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Experiments on asymmetric diblock copolymers at temperatures slightly above the order-disorder
transition (ODT) indicate the existence of a dense fluid of micelles. Molecular dynamics simulations
are used here to identify a higher critical micelle temperature below which micelles appear. The
onset of micellization occurs very near where self-consistent field theory predicts an ODT.

In melts of highly asymmetric diblock copolymers at
temperatures slightly above the order disorder tempera-
ture (ODT), the disordered phase contains a dense liq-
uid of spherical micelles [1–7]. At the ODT, these mi-
celles crystallize. Simple analogies to the theory of bi-
nary surfactant-solvent mixtures, which exhibit a critical
micelle concentration [8], suggest that a micelle forming
one-component system should exhibit a critical micelle
temperature (CMT) at which micelles appear with de-
creasing temperature over a rather narrow range of tem-
peratures [9, 10]. The ODT is clearly identifiable in scat-
tering experiments by the appearance of Bragg peaks.
Clear experimental identification of a CMT has, however,
remained elusive.

In this work, we study the appearance of micelles
in large-scale simulations of a coarse-grained simulation
model of AB diblock copolymers with well characterized
thermodynamic properties and an experimentally rele-
vant chain length. Simulations allow access to informa-
tion about molecular clusters that is not easily accessi-
ble in experiments. We confirm that spherical micelles
do indeed appear and proliferate over a narrow range of
temperatures, and show that this occurs very near where
self-consistent field theory (SCFT) predicts the simulta-
neous emergence and crystallization of micelles.

Micelle formation in compositionally asymmetric block
copolymers above bears similarities to the formation of a
disordered bicontinuous morphology above the ODT in
symmetric block copolymers. Both are manifestations of
strong correlations in the disordered phase, which criti-
cally influence order-disorder transitions in finite molec-
ular weight systems [11–15], although many aspects of
both structure and dynamics are qualitatively different.
Whereas the bicontinuous state has recently been de-
scribed theoretically [16–18] and imaged using electron
microscopy [19–22], micelle formation, and the existence
of a CMT, remains largely unexplored notwithstand-
ing publication of several provocative TEM images two
decades ago [5, 6]. The importance of this ubiquitous
state of condensed matter has become increasingly evi-
dent with the discovery of dodecagonal quasicrystals and
numerous Frank-Kasper phases in a host of soft materials
[13, 23–30]. Recent reports of metastable particle-based

phases that evolve from the quenched disordered liquid
[31–33] underscore the significance of this unique, and
poorly understood state, motivating the work described
here.

Experimental evidence for the existence of micelles in
the disordered phase comes primarily from microscopy
and scattering experiments. The most direct evidence
is from transmission electron micrographs showing dis-
ordered arrangments of spherical micelles [5, 6]. Results
of small angle X-ray (SAXS) and neutron (SANS) scat-
tering from the disordered phase near the ODT exhibit
a secondary shoulder in plots of scattered intensity I(q)
vs. wavenumber q, at a wavenumber well above the pri-
mary peak wavenumber q∗. This secondary feature is
believed to be a consequence of liquid-like correlations
in micelle positions, and has been successfully modelled
using liquid-state theories for hard spheres [1–4, 7].

Quantitative understanding of self-assembly in sphere
forming systems relies heavily on predictions of self-
consistent field theory (SCFT) [13, 31, 34–38]. Consider
a melt of AB diblock copolymers with a volume fraction
f < 0.2 for the minority B block, an overall degree of
polymerization N , Flory-Huggins parameter χ, monomer
concentration c and statistical segment length b for both
A and B monomers. SCFT predicts that micelles should
both appear and crystallize at a transition value of χN ,
denoted here by (χN)scfodt. SCFT is believed to be exact
in the limit of infinite invariant degree of polymerization
N = N(cb3)2 [11, 16, 17, 39], but ignores the existence
of strong correlations in the disordered phase in systems
with experimentally relevant molecular weights.

Wang et al. [10] have used SCFT to compute the
free energy of formation for an isolated spherical micelle
within a disordered phase, denoted by Wm. SCFT yields

a prediction of the form Wm = kBTN
1/2
W̃m(χN, f),

where W̃m is a dimensionless function of χN and f .
The value of χN above which Wm < 0 at a given f ,
denoted here by (χN)scfm , is found to be very near but
slightly greater than (χN)scfodt. For example, for f = 0.1,
(χN)scfodt = 47.95 and (χN)scfm = 48.14 [10]. This small
difference is a result of a weak attraction between micelles
in a crystal, but is negligible for purposes of the analy-
sis given here. SCFT predicts the existence of strongly
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segregated micelle cores even at (χN)scfodt, with a minor-
ity volume fraction near 90 % at the center of the mi-
celle for f ' 0.1. Upon allowing for micelle translational
entropy, Wang et al. predict a micelle volume fraction
proportional to e−Wm/kBT and a rapid increase in mi-
celle concentration over a narrow range of values of χN

of width N
−1/2

near (χN)scfm . These conclusions are con-
sistent with those of an earlier analysis by Dormidontova
and Lodge [9] that relied on a less accurate strong seg-
regation model for Wm, but that allowed for effects of
micelle interactions that Wang et al. neglected. While
these theoretical predictions are enticing, neither exper-
iments nor simulations have thus far allowed a definitive
identification of a CMT in compositionally asymmetric
diblock copolymers.

Recent progress in the interpretation of coarse-grained
molecular simulations has enabled increasingly precise
comparisons of simulations to SCFT, and thereby sharp-
ened our understanding of the strengths and weaknesses
of SCFT. The comparison to SCFT predictions given
here was enabled by this prior work. Glaser, Medapuram,
Morse and coworkers introduced a method of calibrating
the dependence of the effective χ parameter on simula-
tion input parameters that has allowed consistent results
to be obtained from a variety of different coarse-grained
models [16, 17, 40–43]. Their analysis showed that strong
correlations appear within the disordered phase when χN
exceeds (χN)scfodt, while the actual ODT occurs at an el-
evated value (χN)odt that exhibits a universal depen-
dence on N . Notably, SCFT was found to yield rather
accurate predictions for properties of ordered lamellar
and hexagonal phases [16, 17, 43]. These results thus
provided evidence for the accuracy of SCFT predictions
for self-assembled structures such as lamellae or micelles,
while also emphasizing the failure of a random-mixing
description of the disordered phase near the ODT. The
assumption that SCFT accurately predicts the free en-
ergy required to form an isolated micelle also suggests a
hypothesis that micelles should first appear at a value of
χN very near (χN)scfodt.

In this work, we study the appearance of micelles in
molecular dynamics (MD) simulations of an AB diblock
copolymer melt. Simulations are performed in constant
pressure, constant temperature ensemble. Quantitative
comparison to theoretical predictions is enabled by using
a simulation model for which the relationship between
χ and simulation parameters has been established pre-
viously [16, 17]. The model used here is referred to as
model S2 in Refs. 16, 17 or model D3 in Ref. 42, for
which N/N = (cb3)2 = 59.7. In all work reported here,
each chain has N = 64 beads, with 8 B beads and 56 A
beads, giving f = 1/8 and N = 3820. SCFT predicts
(χN)scfodt = 36.6 for f = 1/8. A harmonic bond potential
acts between adjacent beads within each chain. A non-
bonded pair potential of the form V (r) = 1

2εij(1− r/σ)2
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FIG. 1. Main plot: Non-dimensional inverse peak intensity
cNS−1(q∗)/2 vs. χN . The dashed line shows the RPA pre-
diction. The dotted vertical line indicates (χN)scfodt = 36.6.
Inset: Structure factor S(q) vs. qRg0 at three nearby values

of χN , where Rg0 = b
√
N/6. Solid lines show a fit to the

RPA functional form.

acts between beads of types i and j that are separated
by a distance r less than a cutoff σ, with V (r) = 0 for
r > σ. The parameter α = (εAB − εAA)/kBT is varied
to modify the effective χ parameter, while the pressure,
temperature, bond spring constant and εAA = εBB are
held at constant values chosen in previous work. Simula-
tions were performed on systems of approximately 5×105

beads. Further simulation details are given in Supple-
mental Material [44].

Fig. 1 shows the behavior of the structure factor S(q),
akin to the scattering intensity measured in SAXS and
SANS experiments. We define S(q) = V −1〈|ψ(q)|2〉,
where ψ(q) =

∫
dr ψ(r)eiq·r, ψ(r) = [cA(r) − cB(r)]/2,

ci(r) is the concentration of i monomers, V is system
volume, and q = |q|. All values of χN reported in this
paper were calculated using a calibration of χ obtained
in previous work [16, 17] (see Table S1).

The inset of Fig. 1 shows S(q) vs. q at three values of
χN near (χN)scfodt = 36.6. Solid lines show fits of S(q) to
a functional form S(q) = KSRPA(q), in which SRPA(q) is
the random-phase approximation (RPA) prediction, and
in which Rg, χ and the prefactor K have all been treated
as adjustable parameters. Comparison to this fit helps
emphasize the existence at χN = 46.5 and 41.9 of a weak
shoulder in S(q) at qRg0 ' 3.4, which we identify here by
the failure of an attempted fit to the RPA. This feature is
absent for all χN < (χN)scfodt, for which S(q) is fit well by
the RPA functional form. An analogous feature has been
observed in scattering scattering experiments performed
at temperatures slightly above the ODT [1–3, 6, 7], which
appears at wavenumbers with approximately the same
relationship to the peak wavenumber as that found here,
though the magnitude of this secondary feature varies in
experiments depending on proximity to the ODT and N .

The main plot in Fig. 1 shows the behavior of the
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normalized inverse of the peak intensity cNS−1(q∗)/2
vs. χN . The dashed line shows the RPA prediction
for this quantity, computed without adjustable param-
eters. The actual dependence of S−1(q∗) on χN shows
a falling point of inflection near (χN)scfodt that separates
a region of slight negative curvature at lower χN from a
region of positive curvature at higher χN . Notably, this
behavior is different from that found in symmetric and
modestly asymmetric copolymers, for which this plot in-
stead exhibits a uniformly positive curvature, reflecting
the tendency of S(q∗) to increase more slowly with in-
creasing χN than predicted by the RPA. The behavior
seen here instead indicates a tendency for the S(q∗) to
increase more rapidly than predicted by the RPA for χN
near (χN)scfodt. An alternative view of these data is shown
in Fig. S1 by plotting S(q∗)/SRPA(q∗) vs. χN , which
shows a rapid increase near (χN)scfodt. We show below that
this increased scattering coincides with the appearance of
micelles.

In an MD simulation, potential micelles may be iden-
tified by finding clusters of molecules with minority B
block beads in close contact. We identify such clusters
using a criterion in which two molecules are taken to be-
long to the same cluster if the distance between any two
B beads on these different molecules is less than 0.8σ.
Let n denote the number of molecules in such a cluster.

Fig. 2 shows the fraction xn of chains within clusters
of aggregation number n plotted vs. n at several values
of χN . At χN = 0, geometrical clusters exist only as a
result of random intermolecular minority block contacts.
In this limit, xn decreases monotonically with increas-
ing n but still includes a non-negligible value for clusters
with tens of molecules. The distribution evolves slowly
with increasing χN up to the next displayed value of
χN = 34.8, which is slightly less than (χN)scfodt = 36.6.
At this value, xn remains monotonically decreasing but
shows enhanced frequency for larger n as a result of in-
creasingly strong composition fluctuations. For χN ≥
37.2, however, the distribution develops a local maximum
at a most-probable aggregation number n∗ ' 80 − 140
that grows larger and more distinct with increasing χN ,
signalling the appearance of proper micelles. We will
show in a future paper that the secondary maximum at
n ' 2n∗ ' 280 at χN = 46.5 is due to clusters containing
two micelles with cores joined by a narrow throat.

Fig. 3 describes the spatial structure of clusters with
aggregation numbers within a range chosen to correspond
to potential micelles. At values of χN for which the plot
of xn vs. n from Fig. 2 shows a local maximum, proper-
ties in Fig. 3 are computed by considering clusters with
n ranging from the least probable value (the minimum
in Fig. 2) to 1.6 times the most probable value. A range
of n = 30− 160 is instead used at lower values of χN for
which no local maximum exists.

Fig. 3a shows the average φB(r) of the effective vol-
ume fraction φB(r) of B (minority) beads that belong to

FIG. 2. Average mole fraction xn of chains within clusters
of aggregation number n, vs. n. The inset shows a cluster
snapshot, with B (core) beads in translucent red, with one
chain highlighted with blue A beads and red B beads.

a cluster as a function of distance r from the center of
mass (COM) of all B beads in the cluster. We define the
value of φB within a small region of volume ∆V to be
equal to a ratio φB = mB/c∆V , where mB is the number
of B beads in that region that belong to molecules in a
cluster, where c ' 1.5σ−3 is the macroscopic bead num-
ber concentration and c∆V is the average total number
of beads in a region of volume ∆V . The quantity φB(r)
is an average of φB for a thin spherical annulus centered
around the COM, averaged over time and over clusters
with n in the chosen range.

Consider the increase of φB(r = 0) at the cluster
COM with increasing χN shown in Fig. 3a. Note that
the displayed values of χN are not evenly spaced. At
χN = 0, the value of φB(r = 0) ' 0.19 is only slightly
greater than spatial average value of f = 0.125, indicat-
ing the diffuse nature of these purely geometrical clus-
ters. Upon increasing χN , φB(r = 0) increases slowly
for χN < (χN)scfodt, reaching approximately 0.4 at the
next displayed value of χN = 34.8. The value φB(r = 0)
then increases much more rapidly from 0.4 to 0.8 over a
much narrower range χN = 34.8 to 39.2 that includes
(χN)scfodt = 36.6.

The average value φB(r) shown in Fig. 3a presum-
ably contain contributions both from diffuse geometrical
clusters and from proper micelles with nearly pure B-rich
cores. To distinguish these subpopulations, we have com-
puted the probability distribution for the value of φB de-
fined within a small spherical region of radius rc around
the COM. We refer to this quantity as the core volume

fraction, denoted by φ
(c)
B . We use a value rc = 1.5σ, indi-

cated by the vertical line in Fig. 3a, giving c∆V = 21.2.

The probability distribution for φ
(c)
B is shown in Fig.

3b at several values of χN . At values of χN = 0 and 34.8
that are less than (χN)scfodt, we obtain a broad mono-
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FIG. 3. (a) Local volume fraction φB(r) of B (minority) block beads belonging to the cluster vs. distance r from the center of

mass of these beads, at χN = 0, 34.8, 39.6, and 46.5. (b) Probability distribution for the core volume fraction φ
(c)
B at the same

χN values. The micelle schematic in plot (a) shows the inner core region of radius rc = 1.5σ used to define φ
(c)
B .

tonically decreasing distribution that is very small at

φ
(c)
B ' 1, characteristic of diffuse geometrical clusters.

At values of χN > (χN)scfodt, however, we observe a local

maximum at a most probable value of φ
(c)
B that rapidly

approaches 1 with increasing χN , indicating the appear-
ance of proper micelles with a nearly pure core. Note that
our definition of φB = mB/c∆V leads to some instanta-

neous values φ
(c)
B > 1, when the total number of beads in

the sampled volume is less than the average c∆V .

Figure 4 shows the evolution of the mean and most

probable values of the core volume fraction φ
(c)
B with χN .

The discontinuous jump in the most probable value of

φ
(c)
B from zero to a large nonzero value signals the ap-

pearance of a distinct population of proper micelles with
a very B-rich core. Note that this jump in the most prob-
able value with increasing χN occurs very near the value
χN = (χN)scfodt, indicated by a vertical line.

We focus in this article primarily on the onset of mi-
cellization, rather than micelle crystallization. We have,
however, attempted to place bounds on the ODT by
running simulations of systems with χN = 41.9, 46.5
and 50.9 from disordered and artificially ordered initial
states while monitoring for spontaneous crystallization
and spontaneous melting, respectively. These simula-
tions were performed using periodic simulation unit cells
designed accomodate 2 × 2 × 2 or 3 × 3 × 3 cubic unit
cells of a BCC lattice (16 or 54 micelles), assuming a
BCC unit cell length commensurate with the value of q∗

measured in the disordered state at the same value of
χN . In simulations designed for 3 × 3 × 3 unit cells, we
observed spontaneous melting for χN = 41.9 but never
observed spontaneous crystallization. In simulations de-
signed for 2 × 2 × 2 unit cells, we observed spontaneous
melting for χN ≤ 41.9 and spontaneous crystallization
for χN = 46.5 and 50.9. The evidence indicates an ODT

FIG. 4. Most probable (diamonds) and mean (square) values

of the core volume fraction φ
(c)
B vs. χN . The vertical dotted

line indicates χN = (χN)scfodt = 36.6. The dashed blue line
shows SCFT predictions for φB(r = 0) for χN > (χN)scfodt.

value (χN)odt > 41.9, though the exact value remains
uncertain, and may be susceptible to finite size effects.
Further details of this study are given in the Supplemen-
tal Material [44].

The results presented here provide a clear picture of
the appearance of disordered micelles within a model
melt of asymmetric diblock copolymers. The most di-
rect evidence for the appearance of micelles comes from
a cluster analysis in which micelles are identified as ge-
ometrical clusters that contain a nearly pure core of mi-
nority block beads. The results indicate that such mi-
celles appear over a rather narrow range of values of χN
centered very near the SCFT ODT value. This conclu-
sion is consistent both with the predictions of Wang and
coworkers [10], who assumed the validity of SCFT pre-
dictions for the free energy of an isolated micelle, and
with the results of previous simulation studies that have
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shown the somewhat surprising quantitative accuracy of
SCFT predictions for properties of ordered phases and
individual aggregates [16, 17, 43]. Our ability to make
meaningful comparisons of simulations to SCFT predic-
tions relied critically on relatively recent development of
improved methods for calibrating χ in simulation models
[16, 17]. To a very good approximation, it thus appears
that the CMT in a melt of long, sphere-forming diblock
copolymers corresponds to the SCFT ODT, and that the
actual ODT occurs at a somewhat greater value of χN .
We expect the onset of micellization at χN ' (χN)scfodt to
become more sudden with increasing N , and for (χN)odt
to decrease with increasing N , but further study would
be required to test these hypotheses.

Our computational results have several important im-
plications for experiments. Our data for S(q) provide
new insights into the interpretation of SAXS and SANS
experiments [2, 3, 7], which indicate that identification
of a CMT by scattering alone may be difficult in sys-
tems with experimentally relevant values of N . In the
systems studied here, for which the value of N = 3820
is greater than in many experiments, onset of micelliza-
tion is signalled by the appearance of an initially small
secondary shoulder in S(q) and by an inflection in a plot
S−1(q∗) vs. χN , both of which arise from increased scat-
tering associated with the appearance of micelles. Sim-
ulations of systems with lower N , which we will report
elsewhere, indicate that both features become less dis-
tinct with decreasing N . Our comparison of results for
S(q) to cluster analysis will aid interpretation of future
experiments. Our results are also consistent with ex-
perimental evidence for the existence of micelles over a
significant range of temperatures, despite remaining un-
certainty regarding the location of the ODT for this sim-
ulation model. Our results establish that (χN)odt for
this model exceeds (χN)scfodt by at least 14%, and possi-
bly much more, since we were only able to establish a
lower bound on (χN)odt. Theory, experience with more
symmetric diblock copoolymers, and our own preliminary
results for systems with lower N (to be presented else-
where) all suggest that the difference (χN)odt− (χN)scfodt

increases with decreasing N . Further work is needed to
determine the precise dependence of (χN)odt on N , and
to study dynamical processes in the disordered phase
near the ODT, which are directly relevant to the re-
markable history dependence seen in recent studies of
phase transformations in sphere-forming diblock copoly-
mers [31–33]. The present contribution provides a corner-
stone for more detailed study of the disordered micellar
state by simulation.
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SIMULATION DETAILS

Simulations presented in the main text are constant
temperature, constant pressure (NPT) simulations of a
model studied in previous work, which was referred to as
model S2 in Refs. [1, 2]. Simulations are performed on a
melt of diblock copolymers with N = 64 beads per chain,
with 8 B beads and 56 A beads.

Pairs of beads of types i and j that are separated by
a distance r less than a cutoff length σ interact via a
nonbonded pair potential

Vpair(r) =
1

2
εij

(
1− r

σ

)2
, (S1)

with Vpair(r) = 0 for r > σ, where εij is interaction
energy parameter, with εAA = εBB . Neighboring beads
within each chain interact via an additional harmonic
bond potential

Vbond(r) =
1

2
κr2 (S2)

with a spring constant κ.
All simulations were performed with fixed values of

εAA/kBT = 25, κσ2/kBT = 1.135, Pσ3/kBT = 4.111
that were chosen for this model in previous work. Simu-
lations were performed at multiple values of a parameter

α = (εAB − εAA)/kBT (S3)

in order to vary the effective χ parameter. Values of α
used here are tabulated in Table S1.

This model and choice of constant parameters was
shown to lead a statistical segment length b = 1.727 and
a monomer concentration c = 1.5σ−3 in the limit α→ 0
and N → ∞ of infinite homopolymers. The calibration
of the effective χ parameter reported in Refs. [1] and [2]
was found to give an effective χ parameter

χ(α) =
0.0916α− 0.00087α2

1 + 0.0042α
. (S4)

All values of χN reported here for simulations were com-
puted using Eq. (S4), and are tabulated in Table S1.

All simulations were performed using the Hoomd-blue
GPU accelerated MD engine [3, 4] in a periodic L×L×L
cubic unit cell with a fluctuating cell length L, using a
symplectic, reversible NPT integrator. All simulations
used a time step of 0.005 in natural simulation units in
which kBT , σ and bead mass are all equal to one.

α χN M NM Nstep × 10−6 〈L〉/σ

0 0 6803 435392 30 66.3

1.5 8.6 6803 435392 27 66.4

3.5 19.5 6803 435392 27 66.5

4.5 24.8 6803 435392 27 66.5

5.5 29.6 6803 435392 27 66.6

6 32.4 6803 435392 57 66.6

6.5 34.8 6803 435392 57 66.6

7 37.2 6803 435392 77 66.6

8 41.9 6803 435392 77 66.6

7 37.2 10149 649536 87 76.1

7.5 39.6 9194 588416 87 73.6

8 41.9 9081 581184 87 73.3

9 46.5 8879 568256 313 72.7

10 50.9 9384 600576 117 74.0

TABLE S1. Input parameters for simulation of the disordered
phase. Here, M is the number of chains, N = 64 is the
number of beads per chain, Nstep is the number of simulations
steps in the simulation after initial equilibration, and 〈L〉 is
the average length of one side of the cubic simulation cell.
Simulations have been divided into three groups separated
by horizontal lines, depending which of the three strategies
described in the main text was used to choose M . The first
group of simulations, for which M = 6803, use an RPA box.
The second group, for which 7 ≤ α ≤ 8, use an SCFT box.
The third group, for which α = 9 or 10, use a commensurate
box.

In simulations designed to probe properties of the dis-
ordered phase, the number of molecules used in each sim-
ulation, denoted by M , was chosen to create a system
approximately large enough to accomodate a 3 × 3 × 3
array of cubic unit cells of a hypothetical BCC crystal if
the system were to crystallize. Three different strategies
were used to estimate the required number of molecules
in different parameter ranges:

(1) For all χN < (χN)scfodt (α ≤ 6.5) and χN = 37.2
and 41.9 (α = 7 and 8), simulations were performed using
a target simulation unit cell length L that is designed
to be commensurate with the RPA prediction for q∗ in
the disordered phase, such that the primary family of
Bragg scattering peaks in the ordered phase would have
a wavenumber equal to q∗. We refer to this in what
follows as an RPA box.
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(2) For χN = 37.2, 39.6 and 41.9 (α = 7.0, 7.5 and
8.0), simulations were performed using a target simula-
tion cell length three times the SCFT prediction for the
equilibrium length of the ordered BCC unit cell length.
We refer to this as an SCFT box.

(3) At χN = 46.5 and 50.9 (α = 9 and 10) the tar-
get simulation cell length was chosen so as to be com-
mensurate with the value of q∗ measured in simulations.
The estimates of q∗ required to design these simulations
were obtained in these cases by extrapolating values of
q∗ measured in earlier simulations performed at slightly
lower values of χN . We refer to this as a commensurate
box.

In each strategy, the calculated value for the target
simulation unit cell length L is converted into a value for
M by setting M = cL3/N with N = 64 and c = 1.5σ−3

and rounding M to the nearest integer. Resulting values
of M are given in Table S1.

STRUCTURE FACTOR

The structure factor of the melt is computed at val-
ues of wavevector q that are commensurate with the
instantaneous simulation unit cell length L, given by
q = (2π/L)(h, k, l) with integer values of h, k, and l.
The value of S(h, k, l) associated with a triplet of inte-
gers (h, k, l) is computed from the time average

S(h, k, l) =

〈
1

V
|ψ(h, k, l)|2

〉
, (S5)

in which V = L3 and

ψ(h, k, l) ≡ 1

2

NM∑
i=1

εie
iq·ri , (S6)

where i is a bead index, ri is the position of bead i, and
εi = +1 for B monomers and −1 for A monomers.

Each value of S(q) given in plots of S(q) vs. qRg0

is actually an average of values of S(h, k, l) for a fam-
ily of wavevectors that are related by cubic point group
symmetry operations, i.e., by permutations and/or in-
versions of the associated integer indices h, k and l.
Each such family of symmetry-related wavevectors can
be uniquely identified by a list of indices {h, k, l} with
h ≥ k ≥ l ≥ 0. The value of q used to compute ab-
scissa values for each symbol in such plots is an average
wavenumber q = 〈2π/L〉

√
h2 + k2 + l2.

Values of the peak wavenumber q∗ and peak intensity
S(q∗) have been obtained by fitting results for S(q) from
each simulation to a fitting form

S(q) = KSRPA(q) , (S7)

in which K is an adjustable fitting parameter, and
SRPA(q) is the structure factor predicted by the random-
phase approximation (RPA). The quantity SRPA(q) can

be expressed as a function

SRPA(q) =
cN

F (qRg0, f)− 2χN
, (S8)

in which F (qRg0, f) is a known dimensionless function

[5], and Rg0 =
√
Nb2/6 is the unperturbed radius of

gyration. Values of q∗ and S(q∗) are obtained by using
the fitting form shown in Eq. (S7) while treating K, χN
and Rg0 as fitting parameters for this purpose.

Note that the convention for the structure factor S(q)
given in Eq. (S5) includes a normalization by the simu-
lation unit cell volume V , rather than the more common
convention of normalizing by the total number of beads in
the system. This leads to an expression in which S(h, k, l)
and S(q) have dimensions of inverse volume, and leads
to a factor of monomer concentration c in Eq. (S8) that
is absent in the expression given by Leibler [5].

Statistical errors for the value of S(q) associated with
each family of symmetry related wavevectors have been
computed using the hierarchichal block averaging anal-
ysis of Flyvbjerg and Petersen [6]. A sequence of in-
stantaneous values of S(q) for each family of equivalent
wavevectors is obtained by sampling every 1000 time
steps and averaging results for |ψ(h, k, l)|2 over wavevec-
tors that are related by cubic symmetry operations. The
resulting sequence is then divided into blocks of differ-
ent lengths that differ by factors of 2, with 2n sequential
measurements per block at blocking level n, such that
the trajectory is divided into only a few blocks for the
maximum value of n. A block average is computed for
each such block. An estimate of the error on the time
average is computed for each level of blocking by treat-
ing block averages as if they were statistically indepen-
dent, though this is not true for short block lengths. A
final error estimate is obtained by an algorithm that au-
tomatically identifies a range of block lengths that give
consistent error estimates, corresponding to a “plateau”
in a plot or tabulation of the error estimate vs. n. Such
a plateau will exist if and only if the simulation length is
significantly longer than the autocorrelation time of the
quantity being measured, giving ergodic sampling of that
quantity. The lengths of our simulations were chosen so
as to guarantee that this method yields consistent error
estimates for S(q) for wavenumbers q ∼ q∗ for which au-
tocorrelation times are longest and statistical errors are
largest.

Table S2 presents numerical results for S(q∗) and q∗ at
different values α, as obtained by fitting S(q) to the RPA
functional form. Estimates of the error on the peak in-
tensity S(q∗) given here represent the root mean squared
deviation of the actual values of S(q) from the fit for
values q within 10 % of the estimated value of q∗.

Fig S1 show results for the ratio S(q∗)/SRPA(q∗) vs.
χN . The value of SRPA(q∗) used to compute this ratio is
calculated using values for χN that were obtained from
Eq. (S4), as reported in Table S1. This representation
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α χN S(q∗)/cN q∗Rg0

0 0 0.010 ± 0.00003 2.312

1.5 8.6 0.013 ± 0.000006 2.298

3.5 19.5 0.019 ± 0.00014 2.297

4.5 24.8 0.024 ± 0.00012 2.281

5.5 29.6 0.035 ± 0.00025 2.271

6 32.4 0.045 ± 0.00004 2.236

6.5 34.8 0.067 ± 0.00031 2.202

7 37.2 0.125 ± 0.00116 2.158

7.5 39.6 0.284 ± 0.00305 2.110

8 41.9 0.552 ± 0.00136 2.099

9 46.5 1.415 ± 0.03323 2.069

TABLE S2. Nondimensionalized peak intensity S(q∗)/cN
and peak wavenumber qRg0 at different χN .

FIG. S1. Ratio S(q∗)/SRPA(q∗) of the actual peak intensity
S(q∗) to the RPA prediction SRPA(q∗) plotted vs. χN . Sym-
bols show simulation results. The horizontal long-dashed line
indicates the RPA prediction S(q∗)/SRPA(q∗) = 1. The ver-
tical dotted line labelled (χN)scfodt indicates the SCFT ODT.
The vertical dot-dashed line labelled (χN)s indicates the RPA
spinodal.

makes it clear that an increase in peak intensity S(q∗)
above that predicted by the RPA begins at approximately
χN = 30 and increases most rapidy with increasing χN
at values slightly above (χN)scfodt . The same results are
shown as a plot of cNS−1(q∗)/2 vs. χN in Fig. 1 of the
main manuscript.

Fig. S2 shows the dependence of q∗ on χN . The RPA
prediction of q∗Rg0 = 2.271 is shown by a horizontal line.
Note the significant difference between this RPA predic-
tion and the values predicted by SCFT for the primary
Bragg scattering peak q∗ in either ordered phase near the
ODT, which predicts q∗Rg0 = 1.872 in the FCC phase at
χN = (χN)scfodt. The magnitude of this difference moti-
vated us to test the consistency of results obtained using
an RPA or SCFT box in this range of values of χN .

FIG. S2. Normalized peak scattering wavenumber q∗Rg0 vs.

χN , where Rg0 = b
√
N/6. Symbols show simulation results.

Solid horizontal line is the RPA prediction. The vertical dot-
ted line represents the value (χN)scfodt = 36.6 at which SCFT
predicts a transition from a disordered to an FCC phase. The
solid gray vertical line marked FCC-BCC marks the value
of χN = 38.5 at which SCFT predicts an FCC-BCC order-
order transition. The dot-dash line and dashed line shown for
χN > (χN)scfodt are SCFT predictions of q∗Rg0 for the primary
Bragg scattering peak within the BCC phase and FCC phases,
respectively, with the larger value of q∗Rg0 corresponding to
the BCC phase.

At χN = 37.2 and 41.9 (α = 7 and 8), simulations
were performed using two different values of M obtained
by different strategies in order to test the sensitivity of
our results to finite size effects. Each plot in Fig. S3
shows a comparison of values of the structure factor S(q)
obtained using an RPA box to those obtained using an
SCFT box. At both values of χN , values of S(q) obtained
with these different system sizes appear to be consistent
to within known statistical errors, confirming that these
results are rather insensitive to finite size effects within
the range of sizes used here.

Fig. S4 shows a corresponding comparison of results
for the cluster histogram xn vs. n obtained from simu-
lations performed at χN = 37.2 and 41.9 using the RPA
and SCFT boxes. For χN = 37.2, results obtained with
these different system sizes are indistinguishable. For
χN = 41.9, the difference becomes visible, but remains
too small to affect any of our conclusions. We have not
computed rigorous statistical errors for values of xn, and
thus cannot say whether the results for xn obtained with
different box sizes at χN = 41.9 are consistent within
statistical errors.

BREAKDOWN OF ERGODICITY

Results of measurements of of S(q) from a simulation
performed at χN = 50.9 indicate that this system is not
ergodic over the time scale accessible in our simulations.
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FIG. S3. Comparison of results for S(q) vs. qRg0 obtained in simulations with RPA and SCFT boxes at (a) χN = 37.2 and
(b) χN = 41.9.
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FIG. S4. Comparisons of results for the mole fraction xn of chains in clusters of aggregation number n from simulations with
RPA and SCFT boxes, for (a) χN = 37.2 and (b) χN = 41.9.
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We thus show physical properties of the disordered phase
only for χN ≤ 46.5 (α ≤ 9) in Table S2, Figs. S1 and S2
and all figures of the main manuscript.

Fig. S5 shows a comparison of results for S(q) vs.
qRg0 obtained in simulations performed at χN = 46.5
and 50.9 using commensurate boxes designed to accomo-
date a 3 × 3 × 3 array of BCC unit cells. Each symbol
in these plots represents an average value of S(q) for a
family of symmetry related wavevectors. The two dot-
ted vertical lines in each of these plots identify values
of qRg0 for which two different families of symmetry-
related wavevectors happen to yield the same value for
the wavenumber q = 〈(2π/L)〉

√
h2 + k2 + l2. One of

these is the value of qRg0 arising from the {410} and
{322} families, which both yield h2 + k2 + l2 = 17. The
other is the value of qRg0 arising from the {330} and
{411} families, for which h2 + k2 + l2 = 18. Values
of M for these simulations were chosen so as to yield a
wavenumber for the {330} family equal to an estimated
value of q∗. For χN = 46.5 this procedure succeeded,
since the maximum values of S(q) are obtained for the
{330} and {411} families. For χN = 50.9, the maximum
value of S(q) is instead obtained for the {331} family.

In the case of ergodic sampling of a fluid in a suffi-
ciently large periodic simulation cell, we expect S(q) to
become a smooth function of q alone. Specifically, we
expect to obtain consistent results for S(q) from differ-
ent families of wavevectors that yield exactly equal val-
ues of q. This expectation is met for results obtained
at χN = 46.5, but not at χN = 50.9. In results for
χN = 50.9 shown in Fig. S5b, there are large, statis-
tically significant differences between pairs of values of
S(q) that lie along one of the vertical dotted lines shown
in this figure. For the {410} and {322} families, which
both yield qRg0 = 1.97, the larger value of S(q) arises
from the {410} family. For the {330} and {411} families,
which both yield qRg0 = 2.03, the larger value arises from
the {411} family. In contrast, for the case χN = 46.5
shown in Fig. S5, the values of S(q) from these pairs
of wavevector families appear to be consistent to within
known statistical errors, which are indicated here by er-
ror bars that show a range within one standard deviation
of the mean.

Discrepancies in values of S(q) obtained from different
families of symmetry-related wavevectors with the same
wavenumber could in principle be either a result non-
ergodic sampling or, conceivably, of ergodic sampling of
a system with a large finite-size effect. An equilibrium
finite size effect in a fluid confined to a periodic cubic sim-
ulation cell would give rise to results that preserve cubic
symmetry, and thus give equivalent scattering intensities
for wavevectors in the same family. To distinguish these
possibilities, we have examined contributions to S(q) that
arise from individual wavevectors, rather than from fam-
ilies of wavevectors that are related by cubic symmetry.
Fig. S6 shows results for S(q) at χN = 50.9 plotted

without any averaging over families of wavevectors, with
contributions from individual wavevectors plotted as sep-
arate symbols. Because exactly equal values of S(q) are
obtained from wavevectors q and −q that are related by
inversion, each symbol in this plot shows the scattering
from one member of such a pair of wavevectors. Inspec-
tion of the results show that time averages for differ-
ent wavevectors within each family differ by much more
than statistical errors computed for individual wavevec-
tors. This is clear in this figure from the fact, that along
each of the three dotted vertical lines, there is a single
symbol that is greater than all others at the same value
of qRg0 by differences much greater than the error bars.
The existence of signficant differences in scattering from
wavevectors that are related by symmetry indicates that
this simulation was not long enough to adequately sam-
ple the disordered state. The simplest reason for this
would be if the system were stuck in a single disordered
spatial arrangement of micelles for the entire length of
the simulation.

MELTING AND CRYSTALLIZATION

A separate set of simulations were performed to place
bounds on the value (χN)odt of χN at the ODT, by look-
ing for spontaneous melting and crystallization. Melt-
ing and/or crystallization simulations were performed at
χN = 41.9, 46.5, and 50.9. Both melting and crystal-
lization simulations were performed in a commensurate
box that is designed to accomodate either a 2×2×2 or a
3×3×3 array of BCC unit cells. Specifically, the number
M of molecules for an n×n×n array of BCC unit cells is
chosen so as to give a target simulation unit cell size size
L = (MN/c)1/3, computed using c = 1.5σ−3, for which
the wavenumber q = 2

√
2πn/L of the {nn0} family of

wavevectors that yields the first BCC Bragg scattering
peak is equal to an estimate of the peak wavenumber q∗

measured in the disordered phase.
Crystallization simulations are performed in such a

commensurate unit cell with a disordered initial state.
Melting simulations are performed using an artificially
ordered BCC initial state. This artificial ordered state is
created by running a preliminary simulation in the pres-
ence of a periodic external field that favors accumulation
of B monomers at the desired locations of micelle cores,
and using the final state of this simulation as the ini-
tial state of a “melting” simulation performed with no
external ordering field.

Table S3 tabulates values of α, χN and system sizes for
melting and crystallization simulations. For each choice
of system size (2× 2× 2 or 3× 3× 3), both melting and
crystallization simulations were performed at χN = 46.5
and 50.9, while only a melting simulation was performed
at χN = 41.9. At χN = 46.5 and 50.9, the simulations
with a commensurate 3 × 3 × 3 unit cell that we used
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FIG. S5. (a) Structure factor at χN = 46.5. (a) Structure factor at χN = 50.9. Dotted vertical lines indicate values of qRg0

that are each associated with two different families of symmetry-related wavevectors, as discussed in the text.

FIG. S6. Structure factor in the liquid phase at χN =
50.9, with contributions of individual wavevectors plotted
separately. The three vertical dotted lines show values of
qRg0 for wavevectors with integer indices (h, k, l) for which
h2 + k2 + l2 = 17, 18 and 19.

to monitor for crystallization (which did not occur) were
also used to study properties of the disordered phase.

The difference between a disordered phase and a per-
fect BCC crystal is apparent upon visualization of the
final state, or upon inspection of plot of S(q) vs. qRg0

obtained from a time average over a period near the end
of a melting or crystallization simulation. Fig. S7 shows
a plot of S(q) vs. qRg0 obtained from the time average of
a ”melting” a simulation performed using an artificially
ordered 3× 3× 3 array of BCC unit cells at χN = 46.5,
for which the crystal persisted over the length of the sim-
ulation. The existence of a BCC crystal is clearly evident
from the existence of several Bragg peaks with intensities
much greater than those of peaks that do not belong to
the reciprocal lattice of the BCC crystal.

In simulations of 3×3×3 unit cells, spontaneous melt-

ing was observed at χN = 41.9, but spontaneous crys-
tallization was not observed at either χN = 46.5 or 50.9.
In simulations of 2× 2× 2 unit cell, spontaneous melting
was observed at χN = 41.9 and spontanous crystalliza-
tion was observed at both χN = 46.5 and 50.9. We
can conclude that the equilibrium value of (χN)odt for a
2× 2× 2 unit cell is somewhere in the range [41.9, 46.5],
and that (χN)odt for a 3× 3× 3 unit cell is greater than
41.9.

We do not know how much the ODT is altered by the
use of such small unit cells. We expect finite size ef-
fects to stabilize the crystal phase when the system size
is commensurate with q∗, as is true here, and when the
correlation length for composition fluctuations becomes
comparable to or greater than the simulation cell length.
When these conditions are satisfied, we expect the true
equilibrium value of (χN)odt in such a finite commen-
surate system to be lower than that of a hypothetical
infinite system. The peak in S(q) shown in Fig. S5a,
for χN = 46.5 and a 3 × 3 × 3 system, is quite narrow.

α χN BCC cells M Nstep × 10−6 type

8 41.9 2× 2× 2 2661 100 melting

9 46.5 2× 2× 2 2631 200 melting

9 46.5 2× 2× 2 2631 200 crystallization

10 50.9 2× 2× 2 2781 200 crystallization

8 41.9 3× 3× 3 8982 60 melting

9 46.5 3× 3× 3 8879 60 melting

9 46.5 3× 3× 3 8879 316 crystallization

10 50.9 3× 3× 3 9384 120 crystallization

TABLE S3. Parameters of melting and crystallization simu-
lations performed to estimate the ODT.
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FIG. S7. Structure factor in the BCC phase at χN = 46.5,
showing the existence of a sequence of Bragg peaks with in-
tensities approximately one order of magnitude greater than
the intensities obtained for wavevectors that do not satisfy
the Bragg scattering condition.

In this case, the peak width has become comparable to
the distance between allowed values of q, which indicates
that the correlation length is becoming comparable to
the system size at this value of χN even in the 3× 3× 3
system. Finite size effects are presumably more severe at
the same value of χN in the metastable liquid phase of
a smaller 2 × 2× 2 system, though spontaneous crystal-

lization prevents S(q) from being measured for this case.
Further study with careful attention to consequences of
both finite size effects and slow dynamics will be needed
to reliably identify ODTs in simulations of sphere form-
ing systems. This article instead focuses primarily on
characterizing the onset of micellization within the dis-
ordered phase.
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