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Abstract—The high directionality of mmWave communication makes its line-of-sight (LoS) path susceptible to blockage when the user
is moving. Most existing solutions have very stringent requirements on the antennas of the transmitter and the receiver, which are
hardly met by today’s consumer-level commercial off-the-shelf (COTS) mmWave products. In reality, a COTS device uses
low-resolution wide-beam antennas, and hence cannot support the aforementioned methods for NLoS beam switching in response to
the LoS blockage. In this paper, we develop a new method to support high-resolution mmWave multi-path channel resolving based on
coarse-grained wide-beam phased array antennas. We design a novel real-time beam-switching algorithm that allows COTS devices to
estimate the location and reflection coefficient of the dominant reflectors. Whenever the current LoS is blocked, our algorithm can
compute in real-time the best alternative beam direction based on estimated reflectors to establish a strong NLoS link. We
implemented the proposed algorithm on a COTS mmWave device and evaluated the system’s performance on the physical and
transport layer. Our experiments demonstrate the effectiveness of our algorithm on estimating dominant reflectors and calculating
strong alternative beam directions, and its efficacy in providing robust connections for COTS mmWave devices.

Index Terms—mmWave communication, commercial off-the-shelf devices, non-line-of-sight, beam-switching.

1 INTRODUCTION

lllimeter-wave (mmWave) communication is consid-
M ered as one of the most promising technologies for the
next generation high-speed wireless networks [1], [2], [3]. In
contrast to current WiFi and LTE-based 4G communications
that operate at sub-6 GHz frequencies, mmWave network
works at a much higher frequency band, therefore is able
to provide much wider bandwidth for wireless applica-
tions [4], [5], [6]. For example, a mmWave link working at
60 GHz can support a data rate more than 7 Gbps [7]. Such
a high-throughput transmission fits well with data-hungry
real-time applications such as live high-definition video
streaming and virtual reality (VR), which are envisioned to
be the dominant killer applications in the era of 5G [8], [9].

Although mmWave provides many desirable features,
a big challenge for its practical application is the suscep-
tibility to line-of-sight (LoS) blockage [10], [11], [12]. In
particular, the mmWave transmission relies on directional
communication to overcome the high oxygen attenuation
and the signal’s propagation heavily relies on LoS [13],
[14]. When the LoS is blocked by an obstacle, the mmWave
signal can not penetrate through or circumvent around
the obstacle, leading to a significant drop of the received
signal strength. In this situation, one solution is to promptly
steer the communication beam towards a strong non line-
of-sight (NLoS) signal propagation path to maintain the
communication [15].

Many methods have been proposed to find such a strong
NLoS path in the literature, which can be divided into three
categories. The first category uses beam-scanning to search
over the space when a strong NLoS path is needed [16],

The authors are affiliated with the Computer Science and Software Engineering
Department of Auburn University at Auburn, AL 36849, USA. Emails:
{xzh0051, tz10031, tshu}@auburn.edu

[17], [18], [19]. The proposed methods include sequen-
tial scanning through the space and hierarchical scanning,
which begins with a low-resolution scanning over the en-
tire space, followed by iterative higher-resolution scannings
over particular smaller (finer) ranges of directions that are
selected based on the outcome of the previous round lower-
resolution scanning. The average overhead of the scanning
is usually around 100 ms to 200 ms [20], [21]. The second
category assumes a nominal mmWave multi-path channel
model, and then attempts to estimate the parameters of
this model, including the amplitude, angle of departure
(AoD), angle of arrival (AoA), and phase shift of each
signal propagation path, by reverse engineering. For ex-
ample, in [22], [23], based on a measured channel impulse
response (CIR), reverse engineering is performed to find the
optimal channel parameters that best match the nominal
multi-path channel model with the measured CIR. The third
category includes those well-studied array signal processing
techniques, such as MUSIC [24] and ESPRIT [25], [26], that
are pertinent to phased array antennas. These techniques
conduct angular spectrum analysis over signals received at
each antenna element to resolve the multi-path channel.
Despite their good performance, these existing methods
all have very stringent/high requirements on the antennas
of the transmitter and the receiver, which are hardly met
by today’s consumer-level commercial off-the-shelf (COTS)
mmWave products. More specifically, since the methods in
Category 1 require sequential scanning through N different
beam patterns, each of which covers a non-overlapping
(360/N)° slice of the space, the fundamental limitation
of the methods is that the spatial resolution of the beam
scanning is upper bounded by the minimum beam width of
the phased-array antenna. When these methods are directly



applied to the coarse-grained wide-beam antenna, they may
fail to identify those paths that happen to fall within the
same beam pattern. As a result, signal propagation paths
whose AoDs (or AoAs) are separated less than the minimum
beam-width of the antenna would not be distinguishable.
Therefore, to be able to accurately locate a strong NLoS
path, these methods require the use of a narrow-beam horn
antenna or a high-precision narrow-beam phased array an-
tenna that has a large number of antenna elements, typically
costs over $10K. Clearly such a high price tag is unafford-
able to a COTS device. As a matter of fact, current COTS
mmWave products typically use a quasi-omni-directional
antenna (e.g., 180° beam width) for reception, and a coarse-
grained wide-beam (e.g., 60° beam width) phased-array
antenna for transmission [27], [28]. Similar issue exists in
the methods of Category 2. In particular, to measure the
CIR, the receive antenna needs to be able to accurately
separate, measure, and report both the amplitude and the
phase of each lag of the CIR components (in a typical indoor
environment where a COTS mmWave device operates, the
length of a lag is in the order of nanoseconds). Such a high-
time-resolution CIR time-sequence information is typically
not provided by COTS devices. Similarly, the array-signal
angular spectrum analysis techniques in Category 3 require
the accurate amplitude and phase information of the signal
received at each individual antenna element. While a COTS
receiver indeed reports the amplitude information of the
aggregate signal combined from all antenna elements, it
typically does not provide detailed amplitude and phase
information of the received signals at individual antenna
elements.

Due to the above limitations, the aforementioned meth-
ods are not directly applicable to consumer-level COTS
mmWave devices. Only recently, several new path resolv-
ing methods that are suitable for COTS devices are pro-
posed. Among them, non-coherent compressive path track-
ing proves to be the most effective algorithm, e.g., see [29],
[30], [31], [32], [33]. Based on reverse engineering, this algo-
rithm aims to find the direction of the strongest NLoS path
by using only the signal’s amplitude information. Instead
of relying on a measured CIR, the algorithm probes the
channel by sending out a sequence of compressive beacons,
each of which is separated apart in time by a dozen mi-
croseconds. By measuring the amplitude of each received
beacon on the receiver side, the algorithm finds the optimal
AoA and AoD that best match the sequence of amplitudes
calculated according to the nominal channel model to that
of the received beacons. While upon each channel probing
(i.e., the transmission of a group of compressive beacons)
this method is able to obtain the strongest NLoS path of that
moment, it incurs high channel-probing overhead when one
needs to keep tracing the change of the strongest NLoS path.
For instance, this happens for a user playing an electronic
VR game, whereby the direction of the strongest NLoS path
keeps changing due to the user’s movement. Due to this rea-
son, compressive sensing-based approach is mostly suitable
for dynamic application scenarios with frequently changing
environment and moving users, under which repetitively
probing the channel to catch up with the frequent movement
of reflectors in the environment is necessary. However, for
those application scenarios where the environment is mostly

2

static but the user could be moving, which are typical in
most of the household applications, such repetitive probing
may not be an efficient solution, as the reflectors in the
environment are hardly changed.

Keeping the limitations and weaknesses of existing
methods in mind, in this paper we are interested in devel-
oping a new method to achieve high-resolution mmWave
multi-path channel resolving result using coarse-grained
wide-beam phased array antennas that are commonly
equipped on today’s COTS mmWave devices. Based on this
new method, we further propose an efficient computation-
based beam-switching algorithm that can directly predict
a strong NLoS path (ie., without the overhead of per-
prediction probing) whenever the LoS blockage happens
and a strong NLoS backup path is needed. With these
efforts, it becomes feasible for a commercial available device
to perform fast and high-resolution NLoS beam switch-
ing. Our proposed method is most suitable for static-
environment application scenarios, thus fills into the regime
where the non-coherent compressive path tracking method
does not perform efficiently.

More specifically, to address the challenge of achieving
high-resolution multi-path channel resolving based on a
coarse-grained wide-beam antenna array, we perform fine-
grained spatial scanning of the antenna array and exploit
the high spatial resolution of the differential received signal
strength (RSS) information measured when the antenna
array is turned to point to different directions with small
steps. One key insight here is that the wide beam-width of
the antenna array does not prevent the array from turning
to scan the space in a fine resolution (e.g., with a step of 1°
increment in the direction of the antenna beam). The differ-
ential RSS information associated with the spatial scanning
process, which naturally has a high spatial resolution (e.g.,
in a resolution of 1°), is then exploited by a novel two-
step multi-path channel resolving algorithm. In particular, a
low-resolution out-lobe resolving step is first performed to
identify the clusters of paths that are separated more than
the beam width of the antenna array. Then, for each cluster,
a high-resolution in-lobe resolving step is performed, which
utilizes reverse engineering to compute the optimal in-
cluster fine-grained paths that offer the closest match with
the measured RSS of that cluster.

Our reflector-based NLoS beam-switching mechanism is
then built upon the above channel resolving process. In
particular, our method consists of two phases: the offline site
survey phase and the online operational phase. In the site
survey phase, our model aims to construct a reflector map
by estimating the locations and reflection coefficients of the
dominant reflectors in the environment, through a sequence
of coordinated differential RSS measurements at multiple
locations. At each location, the above channel resolving
process is called to compute the top-K strongest NLoS paths
generated by the dominant reflectors. Exploiting the sparse
nature of the mmWave channel, the NLoS paths computed
at different locations are then used to estimate the location of
the dominant reflectors. Furthermore, based on the Fresnel
reflection model assumption, the reflection coefficient of
each dominant reflector is calculated by a minimum mean
square error (MMSE) estimator based on the RSS measure-
ments. Note that the offline site survey phase is basically a



one-time operation for static or quasi-static environments.
The next offline site survey is not needed until there is a
significant change on the layout of the environment (e.g., a
new steel furniture is just added so the reflection layout is
changed).

This reflector map is subsequently used in the online op-
erational phase to calculate the supposedly strongest NLoS
path at the current location of the user. Note that during this
phase, our system can instantly calculate the NLoS path and
does not require any additional probing effort. The main
beam of the transmit antenna is then steered accordingly to
maintain the ongoing connection when the LoS is blocked.

To verify the performance of the proposed method,
we implement our algorithm on a COTS mmWave de-
vice MikroTik WAP 60G transceiver set [28].The system is
tested in an indoor environment for both static and mobile
applications. The results show that our system is able to
accurately estimate the locations of the strong reflectors in
the test environment. In case of LoS blockage, by steering
the transmit antenna towards the directions indicated by the
proposed algorithm, the system is able to achieve a 200%
to 300% throughput gain over the case that the transmit
antenna is always pointing to the LoS direction. Our re-
ceived signal strength indicator (RSSI) measurement at the
physical layer also shows that our algorithm can recover the
link performance more quickly from blockage and achieves
better stability than the device’s built-in 802.11ad based
method.

The remainder of the paper is organized as follows.
We present our system design in Section 2. The test-bed
implementation is described in Section 3. The test settings
and test results are presented in Section 4. And we conclude
our paper in Section 5.

2 SYSTEM DESIGN
2.1 Problem Statement and Solution Framework

We consider an indoor mmWave communication scenario
where the room layout is static, and there is only one
link consisting of one mmWave access point (AP) and one
mmWave adapter (referred to as the client). Without loss of
generality, we consider an uplink case: the AP is the receiver
and the client is the transmitter. Just like those consumer-
level off-the-shelf mmWave products, we assume the AP
uses a quasi-omni-directional beam pattern for receiving,
while the client is equipped with a low-end phased array
antenna with coarse beamforming capability for directional
transmission.

For indoor mmWave communication, a strong NLoS
path is used to maintain the connection when LoS is being
blocked. In a static communication scenario where both the
transmitter and the receiver are located at fixed positions,
the NLoS paths should also remain static therefore can be
measured in advance. However, what we consider here is a
more common but challenging scenario: the AP is static but
the client is mobile, e.g., in a wireless VR game, making
the NLoS paths change as the client moves . The pre-
measurement method will fail under this scenario due to the
infinite number of possible transmitter locations. So how to
determine the real-time NLoS paths for a mobile transmitter
is the problem we are trying to solve here.

3

Fortunately, the strong NLoS paths are not randomly
distributed. Instead, they are heavily dependent on the
locations of the transmitter, the receiver, and the mmWave
signal reflectors in the environment. Specifically, the high
frequency of mmWave and the usage of transmit antenna
array make the communication quasi-optical: in a typical
indoor environment such as an office or home, most of the
strong NLoS paths are formed by the first-order specular
reflection from reflectors in the environment. Note that we
are mainly focused on indoor applications in a small-to-
moderate-size room, where the likelihood for the existence
of some reflective surfaces, such as concrete walls and book
shelves, is high. Due to the wide availability of these reflec-
tive objects, the NLoS paths generated by these reflectors
can cover most area of the room. Therefore the assumption
that there exists a strong NLoS path should be reasonable
for the indoor scenarios considered in this work.

Based on this fact, we take a generative method to solve
our real-time NLoS paths resolution problem. In particular,
we intend to create a model for dominant reflectors in the
environment based on some site survey process. This model
describes the location, orientation, and reflection coefficient
of each dominant reflector. We then put the model into op-
eration: at a given client location, the real-time NLoS paths
are simply computed as the specular reflections generated
by those dominant reflectors according to the model.
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Fig. 1: First order reflection model.

This idea is better illustrated in Figure 1, where the
locations of the client and the AP are (z;,y;) and (z,,y,),
respectively. And we assume there is only one reflector R
(the solid black line) for simplicity of presentation. Clearly,
given (x¢,y:), (xr,yr), and the location and orientation of
the reflector R, there is a unique path, highlighted in yellow
in Figure 1, by which the signal transmitted from the client
can be specularly reflected by the reflector, and received
by the AP. The uniqueness of this path is owing to the
law of reflection, i.e., in the case of specular reflection, for
each incident ray, the angle of incidence equals the angle
of reflection. It is easy to verify that point D is the only
position on the reflector through which the incident ray
from the client can be specularly reflected and received by
the AP, while other positions on the reflector contribute to
the weak diffusive scattering, as denoted by the blue dotted



lines. Here, point D is the intersection between reflector R
and the line segment connecting the client and the mirrored
image of the AP (referred to as virtual AP), defined w.r.t. the
reflector. Consequently, the reflection-induced NLoS path
cluster simply consists of a strong specular reflection path
(the solid yellow path), surrounded by a set of weak diffu-
sive reflection paths (the dotted blue paths).

The insight is that point D can be uniquely decided
by the AoD (say «) and the AoA (say /) of the specular
reflection path: it is just the intersection between a line
passing through the client with an orientation of o and a line
passing through the AP with an orientation J. Therefore,
given o and 3 are known, the location and orientation of the
reflector R can be uniquely decided by two independent sets
of AP and client locations. However, /3 is unknown in our
problem setting, due to the omni-directional receive antenna
of the AP. This condition poses challenges to the reflector
modeling.

We propose the following approach to address the above
challenge in the localization of R. The reflector in a 2-D
space can be modeled as a line segment with math repre-
sentation Az + By + C =0 (A, B,C € R), where R is the
set of real numbers. In this assumption, we do not consider
the actual length of the reflector, because in reality the size
of a dominant reflector is usually big enough to cover most
of the locations through reflection in a small-to-moderate-
size room, which is the setting of interest considered in
this work. Let the AP’s position be (z,, y,), and the client’s
location be (2, y:). Denote the location of the virtual AP by
(z).,y..). The location of the virtual AP satisfies the following
condition:

z, + + ¥,
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Next we will find another constraint for the virtual
AP’s location. Let ¢ be the angle of departure (AoD) of
the specular ray (¢ # 7). Then the incidence part of the
specular reflection path can be represented by:

tan(p)(x — z¢) = (y — yr). ©)

The incidence ray follows the law of reflection: the
incident angle equals to the reflection angle. So the location
of the virtual AP must satisfy Eq.(3). Substituting (z/.,y..)
into the equation, we get:

Yy = tan(d)(x) — ) + yr- @)
Substituting Eq.(4) into Eq.(2), we have:
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Eq.(5) provides an analytical condition that must be met
by the locations of the AP and the client, the AoD, and
the location and orientation of the reflector. Because the
locations of the AP and the client can be measured, and
(zr,yr) and (z¢,y;) are considered known. Meanwhile, as
will be clarified in Section 2.2, the AoD ¢ of the specular
reflection path can be estimated through a sequence of
RSS measurements accompanying the steering of the wide-
beam transmit antenna. So ¢ is also considered as a known
value. Therefore, Eq.(5) only depends on variables A, B,
and C. As a result, we need at least three independent sets
of < ¢, (x¢,y:) > to uniquely determine the location and
orientation of the reflector.

To the best of our knowledge, this is the first frame-
work in the literature that supports the computation of
the reflector’s location and orientation without knowing
AoA, neither any phase information of the received signal.
Our framework does require some knowledge on AoD,
but the acquisition of this information does not rely on
high-precision narrow-beam transmit antennas or any phase
information of the signal, as will be described in Section 2.2.
This is in sharp contrast to existing methods that rely on
high precision phased array antennas and the phase infor-
mation on both sides of the link to obtain accurate AoA and
AoD in order to localize the reflectors [26].

2.2 Locating Dominant Reflectors
2.2.1 Design Philosophy

Dominant reflectors are reflectors that create strong NLoS
paths for most of the indoor positions. Although the number
of reflectors a mmWave radio can see vary with the device’s
location, there are only a few dominant reflectors in a re-
alistic environment because of the sparsity of the mmWave
channel, and most of dominant reflectors are static metallic
surfaces that have low reflection losses.

We already show that a reflector can be uniquely de-
termined by three independent sets of < ¢, (x¢,y:) >, so
deriving the AoD of the specular ray associated with the
dominant reflectors (i.e., ¢;, for the i-th dominant reflector)
is a crucial step in determining the dominant reflectors’
location and orientation. We propose to determine ¢;’s by
measuring the RSS at the receiver as a function of the beam
direction of the transmit antenna. In particular, let 0,4
denote the center angle of the main lobe of the transmit
antenna. Given an omni-directional receive antenna, the RSS
at the receiver is a function of ,,,,4, denote as P, (0,,,;4) and
is given by
N 2
Z D(07nid|¢i)giejéi 9 (6)

=0

Pr(emid) = Pt

where P, is the transmit power, and we have assumed that
the mmWave channel has N + 1 paths (so there are N
dominant reflectors), and the i-th path has a path loss, AoD,
and path phase shift of g;, ¢;, and §;, respectively. e is the
natural logarithm, and j is the imaginary unit. D(¢;|0,,:4) is
the transmit antenna gain at the AoD ¢;, given that the main
beam of the antenna is pointing at 6,,;4. Without loss of
generality, we assume D(¢;|0,niq) = 1if [¢;—Omid| < Oveam
and D(¢;|0mia) = 0 otherwise, where 204, is the beam
width of the main lobe of the transmit antenna.



Clearly, according to Eq.(6), ¢;’s can be easily resolved by
steering a narrow-beam transmit antenna with small Opeqm,
to perform a 360°-scanning of the space. However, note that
in our problem we have a low-end phased array antenna
with a wide beam-width. The reduced angle resolution (i.e.,
large Opeqm) makes it challenging to resolve the ¢;’s.

One way to resolve ¢;’s is through reverse engineering,
i.e., by considering (¢;, gi,d;)’s as variables, and then re-
solve them by solving a set of nonlinear equations defined
by Eq.(6), where P, is measured at multiple 6,,,4’s. In this
case, the optimal N° and (4?,¢7,6?), 0 < i < N°, can be
simply calculated as the optimal solution to the following
minimum mean square error (MMSE) problem:

2
minimizei/ |Pr(Omia) — PP (Omia)|*dOmia,  (7)
2m Jo

where P,.(0:4) is defined in Eq.(6) and P™(0,,,:4) is the
RSS measurements.

Although the above method fits in our problem and
provides promising solutions, the computation complexity
is high, which makes it unsuitable for COTS devices. In
addition, it provides more than what the problem needs.
Notice that, for the purpose of finding a NLoS backup path,
what we are interested in is only the top few (say K, where
K is a small integer) dominant reflectors that provide the
strongest NLoS paths. Therefore, resolving the whole set
of NLoS paths, as in the MMSE method, is unnecessary.
Based on this observation, we propose to only consider
the K particular 6,,4’s that correspond to the top-K RSS
peaks in the function P™(0,,;4), and use these K 0,,,4s to
estimate the AoDs of the top-K dominant reflectors in the
environment.

This idea can be better illustrated as follows. We begin
with the simplest scenario: suppose we only have one
reflector, say R, in the environment. The specular reflection
direction to I?; is denoted as ¢, as shown in Figure 2a. As
the transmit antenna scans from 6,,,;4 = 0 to 360°, the RSS
measured at the AP should present a trapezoid shape as
shown in Figure 2b, where the high RSS level in the range
of 1 — Opeam < Omia < 1 + Opeam is due to the fact
that the AoD of the specular ray ¢; is within the main lobe
when the transmit antenna is scanning in this range. So, for
the single-reflector case, the peak of the RSS, defined as the
center of the RSS high level, corresponds to the AoD of the
specular ray ¢1, as shown in Figure 2b.
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(a) Single reflector specular (b) RSS pattern of single reflec-
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Fig. 2: Single reflector scenario.

Now let us consider a more complicated scenario where
there are two reflectors in the environment, as shown in
Figure 3a, where AoDs of the two specular rays are denoted
by ¢1 and ¢9, respectively. Without loss of generality, we
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assume that ¢; < ¢2. Note that if ¢; and ¢, are separated
far apart such that ¢ — ¢1 > 20@pcqm, then each of the
two AoDs can be resolved separately as two independent
single-reflector cases (i.e., the two peaks of the RSS curve
correspond to ¢; and ¢» respectively). Now let us con-
sider the case that ¢; and ¢, are close enough such that
@2 — 1 < 20peam- In this case, as the transmit antenna
scans from 0,,;4 = 0 to 360°, the RSS measured at the
AP should present the pattern shown in Figure 3b, where
the different levels of RSS are due to the fact that different
combinations of the specular rays are in the main lobe as
the transmit antenna scans. Clearly, in this case, the peak of
the measured RSS corresponds to the center angle of ¢; and
oo, ie., %(¢1 + ¢2). Physically, this means that because ¢,
and ¢- are close to each other, the reflectors R; and Ry are
actually considered as a cluster of reflectors, and the peak of
the measured RSS simply corresponds to the center AoD of
this cluster.

Ry R,
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(a) Multiple reflectors specu- (b) RSS pattern of multiple re-
lar reflection case. flectors.

Fig. 3: Multiple reflectors scenario.

To simplify the presentation, we have assumed that the
beam pattern of COTS devices has a regular pie shape, but
the insight here is general enough to accommodate any
regular/irregular beam pattern function. This is because
changing the beam pattern only changes the coefficients of
antenna gain, but does not change the structure/nature of
the problem.

Note while Figures 2b and 3b are showing symmetric
RSS peaks in concept, the measured RSS peaks in reality
are rarely symmetric. As shown in Figure 4, the measured
peaks are usually skewed, mainly due to the large number
of scatters (i.e., small/minor reflectors) surrounding the
major reflector and the heterogeneous reflection efficiency
of the reflectors. Therefore, while a measured RSS peak
provides a rough range of directions where one or several
major reflectors could reside in, simply interpreting the mid-
point of the RSS peak as the AoD of one major reflector is
inaccurate and misleading, for the peak could be generated
by multiple close-by major reflectors.

How to accurately resolve the major reflector(s) from the
skewed RSS measurements constitutes a challenge.

2.2.2 Two-step Fine-Grained Multi-path Channel Resolving

We solve this challenge by a novel two-step multi-path
channel resolving algorithm. The main idea is to first iden-
tify clusters of major reflectors by evaluating the peaks of
measured RSSI, and then apply reverse engineering within
each RSSI peak to resolve the optimal in-cluster reflector
setting that offers the best match with the measured RSSI in
that peak.
The detail of our algorithm is described below:



(1) Low-resolution out-lobe resolving: Since the goal of
the algorithm is to resolve for £ dominant reflectors, we first
need to decide the ranges of 8,,,,¢ where these K dominant
reflectors reside in. This is done by picking the K highest
peaks in the curve P™(,,;4), as illustrated in Figure 4.
Notably, the curve P™(,,,;4) is obtained by using the fine-
grained spatial scanning process. Specifically, the process
steers the transmit antenna to point Omiaq to a sequence of
N angles respectively, denoted by 6,,...,60y, which are
evenly distributed between 0° and 360° with a step size
w = 360°/N, ie., 0; = iw for 1 < i < N. At each 6;, let
the measured RSSI at the receiver be P™(6;). Recall that we
are only interested in NLoS paths, so those 6;’s that belong
to the LoS should be excluded in our subsequent range
selection. Let the LoS direction be ;5. Since the half beam
width of the transmit antenna is Oyeq.m, a 0; is considered
belonging to the LoS if 01,05 — Opeam < 0i < 0105 + Obeam-
For example, in Figure 4, the LoS direction 0;,,5 is 330°, and
the half beam width of antenna is 30°. So RSS measurements
between 300° to 360° are considered belonging to the LoS
range and are ignored during subsequent NLoS path ranges
selection procedure.

Our range decision is iterative: we decide one non-
overlapping range for 6,,;4 in each iteration, and our de-
cision concludes after K iterations, resulting in K non-
overlapping ranges. In particular, in the k-th iteration we

e(k) a(k)

decide a range [ row> Ohi gh] that includes the following

angles:
k=1 _
05 = argmax { P™(0,) |0; ¢ U [Ql(gl)ﬂ,ﬁgi;h} .8
j=1

And all adjacent 6;’s that are within the half beam of 07, but
are not included in any of the ranges decided in previous

(k) k)

iterations, i.e., [0low, b gh} includes the following 6;’s:

{9z|92 - Gbeam S 91 S ez + ebeam} and
k—1
o ¢ \J [0 0000] . @
j=1

where Hl(fz} and Qgsgh are the smallest and the largest ele-
ments in the above set, respectively. A 0; is excluded from
the subsequent iterations if it has been included in one of the
ranges decided in previous iterations. Note that by picking
the above K ranges, we do not mean that the AoDs of the
top-K dominant reflectors should reside in each of these K
ranges (i.e., one in each range). Instead, the AoDs of the top-
K dominant reflectors should reside in the union of these K
ranges.

(2) High-resolution in-lobe resolving: Now that we have

o~ 9,(2,1}, 1<k <K,

the top-K ranges of 0,4 as [ Lo
we need to resolve the reflectors whose AoDs are within
these ranges. Without loss of generality, let us consider the
k-th range. Suppose there are N reflectors in this range,
and accordingly there are N NLoS paths (this is because
each reflector generates exactly one NLoS path via its spec-
ular reflection) in the cluster defined by this range. And
each path can be characterized by its propagation (and

reflection) path loss, AoD, and path phase shift, denoted

64
)

. I .
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Fig. 4: Out-lobe resolving based on measured RSSI (scanning
step w = 5°).

by g¢i, ¢i, and §; respectively, for the i-th NLoS path,
where 1 < ¢ < N. Considering the beam width of the
transmit antenna, notice that for the k-th range, we have

Gl(fgj — Opeam < ¢ < Hégh—l-@beam foralll <i < N.Given
that the main beam of the transmit antenna is pointing at
Omid, the transmit antenna gain for the i-th NLoS path is

given by

D(Omialpi) = .
(Ormial:) 0 otherwise.

(10)

Therefore, when the transmit antenna is scanning within

the k-th range, the RSS at the receiver can be analytically
described as

{1 ¢'L - ®beam < emid < (bi + ebeam

N

Z D(H'mid | ¢i)gi€j5i

=1

2
Pr(emid) =P 791(51)0 < emid < el(z}z;h

(11)
To resolve for g;’s, ¢;’s, and d;’s, we use reverse engineering:
we would like to decide the optimal ¢¢’s, ¢¢’s, and J7’s that
would make P,(6,,:4) the closest match, in the mean square

error (MSE) sense, with the measured RSS P™(6),,,;4) at the

(k) (k)

discrete angles 6, € [9low, high} ,i.e.,

(k)
Orign

S |P6) - P

0,=6(")

minimize (12)
99,69,62,iEN
In our evaluation part, the signal gain g is from -50 dB to
-70 dB with step size 0.01 dB. The angle direction ¢ is from
[Hl(fl)u, 9,(5; ») with a step size 0.1°. And phase J is from 0° to
360° with a step size 0.1°

Compared with the global range (from 0 to 360°) reverse
engineering in Eq.(7), the scale of the above local range
optimization, in terms of the number of variables to be
optimized, is much smaller therefore the optimization can
be achieved much faster. This is for the ground truth number

of reflectors in [Gl(fql, 9,(5;
that in [0°, 360°], so a small N in Eq.(12) is usually sufficient
to obtain small MSE in the objective function. To verify the
point, we solve the optimization problem in Eq.(12) for the
top-3 ranges highlighted in Figure 4 under various N’s. As a
representative outcome, Figure 5 plots the normalized MSE

for the optimization in range 1 as a function of N, where the

h} should be much smaller than



normalization is w.r.t. the square of the maximum measured
RSS in range 1. It can be observed that the normalized
MSE in this case goes down quickly as N increases, and
remains almost flat after N > 3, implying that N = 3 is an
acceptable estimation for the ground truth number of major
reflectors in this range. Note that our resolved top-N dom-
inant reflectors are in fact dominant reflector clusters, each
of which represents an aggregation of multiple closed-by
reflectors and do not have one-to-one correspondence with
actual physical reflectors. Both specular and diffusive (or
scattering) reflection effects have already been aggregated
into these reflector clusters.

Normalized MSE
3% 4% 5% 6% 7%

2%

1%

Fig. 5: Normalized MSE v.s. N.

The AoDs of the top-K dominant reflectors are decided
by pooling the reflectors resolved over all K ranges together,
and picking the top-K among them with the smallest propa-
gation losses (i.e., highest g;’s). For example, Table 1 lists the
optimized g¢;’s and ¢;’s for the top-3 ranges in Figure 4 for
N = 3. The optimized d;’s are not shown in the table due
to space limit. The top-3 dominant reflectors are decided
as: Reflector 1 in range 1 (path loss = -55.83 dB, AoD =
172.5°), Reflector 1 in range 3 (path loss = -55.96 dB, AoD
= 275.8°), and Reflector 3 in range 3 (path loss = -56.19
dB, AoD = 235.2°). Among them, it can be observed that
the AoDs of the last two dominant reflectors are separated
less than the beam width of the transmit antenna. These
results verify that the proposed two-step algorithm can
achieve fine-grained multi-path channel resolving by only
using coarse-grained wide-beam antennas. We then use a
real testbed to evaluate the accuracy of the resolved paths
and their effects in maintaining mmWave connections in
Section 3.

TABLE 1: Multi-path channel resolving result.

[ Par g1 ¢1 92 P2 g3 3 |
Pl 5583 172.5° —57.60 134.4° —60.37 152.3°
P 6147 210.9° 5684 196.8° —56.54 243.2°
P 5596 275.8° —58.15 257.8° —56.19 235.2°

2.2.3 Localization for the client and the AP

Aiming for real-time beam switching under the mobile
scenario, the accurate location information of the client and
the AP is essential in the proposed framework. However,
the GPS localization is not suitable for the indoor usage
scenario. Moreover, the resolution of the GPS system is low,
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typically in several meters, which does not meet the preci-
sion requirement of our problem. To obtain high precision
localization information, we use the HTC VIVE VR system
to track the real-time location of the client. Note that the
VR system can be replaced by any indoor mmWave device
localization method, such as the mmWave AP triangulation
[27] or AP device localization mentioned in [34].

2.2.4 Matching the AoDs

To fully determine a dominant reflector using our frame-
work, we need at least three independent sets of <
¢, (x¢,y:) >. Therefore, in an environment with multiple
dominant reflectors, how to identify those AoDs that are
measured at different client locations but are associated with
the same dominant reflector raises another challenge.

To address this issue, we exploit the sparsity of the
mmWave channel, which dictates that the mmWave chan-
nels at two nearby locations are caused by the same set of
dominant reflectors. So their spatial channel profiles (SCPs)
are tightly correlated in the sense that their AoD realizations
associated with the same reflector are also close-by to each
other [23]. To utilize this property, we propose the following
AoD measurement and matching process. We fix the AP’s
location, and measure the RSSI at the AP as a function
of 0,4 when the client is positioned at several nearby
locations, respectively. Denote this set of nearby locations
as set S. We then identify the top-K AoDs at the first
client location based on the RSSI-@m'g measurement made
at that location. Let ¢(11),¢§1), . .,¢I? denote these top-
K AoDs, associated with K strong dominant reflectors,
say Ry, Ra, ..., Rk, respectively. Let qbz(-J ) denote the AoD
realization associated with reflector R; at a different client
location j € S. To decide ¢§j ), one simply finds the peak
RSSI measured at client location j that is nearest to (;551). The
Omiq corresponding to this peak RSSI is gzbl(-] ),

The above process is illustrated in Figure 6, where the
RSSI-0,,,¢ measurements have been made at two close-by
locations, represented by the blue curve and the red curve,
respectively. To decide the AoD realizations of three strong
dominant reflectors at these two locations, we first pick the
top-3 AoDs on the blue curve, and label them as NLoS1
through NLoS3 in blue. Then, the AoD realization of NLoS1
on the red curve is simply the red peak nearest to the blue
peak of NLoS1. The AoD realization of NLoS2 and NLoS3
on the red curve can be decided in a similar way.

NLOS2, NLOS2 o
-50 - TR
; .

521 4 \ TNV \ i hVA g

==
i —:Measurment2
P 1
il

O i

541 '{i“r’/‘g A

56

RSSI

-58 -
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-62

!
64 I I I I I I I I I I I I
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Angle (in Degree)

Fig. 6: NLoS path matching between two different client
locations.

Based on our methods, we are able to obtain a sufficient
number of < ¢;, (x¢,y;) >'s for each of the K strongest



dominant reflectors identified in the AoD matching process,
based on which the proposed framework in Eq.(5) can be
applied to calculate the location and orientation for each of
these strong dominant reflectors.

2.3 Model Driven RSSI Estimation

In this section, we present a received signal strength estima-
tion model to predict the link performance of the mmWave
NLoS backup paths in real-time. When the LoS path is
blocked, the aforementioned dominant reflector map pro-
vides K NLoS candidate paths for the transmit antenna to
steer to. Selecting the best one among them will be critical
to retain a comparable performance to that of the LoS path.
However, the naive sequentially trial-based method will
result in significant delays in beam switching, therefore
undermining the stability of the connection. To achieve
a better seamless beam switching performance, we use a
model-driven approach on the transmitter side to predict
the quality of each NLoS backup paths, so the transmit
antenna can choose the best path directly.

Among the K NLoS candidate paths provided by the
dominant reflector map, let us consider the one associated
with the i-th dominant reflector. If the transmit antenna
beam is switched to this path, then the received power P,
at the receiver is given by:

p_ PGG,
LR,

(13)

Here P, is the total transmission power, G; and G, are the
transmitter and receiver’s antenna gain for the path; Ly and
R, are the free space loss and the reflection loss of the path,
respectively. The total transmission power is a constant for
a COTS device. The antenna gains are also fixed, because
the receive antenna is omni-directional, and the path is in
the main lobe of the transmit antenna (so G; = 1). Next, we
will explain how to calculate L; and R;.

1)Free space Loss: According to the Friis’s law, the free

space loss Ly is:
A \2
Li(d) = | -—
1(d) (47Td) :

where )\ is the wavelength of the carrier frequency and d is
the length of the NLoS path.

Our model considers the specular reflection, so the trans-
mission path length d between the client and the AP is equal
to the distance between the client and the virtual AP, which
can be calculated using:

d=/(z¢ — )2+ (e — y})?,

where the virtual AP’s location (z.,y,.) is defined w.r.t. the
i-th dominant reflector and is given by Eq.(2).

2)Reflection Loss: The reflection loss depends on the
material of the reflector, and can be characterized using
the Fresnel reflection coefficient(I") [35], [36]. There are two
Fresnel equations for two different polarization cases. And
we use a simplified version of the horizontally polarized
model, under which the Fresnel coefficient is given by:

FH:SiIl'L/)*\/&n*COSz?/J’ (16)
sin + /&, — cos?

(14)

(15)

8

where ¢, is the relative permittivity of the reflective mate-

rial, 9 is the grazing angle. Notably, the ¢, remains as a

constant and does not depend on the carrier frequency [35].

The grazing angle is the angle between the incident ray and

the reflecting surface, since we have already modeled the

reflector as a line segmentation Az+By+C = 0, the grazing
k — tan(o)

angle can be calculated by:
— 17
1+k:-tan(¢))’ (17

where k = —A/B is the slope of the reflector surface, ¢ is
the specular ray AoD, given by:

(B? — A%z, — 2ABy, — 2AC — (A% + B?)x,
(A2 — B?)x, — 2ABx, —2BC — (A% + 32)3678)

1) = arctan (‘

tan(¢) =

where (z;,y;) is the real-time location of the client, and
(2, yr) is the location of the AP. The reflection loss can then
be represented as [35]:

2

2
siny + /&, — cosZ

1
R =|—| = . 19
" |Tx siny — /&, — cos2 1 (19)

Note that the above theoretical model only describes the
general pattern followed by the RSS on this path. To make
this model fit in our particular operation environment, we
use a regression for model parameter fitting. In particular,
we consider the following decibel form of the RSS for the
NLoS path associated with the i-th dominant reflector:

PY(d, ) =
sin w+\/m (20)

sin ¢ — \/m
We estimate the parameters ~;, 7;, 7; and (; of the model
offline using regression when the transmit beam is switched
to the i-th dominant reflector with known AP and client
locations (so d and v can be calculated). The data is gath-
ered using the empirical RSSI readings generated by the
device’s firmware (unit in decibel). The regression functions
PT(»Z)(d, ¥),1=1,..., K, are then used online to model the
received signal strength for the K NLoS paths offered by the
dominant reflector map at new client locations. When the
LoS is being blocked, our system can compute the RSS of
different NLoS paths and directly switch the transmit beam
to the best one among them.

ki — 20m; 1ogy (d) — 207; logy o

2.4 Overhead/Cost Analysis

In this section, we provide a overhead/cost analysis for our
proposed method. The total overhead of the system consists
of the following two components:

1) Offline calibration phase: As we have discussed in
Section 2.1, to fully determine the location and orientation of
environmental reflectors, we need at least three independent
sets of < ¢, (x¢,y;) > for algorithm processing. During the
calibration phase, we fixed the AP location and move the
client to three different locations to perform a 360° fine-
grained spatial scanning. The scanning step is w. For each
step, we record the RSS from the AP side, so in total we
collect 3 - @ RSS measurements. In our test, each RSS
measurement is represented by a 4 byte float number, and w
is set to 5°, so the total information needed is 864 byte.



Low-resolution out-lobe resolving: In this part, for each
(360° /w) number of RSS measurements, our algorithm de-
termines K RSS ranges for high-resolution in-lobe resolv-
ing. An iterative approach is used to determine these K
ranges, so the time complexity is O(K). Since the number
of dominant reflectors in an indoor environment is usually
limited, a small K is sufficient to provide stable NLoS paths
for robust communication. In our experiments, we set K
to 3 and the actual time spent by low-resolution out-lobe
resolving process is negligible.

High-resolution in-lobe resolving: For each RSS range
extracted from the low-resolution out-lobe resolving phase,
it contains (20pcqm/w) RSS measurements, where Opeqm
denotes the half beam width of the main lobe. And we
need to solve NV sets of g{’s, ¢7’s, and 6;’s for each selected
range. In this step, we use an optimization tool to solve the
proposed MMSE problem. In our test, we use the MatLab
fmincon function with default interior-point method. We
have validated that a small N (3 to 4) is usually sufficient
to obtain a sufficient small error in the objective function.
With an Apple iMac with 3.4 GHz Quad-Core Intel Core i5
CPU, the optimization can be done within 10 seconds for
each range when N is set to 3.

RSSI Regression: For each of the K dominant reflectors,
we estimate the parameters x;, 7;, 7; and (;,7 € K of the
model offline using regression when the transmit beam is
switched to the i-th dominant reflector with known AP and
client locations. The data is gathered using the empirical
RSSI readings generated by the device’s firmware. In our
evaluation part, 10 to 15 different client locations are enough
for the regression model to reach a high accuracy. The
regression is performed by using the MatLab curving fitting
with the nonlinear least-squares fitting procedure. With an
Apple iMac with 3.4 GHz Quad-Core Intel Core i5 CPU,
the regression can be done within 1 seconds for each range
when K is set to 3.

2) Online operation phase: In the online operation phase,
our algorithm uses specular reflection model to calculate the
NLoS paths for current locations. The time complexity to
calculate K paths is O(K).

The complexity analyses are summarized in table 2

Phase Operation Complexity
Fine-grained 360° o ]
s(o;ann'mg O(%) for 3 times
Low-resolution O(K) for each
. out-lobe resolving scanning
Ofﬂlpe . . Fmincon with
sensing _ngh—resolutlp n interior-point
in-lobe resolving method
- Nonlinear
Path loss regression least-squares fitting
Online NLoS P aths O(K) to calculate K
. calculation and
operation itchi paths
switching

TABLE 2: Complexity of each step.

2.5 Limitation of the Method and Extension to Larger
space

A dominant reflector is defined naturally in a local sense,
because the strength of its reflected signal will go down with
the distance between the reflector and the user increases. So
a reflector being dominant when the user was close may not
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remain dominant when the user moves far away. Because
of this, our proposed method can only be directly applied
to a small-to-moderate room scenario, where at least one
reflector defined in the top-K dominant reflector map re-
mains to be dominant at any location of the room. In reality,
this may correspond to practical application scenarios such
as wireless VR/AR gaming, in which a player does not
move too far but may frequently turn their body, or multiple
players interact with each other in one game, so the LoS may
be frequently blocked by the player’s or the other player’s
body. In the multi-user scenario, other users can not only
block the LoS but also the estimated NLoS path with each
other. This issue can be trivially solved by simply turning
to the second or next optimal estimated NLoS direction, as
the proposed method is actually able to compute the top-
K optimal NLoS directions based on the top-K dominant
reflector map.

The proposed method can be trivially extended to a
larger-space scenario (e.g., a ballroom or an auditorium)
by partitioning the space of the room into smaller areas,
and then applying the proposed method to each area to
construct a individual dominant reflector map. The maps of
individual areas are then aggregated and fused into a master
map that describes the location and reflection efficiency of
all dominant reflectors in the room. This master map is
distributed to each user in the operational phase for their
online strong NLoS path prediction and beam switching.
Such an extension is out of the scope of this work and will
be pursued in our future research.

Also, we want to point out that our proposed mechanism
is suitable for most of the indoor household application
scenarios, where the room layout (i.e., the environment) is
static or quasi-static but the users could be moving. For
instance, when a user is playing an electronic VR game
or using wireless cell phone in indoor environment, the
direction of the strongest NLoS path keeps changing due to
the user’s movement but the environment is static (i.e., the
locations of the dominant reflectors do not change or remain
static for a long period of time). This static environment
assumption should be true in most of the indoor application
scenarios, because those major reflectors are usually large-
size furniture, walls, and windows of metallic surfaces,
which are hardly mobile.

3 TESTBED AND IMPLEMENTATION

We implemented our prototype system based on COTS
components. The system architecture and prototype are
shown in Figure 7. Our system consists of four main parts:
1) two MikroTik WAP 60G mmWave radios [28] are used
for mmWave communication; 2) a robotic arm is used for
360° mechanical steering of the transmit beam. This robotic
arm is needed only during the one-time offline site survey
(installation) phase to perform stepped scanning. In the
online operational phase, this robotic arm is optional. If
it is not available, the COTS device can simply steers the
transmit beam to the particular beam mode (e.g., 64 beam
modes are provided by MikroTik WAP 60G) that is the
closest to and covers the desired NLoS direction, achieving
an approximation to the original mechanism presented in
Section 2 when the arm is available to steer the beam to the



exact desired direction. 3) A VR system is used to provide
accurate position information for the AP and the client. Note
that this VR system is used only for convenience/ease of
our implementation. It can be replaced by any state-of-the-
art indoor WiFi-based localization algorithm that does not
require any additional infrastructure [27]; 4) a PC host is
used to control the beam switching procedure according to
our proposed method.

Our testbed is only intended to serve as a prototype
to demonstrate the feasibility of the proposed method. The
robotic arm is not an indispensable part to perform our al-
gorithm. In particular, in the online NLoS prediction phase,
instead of using the robotic arm for fine-grained mechanical
steering of the antenna beam, the COTS firmware we are
using allows a coarse-grained electronic steering of the
beam by selecting an appropriate beam pattern that covers
the desired direction to which the beam should be turned.
In the offline measurement phase, using the robotic arm to
do the automatic space scanning can significantly expedite
the measurement process. However, in case that the robotic
arm is not available, the above scanning can also be done
manually.

When the LoS is blocked, in order to allow the user
to turn its beam to the estimated NLoS direction, say «,
we do need to know the direction/orientation of the beam
right before the LoS blockage, i.e., the direction of the
LoS path, denoted as 3. So after the blockage the beam
needs to turn a — 3 degrees from its current orientation
in order to point to the estimated NLoS direction. Given the
availability of the locations of the AP (denoted as (z¢, yo))
and the user(denoted as (z1,y1)), the orientation of the
user’s beam before the LoS blockage can be calculated as
p = arctan {1="¢ (without loss of generality, here we are
assuming that the direction of the Y-axis is the 0°).

Robot arm system

PC N

VR localization system

(a) Testbed architecture.

| WAP 606 AP |

| WAP 60G Client |

MikroTik
SainSmart
6-Axis
Desktop
Robotic Arm

HTC Vive VR

WAP
60G Devices A
base stations

HTC Vive VR HMD

(b) Testbed overview.

Fig. 7: System prototype.
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4 EVALUATION
4.1 Test Setting

Test environment: The performance test is conducted in an
indoor lab with a 49 m x 4.8 m layout. We set up a pair
of AP and client. The AP is placed at a fixed location with
coordinate (—1.44,0.05), and its receive antenna is omni-
directional. For the client, its location is random picked to
cover the whole test area and a VR HMD is bounded with
the client to track its location(VR base stations are mounted
on wall for HMD position tracking). The client uses a beam-
forming mode that forms a 60° beam for transmission. We
use the iPerf as the traffic source to drive the mmWave link,
and the RSSI measurement is extracted from the integrated
RouterOS operating system.

Reflectors reconstruction: To reconstruct dominant re-
flectors, we need multiple correlated tests to fully locate
them. So we fix the AP to an anchor location and move the
client to three different locations to perform a 360° scanning
with a step angle 5°. The measured RSSI patterns are fed
as input for the two-step AoD derivation method to extract
the AoDs of dominant reflectors. Then we use these AoDs
and location information as the input for specular reflection
model to reconstruct the dominant reflectors’ geometry.

The NLoS path directions are calculated using dominant
reflectors” geometry and real-time client locations. To com-
pare the performance of different NLoS paths, we conduct a
link performance test under 30 different client locations and
use the RSSI as the performance metric. In addition, a trans-
port layer performance test under TCP/UDP, containing
both static and mobile scenarios, is also conducted to show
the performance of our system under different conditions.
In the static test, both the AP and client’s locations are
fixed, whereas in mobile scenario, only the AP’s location
is fixed and the client moves across the room with 0.5 m/s
velocity. The real time TCP/UDP throughput is used as the
performance metric.

Performance benchmarks: For the purpose of perfor-
mance comparison, we conduct two types of performance
benchmarks. The first is the performance using LoS link for
communication, which is the upper bound performance of
the system. The second is the performance using auto beam
steering method [37], which is the default beam steering
method for the MikroTik WAP 60G devices. The method
follows the IEEE 802.11ad standard and can automatically
change the beam among the 64 predefined beam patterns to
maximize the throughput.

4.2 Experimental Results
4.2.1 Dominant Reflector Reconstruction

In our test, we successfully reconstruct two dominant re-
flectors, namely the left side reflector 1 and bottom side
reflector 2, as specified in Figure 8. The reflection coefficients
obtained by our regression model is 1 and 0.224 for reflector
1 and reflector 2. The rectangle denotes the lab’s layout. The
blue and red lines represent the two reconstructed dominant
reflectors.

4.2.2 Link Performance Test

After locating the dominant reflectors in the environment,
we set the AP to the anchor position as in Figure 8 and
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Fig. 8: Dominant reflector map.

randomly select client test locations to conduct a compre-
hensive performance test. For each test location, we first
measure the RSSI value of the LoS link under the blockage,
then we calculate two NLoS directions corresponding to
those two reflectors. A high RSSI value usually indicates a
better channel status. For a LoS link without any blockage,
the average RSSI value is -50 dB. Figure 9 plots the RSSI
color maps for four different beam steering strategies under
LoS blockage.
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Fig. 9: RSSI color map.

Figure 9a shows the performance under no beam steer-
ing strategy. We refer this as the baseline performance. The
average RSSI drop is -12 dB. At some test points, the link
even suffers from outage. Intuitively, we would think a
broad width beam pattern to be beneficial to stabilize the
linkage. However, in our test, a broad width beam pattern
does not mitigate the performance drop when blockage
happens. The finding indicates the LoS link is no longer
available for stable mmWave communication under the
blockage.

Figure 9b shows the performance when the beam direc-
tion changes to reflector 1’s specular reflection direction.
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These paths are denoted as INLoS;. In this case, the RSSI
values are acceptable for most of the test locations. We
observe that test points at the center of the environment
usually have lower RSSI values comparing to other points.
A possible reason is that although reflector 1 can always
create available NLoS links, the performance for different
NLoS links highly depend on the client locations.

Figure 9c shows the performance when the beam di-
rection changes to reflector 2’s specular reflection direction.
These paths are denoted as N LoS>. Compared to Figure 9b,
the performance is better for most of the test locations. As
mentioned before, the performance of the NLoS link highly
depends on the reflector’s physical properties, such as the
material and area size. Reflector 2 contains a metal cabinet,
which has a larger reflective area than that of reflector 1.
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Fig. 10: Performance of different NLoS links.

Figure 9d shows the result of our proposed beam steer-
ing algorithm, where the NLoS link is selected based on
estimated RSSI values of different NLoS paths. The overall
performance is better than using either N LoS; or N LoSs.

Figure 10 shows the numerical results of Figure 9. The
average RSSI of the LoS blockage case is -61 dB, which is
far below that of NLoS; or NLoSs. NLoS> has a higher
average RSSI value compared to that of NLoS;(-52.1 dB
over -53.5 dB). The RSSI values of NLoS; are bounded by
a tighter range, indicating a greater stability. Our algorithm
takes advantage of both reflectors. The average RSSI mea-
sured using our system is -52.1 dB, which is the same as the
N LoS5. The distribution of the RSSI values is less dispersed.
In addition, most of the measurement locations achieve RSSI
strength higher than -55 dB, which is a huge performance
boost compared to the baseline.

Figure 11 shows the CDF of RSSI. From left to right, the
lines represent the RSSI of ground truth, our system and
LoS link under blockage, respectively. The ground truth is
generated by comparing the NLoS link measurement result
in each test location and choose the highest RSSI value,
which is treated as the oracle value of the current location.
The performance of our system is close to the oracle value,
which indicates our system can successfully choose the best
NLoS link by predicting the link performance using the RSSI
estimation model.

4.2.3 Evaluation of Path RSSI Estimation Model

The RSSI estimation model is an essential part in deciding
the best NLoS path direction, so we compare our predic-
tion results with the real world measurements. Figure 12
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Fig. 11: RSSI distribution.

illustrates the RSSI estimation model accuracy for the two
dominant reflectors. The horizontal axis refers to the esti-
mation error. For both reflectors, about 80% RSSI estimation
errors are below 4 dB, and 40% are below 2 dB. Therefore,
our RSSI estimation model accurately estimates the RSSI
measurement, and thus efficiently assists our system in
selecting the best NLoS.
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Fig. 12: The CDF of RSSI estimation error.

4.2.4 System Performance under Static and Mobile Sce-
narios

Our system is designed to handle indoor mobile device
communication, such as VR gaming. So we use a bandwidth
testing software (integrated in the WAP 60G system) to
conduct a transport layer throughput test. To provide more
convincing results, we test our system on both UDP and
TCP. For all test scenarios, the LoS link test is conducted
without any blockage to serve as the upper bound perfor-
mance, and the LoS direction is blocked by human bodies
to test the performance under blockage.

Static scenario performance test: We first perform a
static test where we fix the locations of client and AP. The
purpose is to test the performance for different methods
under a static scenario where the LoS is blocked and each
method tries to recover the high performance.

Figure 13 shows the bandwidth test results of four
methods. The “LoS”, “Ours”, “Blocked LoS” and “Auto”
represent the throughput measured by the LoS link, our
system, LoS being blocked and auto beam steering method,
respectively. For each method, we conduct a 60-second
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Fig. 13: Transport layer throughput trace in UDP.

bandwidth test and record the throughput sequence. The
UDP result is shown in Figure 13a, the average throughput
of “LoS” is 1612 Mbps, and the throughput is stable, as the
LoS link is the most reliable link. The average throughput of
“Ours” is very close to that of “LoS”, which is 1603 Mbps.
The “Blocked LoS” shows that as the RSSI values suffer
from a drastic degradation when blockage, the throughput
also drops dramatically. The average throughput is only 503
Mbps, which is about only 30% of the throughput of “Ours”.
The “Auto” method, which automatically select a beam
pattern among the 64 pre-defined patterns to maximize the
throughput, has a higher average throughput (869 Mbps)
than that of “Blocked LoS”, but only 50% of “Ours”. The
distribution of the “Auto” spread widely, with a minimum
value 466 Mbps and maximum value of 1569 Mbps.

Figure 13b shows the TCP test results. Compared to UDP,
TCP is more reliable and can tolerate severer signal strength
drop. In compensation, the maximum TCP throughput is
lower than that of UDP. This is reflected in our result that
the average throughput for the “LoS” in TCP (791 Mbps) is
about half value of that in UDP. Similar to UDP case, the
average throughput of “Ours” in TCP (774 Mbps) is very
close to the “LoS” in TCP (791 Mbps). Compared to UDP,
the throughput of “Auto” in TCP is closer to “LoS”.

The “Ours” method has a higher TCP/UDP throughput
than the “Auto” method since “Ours” can achieve higher
RSSI values than the “Auto” method. To justify this point,
we test the RSSI of “Ours” and “Auto” under a static
scenario and plot the measured RSSIs in Figure 14. More
specifically, our test is performed under a static scenario
where we block the LoS at 15 random locations and collect
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Fig. 14: Performance comparison with RSSI.

the RSSIs under “Ours” and “Auto” methods respectively at
each location. The RSSI of the blocked LoS is also collected
to provide a baseline for the comparison. When the LoS is
blocked, the average RSSI of the LoS link drops to -60.6 dB.
While both the “Auto” and “Ours” methods bring in some
RSSI gains over the blocked LoS, the “Ours” method can
achieve a higher RSSI than the “Auto” method. In particular,
as shown in Figure 14, the average RSSI of “Auto” is -55.4
dB, while the average RSSI of “Ours” is -52.8 dB, so a 2.6 dB
gain over the “Auto” method. In addition, it can be observed
that the variance of RSSI under “Ours” is smaller than
that of the “Auto”, which indicates that the performance
of “Our” is more consistent at different locations than that
of the “Auto” method.

The throughput result of “Ours” should be considered
as the upper bound performance of our proposed method,
which can be achieved when fine-grained steering of the
beam (either electronically or mechanically) is available.
Note that such an upper bound cannot be achieved by the
“Auto” search method, even if fine grained beam steering is
available (e.g., by having more higher-resolution patterns
in the codebook). This is because a finer grained beam
scanning will require the “Auto” method to scan through
a larger number of beam patterns, and thus increases the
delay for the method to select the optimal pattern, under-
mining the overall average throughput (where the increased
delay should be accounted for as overhead) that can be
achieved by the method. On the other hand, when fine
grained beam steering is not available to our proposed
method, our method will directly pick the pattern in the
codebook that covers the estimated optimal NLoS direc-
tion. In this case, our method still outperforms the “Auto”
method due to its much shorter beam switching delay and
faster response time.

In summary, our system outperforms other methods
from stability and throughput perspectives, in UDP, TCP
and RSSI.

Mobile scenario performance test: We conduct a sys-
tem level usage test, using TCP and UDP throughput as
evaluation metrics. We fix the AP position and move the
client across the lab. We conduct a 90-second system test: no
blockage to the LoS direction in the first 30 s (0-30 s); human
body blockage to the LoS direction continuously following
the client movement in the second 30 s (30 s-60 s); blockage
moved away from LoS direction in the third 30 s (60 s-90 s).
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Fig. 15: Transport layer throughput trace in TCP.

We also test the auto beam steering method for performance
comparison.

Figure 15a shows the test result based on UDP. During
the first 30 s, due to no blockage, all three methods select
the LoS link for communication. Hence all methods reach
a throughput of 1600 Mbps. Then the LoS link is blocked
during the second 30 s. When a blockage happens, both
“Auto” and “LoS” suffer from instantaneous performance
drop. Due to the fact that the “LoS” only uses the direct
LoS direction whereas the “Auto” selects among different
beam patterns to maximize the throughput, the performance
for “Auto” is better than “LoS” when blockage happens.
However, both “Auto” and “LoS” throughput drop below
800 Mbps, which is only 50% of the maximum speed of the
system.

As for our system, the throughput slightly drops when
the blockage occurs. Then the throughput swiftly restores
close to the maximum throughput, which is around 1600
Mbps. The overall throughput is stable during entire block-
age period, but there still exist some unstable points. This
is because the NLoS path signal strength is not uniformly
distributed in the environment. Therefore, the throughput
fluctuates as the client goes through strong and weak NLoS
signal strength areas. This is consistent with our previous
finding in Figure 9: the NLoS link performance highly
depends on the client’s location. In the meantime, the client
changes the beam direction accordingly to maintain the high
performance. We remove the blockage at the 60th second,
bringing the LoS link available again. So all three methods
can use the LoS direction and the throughput restores to the
maximum level.

Figure 15b shows the TCP test results under the same
test setting. Due to the error handling mechanism in TCP,
the performance drop of “Auto” and “LoS” during the 30 s
to 60 s is less compared to that of UDP, but still catastrophic



for the mmWave communication.

Similar to UDP case, our system can maintain a through-
put to an “almost LoS link” (800 Mbps) throughput level
with a little fluctuation. Our system shows a superiority in
stability and performance aspects.

In summary, our system successfully handles the LoS
blockage under mobile scenarios for COTS mmWave de-
vices and provides robust link for mmWave communication.

5 CONCLUSIONS

In this paper, we develop a NLoS beam switching algorithm
for off-the-shelf mmWave devices to maintain a stable con-
nection when its LoS communication path is blocked. The
main idea of our method is to leverage the sparsity of the
mmWave channel and the spatial correlation of the close-by
mmWave channels to resolve for the location and orienta-
tion of the dominant reflectors in the environment. Strong
NLoS backup paths are then computed based on these re-
solved dominant reflectors. We also propose a model-driven
RSSI estimation algorithm, which allows the transmitter to
predict the quality of each backup NLoS path and pick the
best one among them.

In contrast to existing methods, our model does not
rely on high precision phased array antennas, nor does our
model require accurate phase information of the received
signals, and therefore is applicable to a wide line of COTS
mmWave products. We validate the feasibility and effective-
ness of our system on a mmWave off-the-shelf testbed and
demonstrate that it supports efficient and stable mmWave
communication under human blockage.

Our system can serve as a prototype for off-the-shelf
mmWave devices to handle the LoS blockage. The simplicity
and low cost of our system can benefit a wide range of low-
end commercial mmWave devices.
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