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Abstract—Global precoding is an effective way to suppress
interference in cell-free massive MIMO systems. However, it
requires all access points (APs) to upload their local instantaneous
channel state information (CSI) to a central processor via
capacity-constrained fronthaul links, consuming significant band-
width resources. Such overhead may become unaffordable in an
ultra-dense network (UDN) in future 5G systems, due to the large
number of APs and the frequent CSI uploads required to combat
the fast-changing state of the high-frequency channels. In order
to address this issue, we propose a novel bandwidth-efficient
global zero-forcing precoding strategy for downlink transmission
in cell-free massive MIMO systems. By exploiting the physical
structure of Rician fading channels, we propose a novel model-
based CSI compression mechanism, which decomposes a channel
matrix into a line-of-sight (LoS) and a non-line-of-sight (NLoS)
components, and then compresses them using a model-based
method and a singular-value-decomposition (SVD)-based method,
respectively. We also present two optimization-based algorithms
to obtain the phase information of the LoS component of the
channel, which is then used by the proposed channel matrix
decomposition. The simulation results demonstrate the efficiency
of the proposed precoding strategy on reducing the upload
overhead and improving the bandwidth efficiency.

Index Terms—cell-free massive MIMO, Rician fading channel,
zero-forcing precoding, overhead reduction, SVD

I. INTRODUCTION

A cell-free massive MIMO consists of a large number of dis-
tributed access points (APs) that jointly serve user equipments
(UEs) within a certain area. It has grabbed growing attention
recently due to its ability to avoid handovers since there is
no “cell-edge” users and to achieve high energy efficiency.
However, the benefits of cell-free massive MIMO systems
are being hindered by severe interference among the APs.
To address this performance degradation, several precoding
techniques have been proposed to mitigate the interference, but
at the cost of high computational complexity and transmission
overhead.

In downlink interference management of massive MIMO
systems, local zero-forcing (LZF) precoding and its variants
[1], [2] are generally implemented to eliminate the local inter-
user interference and partially reduce the interference from
non-serving APs. In further efforts to suppress the interference
from all APs, global ZF (GZF) precoding [3], [4] has been
proposed, in which all APs upload their local channel state

information (CSI) to a centralized processing unit (CPU)
which then conducts global precoding for them. It is expected
that the CPU can make a better precoding decision based on
the full knowledge of CSI of the whole network. However,
a key challenge of the GZF is the huge overhead caused by
uploading the CSI to the CPU for precoding. In particular,
the GZF requires the CPU to collect instantaneous CSI from
all APs through the fronthaul links with limited capacity. The
transmission of CSI is carried out in every coherent block, thus
consumes considerable bandwidth resources and aggravates
communication delay. This overhead issue becomes even more
severe with higher carrier frequencies, because the channel’s
coherence time becomes shorter with the increase of the carrier
frequency. This has become a bottleneck that prohibits the
GZF to be implemented in an ultra-dense network (UDN) with
large number of APs and UEs operating on the high-frequency
4G and 5G bands [2].

Hence, for practical implementation of interference manage-
ment in cell-free massive MIMO systems, the CSI overhead
issue has to be addressed. Although many solutions have been
developed to compress the CSI feedback in massive MIMO,
they are not tailored for cell-free massive MIMO systems. On
one hand, most of them are built for conventional massive
MIMO systems in which the channels are modeled as Rayleigh
fading due to a large amount of reflection and scattering. On
the other hand, these methods are statistic-based and focus
on exploring the statistical characteristics of channel matrix.
However, in a cell-free massive MIMO system, channels are
more suitable to be modeled as Rician fading because the
APs are close to the UEs [5]. The short distance between
AP and UE makes the channels in cell-free massive MIMO
have remarkably different physical structure from the channels
in conventional massive MIMO. Therefore, a model-based
CSI compression method that considers and fully exploits this
unique physical structure of channels is able to reduce the
overhead in cell-free massive MIMO more efficiently than the
statistic-based methods, but is overlooked in the literature.

Unlike Rayleigh fading channels, a Rician fading channel
consists of two components: the line-of-sight (LoS) component
and the non-line-of-sight (NLoS) component. Compared with
the NLoS component that is caused by multi-path reflection
and scattering, the LoS component is more deterministic
because it relies on the direct propagation path between the978-1-6654-4108-7/21/$31.00 ©2021 IEEE20
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transmitter and the receiver, and contributes the majority of
signal power since it suffers less energy loss. This charac-
teristic enables us to decompose a Rician fading channel
matrix into two components: a main component and a residual
component, corresponding to the LoS component and the
NLoS component, respectively. This decomposition motivates
us to conduct different overhead-reduction operations on these
two parts separately, rather than directly compressing the
original channel matrix: the main component can be calculated
based on the information of direct propagation path, and
the residual component can be compressed using a matrix
compression method. By doing so, we are able to reduce
the information loss in CSI compression and thus achieve
comparable performance to the GZF without CSI compression
at a significantly reduced overhead.

In this paper, we propose a novel bandwidth-efficient GZF
precoding strategy in order to suppress interference in down-
link transmission for cell-free massive MIMO systems, associ-
ated with a model-based CSI overhead-reduction mechanism
customized for Rician fading channels. Specifically, the AP
exploits side information of direct path, i.e., the signal phase
and the angle of arrival (AoA), to decompose a Rician fading
channel into a LoS comonent and a NLoS component, and
then conducts model-based compression and singular-value-
decomposition (SVD) on them, respectively. The contributions
of this paper are summarized as follows:

1) Exploiting the physical structure of Rician fading chan-
nels, we propose a model-based CSI overhead-reduction
mechanism for the GZF precoding in cell-free massive
MIMO. We decompose the channel matrix into a main
matrix and a residual matrix, and then conduct a model-
based and an SVD-based compression methods on them,
respectively.

2) One of the key challenges in the proposed channel
matrix decomposition is that this decomposition requires
the phase information of the LoS component of the
channel. While the phase information of the channel
(i.e., the phase of the superposition of the LoS and the
NLoS components) is provided in CSI, the phase of the
LoS component is not available. To tackle this problem,
we propose two optimization problems to obtain an
optimal estimation of the LoS phase for APs with large
and small antenna arrays respectively.

3) To verify the efficacy of our strategy, we evaluate its
performances in various cell-free massive MIMO sce-
narios through simulations. It is demonstrated that our
strategy can save 83.4% of the overhead while achieving
up to 96.5% of the performance compared with the
conventional GZF precoding without CSI compression.
The appropriate circumstances under which our strategy
can perform to its full advantage are also explored.

The rest of this paper is organized as follows. In Sec. II,
the related work is briefly reviewed. We introduce our system
model in Sec. III and then present our bandwidth-efficient
GZF precoding strategy in Sec. IV. In Sec. V, the simulation

results are analyzed to compare our strategy with comparable
counterparts. Finally, we conclude our work in Sec. VI.

II. RELATED WORK

Interference management is rather challenging due to the
distributed nature of the cell-free massive MIMO system
with numerous APs. In an effort to eliminate the inter-user
interference in downlink transmission, LZF precoding and its
variants [1], [2] are widely used, in which each AP conducts
ZF precoding independently for its served UEs. However,
these precoding techniques can only partially mitigate the
interference since the precoding is conducted locally at each
AP without any CSI sharing and the precoding decision is
“blindly” in some way. In addition, it is required that the
number of antennas at each AP is larger than the number of
mutually orthogonal pilots, which limits their application in
the systems where the APs are equipped with few antennas.
Although the GZF is able to further mitigate the interference
theoretically, its critical issue is the huge overhead on fronthaul
links. Existing research on communication overhead-reduction
mainly focuses on the CSI feedback from remote readio heads
(RRHs) to CPU in C-RANs, and from mobile station (MS)
to base station (BS) in frequency-division duplexing (FDD)
massive MIMO systems. Due to the existence of a huge
number of antennas, the CSI feedback is too large to be
transmitted without compression. How to efficiently reduce
the CSI feedback is of great importance to improving the
practicality and performance of wireless networks [6], [7].

As an early CSI compression method, the quantization-
based compression has been widely utilized in C-RANs and
MIMO networks [8]–[10]. Because of its low-complexity, it
is suitable for RRHs with limited computation ability. But
it is too simple to be adequate to more complex application
scenarios. In recent years, compressing sensing (CS) has been
applied to reduce the CSI feedback in FDD massive MIMO
systems [11]–[13]. It exploits the spatial correlation of CSI
and represents the sparse signal by a few elements through
random projections [13]. The two major issues of the CS-
related methods are their complex recovery computation at
BS, and the limitations and requirements of the sparsifying-
basis. In order to address these issues, the PCA (principle
component analysis)-based schemes are proposed [14]–[16].
The PCA-based compression matrix, being signal-dependent
and a statistical basis, is a trade-off between the DCT basis and
the KLT basis [14], [15]. It only requires the MS and the BS to
have the same spatial correlation matrix in a long-term period.
Another advantage of PCA-based compression schemes is the
simplified decoding computation at BS, which only needs to
conduct matrix operation on the received low-dimension CSI,
instead of solving the underdetermined linear system as in CS.

Machine learning (ML) is another powerful tool to solve
the CSI feedback-reduction problem [17]. The advantage of
ML over CS lies in that, it requires no sparsifying-basis or
random projection, and has a simpler CSI recovery procedure
[18]. This motivates a growing research effort in this field
[18]–[23]. Specifically, convolutional neural networks (CNNs)
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have been introduced as the encoder and the decoder, which
conducts random projection and inverse transformation from
codewords to original channels, respectively [18], [19], [22],
[23]. Moreover, the recurrent neural network (RNN) is utilized
to extract interframe correlation [20], and redesign the feature
compression and decompression modules [21]. However, the
ML-based overhead-reduction method requires massive train-
ing data sets and nontrivial hyper-parameter tuning.

Our study differs from the existing research in the following
three aspects:

1) In most of the related work, the wireless channels are
modeled to be Rayleigh fading channels which do not
fit the characteristics of UDNs. By contrast, we consider
Rician fading channels in UDNs based on which to
propose a customized GZF precoding strategy.

2) Most of the current CSI feedback compression methods
only consider the statistical characteristics of the channel
matrix. However, our strategy fully exploits the physical
structure of Rician fading channels to efficiently reduce
the information loss in CSI compression and therefore
is more reliable.

3) Unlike many existing methods that rely on sparsefying-
basis to make the channel vector sparse and need
time-consuming iterative algorithms to recover CSI, our
strategy is built on simple SVD and only involves
basic matrix operation. Moreover, our method does not
need off-line training or hyper-parameter tuning that is
necessary for ML-based methods, and hence is easy to
implement.

III. SYSTEM MODEL

We consider a cell-free massive MIMO system consisting
of one CPU, L APs and K UEs. Denote L and K as the set of
APs and that of UEs, respectively. Each AP is equipped with
N antennas, and each UE is equipped with a single antenna.
The APs jointly serve the UEs and communicate with the CPU
through the fronthaul links with limited capacity. Throughout
this paper, we use upper and lower case boldfaced letter to
describe matrix and vector, respectively. Moreover, we denote
the transpose of matrix by (·)T, the Hermitian transpose of
matrix by (·)H, and the l2-norm of vector by ‖ · ‖.

A. Propagation Model

The channel matrix of the AP l ∈ L is denoted by Gl =
[gl1,gl2, . . . ,glK ] ∈ CN×K . The column glk ∈ CN×1 is the
channel vector between the AP l and the UE k ∈ K. Each
element of glk is modeled as a Rician fading channel, which
is a combination of a dominant line-of-sight (LoS) component
and a non-line-of-sight (NLoS) component following Rayleigh
distribution. Thus, the channel vector glk is represented as

glk =
√
βlk

(√
Klk

Klk + 1
h̄lk +

√
1

Klk + 1
ȟlk

)
, (1)

where βlk is the large-scale fading coefficient and Klk is the
K-factor that represents the ratio of signal power in dominant
component over the scattered power on the corresponding

channel. h̄lk and ȟlk denote the LoS and the NLoS compo-
nents, respectively.

The value of βlk depends on the distance dlk between the
AP l and the UE k and is modeled as [24]

βlk = α+ 10ρ log10 (dlk) + ξ[dB], ξ ∼ N (0, σ2
S), (2)

where α and ρ are the least square fittings of floating intercept
and slope respectively over the measured distance, and ξ
represents a lognormal shadowing with variance σ2

S. Since βlk
does not change frequently, we assume that it is known at both
CPU and AP. The large-scale fading coefficients for the LoS
and the NLoS components are computed as β̄lk = Klk

Klk+1βlk
and β̌lk = 1

Klk+1βlk, respectively.
The LoS components h̄lk are modeled as

h̄lk =
[
ejϕ

(1)
lk , ejϕ

(2)
lk , . . . , ejϕ

(N)
lk

]T
, (3)

where ϕ
(n)
lk , 1 ≤ n ≤ N is the instantaneous phase of the

signal received by the nth antanna at the AP l from the UE
k. The elements in the NLoS components ȟlk are modeled as
i.i.d. random variables drawn from CN (0,Rlk), where Rlk

describes the spatial correlation of the NLoS components.

B. User-Centric Association
In this paper, we consider user-centric downlink transmis-

sion, i.e., each UE is only served by the APs that are not
far away. The motivation to consider the user-centric service
comes from the intention to increase the energy efficiency
of downlink transmission [25]. For illustration purpose, we
assume that the AP l serves the UE k when their propagation
distance, is smaller than a predefined threshold d̄. We denote
the set of APs that serve the UE k as L(k) and the set of UEs
that are served by the AP l as K(l). Note that other criteria
such as the signal strength can also be used to determine the
serving range of the APs, and this would not affect the design
and performance of our precoding strategy proposed below.

C. Communication Process
The transmission between APs and UEs is conducted in

TDD mode. Specifically, each coherence block is divided into
three stages: uplink training, CSI uploading, and downlink
transmission.

1) Uplink Training: In the uplink training stage, all UEs
simultaneously send their assigned pilot signals to all APs.
Upon receiving the copies of these pilots, each AP utilizes
a well designed channel estimation method, such as MMSE
estimation, to estimate the channels between itself and the
UEs. In this study, we assume that the AP l ∈ L has already
obtained its perfect CSI, i.e., the channel matrix Gl, and focus
on the GZF precoding strategy involved in the subsequent
stages.

2) CSI Uploading: After channel estimation, the AP l
transforms its local channel matrix Gl into compressed CSI
and uploads it to the CPU through the fronthaul link. Then the
CPU computes the G̃l as a recovery of the original channel
matrix Gl based on the compressed CSI. The details will be
discussed in Sec. IV.
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3) Downlink Transmission: In this stage, the CPU com-
putes the GZF precoding matrix for downlink trans-
mission based on the recovered channel matrix G̃ =[
G̃1, G̃2, . . . , G̃L

]T
∈ CLN×K . In global precoding, the

whole cell-free massive MIMO system consisting of L APs
each with N antennas can be treated as a virtual AP with
LN antennas. Therefore, for the UE k ∈ K, the normalized
precoding vector wk ∈ CLN×1 is calculated as

wk =
fk
‖fk‖2F

, (4)

where F = [f1, . . . , fK ] = G̃/
(
G̃HG̃

)
. The collection of the

precoding vectors for all UEs is W = [w1,w2, . . . ,wK ] =
[W1,W2, . . . ,WL]

T, where Wl ∈ CN×K is the precoding
matrix for the AP l ∈ L. The CPU sends back the precoding
matrix Wl to the AP l that then calculates the transmitted
signal as

xl =
∑
k∈K(l)

√
ηkwlkqk, (5)

where wlk ∈ CN×1 is the kth column of Wl, ηk denotes the
power allocated to the UE k, and qk is the data intended to
the UE k, E{|qk|2} = 1.

The received signal at the UE k is modeled as

yk =
∑
l∈L(k)

gH
lk

√
ηkwlkqk+

∑
t∈K
t6=k

∑
l∈L(t)

gH
lk

√
ηtwltqt+nk, (6)

where the first item is the desired signal, the second stands
for the interference and nk ∼ CN (0, σ2

N) is the additive white
Gaussian noise at the UE k.

D. Performance Metrics

We will evaluate the GZF precoding strategy based on two
key performance metrics: the spectral efficiency and the upload
overhead.

1) Spectral Efficiency: Based on Eq. (6), the SINR at the
UE k can be calculated as

SINRG
k =

∣∣∣∑l∈L(k) g
H
lk

√
ηkwlk

∣∣∣2∑
t∈K
t 6=k

∣∣∣∑l∈L(t) g
H
lk

√
ηtwlt

∣∣∣2 + σ2
N

. (7)

The achievable data rate for the UE k is calculated as

rGk = log2

(
1 + SINRG

k

)
. (8)

2) Upload Overhead: In the GZF precoding, all APs upload
their local channel matrices to the CPU through the fronthaul
links for global precoding. If each AP uploads its full channel
matrix, the total overhead is 2L × N × K (consider each
element in a channel matrix as a complex number containing
a real part and an imaginary part). A large overhead from
a huge number of APs in UDNs with limited bandwidth
would cause unaffordable transmission delay. Therefore, the
upload overhead should be considered as an important metric
to evaluate the performance of the precoding strategy.

IV. BANDWIDTH-EFFICIENT GLOBAL ZF PRECODING
STRATEGY

In order to improve the efficiency of GZF precoding in cell-
free massive MIMO systems, we propose a bandwidth-efficient
precoding strategy by exploiting the physical structure of Ri-
cian fading channels to address the upload overhead challenge.
This strategy consists of two parts: the AP-side operation and
the CPU-side operation, where the CSI is compressed and
recovered, respectively. The details are discussed as follows.

A. AP-Side Operation

In the AP-side operation, the AP compresses its channel
matrix before uploading it to the CPU. In contrast to the
conventional CSI compression methods that conduct compres-
sion directly on the original channel matrix, in our proposed
strategy, the AP first decomposes the original channel matrix
into a main matrix and a residual matrix, and then compresses
them respectively.

1) Rician Fading Channel Decomposition: Different from
a Rayleigh fading channel, a Rician fading channel exhibits
higher directivity as a result of the LoS component that
contributes the most of the signal power. For a Rayleigh fading
channel and a Rician fading channel between two arbitrary
pairs of transmitting and receiving antennas, we collect 50
samples of the channel gain respectively and display them
in Fig. 1. As illustrated in Fig. 1(a), all sample points of the
Rayleigh fading channel are uniformly distributed in the whole
signal space; while for the Rician fading channel, the points
are constricted within a limited area, shown in Fig. 2(b). This

(a) Sample points of Rayleigh fading
channel

(b) Sample points of Rician fading
channel

Fig. 1. Spacial correlations of different fading types

characteristic allows us to decompose a Rician fading channel
matrix into a main and a residual matrices, which correspond
to the LoS and the NLoS components, respectively. According
to Eq. (1), the channel between the nth antenna of the AP l
and the UE k can be decomposed as follows:

g
(n)
lk =

√
β̄lkh̄

(n)
lk +

√
β̌lkȟ

(n)
lk , (9)

where h̄
(n)
lk is the deterministic LoS component that relies

on the phase of the received signal at the receiving antenna,
and ȟ

(n)
lk denotes the NLoS component that is modeled as

an i.i.d. random variable. The relationship between these two
components is described in Fig. 2(a). Given a Rician channel
gain g

(n)
lk , if the LoS component h̄(n)lk is available, the NLoS
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component ȟ(n)lk can be easily calculated. In this way, the
sample points of the Rician fading channel shown in Fig. 1(b)
can be decomposed and the corresponding LoS component and
NLoS components are shown in Fig. 2(b). Because the NLoS
component contributes only the minority of the signal power,
i.e., its magnitude is rather small, the information loss caused
by compressing the residual matrix brings smaller impact on
CSI recovery than that coming from directly compressing
the original channel matrix Gl. The prerequisite for this
implementation is the ability to extract the LoS component
from a Rician fading channel, as will be discussed below.

(a) Decomposition of Rician fad-
ing channel

(b) Decomposition of the sample
points in Fig. 1(b)

Fig. 2. Rician fading channel decomposition

2) LoS Components Extraction: We consider a horizontal
uniform linear array (ULA) with antenna spacing dA = 1/2λ,
where λ is the wavelength. Since the UEs are located in the
far-field of the AP, the signal that reaches the antenna array
at the AP from a UE can be treated as a plane wave from a
generic azimuth angle [26]. Denote the distance between the
closest antenna (suppose to be the 1st antenna) of the AP l
and the UE k as d, the LoS components h̄lk described in Eq.
(3) can be further modeled as

h̄lk =
[
ejϕ

(1)
lk , . . . , ejϕ

(N)
lk

]T
=
[
e
j
(
2π dλ+ϕ

(0)
lk

)
, e
j
(
2π

d+dA sin (θlk)

λ +ϕ
(0)
lk

)
, . . . ,

e
j
(
2π

d+(N−1)dA sin (θlk)

λ +ϕ
(0)
lk

)]T
,

(10)

where θlk is the angle of arrival (AoA) from the UE k to the
AP l and ϕ

(0)
lk is the initial phase. If the AoA θlk and the

signal phase ϕ(1)
lk = 2π dλ +ϕ

(0)
lk at the 1st antenna are known,

the phases at all antennas can be aligned and Eq. (10) can be
simplified as [7]:

h̄lk = ejϕ
(1)
lk

[
1, ejπ sin(θlk), . . . , ej(N−1)π sin(θlk)

]T
. (11)

In the rest of the paper, we use ϕlk instead by omitting
the superscript of ϕ(1)

lk . As illustrated in Fig. 3, the phase
shifts between any two adjacent antennas are identical to be
π sin (θlk). This property enables us to infer each element in
h̄lk based on the given ϕlk and θlk. In this way, we can extract
the LoS components h̄lk from the observed channel vector glk
and then obtain the NLoS components ȟlk as

ȟlk =
1√
β̌lk

(
glk −

√
β̄lkh̄lk

)
(12)

Fig. 3. LoS propagation

3) Side Information Calculation: It is obvious that the
signal phase and the AoA play important roles in the LoS
components extraction. Their values keep changing with the
movement of UEs, which may cause significant change in the
LoS components. Fortunately, these changes are identical for
all antennas at the AP [5], and can be tracked as follow.

Firstly, we estimate the AoA θlk, for l ∈ L, k ∈ K. There
have been many efficient algorithms to estimate the AoA on
ULA with omni-directional antenna elements, such as MUSIC
and ESPRIT. In this study, we use MUSIC to estimate θlk. The
details are omitted.

Next, we calculate the signal phase ϕlk. For different
scenarios where the antenna array at AP is large or small,
we design the following two algorithms.

Algorithm I: When the antenna array is large, we calculate
the mean value of channel vector glk as follow

1

N

∑
1≤n≤N

g
(n)
lk =

1

N

√
β̄lk

∑
1≤n≤N

h̄
(n)
lk +

1

N

√
β̌lk

∑
1≤n≤N

ȟ
(n)
lk

(13)
We assume that the number of the antennas is large enough,
then 1

N

∑
ȟ
(n)
lk → 0, since ȟlk ∼ CN (0,Rlk). Hence,

1

N

∑
1≤n≤N

g
(n)
lk ≈

1

N

√
β̄lk

∑
1≤n≤N

h̄
(n)
lk . (14)

According to Eq. (11),∑
1≤n≤N

h̄
(n)
lk = ejϕlk

(
1 + ejπ sin(θlk) + · · ·+ ej(N−1)π sin(θlk)

)
.

(15)
Substituting Eq. (15) into Eq. (14), we get

1

N

∑
1≤n≤N

g
(n)
lk ≈

1

N

√
β̄lke

jϕlk
(

1 + · · ·+ ej(N−1)π sin(θlk)
)
.

(16)
As glk is known and θlk has already been calculated, there is
only one variable in Eq. (16), which then can be rewritten as

ejϕlk = a+ bi, (17)
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where a and b are the calculation results. According to Euler’s
formula and Taylor’s series for trigonometric functions,

ejϕlk = cos (ϕlk) + i sin (ϕlk)

= 1− ϕ2
lk

2
+ o(ϕ2

lk) + i

(
ϕlk −

ϕ3
lk

3!
+ o(ϕ3

lk)

)
≈ 1− ϕ2

lk

2
+ i

(
ϕlk −

ϕ3
lk

3!

)
.

(18)

Combining Eq. (17) and Eq. (18), the signal phase ϕlk is
calculated by solving the following optimization problem

minimizeϕlk
(
1− ϕ2

lk/2− a
)2

+
(
ϕlk − ϕ3

lk/6− b
)2
. (19)

Algorithm II: When the antenna array is small, we treat the
LoS component as a function of ϕlk according to Eq. (11),
denoted by h̄lk(ϕlk). Then the optimal ϕlk can be estimated
by solving the following MMSE problem

minimizeϕlk ‖
√
β̄lkh̄lk(ϕlk)− glk‖2. (20)

The above two optimization problems can be easily solved.
The collection of the calculated side information, i.e., ϕl =
[ϕl1, . . . , ϕl,K ] and θl = [θl1, . . . , θl,K ], is the compressed
CSI of the LoS components H̄l =

[
h̄l1, . . . , h̄l,K

]
.

4) Compression of NLoS Components: After obtaining the
NLoS components, denoted as Ȟl =

[
ȟ1, ȟ2, . . . , ȟK

]
, ac-

cording to Eq. (12), the AP l compresses Ȟl using SVD
technique. The basic idea is to compress a matrix by extracting
its dominant part and discarding the insignificant parts.

Specifically, for the given channel matrix Ȟl of the AP l,
its SVD is calculated as

Ȟl = UlSlV
H
l , (21)

where Ul = [ul1, . . . ,ul,R] ∈ CN×R and Vl =
[vl1, . . . ,vl,R] ∈ CK×R are semi-unitary matrices that con-
tain the left-singular vectors and the right-singular vec-
tors of Ȟl, respectively, with R = rank(Ȟl), and Sl =
diag (sl1, . . . , sl,R) ∈ CR×R is a diagonal matrix whose
diagonal elements sli > 0 (1 ≤ i ≤ R) are the singular
values of Ȟl and sorted in descending order. Since the
top largest singular values contain the most information, the
rest can be discarded for the purpose of compression. That
being said, the AP l is able to keep the most significant
information of Ȟl by choosing the first M(M ≤ R) sin-
gular values S̃l = diag (sl1, . . . , sl,M ) and the corresponding
Ũl = [ul1, . . . ,ul,M ] and Ṽl = [vl1, . . . ,vl,M ] to be the
compressed CSI of the NLoS component. Together with the
compressed CSI of H̄l, the total volume of the uploaded data
is 2M(N +K + 1) + 2K. Compared with uploading Gl with
the volume of 2 × N × K, our method is able to save the
bandwidth of the fronthaul links when M ≤ b (N−1)KN+K+1c, with
a compression ratio of M(N+K+1)+K

NK .

B. CPU-Side Operation
In the CPU-side operation, the CPU recovers the original

local channel matrix based on the received CSI from each
AP. After that, the CPU implements global ZF precoding and
sends the result back to all APs.

1) CSI Recovery: Upon receiving the compressed CSI
uploaded from all APs, the CPU recovers the whole channel
matrix G in the following steps.

Step 1: Ȟl recovery. Based on S̃l, Ũl and Ṽl, Ȟl can be
recovered as

H̃l = ŨlS̃lṼ
H
l . (22)

Step 2: H̄l recovery. Based on ϕlk and θlk, h̄l can be
calculated according to Eq. (11). Then the collection of h̄lk,
k ∈ K, is H̄l =

[
h̄l1, . . . , h̄l,K

]
.

Step 3: Gl recovery. Upon obtaining h̄lk and h̃lk from H̄l

and H̃l, respectively, the channel vector glk can be recovered
as

g̃lk =

√
β̄lkh̄lk +

√
β̌lkh̃lk. (23)

And G̃l = [g̃l1, . . . , g̃l,K ] is used as the recovery of Gl.
Step 4: G recovery. Collecting all Gl, l ∈ L, we get the

recovery of G as G̃ =
[
G̃1, . . . , G̃L

]T
.

2) GZF Precoding: After obtaining G̃, the CPU computes
the precoding matrix W according to Eq. (4).

3) Power Allocation: With the estimated channel matrix G̃
and the precoding matrix W, the CPU sets the transmit power
for each UE. The optimal transmit power allocation can be
determined by solving the following optimization problem

maximizeη
∑
k∈K

log2

(
1 + SINRG

k

)
s.t. Eq.(7),∀k ∈ K,∑

k∈K(l)

ηk ≤ Pl,∀l ∈ L,

ηk ≥ 0,∀k ∈ K,

(24)

where η = [η1, . . . , ηK ] and Pl is the maximum power that
the AP l can provide. The power constraints require that the
total transmitted power from an AP to its served UEs can
not exceed its maximum power. The above power allocation
problem is modeled as a non-linear programming. We can
solve it by using the interior-point algorithm offered by the
Matlab toolbox.

V. SIMULATIONS AND ANALYSIS

In this section, the performances of the proposed GZF pre-
coding strategy in various scenarios are evaluated. We compare
our strategy with three counterparts: GZF precoding with fully
uploading (GZF-FU), GZF precoding with preliminary SVD
(GZF-PSVD) and LZF precoding.

The communication process introduced in Sec. III-C also
applies to both the GZF-FU and the GZF-PSVD strategies.
However, different from our strategy, in the GZF-FU strategy,
each AP uploads its original local channel matrix; and in the
GZF-PSVD strategy, the SVD is conducted directly on the
original local channel matrix without channel decomposition
as in our strategy.

In the LZF precoding strategy, all APs implement downlink
precoding independently basd on their own local channel
matrices without any information exchanging with the CPU or
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other APs. Specifically, in the LZF precoding, the AP l ∈ L
computes its normalized precoding vector as

wlk =
flk
‖flk‖2F

, (25)

where Fl = [fl1, . . . , flK ] = Gl/
(
GH
l Gl

)
. The received

signal at the UE k is

yk =
∑
l∈L(k)

gH
lk

√
ηltwlkqk +

∑
t∈K
t6=k

∑
l∈L(t)

gH
lk

√
ηltwltqt + nk,

(26)
where glk ∈ CN×1 indicates the channel vector between the
AP l and the UE k, ηlt denotes the power allocated to the
UE k by the AP l, and wlk ∈ CN×1 is the corresponding
precoding vector. The SINR at the UE k is calculated as

SINRL
k =

∣∣∣∑l∈L(k) g
H
lk

√
ηltwlk

∣∣∣2∑
t∈K
t 6=k

∣∣∣∑l∈L(t) g
H
lk

√
ηltwlt

∣∣∣2 + σ2
N

, (27)

and the achievable data rate is

rLk = log2

(
1 + SINRL

k

)
. (28)

Moreover, the AP l allocates its power to its served UEs by
solving the following optimization problem

maximizeηl
∑
k∈K(l)

log2

(
1 + SINRL

k

)
s.t. Eq.(27),∀k ∈ K(l),∑

k∈K(l)

ηlk ≤ Pl,

ηlk ≥ 0,∀k ∈ K(l),

(29)

where ηl = [ηl1, . . . , ηlK ].

A. Simulation Setup

In our simulations, we consider a cell-free massive MIMO
system consisting of 25 APs (i.e., L = 25), each of which is
equipped with 20 antennas (i.e., N = 20), and 16 single-
antenna UEs (i.e., K = 16). The APs and the UEs are
randomly distributed in a 100(m) × 100(m) square area. The
UEs are moving in the area with random directions at the speed
of 1(m) per iteration. In all of our simulations, we consider
10 iterations. The AP’s serving range is set to be 50(m) (i.e.,
d̄ = 50) and the maximum transmit power is set to be 1.
The noise power is σ2

N = −92 dBm [27]. For Eq. (2), we
consider the conventional 1900 MHz frequency band and set
α = −30.18, ρ = −2.6 and σS = 4 [5]. The K-factor in Eq.
(1) is modeled as [5]

Klk = 101.3−0.003dlk [dB], (30)

where dlk is the distance between the AP l and the UE k. The
spatial correlation of the NLoS components Rlk is calculated
according to [5], and the details are omitted in this paper.
Given the ϕlk and θlk, l ∈ L and k ∈ K that could be estimated
by Sec. IV-A3, we implement the simulations as follows.

B. Compression Ratio

Since the number of chosen singular values determines the
compression ratio and impacts the CSI recovery accuracy, here
we evaluate these strategies under different values of M . The
results of the spectral efficiencies and the overhead are shown
in Fig. 4 and Fig. 5, respectively.

In Fig. 4, the spectral efficiencies of the considered strate-
gies are compared under M = 1, 2 and 3. It is illustrated that,
the GZF-FU precoding outperforms the LZF precoding since
the CPU has more comprehensive CSI knowledge and is able
to make a better precoding decision to suppress interference.
Although the GZF-PSVD is also a global precoding strategy,
its performance is even worse than the LZF’s performance
when M = 1, as shown in Fig. 4(a). The reason is that
when only one singular value is used, very limited infor-
mation is contained in the compressed CSI, which leads to
low CSI recovery accuracy. Compared with the GZF-PSVD,
the proposed GZF precoding strategy significantly increases
the spectral efficiency by 134.4% on average. Besides, our
strategy is slightly suboptimal, with an average gap of only
3.5% relative to the GZF-FU strategy. It is also observed
in Fig. 5 that our strategy drastically cuts the overhead by
83.4% compared with the GZF-FU. That being said, our
proposed precoding strategy can provide slightly suboptimal
performance with much less overhead and hence can reach
outstanding bandwidth efficiency.

Moreover, the spectral efficiencies of both the GZF-PSVD
strategy and our strategy increase with the number of chosen
singular values, with the increasing rate of the former being
much larger than that of the later. The reason is that, in the
GZF-PSVD, the more singular values are chosen, the more
information is kept in the compressed CSI. Therefore, the
CPU can recover the channel matrix with higher accuracy
and consequently make a better precoding decision. However,
in our strategy, since the compressed CSI only contains the
NLoS components that contribute little signal power, choosing
more singular values does not bring obvious performance
improvement as in the GZF-PSVD.

But there is no free lunch. For the GZF-PSVD, its per-
formance is improved at the cost of significantly increased
overhead. As displayed in Fig. 5, the overhead when M = 2
and M = 3 is two-fold and three-fold of that when M = 1, re-
spectively. Moreover, this overhead increase could not improve
the performance proportionally. By contrast, the performance
of our strategy when M = 1 is even higher than that of
the GZF-PSVD when M = 3, but with much less overhead.
This indicates that our strategy is able to achieve a suboptimal
performance with substantially low overhead.

C. K-Factor

The K-factor indicates the degree of dominance of the
LoS component over the NLoS component. A larger K-factor
means that the LoS component contributes more power. If
the K-factor equals to 0, there is no direct path between the
transmitter and the receiver, meaning that the Rician fading
channel decays to a Rayleigh fading channel. We also evaluate

Authorized licensed use limited to: Auburn University. Downloaded on September 10,2021 at 22:12:57 UTC from IEEE Xplore.  Restrictions apply. 



2 4 6 8 10
0

10

20

30

40

50

60

70

80

GZF-FU

GZF-PSVD

LZF

proposed GZF

(a) M = 1

2 4 6 8 10
0

10

20

30

40

50

60

70

80

GZF-FU

GZF-PSVD

LZF

proposed GZF

(b) M = 2
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Fig. 4. Comparison of spectral efficiency with different values of M

the candidate strategies in the scenario of Rayleigh fading
channels. The simulation results when M = 1 are shown
in Fig. 6. It is demonstrated that the performance of the
proposed precoding strategy is identical to that of the GZF-
PSVD strategy. The reason is that there is no LoS component
in this case. That means, in Rayleigh fading channels, our
strategy degrades to the GZF-PSVD whose performance is the
worst. Therefore, our strategy is not suitable for in Rayleigh
fading channels.
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Fig. 5. Comparison of overhead with different values of M
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Fig. 6. Comparison of spectral efficiency when the K-factor = 0

D. Frequency Band

In this section, we evaluate the impact of the frequency band
on the performance of the proposed precoding strategy. We
choose a different set of path loss parameters, i.e., α = −61.4,
ρ = −2 and σS = 5.8 for mmWave 28 GHz frequency band
[24], and set M = 1. The simulation results are shown in
Fig. 7. Comparing Fig. 4(a) with Fig. 7, we can find that,
in the conventional band, our strategy achieves 96.5% of the
spectral efficiency of the GZF-FU strategy on average; and
in the mmWave band, this proportion is 96.7%, showing that
the proposed strategy has similar performances in these two
frequency bands and performs well in both scenarios. This
indicates a great flexibility and reliability of our strategy when
being applied to various application scenarios with different
frequency bands.

VI. CONCLUSIONS

In this paper, we propose a bandwidth-efficient GZF pre-
coding strategy for cell-free massive MIMO systems consid-
ering Rician fading. In order to reduce the CSI overhead on
fronthaul links, we propose to decompose the channel matrix
into two components and design two corresponding efficient
compression methods. In addition, two effective algorithms
have been developed to calculate the necessary information
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Fig. 7. Comparison of spectral efficiency in 28 GHz frequency band

that is required for the proposed CSI compression mechanism.
The simulation results have demonstrated that our strategy
can significantly reduce the upload overhead while achieving
comparable performance to the GZF without CSI compression.
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