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1. Introduction

The local cohomology groups HY (X,F) of an Abelian sheaf F on a topological
space X, with support in a closed subset Y, were introduced by Grothendieck in 1961
in his Harvard and Paris seminars [8], [9]. If X is the spectrum of a ring A, and Y is
the closed subset associated to an ideal I, and & is the sheaf of sections of an A-module
M, these groups are denoted H:(M). The latter can be computed algebraically as the
derived functors of the functor I';(e) that to each A-module M associates the submodule
of elements with support in I, that is, that are annihilated by some power of I. In the
50 years since their introduction, these groups and modules have found wide application
in algebraic geometry and in commutative algebra.

Even when the ring A is Noetherian and the module M finitely generated, the lo-
cal cohomology modules H%(M) are rarely finitely generated. If A4 is a local ring with
maximal ideal m, then at least the modules HE (M) are cofinite, meaning that they
satisfy the descending chain condition, or equivalently, that Hom4(k, H. (M)) is a fi-
nite dimensional k-vector space, where k = A/m is the residue field of A. Grothendieck
asked whether for any ideal I, the modules H%(M) might be I-cofinite in the sense that
Homa(A/I, Hi(M)) is finitely generated. This turns out not to be so in general [4],
though an analogous property does hold in the derived category. Thus the search for
finiteness properties of these modules has remained elusive.

In another direction, Grothendieck observed, in a letter to Atiyah in 1963 [7], that the
ordinary cohomology of a nonsingular algebraic variety over the complex numbers could
be computed purely algebraically using the de Rham complex of algebraic differential
forms. This led to a theory of algebraic de Rham cohomology and homology for schemes
of finite type over a field of characteristic zero. Grothendieck also asked for a theory of
sheaves with integrable connection (now called D-modules) to explain the Gauss—Manin
connection on sheaves of relative cohomology. The details of these theories have been
worked out, with all the usual functorial properties, purely algebraically, in a paper of
the first author [5].

Meanwhile, in the early 1970s, as part of their study of systems of partial differential
equations, Sato and Kashiwara in Kyoto developed an extensive theory of holomor-
phic D-modules on complex manifolds. It is already clear from Kashiwara’s thesis [11]
that local cohomology modules of D-modules are again D-modules. This applies in par-
ticular to the structure sheaf, which carries a natural structure of D-module. Thus,
if A is a polynomial ring or a power series over a field k of characteristic zero, and
I is an ideal in A, then the local cohomology modules H}(A) are finitely generated
as D-modules, where D is the (non-commutative) ring of differential operators over
A. Moreover, they are holonomic D-modules, which implies that they are of finite
length as D-modules, and have a finite composition series whose factors are simple
D-modules.

This extra structure on the local cohomology modules that arise in commutative alge-
bra was not noticed by algebraists until Lyubeznik, in a seminal paper [12, Theorem 3.4],
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exploited it to show, for instance, that the local cohomology modules Hi(A) can have
only finitely many associated primes.

Our basic question in this paper is, if V' C P} is an algebraic variety, with homogeneous
ideal I in the polynomial ring A = k[xo,...,z,], knowing that the local cohomology
modules Hi(A) are holonomic D-modules, what are their simple D-module components,
and what can we learn about the geometry of V' from them?

If V is a variety of codimension r, it is easy to see that H:(A) = 0 for 4 < r. In his
thesis [15], Ogus found conditions for the cofiniteness and vanishing of those modules
in the “non-critical” range ¢ > 7, in terms of the algebraic de Rham cohomology of
V', but said nothing about the large “critical” case H}(A) where r is the codimension.
Generalizing his method, we compute in Section 4 the de Rham cohomology groups
H%R(M) for the D-module M = H}(A), for each i and j, in terms of the algebraic de
Rham cohomology of V. This allows us to recover the result of Ogus on the vanishing
and cofiniteness of H}(A) in the non-critical range i > r.

To interpret this information, in Section 5, which is the technical heart of our paper,
we prove that for a holonomic D-module M over a power series ring R = k[z1,...,z,],
the dimension of the top de Rham cohomology module Hp (M) is equal to the largest
number of copies of the injective envelope E of k over R whose direct sum E™ can
appear as a quotient D-module of M. This result, while apparently dual in some way
to the elementary statement that HY (M) gives the rank of the largest free D-module
R™ that can appear as a submodule of M, is not at all easy to prove. We use an
extension of methods employed by van den Essen [20-22], which he used to show that
the de Rham cohomology modules H%) r(M) of a holonomic D-module are all finite
dimensional.

Our main result is that if V' is a nonsingular subvariety of P} of codimension r, then
its critical local cohomology module H}(A) has a simple sub-D-module with support
along V', with quotient a direct sum E™ of copies of E, where m is determined by the
Betti numbers of V' in the sense of algebraic de Rham cohomology (Theorem 6.4). In
particular, if V' is a nonsingular curve of genus g, then m = 2g, so that for a rational
curve V' C P}, the D-module H?fl(A) is simple. The only other result we know giving
the simple D-module composition of H} (A) for a projective variety V' is the theorem of
Raicu [16], which shows that for V' the d-uple embedding of another projective space in
P}, the corresponding D-module is simple. His result, proved by representation theory,
is recovered by ours.

In the non-critical case ¢ > r, once one knows that a module H}(A) is cofinite, it
is easy to see that as a D-module it is a direct sum of copies of E, the injective hull
of k over A. As a by-product of our method we also compute the number of copies of
F in these direct sums, sometimes called Lyubeznik numbers. These results have been
previously obtained by other authors, mostly in the context of complex-analytic spaces
(see Remark 4.9). We include them here for completeness.

Experts in D-module theory may also be able to find analogues of our main re-
sult in the complex-analytic category and perhaps even recover our result from them.
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However, the importance of our work is that we develop the theory entirely alge-
braically. We make no use of the extensive theory of analytic D-modules, of perverse
sheaves and intersection cohomology, nor of the Riemann—Hilbert correspondence that
relates holomorphic holonomic D-modules to algebraic holonomic D-modules with reg-
ular singularities.

2. The language of algebraic D-modules

Let k£ be a field of characteristic zero, and let R be either the polynomial ring
klx1,...,zy,) or the formal power series ring k[z1,...,z,]. Let D be the ring of dif-
ferential operators R < 01,...,0, >, where 0; is the partial derivative 9/0x;. This is a
non-commutative ring with the relations 9;x; = x;0; + 1 for each i. An R-module M,
together with a left action of D on M, will be called a D-module. We will use the books
of Bjork [2] and Hotta et al. [6] as our basic references.

One can define the dimension of a finitely generated D-module. It is an integer between
n and 2n. The D-modules with minimal dimension n are called holonomic D-modules.
They are of finite length as D-modules and therefore have a filtration whose quotients
are simple D-modules. (For the polynomial ring case, see [2, 1.5.3], where these modules
are also called modules in the Bernstein class. For the power series case, see [2, 2.7.13
and the remarks just before 3.3.1].)

Let Qg be the module of differentials over R, generated by dxi,...,dr,, and let
Q’k/k be its exterior power. If M is a D-module, the actions of 9; on M give rise to a
complex M ®p 2* of R-modules and k-linear maps, called the de Rham complex of M.
Its cohomology groups will be denoted by Hi ,(M). If M is a holonomic D-module, then
H% (M) are finite-dimensional k-vector spaces. (In the polynomial ring case, the proof
is not difficult [2, 1.6.1]. In the power series case, however the question is difficult, and
was left as an open problem in Bjork’s book. It was proved later by van de Essen [22,
2.2] as a consequence of his inductive result that if M is holonomic, then for a suitable
choice of coordinates, M/, M will also be holonomic over the power series ring in n — 1
variables.)

Our interest in D-modules comes from the following theorem of Kashiwara.

Theorem 2.1. If M is a holonomic D-module over the polynomial ring or the power series
ring R as above and if I is an ideal of R, then the local cohomology modules Hi(M) have
natural structures of holonomic D-modules.

Proof. (See also [12, 2.2].) One first shows that if M is holonomic over R and f € R, then
the localized module Mj is also holonomic. (For the polynomial ring case, see for instance
[3, 3.4.1]. For the power series case, see [2, 3.4.1]). Then if fi,..., fs is a set of generators
of I, we can compute the local cohomology modules Hi(M) from the Cech complex
formed of the localizations of M at products of the f;. Since kernels, images, and quotients
of holonomic modules are holonomic, it follows that the H:(M) are holonomic. O
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(1)

(2)

3.

amples 2.2.

The ring R itself is a holonomic D-module and is in fact simple. To see this, we note
that any element of R generates R as a D-module. Indeed, just differentiate enough
times so that the element becomes a unit, then multiply by the other elements of R.
Another important example is E = H2(R), where m = (z1,...,%,). This is an
injective hull of k over R, and is also a simple D-module. As in (1) above, any
element generates the whole module. Just multiply by enough x; to arrive at the
socle xfl .-z, 1, then differentiate to get any other monomial in E.

The de Rham cohomology of the D-module R is equal to k in degree 0 and 0 other-
wise. This is a consequence of the algebraic Poincaré lemma [5, 11, 7.1].

The de Rham cohomology of the D-module F is k in degree n, and 0 otherwise.
Look first at the case n = 1, when F = A, /A is the k-vector space generated by
the negative powers of z. Consider the map ¢ : R = k[z] — E defined by p(z*) =
Qlz=*=1 This is an isomorphism of k vector spaces (where we use the convention that
0! = 1). Note that by construction dp = —pz. Thus ¢ gives an isomorphism from
the complex R = R to the complex E 2 . Taking the tensor product (over k) of
this isomorphism of complexes over k[z;], we obtain an isomorphism of the Koszul
complex for R = k[z1,...,x,] with respect to x1, ..., 2, and the Rham complex for
E. Hence Hpi(E) = k, and the others are zero. For the case when R is a power
series ring, notice that the complex F ® Q° is the same as in the polynomial ring
case.

If M is a holonomic D-module whose support, as an R-module, is at the maximal
ideal m = (x1,...,2,), then M is the direct sums of a finite number of copies of E.
This follows for example from Kashiwara’s equivalence [6, 1.6.1, 1.6.4], or one can
prove it directly as in [12, 2.4.a].

For any holonomic D-module M, its zeroth de Rham cohomology HY, (M) has
dimension equal to the rank ¢ of the largest trivial sub-D-module My = R? of M.
Indeed, if m € HYp(M), then the natural map R — M defined by a — am is
an injective D-module homomorphism. One of our main results, Theorem 5.1, is a
non-trivial analogous statement about the last de Rham cohomology group Hp 5 (M).

Algebraic de Rham cohomology and homology

In this section we recall the basic definitions and properties of algebraic de Rham

cohomology and homology that we will use in this paper. Our basic references will be
Grothendieck [7] and Hartshorne [5].

Let Y be a closed subscheme of a scheme X smooth and of finite type of dimension

n over an algebraically closed field & of characteristic zero. Let Q% /k be the de Rham
complex with k-linear maps

1 d 2 n
Ox - Qx = Q5% — - = Q%.
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We define the algebraic de Rham homology of Y to be
HPRH(Y) =HP'7'(X, Q%)

namely the local hyper-cohomology with support in ¥ of the complex Q% [5, IL.3].
We define the algebraic de Rham cohomology of Y by passing to the formal completion
X of X along Y and taking hyper-cohomology

Hpp(Y) =H'(X,Q%),

of the formal completion of Q% along Y [5, IL.1]. The main properties of these groups
are summarized in the following theorem:

Theorem 3.1. Let Y be a scheme of finite type over k, embeddable in a scheme X smooth
over k.

(1) The groups HPE(Y) and H5 p(Y) are independent of the embedding of Y in a smooth
scheme X.

(2) The groups HPR(Y) and Hy, 1(Y) are finite-dimensional k-vector spaces.

(3) The groups HPE(Y) and Hb 5 (Y) are all zero for i < 0 and i > 2d, where d =
dimY.

(4) If Y is proper over k, then HPE(Y) = HY o (Y)', where ' denotes the dual k-vector
space.

(5) If Y is smooth over k, then HPT(Y) = Hpn ' (V).

(6) If Z is a closed subset of Y, then there is a long exact sequence of homology

oo —» HPR(Z) — HPR(Y) — HPR(YY — 2) — HPR(Z) — - -
A 7 A i—1

(7) If k = C, then H5p(Y) = H' (Y™, C), the usual complex cohomology of the associ-
ated complex-analytic space Y ", and HiDR(Y) calculates the Borel-Moore homology
of Yo,

Proof. These are all in [5]. Item (1) is I1I.1.4 and II.3.2; item (2) is I1.6.1; item (3) is
I1.7.2.; item (4) is I1.5.1; item (5) is I1.3.4; item (6) is I1.3.3; and finally, item (7) is IV.1.1
and 1.2. O

Example 3.2.

(1) If Y = A7}, the affine n-space, then by definition H} ,(Y) is just the de Rham
cohomology HBR(R) of the polynomial ring R = k[z1, ..., z,] as a D-module, which
is k in degree 0 and 0 otherwise (see Example 2.2 (3)). Since Y is smooth over k its
homology HPE(Y) is k in degree 2n and 0 otherwise (see Theorem 3.1 (5)).
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(2) If Y = P}, we can show inductively that H5,(Y) = k for each i even, 0 < i < 2n,
and that Hj ,(Y) = 0 for each i odd. The same is true for homology. Just start with
P9 = AY, which has k in degree 0, and use the long exact sequence of Theorem 3.1(6)
with Z = ]P’Z_1 CY =P} and Y — Z = A} to find first the homology, and then use
Theorem 3.1(4) to obtain the cohomology of P}.

Proposition 3.3. (Lichtenbaum theorem for algebraic de Rham cohomology)

(1) LetY be a scheme of dimension d over k. Then H¥%(Y) # 0 if and only if at least
one irreducible component of Y is proper over k.

(2) ForY any scheme, HPR(Y) # 0 if and only if Y has at least one connected compo-
nent that is proper over k.

Proof. This is a straightforward consequence of the result of Theorem 3.1, together with
the Mayer—Vietoris sequences and the exact sequences of a birational morphism [5, 4.1,
4.2,4.4,4.5]. O

Proposition 3.4. Let C be a nonsingular projective curve of genus g over k. Then the
dimension of the de Rham cohomology groups are h% p(€) = h% p(€) =1 and hh(€) =
2g. The homology groups are the same.

Proof. In this case, the de Rham complex is just O¢ LN QL.
There is a spectral sequence

EP = HI(C,Q0P) = E™ = H},(€).

The first di-map is H°(Oe) — H°(Q}), which is zero, because the only global sec-
tions of O¢ are constants, and their derivative is zero. Hence HY ,(€) = k. By duality,
see Theorem 3.1(4) and (5), we see also that H%,(C) = k. Hence the other dj-map
H'(O¢) — H () must also be zero and so Hp(€) = H*(O¢) ® H°(2§), which has
dimension 2g. The result for homology then follows from Theorem 3.1(5). O

Proposition 3.5. Let C be an integral projective curve over k. For each singular point
P € C, let np be the number of branches of C at P, that is, the number of points of
the mnormalization C of € lying over P. Then h%5(C) = h%R(€) = 1 and hlx(C) =

29 + Y pece(np — 1), where g is the genus of the normalization C. The homology groups
are the same.

Proof. We use the exact sequence of homology for a proper birational morphism [5,
I1,4.5] applied to the projection 7 : € — C. Let Z be the singular locus of €, and let Z’
be its inverse image in €. Then we have

.. — HPR(7"y — HPE(Z) 9 HPE(C) — HPE(C) — HPR(Z') — ---



R. Hartshorne, C. Polini / Journal of Algebra 571 (2021) 232-257 239

Since € is smooth and projective, its homology (Proposition 3.4) has dimension hiDR(é) =
1,2¢,1 for i = 0,1, 2 respectively. The homology of Z and Z’ is in degree 0 only, and is
just the number of points in each. Thus

W™ (@) = hP (@) + #2' — #Z,
which gives the result. The same holds for the cohomology of € by Theorem 3.1(4). O

Remark 3.6. Of course Proposition 3.4 and Proposition 3.5 could have been proved by
using the comparison theorem (see Theorem 3.1(7)) and the well-known results about
the cohomology of compact Riemann surfaces, but we wished to keep our exposition
purely algebraic.

4. Local cohomology of a projective variety

Now we come to the main subject of our investigation. Let V be a closed subscheme
of the projective space P} over an algebraically closed field & of characteristic zero. Let
V have codimension r. Let A = k[zg,...,z,] be the homogeneous coordinate ring of
P? and let I be the homogeneous ideal of V' in A. We propose to investigate the local
cohomology modules Hi(A). We keep these notations throughout this section.

Proposition 4.1. (The non-critical case) Let V' be an equidimensional closed subscheme
of Py of codimension r. Let I be the homogeneous ideal of V in A = k[xo,...,xy].

(1) Hi(A) =0 fori <r and fori >n+ 1.

(2) If V is a set-theoretic complete intersection in P}, then Hi(A) =0 fori > r.

(3) If V is a local complete intersection scheme, then for allr < i <n-+1, Hi(A) has
support at the irrelevant maximal ideal m = (zo,...,x,) of A.

Proof. Since V' has codimension 7, the ideal I has height 7 and hence contains a regular
sequence of length r for A. The first part of assertion (1) now follows from the charac-
terization of I-depth in terms of local cohomology and the second part holds because
the dimension of the ring is n 4+ 1. For (2), notice that in this case there is an ideal
(f1,.-., fr) generated by r elements having the same radical as I, so computing local
cohomology using the Cech complex we obtain Hi(A) = 0 for i > r. Assertion (3) is a
result of Ogus [15, 4.1, 4.3] proved using a local version of (2). O

Next we will make use of the D-module structure on the local cohomology modules
Hj(A).

Proposition 4.2. Let X = A" be Spec A, let I be an ideal of A, and let Y = Spec (A/I).
Then there is a spectral sequence



240 R. Hartshorne, C. Polini / Journal of Algebra 571 (2021) 232-257

EY' = Hpp(H}(A) = Hplly (V)

relating the de Rham cohomology of the D-modules Hi(A) to the algebraic de Rham
homology of the scheme Y .

Proof. We compute the algebraic de Rham homology of Y using its embedding in X, so
that by definition (see Section 3)

HPR(Y) = HP 271X, 0%) -

(Note the shift by 2n+2 since X has dimension n+1). Then we use the spectral sequence
of local hyper-cohomology of 9%, which is

EY = H}(X,0%) = EPH = HY (X, Q%)
Since Q% is a free O x-module, for each ¢ we can write
EY? = H}(A) ® Q% .

Thus for ¢ fixed, the row EP? with differentials di? becomes the de Rham complex of
the D-module H}(A), and its homology the E5? terms, become the de Rham cohomol-
ogy HP r(H}(A)). Thus the spectral sequence of the proposition is the same spectral
sequence, but starting with the Fy page. O

And now, we will see that when V is a local complete intersection, the spectral se-
quence of Proposition 4.2 degenerates.

Theorem 4.3. Let V' be a local complete intersection in P}, equidimensional of codimen-
sionr, and let Y C X = A" be defined by the homogeneous ideal I of V. Then

(1) H}'DR(H;_(A)) =HPE, (V) for0<j<n+1, and
(2) Hpg'(Hi(A) = HPR_(Y) forr <i<n+1.

All other values of Hi,(HE(A)) are zero, as are all other values of HPE(Y).

Proof. First of all, Hi(A) = 0 for i < r by Proposition 4.1(1). Next, for i > r we
know that H%(A) has support at the maximal ideal by Proposition 4.1(3), and hence is
isomorphic to a direct sum of copies of E by Example 2.2(5). In that case, H},R(H} (4) =
0 except for j = n+ 1, by Example 2.2(4). Thus the only possible non-zero initial terms
of the spectral sequence of Proposition 4.2 are for ¢ = r and 0 < p < n + 1, or for
p=n-+1and any r < g <n -+ 1. This gives a curios L-shaped spectral sequence.
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n+1

n+1l p

There are no non-trivial ds maps so the spectral sequence degenerates and gives the
isomorphism of the theorem. 0O

Corollary 4.4. Let V, I, Y be as in Theorem 4.53. Then H{)R(H}(A)) =0 forj<r.

Proof. This is because Y, being a scheme of dimension n — r + 1, has no homology in
degrees > 2n — 2r + 2, by Theorem 3.1(3). O

Corollary 4.5. Let V, I, Y be as in Theorem J.5. For i > r the D-module H:(A) is
isomorphic to E™: where m; = dimy HPE (V).

Proof. We have seen in the proof of Theorem 4.3 that for i > r we have H{(A) & E™i
for some m;. Since H{)R(E) =0for j #n+1and k for j =n+1, this number m; is the
dimension of HjyE! (Hi(A)), which is equal to the dimension of HPF_,(Y), according to
the theorem. O

Our next task is to relate the algebraic de Rham homology of Y to that of V.

Proposition 4.6. With the hypotheses of Theorem 4.3, assume furthermore that V 1is
connected, of dimension d > 1. Then

(1) HP™(Y) = HPH(Y) =0,
(2) HP™(Y) = HPR(V),
(3) Hf,(Y) = HPR(V), and
(4) for 3 <i<2d+1 the homology of Y is determined by the exact sequence
h
0=Hyt (V)= HDE (V) - HER (YY) = HE(V) — ...

— HPR(Y) = HPR(V) & HPR(V) =0

where h denotes cap-product with the hyperplane class.
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Proof. We use a method of proof similar to [5, II, 3.2] but with homology instead of
cohomology. The first step is to compare the homology of Y to that of Y — P, where
P corresponds to m = (xq,...,x,) in A. Since P only has homology in degree zero, the
exact sequence of Theorem 3.1(6) gives an exact sequence

0 — HPR(Y) - HPR(Y — P) —» HPR(P) —» HPE(Y) —» HPRE(Y — P) =0,
and isomorphisms
HPRE(Y)= HPE(Y —P) for i>2

Next we note that Y — P is isomorphic to the geometric vector bundle V(O (—1)) minus
its zero section, so we can apply the Thom—Gysin sequence [5, IT, 7.9.3] to obtain a long
exact sequence

.= HPRW) L HPB(V) 5 HPR(Y — P) - HPE(V) — ...

where h is the cap-product in homology [5, II, 7.4]. From the last terms of this sequence
it follows that HPE(Y — P) = 0 and HPE(Y — P) = HPE(V) = k, since V is connected
(see also Proposition 3.3). Since HP(P) = k and HPE(Y) = 0 by Proposition 3.3, the
earlier sequence now implies that HPT(Y") = 0. Since V has dimension > 1, it follows that
the cap product h : HPE(V) — HPE(V) is surjective, and so HP*(Y) = HPE(Y —
P) = HPE(V). (To see that h is surjective, note that it is dual to the cup-product
HY (V) — H%(V), and the image of the generator of H) (V) is the hyperplane class
in H? (V), which, having self-intersection equal to the degree of V must be non-zero.)
Now using HPE(Y) = HPE(Y — P) for i > 3 gives the desired assertions (3) and (4). O

Corollary 4.7. [Ogus, [15, 4.4]] Let V' be a local complete intersection in P}, equidimen-
sional of codimension r, connected, of dimension d > 1, with homogeneous ideal I in A.
Then the groups Hi(A) are zero for all i > r if and only if the restriction maps

H%R(Pn) — Hij(V)
are isomorphisms for all j <n —r.

Proof. By Theorem 4.3 it follows that the Hi(A) = 0 for all i > r is equivalent to
HPR(Y) =0 for all j < n+1—r. This in turn, by Proposition 4.6, is equivalent to
saying that the cap-product h: HP®(V) — HP%(V) is an isomorphism for all j < n —r
and surjective for j = n —r. By duality (see Theorem 3.1(4)) this is equivalent to saying
that the cup-product H};;(V) — H%R(V) is an isomorphism for all j < n — r and
injective for j = n — r. Beginning with Hp,(V) = 0 and HY p(V) = k, and using the
fact that the cohomology of projective space is 0 in odd degrees and k in even degrees
generated by the hyperplane class h € H3 (P") (see Example 3.2(2)), our calculation is
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equivalent to saying that the restriction map H 73 rP") = H {) r(V) is an isomorphism
forallj<n—7r. O

As an illustration of these results, we gather together our conclusions for a nonsingular
variety.

Theorem 4.8. Let V' be a nonsingular irreducible variety in Py of codimension r and
dimension d = n—r > 1, with homogeneous ideal I in A. Then writing b; = dim HPE(V)
for the Betti numbers of V, we have

(1) (Non-critical case) H:(A) = E™i with m; = bp—i — by—i—o for v < i < n and
Hi(A) =0 fori>n.

(2) (Critical case i = 1) Hjp(HF(A)) = 0 for j < r, and has dimension by q—; —
bpta—jt2 forr < j<mn, and bg — bg—o for j =n+ 1.

Proof. Since V' is nonsingular of dimension d, the hard Lefschetz theorem tell us that
capping with the hyperplane class h gives a map

h: HPR(V) — HPE(V)

that is surjective for ¢ < d + 1 and injective for ¢ > d + 1. Therefore by Proposition 4.6,
we find that

0 for i=0,1

b1 for 1=2
thR(Y): bi_1—bj_g for 3<i<d+1

bi_o —b; for d+1<i<2d

bog—1 for i=2d+1

bog for i=2d+ 2.

Substituting these values in the statement of Theorem 4.3 gives the desired asser-
tions. O

Remark 4.9. Many of the results of this section concerning the non-critical case i > r are
not new. What is new are the results concerning the D-module structure of the critical
case HJ(A), especially Theorem 4.3(1) and Theorem 4.8(2).

The understanding of the relationship between cofiniteness and vanishing of the local
cohomology modules Hi(A) for i > r and the algebraic de Rham cohomology of the
projective variety V' goes back to Ogus [15]. This connection is acknowledged in the last
paragraph of Lyubeznik’s paper [12], just after he has defined some new numerical in-
variants of a local ring, commonly called Lyubeznik numbers. The study of these numbers
has led to several results analogous to ours for complex analytic spaces.
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Garcia-Lépez and Sabbah [10] give a result similar to our Corollary 4.5 for an isolated
singularity of a complex analytic space, in terms of local topological invariants.

Blickle and Bondu [1] give a similar result for a point P in a complex analytic space
Y under the condition that Y — P is an intersection homology manifold. This condition
is probably equivalent to Ogus’s condition on the DR-depth [15, 4.1], which is in fact
equivalent to the local cohomology modules Hi(X) being cofinite for i > r.

Lyubeznik, Singh, and Walther [14, 3.1] give another analogue of our Corollary 4.5
over C, taking as hypothesis that these local cohomology groups have support at m, and
computing the m; in terms of the complex singular cohomology of C™\ Y.

Switala [17] in a recent paper about Lyubeznik numbers recovers independently our
Theorem 4.8(1) for the vertex of the cone over a nonsingular projective variety. His
argument is similar to ours, but uses cohomology instead of homology.

5. D-modules over the power series ring

Theorem 5.1. Let A be the power series ring k[z1,...,x,], let E be an injective hull of
k over A, and let M be a holonomic D-module. If m = dimy, H (M), then there is a
surjective homomorphism of D-modules

M — E™ — 0.

Proof. Recall that H}. (M) is a finite dimensional k-vector space (see Section 2). Ob-
serve that since Hp,p(M) is the homology of the last term of the de Rham complex, it
is simply M/(01,...,0,)M. Choose a linear map from M/(0y,...,0,)M to k and com-
pose it with the canonical epimorphism from M to M/(0y,...,0,)M to obtain a map
1 from M to k. Because of Proposition 5.13 below, ¢ is a continuous map in the sense
of Definition 5.3. Therefore, by Proposition 5.4, the map v corresponds to an A-linear
map ¢ from M to E. The correspondence in Proposition 5.4 depends on the choice of a
k-linear projection 7 of E to its socle k. We now choose 7 to be the projection of E to
E/(01,...,0,)E, which is isomorphic to the socle of E. Then we have a diagram

M E

| &

M/(01,...,00)) M ——=k=E/(01,...,0n)F
which shows that ¢ maps the kernel of ¢ to the kernel of 7. Hence
©((O1,...,00)M) C (O1,...,0,)E.

Now according to Proposition 5.5 the map ¢ is not only A-linear, but is also a map
of D-modules. Further, observe that since F is a simple D-module and ¢ is not zero, ¢
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is surjective. Similarly, if we take m linearly independent maps from M/(0y,...,0,)M
to k they give us, m surjective D-modules maps from M to E. The direct sum of these
is the required surjective map from M to E™. This completes the proof of Theorem 5.1,
subject to Propositions 5.4, 5.5, 5.13 below. O

Corollary 5.2. Let A be the power series ring k[z1,...,x,], let E be an injective hull of
k over A, and let M be a holonomic D-module. Then

dimy Hp (M) = dimy Homp (M, E) .
Proof. By the theorem we have
dimy, Hpp(M) < dimy Homop (M, E) .

Conversely, if dimyg Homq (M, E) = s, then there is a surjective map from M to E®.
Apply the de Rham cohomology functor. Then

HEp(M) — HEp(E®) — 0
Since Hpy(E) = k, we have
dimy, Hpy p(M) > dimy, Hpp(E®) =s. O

Now we are ready to prove the three propositions that are the main ingredients in the
proof of Theorem 5.1.

Definition 5.3. Let (A, m, k) be a local ring that contains its residue field k. Let M be
an A-module. A k-linear homomorphism 1 of M to k is called continuous if for every
finitely generated submodule N of M there is an integer s such that ¥ (m°*N) = 0. We
denote the A-module of continuous linear homomorphisms by Homconty (M, k).

The following proposition appears in [9,18] but we give the proof for convenience.

Proposition 5.4. [9, IV, Remarque 5.5] Let (A, m, k) be a local ring that contains its
residue field k, and E an injective hull of k. For any A-module M, the Matlis dual
Homu (M, E) is isomorphic as a k-vector space to the module Homconty (M, k).

Proof. Choose a k-linear projection 7 of E to its socle k. Then for any ¢ € Hom 4 (M, E),
composing with 7, we obtain a k-linear homomorphism v from M to k. Let us show
that 1 is continuous. For any finitely generated submodule N of M the image ¢(N)
is a finitely generated submodule of E' and therefore is an A-module of finite length.
Thus there exists an integer s such that m*p(N) = 0. It follows that (m*N) = 0 and
thus ¢¥(m*N) = 0. Hence ¢ is continuous in the sense of Definition 5.3. We have thus
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constructed a k-linear map A from Hom 4 (M, E) to Homcontg (M, k). Now we show that
A is an isomorphism. If M = k, it is obvious. For an A-module of finite length, the
statement follows by induction on the length of the module and short exact sequences

0—M —M-—M"—0

and the fact that Homyu (M, E) and Homconty (M, k) are contravariant exact func-
tors. Next, if M is a finitely generated A-module, then every homomorphism of either
Hom 4 (M, E) or Homconty, (M, k) factors through M/m‘M for some ¢, hence we have
Hom 4 (M, E) = lim Hom 4 (M /m*M, E) ~ lim Homcont (M /m‘M, k)
= Homcont (M, k).
For M an arbitrary A-module, think of M as the direct limit of its finitely generated
submodules, M = liArgMg. Thus we have
Homy (M, E) = Hom (lim My, E) = lim Hom 4 (M, E)
=~ lim Homconty,(My, k) = Homconty, (lim Moy, k)
= Homconty (M, k). O

Proposition 5.5. Let A be the power series ring k[x1,...,x,], let E be an injective hull
of k over A, let M be a D-module, and let ¢ : M — E be an A-linear map such that

w(OM) C OF,
where 0 = (01, ...,0n). Then ¢ is also D-linear.

Proof. We must show that 9;0(m) = ¢(9;m) for all ¢ and for all m € M. Observe that
both sides are elements of OF. The left hand side because it is a 0; of something, the
right hand side because of our hypothesis that ¢(9M) C OE. Next we note that the map
OFE — E™, sending e¢ € OF to (z1e,...,x,e) € E™, is injective. Therefore it sufficient
to prove that for every j,

zj0;p(m) = zj0(0;m) Yme M. (%)
We claim that statement (x) is equivalent to showing

Oip(xym) = p(0;(xjm)) Vm e M.
If i # j the claim is clear because x; and 9; commute and ¢ is A-linear. If ¢ = j, then

we use the equation x;0; = 9;x; — 1 in the ring of differential operators. Indeed, notice
that the left hand side of (%) is
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z;0;(¢0(m)) = Ojp(xsm) — p(m)

while the right hand side of () is

zip(0im) = p(z;0im) = @(0;(x;m) —m) = @(0;(x;m)) — p(m).

Now after canceling ¢ (m) we obtain the desired claim. We have thus replaced the original
problem for m € M by the same problem for z;m. Repeating the same procedure it is
sufficient to show

Oip(am) = ¢(0;(am)) VYm e M

for all monomials @ € A of any high degree we like. To conclude notice that both sides
are zero for degree of « sufficiently large. Indeed, the left hand side is clearly zero since
p(am) = ap(m) and ¢(m) € E. The right hand side is zero because using the product
rule we have

P(9i(am)) = p(9;()m) + p(adim) = di(a)p(m) + ap(im)
and both 0;(a) and « have sufficiently high degree. O

Remark 5.6. The statement and the proof of Proposition 5.5 also hold over a polynomial
ring or its localization at the maximal ideal.

Theorem 5.7. ([2, 3.3.19], [20, Prop. 1]) Let A be the power series ring k[z1,...,x,] and
let M be a holonomic D-module over A. Then there exists a nonzero element g € A such
that M[g~1] is a holonomic D-module that is finitely generated as an A[g~']-module.
Furthermore, after a linear change of variables, we may assume that g(x1,0,...,0) # 0,
and in that case we can take g to be a Weierstraf§ polynomial

9:’1“+alx’1°_1+...+ar,
with a; € k[za,...,x,]. In this situation we say that M is xi-regular.
Theorem 5.8. [21, Thm. I] Let A be the power series ring k[x1,...,x,] and let M be a
holonomic D-module over A that is x1-regular. Then M /01 (M) is a holonomic D-module
over the ring k[xa, ..., x,].
Remark 5.9. Van den Essen showed by an example [20] that for an arbitrary holonomic

D-module M, the quotient M/d; (M) need not to be a holonomic D-module over the
ring k[za,...,z,]. However, with the extra condition that M is zq-regular, this holds.
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Lemma 5.10. Let A be the power series ring k[xi,...,z,], let M be a holonomic
D-module that is x1-reqular, and let e be any element of M. Then there exists a dif-
ferential operator of the form

P:a0+a181+...+a,«8{ a; € A
where a, has a pure power of x1, and such that
P()-eC h(M) Vbe A.
Proof. While not given exactly in this form, our statement and proof are based on
a careful reading of [21]. According to Theorem 5.7 there is an element g such that
M[g~1] is finitely generated as an A[g~!]-module, and furthermore g can be taken to
be a Weierstral polynomial in x;. Let x = 1 and 9 = 0. Let e be an element of M.

Then e,de, %, ...,0%,... are linearly dependent over A[g—!]. Therefore, there exists
an integer r and elements ¢; € A[g~!] such that

r—1
Jd"e = Z ¢;0%.
0
Clearing denominators we can write
r—1
g°0"e = Z d;0%e,
0
where d; € A. So we can consider the differential operator

szrjdiai7
0

using the d; above for 0 <7 < r — 1 and d, = —g°. By construction Q(e) =0 in M and
d, is a Weierstrafl polynomial in x. There exist a; € A such that the differential operator
Q) can be written as
Q=ay—0a+...+ (—1)T8Tar.
Let P be the differential operator
P:a0+a18+...+ar(9r.

Then for every b € A we claim there is an equality of differential operators

bQ = P(b) + OR, (1)
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where R is another differential operator and P(b) means P acting on b € A. Then, if we
apply the two operators defined in (1) to e we have,

0 =bQ(e) = P(b)e + OR(e) .

This implies that for all b € A, P(b)e C 9(M), thus establishing the desired conclusion.

To complete the proof we need to prove the equality of differential operators in (1).
By linearity it suffices to show the claim for Q@ = (—1)‘d%a; and P = a;0'. We need
to show that b@Q — P(b) = OR; for some operator R;. To prove the claim we show by
induction on ¢ a stronger claim, more precisely, that for all f,g € A

(—1)'f0'g = gd'(f) + ORi,
for some operator R;. If i = 0, we can take Ry = 0 because fg = gf. If i =1 we have
fo+a(f) =of.

Since 9(f) € A we have gd(f) = 9(f)g. Thus take Ry = —Jfg. Let i > 2 and assume
that the statement holds for ¢ — 1. We have

(~1)f0'g = (~1)'f9(0""g) = (~1)'[0f = A& g)
= (=1)'0f0" g+ (=1)"ta(f)o Ly

By induction hypothesis we have
(=)' g = g0 (B(f)) + ORi—
thus substituting in the previous equation we obtain
(—1)'f0'g = g0 H(A(f)) + ORi—1 + (—1)'0f0" g = g0"(f) + OR;
where R; = R;_1 + (—1)*f0""'g, which proves the claim. O
The following lemma is our key technical result.

Proposition 5.11. Let A be the power series ring k[x1,...,z,], let B = k[za,...,x,], let
x =x1, and let 0 = 01. Let P be a differential operator of the form

P:iaiai a; EA,
=0

where a, has a pure power of x. Then there exist integers s and o such that every f € A
can be written in the form
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s—1
f= Z e;x’ + Z beP(z*)
i=0 >0
where e;, by € B. Furthermore, if f € Ax™ for some m > s then
eiempB(m) Vo<i<s-—1,
where p is a function that tends to infinity with m.

Proof. We first show that there exist integers ¢y and ¢ such that for all ¢ > ¢,

o0
P(zt) = Z ot
i=0
where ¢g; € B satisfy the following conditions

(i) ¢ =0 fori<l—r
(i) co; € mp ford—r<i<l—r+t
(iii) ¢g;isaunitin B fori=4¢—r+t.

(There is no restriction on cy; for i > ¢ — r + t.) Condition (i) is clear because x‘ has
degree ¢ and 0" is the highest differential in P. To prove (ii) and (iii), write for £ > r

¢ ¢
P(af) = apz” + lay 2"~ + 2<2) azz’ 2+ + r!( )awé—’“ :
r

Let ¢ be the least power of z whose coefficient is a unit in B among all the power series

{apz", a1x" 1, ... a,}.
Notice that t exists because by hypothesis a, has a pure power of z. Let \; € k be the

constant term of the coefficient of z? in a;2"~*. By construction, at least one of the )\; is
non zero. The constant term of the coefficient of z/**~" in P(2*) is

4
g(£)=A0+£>\1+...+r!<r)Ar.

Since ¢(¢) is a non zero polynomial in ¢, it has at most finitely many zeros. Choose £
such that g(¢) # 0 for all £ > ¢y. Now for any ¢ > £y write P(z%) = 3272 cr 2%, where
¢e; € B. Then by construction the ¢q; will satisfy the condition (ii) and (iii), namely,
the first one that is a unit is cg o 4+.

To continue set s = £y — r + t. Then we show that every f € A can be written in the
form
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s—1
f= Zeixi + Z beP(z*)
=0

>0

where e;, by € B. We claim, by induction on k, that

s—1
f=fe= Zei,kwi + Z berP(x") mod m¥, (2)
i=0

>0

for suitable e;; and bgj in B and furthermore e; ; = €; 141 and by = by k41 modulo
mk . First observe that for all £ > £,

P(z%) = apz*""" mod mp, (3)

where oy is a unit in A. Here we use that ¢, ; € mp for all 0 < ¢ < £—r+t. If the original
power series f is

f= Z @'»Ti
i=0

with §; € B, then we define f; using e;; = f; for 0 <i<s—1and by = Bo—rit(ag)™?
for £ > ¢y. Thus f = fi mod mp and the claim follows for £k = 1. For the k£ + 1 step,
we consider f — fi. Notice that the coeflicients v; ;, of f — fi as a power series in x are
all in m%. Therefore when we use P(x%) to adjust the £ — r + ¢ coefficient of f — f,, we
have by (3)

l—r+t k+1

’Ye—r-s-t,kp(l"[) = Ve—r+tQOuT mod mp;
Define fry1 = fr + Zezzo Yo—rttk(ce) 1 P(z%). Then f = fri1 mod m’f;l. Writing
fr+1 in the form (2) we obtain the coefficients e; y+1 and by x+1 and observe that, by
construction, they are congruent to the coefficients e; ;, and by, modulo mlfg. Now the
desired assertion follows by passing to the limit: namely e; = lime; ; and b, = lim by
as k goes to infinity.

To explain the ‘Furthermore’ statement, suppose that f € Ax™. Then f, as a power
series in x, begins in degree > m. We claim that f; starts in degree > m — kt and the
coefficients of 7 for m — kt < j < m — (k — 1)t are in m%. Recall that P(z*) as a power
series in = begins in degree > ¢ — r but its first unit coefficient is in degree £ — r + t.

L and

We prove the claim by induction on k. For k = 1 recall that b1 = Bo—pye(0y)”
the first 3; that can be different from zero is f3,,, hence the first P(z%) we are using is
for £ = m + r —t and that can only start in degree £ —r = (m+r—t)—r =m —t.
Furthermore, the coefficients of 7 for m —t < j < m of P(z™*"~!) as power series in
x are in mp by condition (ii) on the ¢, ; above, or, by the fact that fi = f mod mg.

By the construction used to build fi from fi_; we see that fj satisfies our claim. Now
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the coeflicients of f are obtained by taking the limits of the coefficients of the fj. Since
s is fixed and m can be taken as large as we like, we have that e; for 0 < i < s—1 are
contained in mpB(m) where p(m) is a function that tends to infinity with m, approximately

equal to (m —s)/t. O

Remark 5.12. A result similar to this was proved by van den Essen [21] but without the
“Furthermore” statement, which is crucial to our proof.

Proposition 5.13. Let A be the power series ring k[xi,...,x,], let M be a holonomic
D-module, and let N be a finitely generated submodule of M. Then there exists an integer
r such that

m™N C (B, ...,00)M.

Proof. We may assume that N is generated by one element e. By Theorem 5.7 we
can make a change of variables so that M is zj-regular. Let x = 7 and 0 = 0;. By
Lemma 5.10 there exists a differential operator of the form given in the lemma such that
P(a)e C OM for all a € A. We apply Proposition 5.11 to this differential operator. By
Proposition 5.11 there exists an integer s such that for all f € Ax™ with m > s we have

frecml™E+ oM, (4)
where B = k[zo,...,2,] and E = B(e,ze, ..., 25 'e), because P(x‘)e C OM for all ¢
by Lemma 5.10.

We show the statement by induction on the number of variables n. If n = 1 then
B = k and thus mp = 0. Therefore, by (4) for all f € Az™ with m > s we have

freCcoM,
hence we obtain

m*N C OM
which is the desired assertion for n = 1. If n > 2, we apply Theorem 5.8, which says
M = M/OM is a holonomic D-module over B. Let E be the image of E in M, then

E is a finitely generated submodule of M. By the induction hypothesis there exists an
integer ¢ such that

W C (..., 00 .
This implies that

msE C (01,...,0,)M . (5)
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By Proposition 5.11 we can take mg large enough so that mg > s and p(mg) > t. Take
r to be r = mg + p(myg). We claim that

my N =mle C (O1,...,0,)M.

Write any monomial o € m’; as x'y. Notice that either i > mg or v € mi; with 7 >
p(mg) > t. In the first case oo € ™0 A, hence by (4) (notice (4) applies because mg > s)

ae CmA"E 4 M C (1, ...,0,)M

where the last inclusion hold by (5) and because we chose mg in such a way p(mg) > t.
In the second case, the claim follows directly by (5). O

6. Applications

We want to apply the results of Section 5 to study the critical local cohomology
module Hj(A), where V is a variety in P} of codimension r, with homogeneous ideal
I C A=k[xg,...,x,]. To do this we need to pass to the completion.

If M is a D-module over the polynomial ring A = k[zo,...,x,], we can consider the
completion M ®4 A where A = E[xo,...,zn]. It has a natural structure of D-module
over A. Furthermore, there is a natural map on the de Rham cohomology groups:
Hip (M) — Hb (M) Unfortunately, even for a holonomic D-module over A, the map
on de Rham cohomology may fail to be an isomorphism (see Example 6.1). It would be
nice to have general conditions under which these maps are isomorphisms. For instance,
if M is also a graded A-module, and the 0; act as graded k-linear maps of degree —1,
then are the completion maps ¢’ isomorphisms? We do not know, so we will settle for a
more limited criterion.

Example 6.1. Let A = k[z] and let M be a free A-module of rank one. We denote its
generator by e € M, so that the elements of M are written ae for a € A. To give M
a structure of D-module we can take de to be anything we like. So for example, let
de = z%e. Then for any power of z, d(x"e) = 2"de + nz"le = (z"+2? + na"1)e, and
we can extend to all of M by linearity. Now it is clear that the map 0 : M — M is
injective, so that HY (M) = 0. On the other hand, the image of 9 is a k-vector subspace
of codimension 2, so H},z(M) = M/OM has dimension 2. This shows that Theorem 5.1
is false for M, since any nonzero D-module homomorphism of M to E would have to be
surjective, which is impossible since M is finitely generated as an A-module.

Now let consider M = M ® A A. We claim that there is another generator of M ,
call it ue, with u € A a unit, for which d(ue) = 0. To find u, we want 8(ue) = 0,
hence ude + 8u e = 0. We need to solve the differential equation du = —xz?u. Just
take u = e TT, which is a unit in A. Thus M is isomorphic to the standard D-module
structure on A with H® (M) = 1 and H} (M) = 0. So we see that the passage to the
completion does not preserve de Rham cohomology.
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Theorem 6.2. Let A = k[xg,...,xy,], let I C A be a homogeneous ideal, and let M be a
local cohomology module M = Hi(A) with its D-module structure. Then the completion
maps

Hpp(M) — Hyyp(M)

where M = M ®4 fl, are isomorphisms for all j. Furthermore M is also holonomic
over A.

Proof. The last statement follows from Theorem 2.1 and the fact that
M=Hj(A) @4 A=Hi(A).

We will pull ourselves up by our bootstraps using the earlier results of Section 4. First
of all, since the local cohomology H%(A) can be computed from the Cech complex of
localizations of A at product of the f;, where {f1,..., fs} is a set of generators of I, and
a short exact sequence of modules gives a long exact sequence of de Rham cohomology, we
reduce to the case where I = (f) is generated by a single homogeneous polynomial f € A.
In this case there is only one non-zero local cohomology, namely, M = H }(A) = As/A.
Let V be the corresponding hypersurface in P}, and let ¥ C AZ“ be the affine cone
over V', namely, the affine subscheme of Spec A defined by f. Then the hypotheses of
Theorem 4.3 are satisfied and hence by that theorem we have that for each j

Hpp(M) = HR_;(Y)

the algebraic de Rham homology of Y.
The same proof as for Proposition 4.2 and Theorem 4.3, carried out over the formal
power series ring A = k[zo, ..., z,], will show that

H{DR(M) = Hz?z}il—j(y/)

where Y’ C Spec A is the subscheme defined by the same polynomial f € A. Here we use
the local theory of algebraic de Rham cohomology and homology ([5, III]). Therefore we
just need to show that the natural maps HP®(Y) — HPE(Y') are isomorphisms for
all 4. This is a question purely in the theory of algebraic de Rham homology, which we
prove next. O

Proposition 6.3. (Strong excision for homology) Let I be a homogeneous ideal in A =
k[zo,...,z,] and let Y be the affine scheme in Spec A = A" defined by I. Let A=
klzo,...,xzs], let I =1A, and let Y’ C Spec A be defined by I. Then there are natural
isomorphisms of de Rham homology

HPR(Y) — HPR(Y')

for each i.
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Proof. Let V' C P} be the projective scheme defined by I. Then according to [5, III, 3.2]
there is an exact sequence

L. Hi-{-l(Y/) — Hl(V) — Hi_Q(V) — HI(Y/) — ...

We have established in Proposition 4.6(4) the same sequence with H;(Y") in place of
H;(Y"). Note that this does not depend on the special hypotheses of Theorem 4.3 and
Proposition 4.6. Since there are compatible maps between these sequences, we conclude
that H;(Y) = H;(Y') for alli. O

Theorem 6.4. (Main Theorem) Let V' be a nonsingular variety of codimension r in the
projective space Py. Let I be the homogeneous ideal of V in A = klzo,...,x,]. Then
the local cohomology module M = Hj(A) has a simple sub-D-module My with support
on Y, the cone over V, and the quotient M /My is a direct sum of by — bg—o copies
of E, the injective hull of k over A, where d = dimV, and b; are the Betti numbers
b; = dim HPE(V).

Proof. By Corollary 4.5, HpE (H7(A)) = HPE_ (V). On the other hand, since V is
nonsingular and dimV = d = n — r, by Theorem 4.8 the dimension of this homology
group is by — bg_s.

Next, letting M = HJ(A), we apply Theorem 6.2 to see that H{)R(M) = H%)R(]\Zf)
for each j. Therefore, by Theorem 5.1 and Corollary 5.2, we have a surjective map
M —s E™ with m = by — bg_o, and dim Hom@(M,E) = m. Composing with the
natural map M —s M we obtain a map M —s E™, which must be surjective since
Hipsy (M) = Hps3 (30).

On the other hand, since Y has only one singular point at P, it follows from the
general theory [6, Section 3.4], that if we take the simple Dy-module Oy on the smooth
part Y — P of Y, then M contains a simple D-module, the minimal extension of Oy to
X in the sense of [6, 3.4.2] and that the quotient M /M, has support at P. That quotient
must be a sum of copies of E (see Example 2.2 (5)), and therefore is equal to the quotient
E™ found above. 0O

Corollary 6.5. If V = C is a nonsingular curve of genus g in P}, then there is just one
nonzero local cohomology group M = H}"'(A). It has a simple sub-D-module My C M
supported on the cone over €, and the quotient M /My is isomorphic to E*9. In particular,
if € is a nonsingular rational curve, then M = Hy~*(A) is a simple D-module.

Proof. Indeed, dim H;(V) = 1,2¢,1 for i = 0, 1, 2, respectively, hence, m = by —b_; =
2g. O

Corollary 6.6. If V is any embedding of a projective space P? in another projective
space P, then the local cohomology group M = Hy~%(A) is a simple D-module.
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Proof. Indeed, the homology of V' has dimension 1 in even degree and dimension zero
in odd degrees, so in any case by —bg_2 =0. O

Remark 6.7. In the special case of the Veronese embedding of P¢ in P?, this was proved
by an entirely different method, using representation theory, by Raicu [16].

Remark 6.8. For a singular projective variety V' C P} of codimension r, think of a
stratification of V by locally closed nonsingular subvarieties. Then we expect M =
H7(A) to have one simple sub-D-module corresponding to the smooth part of V, and
a succession of contributions coming from the strata of the singular locus, and finally a
quotient that is equal to dim H fﬁ (Y)) copies of E as before.

In particular, if V' = € is an integral curve, then we expect one component for the
smooth part of €, then at each singular point P, np — 1 copies of the injective hull of
the line cone over P (in the notation of Proposition 3.5), and then hy(C) copies of E.

7. Added in proof

After this paper was posted on the arXiv, Switala and Zhang ([19]) picked up our
hints on duality (see Introduction) and graded D-modules (see beginning of Section 6)
to study the Matlis dual D(M) of a graded D-module M. They show that if H'p (M) is
finite dimensional, then H/j,"*(D(M)) is the vector space dual of H’p(M). This allows
them to give alternate proofs of our key results Theorem 5.1 and Theorem 6.4 without
using the difficult analytic methods of van den Essen. Furthermore, Lyubeznik used
Switala’s duality theory to generalize our Corollary 5.2 ([13]).
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