
Egs. (1)-(4). The transmit power of SBS is set to be 30 dBm,
and the noise power is -57 dBm. Similar to [35], we set the
parameters o and 8 in Eq. (1) as 61.4 and 2, respectively,
corresponding to a carrier frequency of 28 GHz. The channel
gain Gmax Of main lobe is 18 dB as in [36]. The bandwidth
of SBS is set as 1000 MHz, and U, is set to be 10. We
assume that a certain number of identical obstacles (20
by default) with radius of 1(m) are randomly distributed
in the network. The minimum required transmission rate
hmin in (6) is set to be 1000 Mbps. The number of UEs
entering into the network per time slot follows a Poisson
distribution with parameter \. For a new coming UE, its
initial position is uniformly distributed at the border of the
network and its moving direction is also uniformly dis-
tributed. The UE’s moving speed is supposed to be random
following N (py,02), where p, is the mean value and o
is the standard deviation, and are set to be 1 and 0.1 by
default, respectively. Any UE’s experience is used to update
the accumulated reward received from the serving SBS until
it moves out of the network region. The hyper-parameter 7
in Eq. (14) is set to be 0.25 empirically because this value
leads to the best performance within our simulations. The
other key parameters, i.e., the number of SBSs, the number
of obstacles, the UE’s arrival rate and the threshold of SNR,
are set to be 100, 20, 3 (/iteration) and 20 (dB), respectively
by default, if not specified.

8.2 Density of SBSs

In this simulation, we compare the performances of the
candidate handover mechanisms, i.e., RFH, SMART, SCH,
SCH with acceleration (SCH_acc), STCH and STCH with
acceleration (STCH_acc), with different numbers of SBSs on
ANH and ALT. We choose six values for the number of SBS:
50, 60, 70, 80, 90 and 100, and run 10000 iterations (time unit)
for each instance. The results are shown in Fig. 4. It can be
found that, although SMART outperforms RFH on ANH
and ALT by 11.5% and 14.1%, respectively, the proposed
contextual handover mechanisms perform better than both
of them. Compared with SMART, SCH improves ANH and
ALT by up to 10.0% and 14.0%, while STCH improves even
better, by up to 12.4% and 17.0%, respectively when given
90 SBSs. This means, by considering temporal feature, we
can obtain better handover decision than by only taking
account of spatial feature. When acceleration technique is
applied, still compared with SMART, SCH_acc improves
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ANH and ALT by 13.6% and 19.8%, while STCH_acc im-
proves by 20.3% and 30.2% , respectively. This demonstrates
the efficiency improved by the acceleration technique. Note
that, when the number of SBSs grows, there is no significant
improvement on the performances of SCH and STCH. This
is because that when there are more SBSs, there will be
more blocks identified and more MAB processes maintained
according to the signal space partitioning scheme. There-
fore, with given iterations, the average number of training
samples obtained by each MAB model is smaller and the
models easily become undertrained. Fortunately, we can
address this issue by applying the acceleration technique
which increases the utility efficiency of each training sample,
and achieve good performance even with limited iterations.
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Fig. 4. Comparison of performances with different numbers of SBSs

8.3 Density of Obstacles

Obstacle on LOS path is one of the main reasons which
render frequent outages in mmWave communication. In
this simulation, we investigate the impact of the density of
obstacles on the performances of the candidate handover
mechanisms. Fig. 5 illustrates ANH and ALT obtained un-
der these mechanisms with various numbers of obstacles,
from 10 to 50, after 10000 iterations. With the growth of the
number of obstacles, more handovers occur and the lasting
time of LOS connection decrease, no matter under which
mechanism. This trend is accord with the intuition that,
there will be more handover events in a complex environ-
ment with many obstacles than in a simple environment
with few obstacles. Furthermore, the proposed handover
mechanisms, i.e., SCH, SCH_acc, STCH and STCH_acc,
observably outperform the other two, i.e.,, RFH and SMART,
no matter in a complex or a simple environment.
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8.4 UE’s Arrival Rate

In this simulation, we compare the performances of these
candidate handover mechanisms with different arrival rates
of UE. The arrival rate of UE reflects the crowdedness of



the network. In order to simulate different practical sce-
narios with different degrees of crowdedness, we choose
five values for A: 1, 2, 3, 4 and 5, and run 10000 iterations
for each instance. The results are displayed in Fig. 6. As
shown, in a crowded scenario (i.e., when A approaches to 5),
the performances of RFH and SMART decrease, while the
proposed mechanisms all have good performances, which
are even better than those in an uncrowded scenario. This
result shows that the proposed mechanisms have good
performance even in a crowded scenario. The reason is
that, in an crowded network, there are so many users to
provide enough training samples to make the MAB models
well trained. While in an uncrowded situation, the MAB
models may get undertrained since there are not enough
training samples. This is the reason why two out of the four
proposed mechanisms, i.e., SCH and STCH, perform even
worse than SMART when \ = 1. However, if well trained in
a crowded scenario, their performances could be improved
significantly. Specially, the performance of STCH are even
better than that of SCH_acc when A = 5. This is another
demonstration of the advantage of space-time context over
spatial context.
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Fig. 6. Comparison of performances with different arrival rates

8.5 Variance of UE’s Speed

As described in Section 4.2, we consider random moving
speed of UEs following Gaussian distribution, denoted as
N(1,02%), in our simulations. Since the instantaneous re-
ward obtained by a UE is impacted by its specific moving
speed, we investigate the performances of the proposed
mechanisms with different variances of UE’s moving speed
in this simulation. As the variance of UE’s speed is indicated
by oy, we choose five values for oy, from 0.1 to 0.5, and run
10000 iterations for each instance. The simulation results
are shown in Fig. 7. As expected, the performances of the
proposed mechanisms on ANH and ALT outperform the
two benchmarks. Note that, the ANHs under all candidate
mechanisms generally keep the same, no matter with which
variance of speed. The reason lies in that, given the distribu-
tion of speed, the impact of the variance of reward caused
by random speeds of UE on the performance of ANH
could be averaged out over time. This result demonstrates
the stability of the proposed handover mechanisms in the
scenario with UEs whose speeds are various.

8.6 Convergence Evaluation

To evaluate the convergence of the BS-selection algorithms
and the acceleration technique in the proposed mechanisms,
we adopt the default settings and run these mechanisms
for 100000 iterations in this simulation. Here, we do not
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take RFH and SMART into consideration. The simulation
results are shown in Fig. 8. It is obvious that, although the
performances of all mechanisms approach to convergence
when the algorithms stop, their behaviors are not the same.
Specifically, compared with SCH, SCH_acc shows better
convergence due to the acceleration technique. The same
result can be obtained by comparing STCH and STCH _acc.
Although the performance of STCH outperforms those of
SCH and SCH_acc eventually, it needs longer time to get
converged. It is because the training samples obtained in a
block are divided by the temporal features of handover and
hence more samples are needed to have the MAB process
well trained. Fortunately, this backward can be overcome
by the acceleration technique, as demonstrated by the curve
of STCH_acc which presents good convergence even within
limited iterations.
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8.7 Granularity of Partition

As we described in Section 4.1.1, the quantizing thresh-
olds play an important role to determine the granularity
of signal space partition. Theoretically, finer granularity of
partitioning would lead to better handover decisions. In
this simulation, we investigate the impact of the number of
quantizing thresholds on the performances of the proposed
mechanisms. We try four values for J: 1,2, 3 and 4, and run
100000 iterations for each instance. The results are displayed
in Fig. 9. Similar to Section 8.6, we do not take account RFH
and SMART in this simulation, since they do not refer to
the signal space partitioning scheme. The simulation results
show that, for most mechanisms, although the performances
under fine granularity (i.e.,, J = 5) of partitioning are
better than those under coarse granularity (i.e., J = 1),
their difference is ignorable. However, the increment of re-
quired storage with fine granularity is much larger than that
with coarse granularity. We show the number of identified
blocks under the scenarios with different values of J in
Fig. 10. As shown, with the growth of J, the number of
identified blocks increases exponentially. That means the



CC will spend much higher storage cost to support the
fine granularity of partitioning. Obviously, the input is not
proportional to the output when we adopt fine granular-
ity of partitioning. In another word, coarse granularity of
partitioning, i.e., J = 1, is good enough to achieve good
performance while requiring the lowest computation cost.
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8.8 Regulation of UE’s Movement

In the above simulations, the UE'’s initial position and
moving direction are set to be totally random without any
constraint. However, in many real-world scenario, specially
in urban area, the UE’s movement is highly restricted.
Specifically, since the UEs normally move along with the ex-
isting sidewalks, the UE’s position is actually limited within
the area of a sidewalk but not the whole network, and the
UE’s moving direction is along with the sidewalk. In this
simulation, we investigate the impact of regulation of UE’s
movement on the performances of the candidate handover
mechanisms. We adopt the grid-based scenario according to
[48], [49] and divide the whole network into 400 identical
square areas each with the size of 5(m) x 5(m). Note that,
these square areas are used to deploy SBSs regularly and
have nothing to do with the blocks we mentioned before.
In this grid-based network, we set four sidewalks which are
indicated by grey square areas where the UEs” moving direc-
tions are along with these sidewalks. In particular, the UEs
are generated at one end of a sidewalk and their moving
directions are indicated by the corresponding arrows. We
deploy 80 SBSs in the network, represented by blue circles,
and each of them locates at the center of a square area along
the sidewalks. This deployment simulates the sidewalks
with street lamps equipped with SBSs. Besides, 20 obstacles
are randomly distributed in the sidewalks, represented by
red triangles.

In order to express different degrees of regulation for
UE’s movement, we introduce a specific parameter v €
[0.1,0.5] to describe the homogeneity of UEs’ movements
within the sidewalks. In particular, if v = 0.1, ten percents
of UEs in the same sidewalk move with the same direction
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Fig. 11. Scenario with sidewalks

while ninety percents move oppositely; if v = 0.5, half of
the UEs in the same sidewalk move oppositely. Besides, we
choose different values for SNR,in: 18, 19 and 20, and run
10000 iterations for each instance with distinct combination
of v and SNRpi,. The simulation results are shown in
Fig. 12. Not surprising, the proposed contextual handover
mechanisms are superior to the other two, no matter in the
scenario with regular movement or in the scenario with ir-
regular movement of UE. More important, the performance
of the proposed mechanisms does not change significantly
when UEs” movement become irregular. That means our
mechanisms have stable performances in a general situation
in real-world.

Moreover, we are also interested with the performance
difference between the proposed mechanisms with different
values of SNRin. Comparing Fig. 12(a), 12(c) and 12(e), it is
obvious that, the performances of the proposed mechanisms
when SNR,.;, = 18 is better than those when SNR,,,i, = 20.
It is because that, for a handover event, the candidate SBSs
with a lower SNR i, are more than those with a higher
requirement. With more candidate SBSs, better handover de-
cisions would be made. The same conclusion could be made
by comparing Fig. 12(b), 12(d) and 12(f). In addition, the
performance differences among the proposed mechanisms
become smaller when SNR.,, increases. Specifically, when
SNRmin = 18, the performance differences between the best
mechanism, i.e., STCH_acc, and the worst one, i.e., SCH, is
16.6% and 16.7% on ANH and ALT, respectively. However,
when SNR,i, increases to 20, these two differences signif-
icantly reduce to 5.0% and 4.3%, respectively. That means,
the advantage of temporal context could be fully exploited
with a low SNRin. In another word, with a high SNRin,
there is no big difference between the spatial context and
the temporal context.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated the significant benefits
of exploiting UE’s spatial and temporal contexts, even a
coarse-grained one, in making better handover decisions
in ultra-dense mmWave cellular networks. In particular,
we have casted the handover decision making as a MAB
problem that attempts to minimize the expected regret
between the handover in question and the optimal han-
dover decision making in hindsight by learning from the
spatial and temporal features of past handovers, respec-
tively. All contexts exploited in the proposed framework
are of a coarse-grained nature: the spatial feature of a
UE’s handover is represented by the coarse-grained area
where the handover happened, while its temporal feature
is defined as the coarse-grained moving direction of the
UE, modeled by the sequence of past areas that the UE has
traversed, wherein the areas are defined by a partition of
the signal space based on the RSS from nearby SBSs. So
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HEE proposed framework does not require any UE’s fine-
grained information such as its exact location. A UCB-based
solution and a LinUCB-based solution have been proposed
to solve the above two MAB formulations, respectively. Our
simulation results have shown that by exploiting the coarse-
grained spatial contextual information, the proposed UCB-
based handover mechanism outperforms existing counter-
parts that do not utilize this information. Furthermore, by
taking advantage of the coarse-grained moving direction
information, the LinUCB-based mechanism achieves even
better performance than the UCB-based, even for a very
simple one-step-look-back implementation.

Our work may be improved from the following direc-
tions. First, as a network-layer issue, our proposed handover
methods do not consider any physical-layer details, e.g.,
beamforming. However, it is definitely possible to achieve
even better performance improvement if a cross-layer op-
timization framework is taken, which considers the PHY
and link layer features when optimizing a network-layer
handover decision. Such a cross-layer optimization is worth
studying in our future work. In addition, since this work
only considers static obstacles, we will study the case of
mobile obstacles in our future research.
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