

1 FRONT MATTER

2

3 **Title**

4 Spin Photovoltaic Effect in Magnetic van der Waals Heterostructures

5 **Authors**

7 Tiancheng Song¹, Eric Anderson¹, Matisse Wei-Yuan Tu², Kyle Seyler¹, Takashi
8 Taniguchi³, Kenji Watanabe⁴, Michael A. McGuire⁵, Xiaosong Li⁶, Ting Cao⁶, Di Xiao⁷,
9 Wang Yao⁸, Xiaodong Xu^{1,6*}

10

11 **Affiliations**

13 ¹Department of Physics, University of Washington, Seattle, Washington 98195, USA.

14 ²Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan.

15 ³International Center for Materials Nanoarchitectonics, National Institute for Materials
16 Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

17 ⁴Research Center for Functional Materials, National Institute for Materials Science, 1-1
18 Namiki, Tsukuba 305-0044, Japan.

19 ⁵Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,
20 Tennessee 37831, USA.

21 ⁶Department of Materials Science and Engineering, University of Washington, Seattle,
22 Washington 98195, USA.

23 ⁷Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,
24 USA.

25 ⁸Department of Physics, University of Hong Kong, Hong Kong, China.

27 *Correspondence to: xuxd@uw.edu

28

29 **One Sentence Summary**

31 2D magnet CrI₃ exhibits an emergent interplay between spin photocurrent and the
32 underlying excitons, magnetic order, photon energy and helicity.

33

34 **Abstract**

36 The development of van der Waals (vdW) crystals and their heterostructures has created a
37 fascinating platform for exploring optoelectronic properties in the two-dimensional (2D)
38 limit. With the recent discovery of 2D magnets, the control of the spin degree of freedom
39 can be integrated to realize 2D spin-optoelectronics with spontaneous time-reversal
40 symmetry breaking. Here, we report spin photovoltaic effects in vdW heterostructures of
41 atomically thin magnet chromium triiodide (CrI₃) sandwiched by graphene contacts. In the
42 absence of a magnetic field, the photocurrent displays a distinct dependence on light
43 helicity, which can be tuned by varying the magnetic states and photon energy. Circular
44 polarization-resolved absorption measurements reveal that these observations originate
45 from magnetic-order-coupled and thus helicity-dependent charge-transfer exciton states.
46 The photocurrent displays multiple plateaus as the magnetic field is swept, which are

47 associated with different spin configurations enabled by the layered antiferromagnetism
48 and spin-flip transitions in CrI₃. Remarkably, giant photo-magnetocurrent is observed,
49 which tends to infinity for a small applied bias. Our results pave the way to explore
50 emergent photo-spintronics by engineering magnetic vdW heterostructures.
51

52 MAIN TEXT

53 Introduction

54 Spintronics aims at manipulating the spin degree of freedom in electronic systems for
55 novel functionalities (1). In optoelectronics, the generation and control of spins can open
56 up emerging opportunities for spin-optoelectronics, enabling the exploration of new spin
57 photovoltaic effects and spin photocurrents. In various magnetic heterostructures, spin
58 photovoltaic effects can be realized by different mechanisms. For instance, a spin voltage
59 arises from spin-dependent excitation at the interface of a nonmagnetic metal in close
60 proximity to a magnetic insulator (2). In spin valves and magnetic p-n junctions, spin
61 injection and accumulation can be induced by the spin-dependent injection process of the
62 photogenerated carriers at the interfaces with ferromagnetic contacts (3-6). Alternatively,
63 in materials without intrinsic magnetic order, circularly polarized light can generate spin
64 photocurrents via the circular photogalvanic effect (7-10). Among these materials and
65 heterostructures, two-dimensional (2D) materials, in particular transition metal
66 dichalcogenides (TMDs), have established themselves as a promising system for spin-
67 optoelectronics due to their spin-valley dependent properties and enhanced
68 photoresponsivity from strong excitonic effects (9-17).
69

70 The recent discovery of 2D vdW magnets provides a new platform for spin photovoltaic
71 effects based on atomically thin materials with intrinsic magnetic order (18-21). Among
72 these magnets, chromium triiodide (CrI₃) is particularly interesting because of its layered
73 antiferromagnetism (AFM), where the ferromagnetic monolayers with out-of-plane
74 magnetizations are antiferromagnetically coupled to each other, as shown in Fig. 1A. The
75 spin configurations can be manipulated by an external magnetic field which switches the
76 sample between the AFM ground states and the fully spin-polarized states via a series of
77 spin-flip transitions (18). Multiple magnetic states become accessible as the number of
78 CrI₃ layers increases (22), possibly enabling multiple states of the resulting spin
79 photocurrent, defined as a photocurrent controlled by the spin degree of freedom.
80 Moreover, given the reported strong magneto-optical and excitonic effects (23, 24),
81 atomically thin CrI₃ should provide an ideal platform to explore spin-optoelectronic
82 effects in the atomically thin limit (21).
83

84 Results

85 Photocurrent response of CrI₃ junction device

86 To investigate photocurrent response from CrI₃, a vertical heterostructure was fabricated
87 for efficient photodetection. All measurements were carried out at a temperature of 2 K
88 with a magnetic field in the out-of-plane direction and a linearly polarized laser excitation,
89 unless otherwise specified. As shown in Fig. 1A, the heterostructure consists of an
90 atomically thin CrI₃ flake sandwiched by two graphene sheets as bias electrodes,
91 encapsulated by thin hexagonal boron nitride (hBN) to avoid degradation (see Methods).
92

Such a structure is essentially the same as a magnetic tunnel junction (MTJ), which has been used to realize large tunneling magnetoresistance via the spin-filtering effect enabled by the layered antiferromagnetism in CrI₃ (22, 25-27). Using a four-layer CrI₃ device (D2) as an example, without optical illumination, the current-bias characteristics (*I*-*V* curves) of the device behave as a typical tunnel junction. The tunneling current is suppressed in the low bias regime and dominated by Fowler-Nordheim tunneling at high bias (22, 25-27) (black curve, Fig. 1B).

Compared to the dark condition case, a substantial enhancement of the current is observed with photoexcitation of carriers in the low bias regime. The red curve in Fig. 1B is obtained with 1.96 eV (632.8 nm) laser excitation focused to a ~1 μ m spot size at normal incidence, with an optical power of 1 μ W. This carrier collection process is highly efficient in the vertical junction structure of atomically thin CrI₃, due to the reduced requirement of the carrier diffusion length. At zero bias, a net photocurrent I_{ph} is also generated (inset, Fig. 1B). This zero bias photocurrent can be attributed to the asymmetric potential of the junction (11, 12), which could originate from the potential difference between the top and bottom graphene/CrI₃ interfaces. Applying a bias voltage induces an external electric field, which can modulate the magnitude as well as reverse the direction of the photocurrent. When the applied bias compensates the built-in electric field such that the net current is zero, the system becomes equivalent to an open circuit, allowing us to measure the photogenerated open-circuit voltage (V_{oc}).

We investigate the spatial distribution of the photocurrent by employing scanning photocurrent microscopy. Figure 1D shows the optical microscopy image of a trilayer CrI₃ device (D1), which has a large junction area, with the corresponding photocurrent map taken at zero bias, shown in Fig. 1E. We also employ reflective magnetic circular dichroism (RMCD) microscopy to map out the trilayer CrI₃ flake shown in Fig. 1F. The RMCD measures the out-of-plane magnetization of the device at zero field, which is defined as $(R_{RCP} - R_{LCP})/(R_{RCP} + R_{LCP})/2$, where R_{RCP} (R_{LCP}) represents reflection amplitude for right (left) circularly polarized light (see Methods). By comparing the photocurrent map with the microscopy image and the RMCD map, the photoactive region can be identified at the junction region where the top and bottom graphene electrodes overlap.

Figure 1C shows the photon energy dependence of the photocurrent. I_{ph} increases sharply when the photon energy exceeds 1.7 eV. By comparison to the differential reflectance ($\Delta R/R$) measurement of a trilayer CrI₃ on a sapphire substrate (see Methods), we attribute the strong photocurrent response to the optical excitation of ligand-to-metal charge-transfer excitons (23, 24). We do not observe photocurrent enhancement corresponding to the excitation of the lower energy exciton at 1.5 eV. This is possibly due to its larger binding energy and more localized nature than the charge transfer excitons (24). Notably, the photoresponsivity reaches 10 mA W⁻¹, which is already comparable to that achieved in the devices based on TMD semiconductors under similar conditions (11, 12) (the photocurrent map in Supplementary Fig. S1 shows the photoresponsivity reaches 10 mA W⁻¹, and Supplementary Fig. S2 shows the laser excitation power dependence of photocurrent).

136 Magnetic order dependence of photocurrent

137 The photocurrent response has a strong dependence on the magnetic order. Figure 2A
138 shows zero bias I_{ph} as a function of the external magnetic field (μ_0H) in a four-layer CrI₃
139 with an optical power of 1 μ W. As μ_0H is swept, I_{ph} exhibits several sharp transitions and
140 multiple plateaus. Figure 2B shows RMCD signal with the corresponding magnetic states
141 labeled, as identified in the previous studies (22, 28). For simplicity, only the positive
142 magnetic field side is shown. The full field data with magnetic states assignment can be
143 found in Supplementary Fig. S3. Comparison of Fig. 2, A and B shows that the multiple
144 photocurrent plateaus are associated with the distinct magnetic states. The low and high
145 photocurrent plateaus at low and high fields can be assigned to the AFM ground states and
146 fully spin-polarized states, respectively.

147 Interestingly, the intermediate magnetic states (either $\uparrow\downarrow\uparrow\uparrow$ or $\uparrow\uparrow\downarrow\uparrow$) result in a lower
148 photocurrent than the AFM ground states. This non-monotonic photocurrent response to
149 the magnetic states is distinct from the monotonic increase of the tunneling conductance
150 due to the spin-filtering effect (22, 29). As a comparison, Fig. 2C shows the tunneling
151 current of the same device measured as a function of μ_0H at 80 mV bias under dark
152 condition. In sharp contrast to I_{ph} , the tunneling current increases monotonically and
153 dramatically as the spins in each layer are aligned from $\uparrow\downarrow\uparrow\downarrow$ to $\uparrow\uparrow\uparrow\uparrow$, because the
154 current-blocking antiparallel interfaces are removed. Note that the tunneling current varies
155 by two orders of magnitude for different magnetic states (22, 25-27), while there is only a
156 two-fold difference in the photocurrent. For tunneling under dark condition, the electron
157 energy is below the CrI₃ conduction bands. In contrast, the optical excitation generates
158 photoexcited carriers in the conduction bands, and their asymmetric extraction by the top
159 and bottom graphene electrodes results in the measured photocurrent. The spin
160 configurations of CrI₃ determine the layer distribution of the wavefunction of photoexcited
161 carriers, through which the extraction efficiencies at the top and bottom electrodes can be
162 affected, accounting for the non-monotonic magnetic state dependence of photocurrent
163 (11, 12, 30, 31) (see Supplementary Text S1). Note that the determination of precise
164 magnetic-state-dependent band alignment between graphene and CrI₃ will require future
165 theoretical and experimental efforts.

166 In analogy to giant magnetoresistance and tunnel magnetoresistance (1, 32-35), which are
167 of great importance for spintronics, our spin-optoelectronic device exhibits a novel photo-
168 magnetocurrent effect (3). Figure 2D shows the I_{ph} - V curves corresponding to the AFM
169 ground state (0 T, black curve) and fully spin-polarized state (2.5 T, red curve),
170 respectively. For the short-circuit condition, the fully spin-polarized state generates a
171 higher photocurrent, whereas the AFM ground state gives a larger open-circuit voltage
172 magnitude. To quantify this magnetic state dependence, we define the photo-
173 magnetocurrent ratio as $MC_{ph} = (I_{ph}^p - I_{ph}^{ap})/I_{ph}^{ap}$, where I_{ph}^p and I_{ph}^{ap} are the photocurrents
174 corresponding to the fully spin-polarized state (parallel) and AFM ground state
175 (antiparallel). Figure 2E shows the absolute value of MC_{ph} as a function of bias extracted
176 from the I_{ph} - V curves in Fig. 2D. Remarkably, a giant MC_{ph} is observed within a range of
177 bias voltage indicated by the red shading. This can be attributed to the magnetic-state-
178 dependent open-circuit voltage, where at certain bias I_{ph}^{ap} goes to zero while I_{ph}^p is still
179 finite, leading to a giant MC_{ph} ratio tending to infinity (3). This demonstrates a proof-of-
180 concept photo-modulated magnetocurrent effect. We further investigate the excitation
181 power dependence of the photo-magnetocurrent effect (see Supplementary Fig. S4), which
182 demonstrates optical control of the photo-magnetocurrent effect with high sensitivity to

183 excitation power. Achieving such a giant and tunable photo-magnetocurrent could be
184 useful for optically driven magnetic sensing and data storage technologies.

185 **Dependence of photocurrent on light helicity**

186 The broken time-reversal symmetry of our system should also enable a light helicity
187 dependence of the spin photocurrent. Here, we use the trilayer CrI₃ device (D1) with 1.96
188 eV excitation as an example. The magnetization is set in the fully spin-polarized state,
189 either $\uparrow\uparrow\uparrow$ (2 T) or $\downarrow\downarrow\downarrow$ (-2 T). As the light helicity is switched between σ^+ and σ^- , the
190 photocurrent exhibits a clear circular polarization dependence. As shown in Fig. 3A, the
191 $\uparrow\uparrow\uparrow$ state (red dots) gives a higher photocurrent for photon helicity σ^- (135°) than σ^+
192 (45°). In contrast, the $\downarrow\downarrow\downarrow$ state (black dots) exhibits the exact opposite helicity
193 dependence, consistent with the time-reversal operation that connects the two fully spin-
194 polarized states.

195 We define the difference of photocurrent between σ^+ and σ^- excitation as $\Delta I_{\text{ph}} [\sigma^+ - \sigma^-] =$
196 $I_{\text{ph}}(\sigma^+) - I_{\text{ph}}(\sigma^-)$. The degree of helicity is then denoted by $\Delta I_{\text{ph}} [\sigma^+ - \sigma^-] / (I_{\text{ph}}(\sigma^+) + I_{\text{ph}}(\sigma^-))$. To
197 fully understand the interplay between the helicity-dependent photocurrent and the
198 underlying magnetic order, we measure $\Delta I_{\text{ph}} [\sigma^+ - \sigma^-]$ and the degree of helicity as a
199 function of $\mu_0 H$ shown in Fig. 3B (see Methods). Four distinct plateaus are observed,
200 which behave essentially the same as the RMCD signal versus $\mu_0 H$ measured from the
201 same device with the same 1.96 eV laser (Fig. 3C). We can thus assign the corresponding
202 magnetic states to each $\Delta I_{\text{ph}} [\sigma^+ - \sigma^-]$ plateau. There is notable magnetic hysteresis of ΔI_{ph}
203 $[\sigma^+ - \sigma^-]$ centered at zero field due to switching between the $\uparrow\uparrow\uparrow$ and $\downarrow\downarrow\downarrow$ AFM coupled
204 ground states. In addition, the four-layer CrI₃ device (D2) shows a similar magnetic-state-
205 coupled helicity dependence of the photocurrent (Supplementary Fig. S3).

206 **Optical selection rules of magnetic-order-coupled charge-transfer excitons**

207 We find that this unique spin photovoltaic effect originates from the helicity dependence
208 of charge-transfer excitons in CrI₃, which couple to the underlying magnetic order. Figure
209 4A shows circular polarization-resolved differential reflectance ($\Delta R/R$) measurements of a
210 trilayer CrI₃ on a sapphire substrate. Data from all four magnetic states, $\{\uparrow\uparrow\uparrow$ (2 T), $\downarrow\downarrow\downarrow$
211 (-2 T), $\uparrow\downarrow\uparrow$ (0 T), $\downarrow\uparrow\downarrow$ (0 T) $\}$, are shown. Evidently, the σ^+/σ^- (red/blue dots) absorption
212 peaks split in both energy and intensity, and are determined by the magnetic state. This
213 observation is consistent with the magnetic-order-coupled charge-transfer excitons
214 calculated by the many-body perturbation theory (24). The helicity-dependent absorption
215 reveals the optical selection rules of the charge-transfer transitions between the spin-
216 polarized valence and conduction bands (24, 36), and thus result in the observed helicity-
217 dependent spin photovoltaic effect.

218 Starting with the $\uparrow\uparrow\uparrow$ state, the 1.96 eV (632.8 nm) excitation indicated by the red dashed
219 line is near the resonance of the σ^- polarized charge-transfer exciton, while the σ^+
220 resonance is at 2.07 eV, about 110 meV higher. The stronger absorption for σ^- than σ^+
221 results in higher photocurrent for the σ^- excitation vs σ^+ , as shown in Fig. 3A. For the $\downarrow\downarrow\downarrow$
222 state, the absorption peaks are switched between σ^+ and σ^- compared to the $\uparrow\uparrow\uparrow$ state,
223 which agrees with the opposite helicity dependence of the $\downarrow\downarrow\downarrow$ state photocurrent (Fig.
224 3A). The magnetic ground states at zero magnetic field, $\uparrow\downarrow\uparrow$ and $\downarrow\uparrow\downarrow$, also give notable

225 but opposite splitting between the σ^+ and σ^- absorption peaks, due to their opposite net
226 magnetizations. This splitting between σ^+ and σ^- vanishes above the critical temperature of
227 trilayer CrI₃ (Supplementary Fig. S5). Note that for even number layers, the vanishing net
228 magnetization at the AFM ground states leads to vanishing helicity dependence of the
229 charge transfer excitons (see Supplementary Fig. S6 for the $\Delta R/R$ measurement of a six-
230 layer CrI₃ on a sapphire substrate). All these observations confirm the underlying
231 magnetic order as the origin of the helicity dependence of the charge-transfer excitons.

232 The circularly polarized optical selection rules of charge-transfer excitons also enable the
233 control of photocurrent helicity dependence by tuning the optical excitation energy. We
234 choose three selected photon energies, indicated by the dashed lines in Fig. 4A for the
235 magnetic state $\downarrow\downarrow\downarrow$ panel. These three energies represent stronger σ^+ absorption than σ^-
236 (1.88 eV), nearly equal absorption (2.01 eV), and stronger σ^- absorption than σ^+ (2.13 eV),
237 respectively. Figure 4B shows the corresponding helicity-dependent photocurrent at these
238 photon energies. For the $\downarrow\downarrow\downarrow$ state, the σ^+ excitation at 1.88 eV gives a higher
239 photocurrent than σ^- excitation, and this scenario is reversed for 2.13 eV excitation. The
240 helicity dependence nearly vanishes for the 2.01 eV excitation, consistent with the
241 observed equal absorption of σ^+ and σ^- polarized light. Figure 4C shows $\Delta I_{\text{ph}} [\sigma^+ - \sigma^-]$ at
242 several photon energies. Clearly, the helicity dependence exhibits a change in sign around
243 2.01 eV. This $\Delta I_{\text{ph}} [\sigma^+ - \sigma^-]$ as a function of photon energy matches well with the overlaid
244 $\Delta R/R$ helicity difference ($\Delta R/R(\sigma^+) - \Delta R/R(\sigma^-)$). As expected, the photocurrent behavior of
245 the magnetic state $\uparrow\uparrow\uparrow$, the red dots and curves in Fig. 4, B and C, is the time reversal of
246 $\downarrow\downarrow\downarrow$ state. The circular polarization-resolved absorption measurements reveals a strong
247 correspondance between the photocurrent and RMCD measurements in Fig. 3. For a given
248 magnetic state ($\uparrow\uparrow\uparrow$), the splitting between σ^+ and σ^- in the $\Delta R/R$ spectra leads to circular
249 polarization dependent absorption and reflection for a fixed excitation energy, which
250 results in the helicity dependent photocurrent and RMCD, respectively. As the photon
251 energy is tuned, the σ^+/σ^- difference in the absorption can be switched, causing the
252 photocurrent helicity dependence to also be reversed.

253 Discussion

255 We explore spin photovoltaic effects in atomically thin CrI₃ vdW heterostructures. The
256 photocurrent exhibits distinct responses to the spin configurations in CrI₃, together with a
257 giant photo-magnetocurrent effect. The combination of our helicity-dependent
258 photocurrent and circular polarization-resolved absorption measurements reveals the
259 emergent interplay between the spin photocurrent and the underlying excitons, intrinsic
260 magnetic order, photon energy and helicity. Our work demonstrates a proof-of-concept 2D
261 spin-photovoltaic device incorporating the intrinsic magnetic order in few-layer CrI₃. This
262 study also establishes atomically thin CrI₃ as an archetypal 2D magnet for studying the
263 photocurrent generation in a vertical junction device. This device structure can be adapted
264 using other 2D magnets with varied magnetic order and coercive fields, such as CrBr₃,
265 CrCl₃, CrSBr, and holds promise for potential applications in magnetic sensing and data
266 storage. Furthermore, our results show that the generated photocurrent can probe the
267 magnetic order in CrI₃ and exhibits distinct responses to photon energy and helicity, which
268 originates from magnetic-order-coupled charge-transfer exciton states. This demonstrates
269 the efficacy of photocurrent as a new means to probe magnetic order, charge-transfer
270 exciton states, and magnetoexciton-photon coupling. This approach could be useful for

271 exploring other 2D magnetic systems, for instance, probing the zigzag-antiferromagnetic
272 order coupled excitons in NiPS₃ (37-41) and the charge transfer process at the α -
273 RuCl₃/graphene interfaces (42-45).

274 **Materials and Methods**

275
276 **Device fabrication:** The monolayer/few-layer graphene and 15-25 nm hBN flakes were
277 mechanically exfoliated onto either 285 nm or 90 nm SiO₂/Si substrates and examined by
278 optical and atomic force microscopy under ambient conditions. Only atomically clean and
279 smooth flakes were used for making devices. V/Au (5/50 nm) metal electrodes were
280 deposited onto a 285 nm SiO₂/Si substrate using standard electron beam lithography with
281 a bilayer resist (A4 495 and A4 950 poly (methyl methacrylate) (PMMA)) and electron
282 beam evaporation. CrI₃ crystals were exfoliated onto 90 nm SiO₂/Si substrates in an inert
283 gas glovebox with water and oxygen concentration less than 0.1 ppm. The CrI₃ flake
284 thickness was identified by optical contrast with respect to the substrate using the
285 established optical contrast model (18). The layer assembly was performed in the
286 glovebox using a polymer-based dry transfer technique. The flakes were picked up
287 sequentially: top hBN, top graphene contact, CrI₃, bottom graphene contact, bottom hBN.
288 The resulting stacks were then transferred and released on the pre-patterned electrodes. In
289 the resulting heterostructure, the CrI₃ flake is fully encapsulated on both sides, and the
290 top/bottom graphene flakes are connected to the pre-patterned electrodes. Finally, the
291 polymer was dissolved in chloroform for less than one minute to minimize the sample
292 exposure to ambient conditions.

293
294 **Photocurrent measurement:** The photocurrent measurements were performed in a
295 closed-cycle cryostat (attoDRY 2100) at a temperature of 2 K and an out-of-plane
296 magnetic field up to 9 T. A 632.8 nm HeNe laser was focused to a \sim 1 μ m spot size at
297 normal incidence to generate photocurrent. Figure 1A shows the schematic of CrI₃
298 junction devices. For DC measurement, a bias voltage (V) was applied to the top graphene
299 contact with the bottom contact grounded. The resulting photocurrent (I_{ph}) or tunneling
300 current (I_t) was amplified and measured by a current preamplifier (DL Instruments; Model
301 1211). For AC measurement, a standard lock-in technique was used to measure the change
302 in photocurrent with Stanford Research Systems SR830. For the photon energy
303 dependence measurement, a SolsTiS continuous-wave widely tunable laser was used to
304 generate photocurrent. For the photon helicity dependence measurement, a motorized
305 precision rotation mount was used to rotate an achromatic quarter-wave plate with respect
to the linear polarized incident laser beam.

306
307 **Optical measurements:** The reflective magnetic circular dichroism (RMCD) and Kerr
308 rotation measurements were performed in two similar cryostats (attoDRY 2100 and
309 Quantum Design OptiCool) under the same experimental conditions. A 632.8 nm HeNe
310 laser was used to probe the device at normal incidence with a fixed power of 1 μ W. The
311 AC lock-in measurement technique used to measure the RMCD and Kerr rotation signal
312 closely follows the previous RMCD and magneto-optical Kerr effect (MOKE)
313 measurements of the magnetic order in atomically-thin CrI₃ (18, 22). For the differential
314 reflectance measurements, we spatially filtered a tungsten halogen lamp and focused the
315 beam to a \sim 3 μ m spot size on the CrI₃. The reflected light was deflected with a
316 beamsplitter and detected by a spectrometer and a liquid-nitrogen-cooled charge-coupled
317 device, which enabled signal measurement from 1.4 eV to 3 eV. To obtain the differential
reflectance, we subtracted and normalized the CrI₃ reflectance by the reflectance of the

318 sapphire substrate. The absorbance of CrI₃ is proportional to the differential reflectance,
319 which can be determined as $\frac{1}{4}(n^2 - 1)\Delta R/R$ (23,46).

320 References

- 322 1. I. Žutić, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and applications. *Rev. Mod. Phys.* **76**, 323–410 (2004).
- 324 2. D. Ellsworth, L. Lu, J. Lan, H. Chang, P. Li, Z. Wang, J. Hu, B. Johnson, Y. Bian, J. Xiao, R. Wu, M. Wu, Photo-spin-voltaic effect. *Nat. phys.* **12**, 861–866 (2016).
- 326 3. X. Sun, S. Vélez, A. Atxabal, A. Bedoya-Pinto, S. Parui, X. Zhu, R. Llopis, F. Casanova, L. E. Hueso, A molecular spin-photovoltaic device. *Science* **357**, 677–680 (2017).
- 328 4. B. Endres, M. Ciorga, M. Schmid, M. Utz, D. Bougeard, D. Weiss, G. Bayreuther, C. H. Back, Demonstration of the spin solar cell and spin photodiode effect. *Nat. Commun.* **4**, 2068 (2013).
- 330 5. V. A. Dedić, L. E. Hueso, I. Bergenti, C. Taliani, Spin routes in organic semiconductors. *Nat. Mater.* **8**, 707–716 (2009).
- 332 6. K. Liao, X. Hu, Y. Cheng, Y. Yu, Y. Xue, Y. Chen, Q. Gong, Spintronics of hybrid organic-inorganic perovskites: miraculous basis of integrated optoelectronic devices. *Adv. Optical Mater.* **7**, 1900350 (2019).
- 334 7. S. D. Ganichev, E. L. Ivchenko, V. V. Bel'kov, S. A. Tarasenko, M. Sollinger, D. Weiss, W. Wegscheider, W. Prettl, Spin-galvanic effect. *Nature* **417**, 153–156 (2002).
- 336 8. S. D. Ganichev, W. Prettl, Spin photocurrents in quantum wells. *J. Phys. Condens. Matter* **15**, R935–R983 (2003).
- 338 9. H. Yuan, X. Wang, B. Lian, H. Zhang, X. Fang, B. Shen, G. Xu, Y. Xu, S.-C. Zhang, H. Y. Hwang, Y. Cui, Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe₂. *Nat. Nanotechnol.* **9**, 851–857 (2014).
- 340 10. M. Eginligil, B. Cao, Z. Wang, X. Shen, C. Cong, J. Shang, C. Soci, T. Yu, Dichroic spin-valley photocurrent in monolayer molybdenum disulphide. *Nat. Commun.* **6**, 7636 (2015).
- 342 11. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films. *Science* **340**, 1311–1314 (2013).
- 344 12. W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. *Nat. Nanotechnol.* **8**, 952–958 (2013).
- 346 13. X. Xu, W. Yao, D. Xiao, T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. *Nat. phys.* **10**, 343–350 (2014).
- 348 14. K. F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. *Nat. Photon.* **10**, 216–226 (2016).
- 350 15. K. F. Mak, K. L. McGill, J. Park, P. L. McEuen, The valley Hall effect in MoS₂ transistors. *Science* **344**, 1489–1492 (2014).
- 352 16. L. Xie, X. Cui, Manipulating spin-polarized photocurrents in 2D transition metal dichalcogenides. *PNAS* **113**, 3746–3750 (2016).
- 354 17. X.-X. Zhang, Y. Lai, E. Dohner, S. Moon, T. Taniguchi, K. Watanabe, D. Smirnov, T. F. Heinz, Zeeman-induced valley-sensitive photocurrent in monolayer MoS₂. *Phys. Rev. Lett.* **122**, 127401 (2019).
- 356 18. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. *Nature* **546**, 270–273 (2017).

367 19. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q.
368 Qiu, R. J. Cava, S. G. Louie, J. Xia, X. Zhang, Discovery of intrinsic ferromagnetism in
369 two-dimensional van der Waals crystals. *Nature* **546**, 265–269 (2017).

370 20. K. F. Mak, J. Shan, D. C. Ralph, Probing and controlling magnetic states in 2D layered
371 magnetic materials. *Nat. Rev. Phys.* **1**, 646–661 (2019).

372 21. Y. Zhang, T. Holder, H. Ishizuka, F. de Juan, N. Nagaosa, C. Felser, B. Yan, Switchable
373 magnetic bulk photovoltaic effect in the two-dimensional magnet CrI₃. *Nat. Commun.* **10**,
374 1–7 (2019).

375 22. T. Song, X. Cai, M. Wei-Yuan Tu, X. Zhang, B. Huang, N. P. Wilson, K. L. Seyler, L.
376 Zhu, T. Taniguchi, K. Watanabe, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, X. Xu,
377 Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. *Science*.
378 **360**, 1214–1218 (2018).

379 23. K. L. Seyler, D. Zhong, D. R. Klein, S. Gao, X. Zhang, B. Huang, E. Navarro-Moratalla, L.
380 Yang, D. H. Cobden, M. A. McGuire, W. Yao, D. Xiao, P. Jarillo-Herrero, X. Xu, Ligand-
381 field helical luminescence in a 2D ferromagnetic insulator. *Nat. Phys.* **14**, 277–281 (2018).

382 24. M. Wu, Z. Li, T. Cao, S. G. Louie, Physical origin of giant excitonic and magneto-optical
383 responses in two-dimensional ferromagnetic insulators. *Nat. Commun.* **10**, 2371 (2019).

384 25. D. R. Klein, P. MacNeill, J. L. Lado, D. Soriano, E. Navarro-Moratalla, K. Watanabe, T.
385 Taniguchi, S. Manni, P. Canfield, J. Fernández-Rossier, P. Jarillo-Herrero, Probing
386 magnetism in 2D van der Waals crystalline insulators via electron tunneling. *Science*. **360**,
387 1218–1222 (2018).

388 26. Z. Wang, I. Gutiérrez-Lezama, N. Ubrig, M. Kroner, M. Gibertini, T. Taniguchi, K.
389 Watanabe, A. Imamoğlu, E. Giannini, A. F. Morpurgo, Very large tunneling
390 magnetoresistance in layered magnetic semiconductor CrI₃. *Nat. Commun.* **9**, 2516 (2018).

391 27. H. H. Kim, B. Yang, T. Patel, F. Sfigakis, C. Li, S. Tian, H. Lei, A. W. Tsen, One million
392 percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. *Nano Lett.*
393 **18**, 4885–4890 (2018).

394 28. T. Song, M. Wei-Yuan Tu, C. Carnahan, X. Cai, T. Taniguchi, K. Watanabe, M. A.
395 McGuire, D. H. Cobden, D. Xiao, W. Yao, X. Xu, Voltage control of a van der Waals spin-
396 filter magnetic tunnel junction. *Nano Lett.* **19**, 915–920 (2018).

397 29. G.-X. Miao, M. Müller, J. S. Moodera, Magnetoresistance in double spin filter tunnel
398 junctions with nonmagnetic electrodes and its unconventional bias dependence. *Phys. Rev.*
399 *Lett.* **102**, 076601 (2009).

400 30. W. J. Yu, Q. A. Vu, H. Oh, H. G. Nam, H. Zhou, S. Cha, J. Y. Kim, A. Carvalho, M.
401 Jeong, H. Choi, A. H. Castro Neto, Y. H. Lee, X. Duan, Unusually efficient photocurrent
402 extraction in monolayer van der Waals heterostructure by tunnelling through discretized
403 barriers. *Nat. Commun.* **7**, 13278 (2016).

404 31. P. Jiang, L. Li, Z. Liao, Y. X. Zhao, Z. Zhong, Spin direction controlled electronic band
405 structure in two dimensional ferromagnetic CrI₃. *Nano Lett.* **18**, 3844–3849 (2018).

406 32. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet,
407 A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic
408 superlattices. *Phys. Rev. Lett.* **61**, 2472–2475 (1988).

409 33. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Enhanced magnetoresistance in layered
410 magnetic structures with antiferromagnetic interlayer exchange. *Phys. Rev. B* **39**, 4828–
411 4830 (1989).

412 34. T. Miyazaki, N. Tezuka, Giant magnetic tunneling effect in Fe/Al₂O₃/Fe junction. *J. Magn.*
413 *Magn. Mater.* **139**, L231–L234 (1995).

414 35. J. S. Moodera, L. R. Kinder, T. M. Wong, R. Meservey, Large magnetoresistance at room
415 temperature in ferromagnetic thin film tunnel junctions. *Phys. Rev. Lett.* **74**, 3273–3276
416 (1995).

417 36. J. L. Lado, J. Fernández-Rossier, On the origin of magnetic anisotropy in two dimensional
418 CrI₃. *2D Mater.* **4**, 035002 (2017).

419 37. S. Kang, K. Kim, B. H. Kim, J. Kim, K. I. Sim, J.-U. Lee, S. Lee, K. Park, S. Yun, T. Kim,
420 A. Nag, A. Walters, M. Garcia-Fernandez, J. Li, L. Chapon, K.-J. Zhou, Y.-W. Son, J. H.
421 Kim, H. Cheong, J.-G. Park, Coherent many-body exciton in van der Waals
422 antiferromagnet NiPS₃. *Nature* **583**, 785–789 (2020).

423 38. K. Hwangbo, Q. Zhang, Q. Jiang, Y. Wang, J. Fonseca, C. Wang, G. M. Diederich, D. R.
424 Gamelin, D. Xiao, J.-H. Chu, W. Yao, X. Xu, Highly anisotropic excitons and multiple
425 phonon bound states in a van der Waals antiferromagnetic insulator. *Nat. Nanotechnol.*
426 (2021).

427 39. K. Kim, S. Y. Lim, J.-U. Lee, S. Lee, T. Y. Kim, K. Park, G. S. Jeon, C.-H. Park, J.-G.
428 Park, H. Cheong, Suppression of magnetic ordering in XXZ-type antiferromagnetic
429 monolayer NiPS₃. *Nat. Commun.* **10**, 345 (2019).

430 40. X. Wang, J. Cao, Z. Lu, A. Cohen, H. Kitadai, T. Li, Q. Tan, M. Wilson, C. H. Lui, D.
431 Smirnov, S. Sharifzadeh, X. Ling, Spin-induced linear polarization of photoluminescence
432 in antiferromagnetic van der Waals crystals. *Nat. Mater.* (2021).

433 41. C.-T. Kuo, M. Neumann, K. Balamurugan, H. J. Park, S. Kang, H. W. Shiu, J. H. Kang, B.
434 H. Hong, M. Han, T. W. Noh, J.-G. Park, Exfoliation and Raman Spectroscopic Fingerprint
435 of Few-Layer NiPS₃ Van der Waals Crystals. *Sci. Rep.* **6**, 20904 (2016).

436 42. B. Zhou, J. Balgley, P. Lampen-Kelley, J.-Q. Yan, D. G. Mandrus, E. A. Henriksen,
437 Evidence for charge transfer and proximate magnetism in graphene/α-RuCl₃
438 heterostructures. *Phys. Rev. B* **100**, 165426 (2019).

439 43. S. Mashhadi, Y. Kim, J. Kim, D. Weber, T. Taniguchi, K. Watanabe, N. Park, B. Lotsch, J.
440 H. Smet, M. Burghard, K. Kern, Spin-Split Band Hybridization in Graphene Proximitized
441 with α- RuCl₃ Nanosheets. *Nano Lett.* **19**, 4659–4665 (2019).

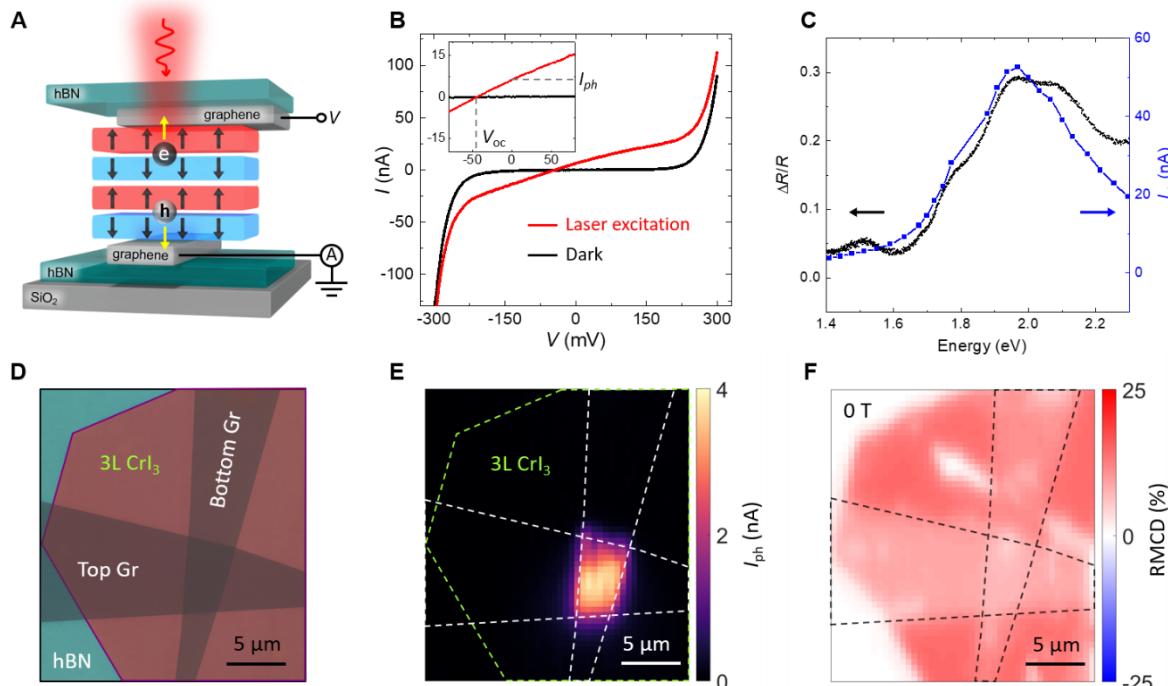
442 44. Y. Wang, J. Balgley, E. Gerber, M. Gray, N. Kumar, X. Lu, J.-Q. Yan, A. Fereidouni, R.
443 Basnet, S. J. Yun, D. Suri, H. Kitadai, T. Taniguchi, K. Watanabe, X. Ling, J. Moodera, Y.
444 H. Lee, H. O. H. Churchill, J. Hu, L. Yang, E.-A. Kim, D. G. Mandrus, E. A. Henriksen, K.
445 S. Burch, Modulation Doping via a Two-Dimensional Atomic Crystalline Acceptor. *Nano*
446 *Lett.* **20**, 8446–8452 (2020).

447 45. D. J. Rizzo, B. S. Jessen, Z. Sun, F. L. Ruta, J. Zhang, J.-Q. Yan, L. Xian, A. S. McLeod,
448 M. E. Berkowitz, K. Watanabe, T. Taniguchi, S. E. Nagler, D. G. Mandrus, A. Rubio, M.
449 M. Fogler, A. J. Millis, J. C. Hone, C. R. Dean, D. N. Basov, Charge-Transfer Plasmon
450 Polaritons at Graphene/α-RuCl₃ Interfaces. *Nano Lett.* **20**, 8438–8445 (2020).

451 46. J. D. E. McIntyre, D. E. Aspnes, Differential reflection spectroscopy of very thin surface
452 films. *Surf. Sci.* **24**, 417–434 (1971).

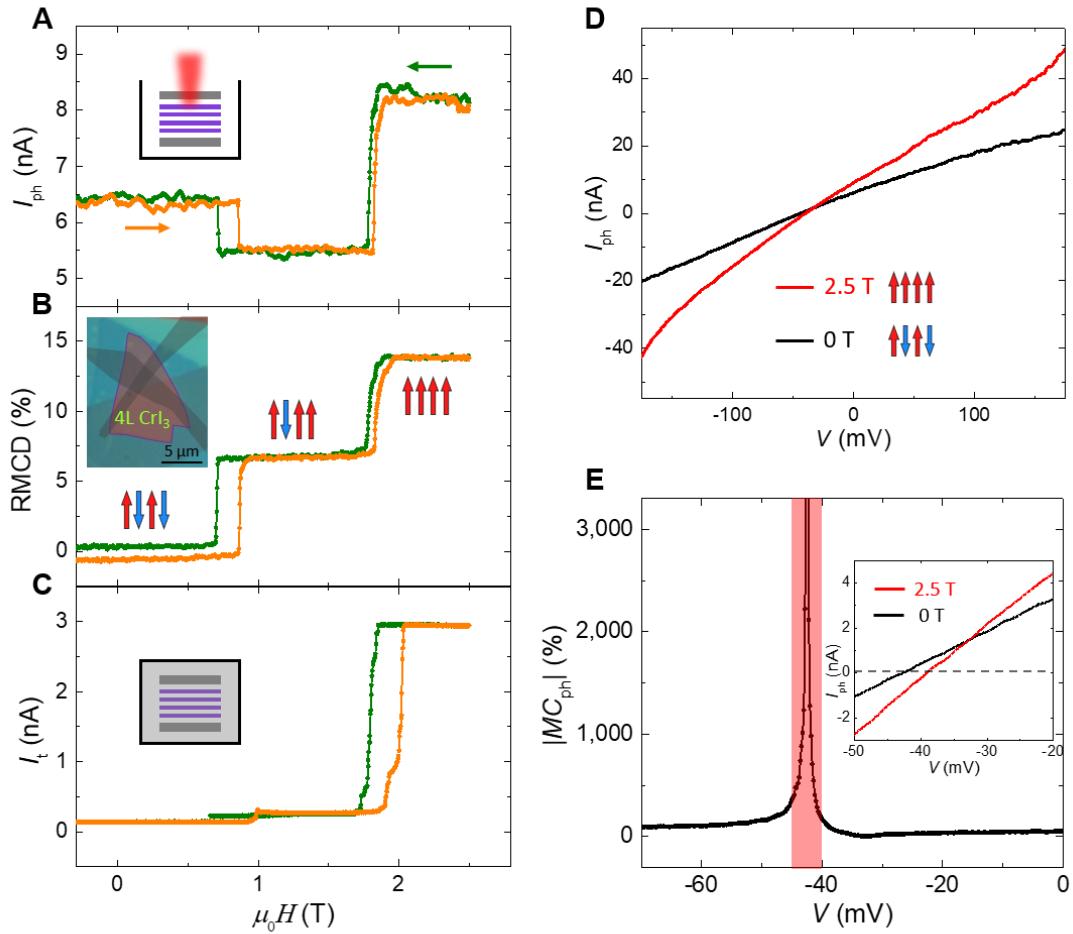
453 **Acknowledgments**

456 **Funding:** This work was mainly supported by Air Force Office of Scientific Research
457 (AFOSR) Multidisciplinary University Research Initiative (MURI) program, grant no.
458 FA9550-19-1-0390. The tunneling current measurements were partially supported by
459 NSF-DMR-1708419. The magnetic circular dichroism and optical spectroscopy
460 measurements were partially supported by the Department of Energy, Basic Energy
461 Sciences, Materials Sciences and Engineering Division (DE-SC0018171). Theoretical
462 understanding is partially supported by NSF MRSEC DMR-1719797, and RGC of
463 HKSAR (17303518). M.W.-Y.T. acknowledges the support from MOST110-2636-M-
464 006-016. M.A.M. was supported by the US Department of Energy, Office of Science,
465 Basic Energy Sciences, Materials Sciences and Engineering Division. K.W. and T.T.
466 acknowledge support from the Elemental Strategy Initiative conducted by the MEXT,

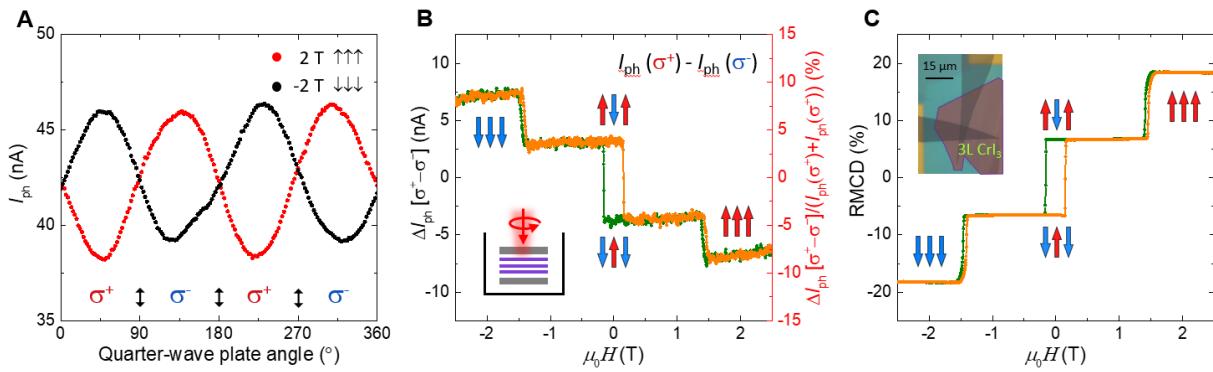

467 Japan, Grant Number JPMXP0112101001, JSPS KAKENHI Grant Number JP20H00354
 468 and the CREST (JPMJCR15F3), JST. X.X. acknowledges the support from the State of
 469 Washington funded Clean Energy Institute and the Boeing Distinguished Professorship in
 470 Physics.
 471

472 **Author contributions:** X.X., T.S. conceived the experiment. T.S. fabricated the devices
 473 and performed the measurements, assisted by E.A. K.S. performed a preliminary reflection
 474 measurement. T.S., E.A., X.X. analyzed and interpreted the results. M.W.-Y.T. and W.Y.
 475 provided theory support, with input from T.C. and D.X., and X.L.. T.T. and K.W.
 476 synthesized the hBN crystals. M.A.M. synthesized and characterized the bulk CrI_3 crystals.
 477 T.S., E.A., X.X. wrote the paper with inputs from all the authors. All the authors discussed
 478 the results.

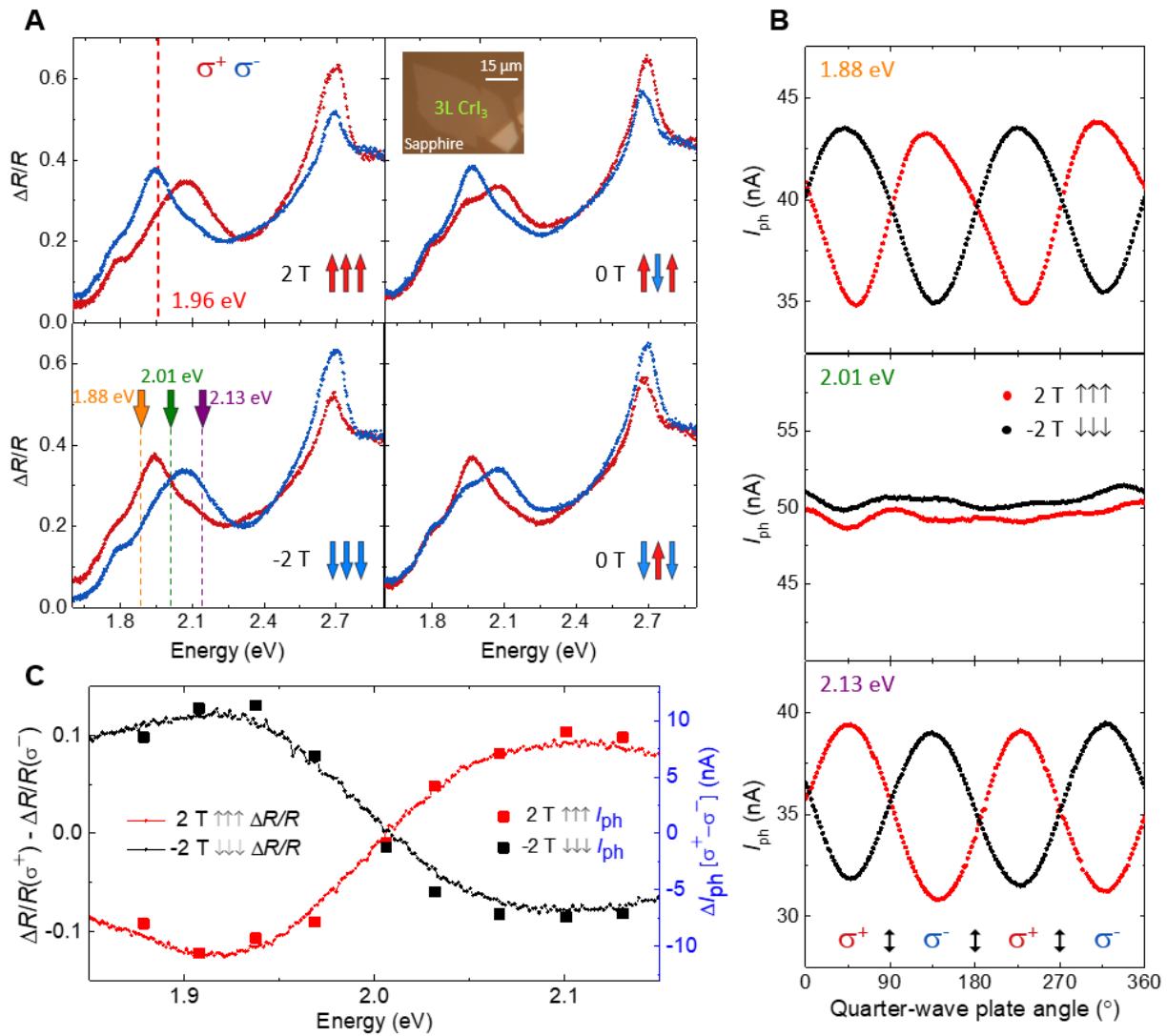
479 **Competing interests:** The authors declare no competing interests.


480
 481 **Data availability:** All data needed to evaluate the conclusions in the paper are present in
 482 the paper and/or the Supplementary Materials. Additional data related to this paper may be
 483 requested from the authors.

484 **Figures and Tables**



485
 486 **Fig. 1. Photocurrent response of CrI_3 junction device.** (A) Schematic of a four-layer
 487 CrI_3 junction device in AFM ground state ($\uparrow\downarrow\uparrow\downarrow$), with top and bottom graphene
 488 contacts and hBN encapsulation. (B) I - V curves of a four-layer CrI_3 junction (D2)
 489 under dark condition (black curve) and with 1 μW of 1.96 eV laser excitation (red
 490 curve). Inset is a zoomed-in view of generated photocurrent at zero bias I_{ph} and
 491 open-circuit voltage V_{oc} . (C) Differential reflectance ($\Delta R/R$, black dots) and
 492 photocurrent (I_{ph} , blue squares) as a function of photon energy for trilayer CrI_3 at -
 493 2 T. The photocurrent is measured from a trilayer CrI_3 junction device (D1) with


494
495
496
497
an optical power of 10 μ W. (D) Optical microscopy image of the 3L CrI₃ junction
device (D1) (scale bar, 5 μ m). (E) and (F) Spatial maps of photocurrent and
RMCD signal measured from the same device at 0 T with an optical power of 1
 μ W (scale bar, 5 μ m).

498
499
500
501
502
503
504
505
506
507
508
509
510
511
Fig. 2. Dependence of photocurrent on magnetic order of four-layer CrI₃. (A) Photocurrent as a function of external magnetic field ($\mu_0 H$) measured from the four-layer CrI₃ junction device (D2) with an optical power of 1 μ W. Green (orange) curve corresponds to decreasing (increasing) magnetic field. (B) RMCD as a function of $\mu_0 H$ for the same device. Insets show the corresponding magnetic states and the optical microscopy image of the device (D2). (C) Tunneling current (I_t) as a function of $\mu_0 H$ measured from the same device at 80 mV bias under dark condition. Insets are schematics of the device with laser excitation and under dark condition. (D) I_{ph} - V curves for the four-layer CrI₃ in the AFM ground state ($\uparrow\downarrow\uparrow\downarrow$, 0 T, black curve) and the fully spin-polarized state ($\uparrow\uparrow\uparrow\uparrow$, 2.5 T, red curve). (E) Magnitude of the photo-magnetocurrent ratio as a function of bias extracted from the I_{ph} - V curves in (D). The red shading denotes the bias range where $|MC_{ph}|$ tends to infinity. Inset is a zoomed-in view of the I_{ph} - V curves in (D).

512
513 **Fig. 3. Helicity dependence of photocurrent in trilayer CrI₃.** (A) Photocurrent as a
514 function of quarter-wave plate angle for ↑↑↑ state (2 T, red dots) and ↓↓↓ state (-2
515 T, black dots) measured from the trilayer CrI₃ junction device (D1) with an optical
516 power of 10 μW. Vertical arrows represent linearly polarized light. (B) The change in
517 photocurrent ($\Delta I_{\text{ph}} [\sigma^+ - \sigma^-] = I_{\text{ph}}(\sigma^+) - I_{\text{ph}}(\sigma^-)$) as a function of $\mu_0 H$ measured from
518 the same device with an optical power of 10 μW. The degree of helicity $\Delta I_{\text{ph}} [\sigma^+ - \sigma^-]$
519 $]/(I_{\text{ph}}(\sigma^+) + I_{\text{ph}}(\sigma^-))$ given on right axis. Insets show the corresponding magnetic
520 states and schematic of the device with circularly polarized light excitation. (C)
521 RMCD as a function of $\mu_0 H$ for the same device. Insets show the corresponding
522 magnetic states and the optical microscopy image of the device (D1) (scale bar, 15
523 μm).

524
525 **Fig. 4. Interplay between magnetic order and photon helicity in absorption and**
526 **photocurrent of 3L CrI₃.** (A) Helicity-dependent $\Delta R/R$ spectra for all four
527 magnetic states of 3L CrI₃ at selected magnetic fields. Red (blue) dots correspond
528 to σ^+ (σ^-) photon helicity. Insets show the corresponding magnetic states and the
529 optical microscopy image of a trilayer CrI₃ on sapphire. (B) Photocurrent as a
530 function of quarter-wave plate angle for $\uparrow\uparrow\uparrow$ state (2 T, red dots) and $\downarrow\downarrow\downarrow$ state (-2
531 T, black dots) measured with three selected photon energies indicated by the
532 dashed lines in (A). (C) $\Delta R/R$ helicity difference ($(\Delta R/R(\sigma^+) - \Delta R/R(\sigma^-))$, curve) and
533 the overlaid change in photocurrent ($\Delta I_{\text{ph}} [\sigma^+ - \sigma^-] = I_{\text{ph}}(\sigma^+) - I_{\text{ph}}(\sigma^-)$, squares) as a
534 function of photon energy for $\uparrow\uparrow\uparrow$ state (2 T, red) and $\downarrow\downarrow\downarrow$ state (-2 T, black).