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Abstract—Ultra-reliable communication (URC) is a key en-
abler for supporting immersive and mission-critical 5G applica-
tions. Meeting the strict reliability requirements of these appli-
cations is challenging due to the absence of accurate statistical
models tailored to URC systems. In this letter, the wireless
connectivity over dynamic channels is characterized via statistical
learning methods. In particular, model-based and data-driven
learning approaches are proposed to estimate the non-blocking
connectivity statistics over a set of training samples with no
knowledge on the dynamic channel statistics. Using principles
of survival analysis, the reliability of wireless connectivity is
measured in terms of the probability of channel blocking events.
Moreover, the maximum transmission duration for a given
reliable non-blocking connectivity is predicted in conjunction
with the confidence of the inferred transmission duration. Results
show that the accuracy of detecting channel blocking events
is higher using the model-based method for low to moderate
reliability targets requiring low sample complexity. In contrast,
the data-driven method shows higher detection accuracy for
higher reliability targets at the cost of 100× sample complexity.

Index Terms—URC, channel blocking, survival analysis, sta-
tistical learning, 5G.

I. INTRODUCTION

Next-generation wireless services, such as mission and

safety critical applications, require ultra-reliable communi-

cation (URC) that provision certain level of communication

services with guaranteed high reliability [1], [2]. Realizing

this in the absence of statistical models tailored to tail-centric

URC systems is known to be a daunting task [3], [4].

Towards enabling URC, the majority of the existing liter-

ature relies on system-level simulations-based brute-force ap-

proaches leveraging packet aggregation and spatial, frequency,

and temporal diversity techniques [4], [5] while some assume

perfect or simplified/approximated models of the system (i.e.,

stationary channel and traffic models) [6]. However, such

approximations may fail to characterize the tail statistic ac-

curately, and thus, may inadequate to fulfill the reliability

targets of URC [7]. In this view, machine learning (ML)

techniques have been used in the context of URC including

low-latency aspects with a focus on channel modeling and

prediction [8]–[11]. These works are mostly data-driven and
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assume the availability of large amounts of data. All prior

works focusing on channel modeling can be used to optimize

transmission parameters preventing communication outages

in terms of loss of received signal strength (RSS) due to

channel blockage. Here, a channel blocking event represents

a period during which the RSS remains below a predefined

target threshold and the channel transitions from non-blocking

to blocking events are analogous to the so-called survival

time [12]. Characterizing such channel transitions is useful

to determine highly reliable transmission intervals under the

absence of knowledge of channel statistics, which has not been

done in the existing literature.

The transitions between non-blocking and blocking can

be cast as lifetime events (birth-to-death) of the channels.

Analyzing the time to an event (e.g., a channel transition)

and rate of event occurrence are the prime focuses of survival

analysis [13]. The applications of survival analysis span a

multitude of disciplines including medicine (life expectancy

and mortality rate from a disease), engineering (reliability of

a design/component), economics (dynamics of earnings and

expenses), and finance (financial distress analysis) [14]–[16].

Therein, either model-based or model-free methods can be

adopted. Hence, we adopt the analogy behind survival analysis

to investigate non-blocking connectivity over wireless links.

The main contribution of this work is to characterize the

statistics of non-blocking connectivity durations under the ab-

sence of knowledge on the dynamic wireless channel statistics.

In this view, we consider a simplified communication setting

consists of a single transmitter (Tx)-receiver (Rx) pair com-

municating over dynamic channels with a fixed transmission

power in order to characterize the transmission duration guar-

anteeing a reliable non-blocking connectivity. The underlying

challenge with the above analysis lies in assuming or acquiring

the full knowledge of non-blocking duration statistics, which

is unfeasible. Hence, we address two fundamental questions: i)

how to accurately model the non-blocking duration statistics

without the knowledge of channel statistics? and ii) how to

characterize the confidence bounds for reliable transmission

durations inferred from the devised non-blocking duration

statistics? To this end, we consider an exemplary scenario of a

buyer named Buck who plans to purchase radio resources for

a URC system from a seller named Seth. Here, Buck needs

to evaluate the radio resources in terms of the transmission

periods guaranteeing low blocking probabilities under different

connectivity durations and the statistics of transmission periods

to enable URC. For this purpose, Seth wishes to reliably

evaluate the connectivity failure statistics, i.e., via survival

analysis, using a set of non-blocking connected duration

samples M over dynamic channels. However, Seth must

address key questions related to the training data set M: i)
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Fig. 1. An illustration of the channel blocking and non-blocking durations
for a given RSS threshold.

does it contain sufficient samples? ii) how confident am I

with the reliability measures obtained using M? and iii) is it

beneficial to improve the prediction confidence by investing in

additional sampling? Towards addressing these questions, we

first cast the problem of finding the maximum transmission

duration yielding a predefined low blockage probability as an

optimization problem. Therein, we adopt a tractable parametric

representation for the probabilistic model of channel failures.

To estimate the parameters, a minimization of a loss function

that captures the gap between the true-yet-unknown channel

failure probability and the parametric representation is for-

mulated. To minimize the aforementioned loss function, we

adopt two approaches: a model-based approach that assumes

a known prior probabilistic model following Weibull survival

analysis, and a data-driven approach that uses function regres-

sion via neural networks (NNs). For both techniques, wireless

connectivity is analyzed in terms of the conditional failure

statistics, namely the statistics of the time to fail under given

connectivity durations, and their confidence bounds followed

by an evaluation based on simulations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a one-way communication system in which a Tx

sends data to a Rx over a correlated flat fading channel.

Due to channel and mobility dynamics, the RSS at the Rx

fluctuates over time. For a given target RSS R0, we define

the non-blocking connectivity probability (also called survival

probability) as Pr(Rt ≥ R0) where Rt represents the RSS over

the duration [0, t]. In URC, the goal is to identify a predictive

period τ > 0 that guarantees a low conditional blocking

probability after observing a non-blocking connectivity over

a duration of t, i.e., Pr(Rτ+t < R0|Rt ≥ R0) ≤ ε given an

outage probability ε, as illustrated in Fig. 1.

In this considered system, neither the channel dynamics

nor the statistics of non-blocking connectivity are known a

priori. Our objective is to obtain a reliable measure of the

cumulative density function (CDF) of the blocking events (or

the complementary cumulative density function (CCDF) of

the connected durations), i.e., F (t) = Pr(Rt ≤ R0). Once

F (t) is characterized, the conditional failure probability at an

observation period t will be:

Zt(τ) = Pr(Rτ+t < R0|Rt ≥ R0) =
F (t+τ)−F (t)

1−F (t) . (1)

Then, determining the transmission duration followed by the

observation period of t for a given target reliability 1 − ε, is

formulated as follows:

max τ, subject to Zt(τ) ≤ ε. (2)

For a known and analytically tractable F (·), the solution of

(2) is given by τ� = F−1
(
ε+(1− ε)F (t)

)
− t. However, F (·)

is unknown due to the absence of channel statistics and the

lack of accurate modeling of time-varying system parameters

(e.g., network geometry, mobility, scattering coefficients, etc.),

and thus, needs to be estimated.

III. ESTIMATING F (·)

To estimate the non-blocking duration distribution, a para-

metric representation of the CDF Fθ(·) with parameter vector

θ can be adopted. Here, θ is calculated using a set M of M
connected duration samples. For this purpose, a loss function

L(·) that captures the gap between the estimated and actual

CDFs needs to be minimized over the sample set M as

follows:

minθ LM(Fθ , F ). (3)

Towards solving (3), we consider two approaches: i) model-

based approach: assuming a known prior probabilistic model

to derive the distribution parameters θ corresponding to the

prior distribution using (3) and ii) data-driven approach: using

NN-based function regression over M where θ is the NN

model to be learned from the data.

A. Model-Based Approach

The events of non-blocking durations can be interpreted

as the lifetimes of connected periods that are terminated

by the drop of RSS below a target threshold, which then

is followed by blocking events. In this view, the statistical

tools of survival analysis are suitable for characterizing the

non-blocking connectivity durations. In particular, Weibull

distribution is the most widely used lifetime data model due

to its relation to various families of distributions (uniform,

exponential, Rayleigh, generalized extreme value, etc.) [13].

Accordingly, the non-blocking connectivity durations can be

modeled by a Weibull distribution,

Fθ(t) = 1− e−(t/σ)ξ , (4)

where θ = (σ, ξ) is parameterized by the scale (σ) and

shape (ξ) parameters. To find the most likely parameter values

that fit (4) to M, we use maximum likelihood estimation

(MLE). In this regard, we define the loss function LM(θ) =

−
∑

m log fθ(tm) where fθ(t) = ξ
σ

(
t
σ

)ξ−1
e−(t/σ)ξ is the

Weibull probability distribution function (PDF). Due to the

non-convex nature of the objective function, the estimated

parameters θ̂ can be found using numerical methods (e.g.,

stochastic gradient decent). Using θ̂, the failure probability in

(1) becomes:

Zt(τ, θ̂) = 1− exp
(
(t/σ̂)ξ̂ − ((t+ τ)/σ̂)ξ̂

)
. (5)

Then, the solution for (2) will be:

τ� = σ̂
(
(t/σ̂)ξ̂ − ln(1 − ε)

)1/ξ̂
− t. (6)

Note that the reliable transmission duration τ� hinges on

the training data set M. Therefore, it is important to provide

the margins of confidence for the derived values. To evaluate
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the confidence bounds, we adopt the likelihood ratio bounds

method [17] given as:

2
(
LM(θ)− LM(θ̂)

)
≥ χ2

γ,M , (7)

where χ2
γ,M are the Chi-squared statistics with probability

γ and degree-of-freedom M , and θ is the unknown true

parameter, respectively. For example, γ = 0.95 yields 95%

confidence interval of the parameter estimation. Since we

are interested in evaluating the confidence for τ� rather than

θ = (σ, ξ), we first find σ = ξ
√
(tξ − (t+ τ)ξ)/ ln(1− ε)

using (6) and, then, (7) can be modified as follows:

LM( ξ
√

(tξ − (t+ τ)ξ)/ ln(1− ε), ξ)− LM(θ̂) =
χ2

γ,M

2 . (8)

Note that a closed-form expression cannot be derived for

(8) which calls for numerical solutions (e.g., trust-region

algorithm [18]). Since both τ and ξ are unknown in (8), for

some δ > 0, several priors for ξ from [ξ̂−δ, ξ̂+δ] are selected

first. By solving (8) for each of the above choices, a set of

solutions {τ} is obtained, from which the confidence bounds

of τ� are calculated. In addition to τ�, its mean and variance

can be analytically derived using (5).

Proposition 1: The N th moment of the non-blocking con-

nectivity duration t+ τ under the observation duration t is:

E [(t+ τ)N ] = σNe(t/σ)
ξ

Γ
(
(t/σ)ξ; 1 +N/ξ

)
, (9)

where Γ(α, β) =
∫∞
α

xβ−1e−xdx is the upper incomplete

gamma function.

Proof: See Appendix A.

Using the above result, the mean and variance of the remaining

connectivity durations at time t can be obtained from E [t +
τ ]− t and E [(t+ τ)2]− E

2[t+ τ ], respectively.

B. Data-Driven Approach

The main drawback of the model-based approach is its

susceptibility to model drift whereby the statistics of the

actual observations may differ from the Weibull model. Hence,

estimating Fθ(·) by using the empirical distribution of samples

M is preferable. Next, a data-driven approach based on a NN-

based regression is presented.

First, a subset of data samples Mt = {tm|tm ≥ t, tm ∈
M} is collected for a given observation period t. Then, the

empirical distribution of the non-blocking duration samples

in Mt is numerically evaluated so that a set of labeled

training data tuples {(tm, sm)} are generated. Here, sm is the

CDF value of tm calculated using the empirical distribution,

which yields the corresponding failure distribution. The loss

function is the mean square error (MSE) between the true

and estimated failure probabilistic values, i.e., LMt
(θ) =

1
Mt

∑
m

(
sm − Zt(tm, θ)

)2
where Zt(·, θ) is modeled using

a multilayer perceptron (MLP) with model parameters θ. To

solve (3), MLP uses (tm, t2m, . . . , tnm) up to an order of n (to

avoid under-fitting) as the input, sm as the output, and the

MSE loss LMt
(θ) as the empirical loss function. By training

the MLP in a supervised manner, Zt(·, θ) is derived. Finally,

τ� that satisfies Zt = ε is obtained. Note that the accuracy of

Zt(·, θ) relies on i) both quality and quantity of Mt, ii) the

model complexity of θ, and iii) choice of the input size n.

(a) Model-based estimation.

(b) Data-driven estimation for different order of input sizes n ∈ {1, 10}.

Fig. 2. Comparison of the conditional failure probability estimation at t =
0.3 s for different sample complexities M ∈ {100, 1000, 10000}.

The N th raw moment of the remaining non-blocking con-

nectivity for an observation duration t will be:

E [τN |t] =
∫∞
0

τN−1
(
1− Zt(τ, θ)

)
dτ. (10)

First, the conditional probabilities are calculated from the

trained NN model over a sequence of τ = δk remaining

connectivity durations with k ∈ N and small δ > 0. Then, ap-

proximating the integrations in (10) to numerical summations,

the first and second moments of the remaining connectivity

durations can be obtained.

IV. SIMULATION RESULTS AND ANALYSIS

Here, we evaluate the characterization of non-blocking

statistics obtained via the proposed model-based and data-

driven methods. For our simulations, we consider a time

correlated Rayleigh flat fading channel model defined in [19].

While we define a slotted time-based transmission with a slot

duration of τ0 = 1ms, for improved measurement accuracy,

we consider a sampling frequency of 4 kHz. For training,

up to 10, 000 non-blocking connectivity duration samples are

collected and for testing, additional 30, 000 samples are used.

Here, an RSS threshold of R0 = −8 dB is used for a unit

transmit power. For the data-driven approach, we use an MLP

with two fully connected hidden layers with sizes of ten and

six and rectified linear unit (ReLU) activations. The output

layer of the MLP is a single node with a symmetric saturated

linear transfer function.

Fig. 2 compare the conditional failure probability regression

performance of both the model-based and the data-driven
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Fig. 3. Detection of blocked events based on the predicted duration τ� at
t = 0.3 s.

approaches over the simulated data referred to as “simula-

tion scenario” for different sample complexities, i.e., various

choices of training sample sizes M ∈ {100, 1000, 10 000}.

From Fig. 2a, we observe that the model-based design is

almost invariant over the choices of sample complexities due

to the accurate fit over probabilities above 10−2. As the

probability decreases, the simulation results will deviate from

the trend of higher probabilities. However, the model-based

method, which relies on the prior Weibull model, fails to

capture this deviation. In contrast, the data-driven regression

is susceptible to the lack of training samples as illustrated in

Fig. 2b. Moreover, it can learn the trends using data samples

and thus, the data-driven approach learns the low-probability

behavior of the simulation scenario as well. In addition, Fig.

2b shows that increasing the order n from one to ten slightly

improves the regression. This improvement is due to the fact

that we consider the input as a tenth order polynomial of the

connectivity duration instead of order one.

Fig. 3 compares the detection of channel blocking

events based on the predicted duration τ� from model-

based and data-driven methods in terms of F-score: F1 =∑
TP∑

TP+(
∑

FP+
∑

FN)/2 based on the events of true positive (TP),

false positive (FP), and false negative (FN) [20]. We first

empirically partition the test connectivity durations dataset

M′ into two groups for a given reliability target (1 − ε): the

positive group M+
ε consisting of the smallest ε fraction of non-

blocking durations and the rest composes the negative group

M−
ε . With this partitioning, for any test sample m ∈ M′

there are three observation categories: i) TP: if m < τ� and

m ∈ M+
ε , ii) FP: if m < τ� but m ∈ M−

ε , and iii) FN:

if m ≥ τ� with m ∈ M+
ε . In addition, for the purpose

of comparison, a Gaussian process regression (GPR)-based

channel estimation method proposed in [21] is adopted to

predict consecutive non-blocking durations, which is referred

to as the “GPR” baseline. Fig. 3 shows that as the sample

complexity increases, the uncertainty of the estimated τ� de-

creases and blocked events are accurately detected, achieving

higher F1. For large ε, the estimated τ� from the model-based

approach can accurately detect the channel blocking events

(i.e., the lower tail) yielding high F1. As ε decreases, the

model-based method based on the Weibull distribution bias

deviates from the actual data distribution even if the increasing

training sample size M increases. From this result, we observe

that the accuracy of channel blocking detection degrades by

Fig. 4. Confidence limits of predictive transmission durations obtained using
the model-based approach for observed durations t ∈ {10, 1000}ms.

factors of 2× to 3× as shown in Fig. 3. In contrast, the

data-driven approach characterizes the lower tail better than

the model-based method when a sufficiently large number

of training data is available. For a small M , the detection

accuracy of the data-driven method approaches to zero with

decreasing ε, because of the lack of training data in the positive

set M+
ε of the size of εM . Hence, increasing M = 100 to

1000 and then to 10 000 improves the blocked event detection

accuracy from F1 = 0 to 0.32 and 0.49 at ε = 10−2 and from

F1 = 0 to 0.82 at ε = 10−3, respectively, highlighting the

importance of the sample complexity in data-driven methods.

The GPR baseline outperforms both proposed methods with

M ∈ {100, 1000} only for small reliability targets ε ≥ 0.05.

Due to the uncertainty in GPR, higher prediction errors can be

observed for tighter reliability targets, resulting in a low F1.

Fig. 4 illustrates the impact of sample complexity on the

confidence bounds of the predicted transmission durations at

t ∈ {0.01, 1} s derived using the model-based approach. Here,

a 95% confidence interval (i.e., γ = 0.95) is used. From

Fig. 4, we can see that MLE with few samples yields large

uncertainty in τ� while the uncertainty decays as M increases

due to the monotonic decreasing nature of χ2
γ,M with M .

This underscores the tradeoff between the model parameter

uncertainty and the cost of data collection.

The impact of the transmit power is investigated in Fig.

5. Since R0 = −8 dB is used with a unit transmit power, a

2× and 4× increase in transmit power are captured with R0

of −11 dB and −14 dB, respectively. The effects of increasing

transmit power on the predicted connectivity durations derived

from the model-based approach are presented in Fig. 5a.

Clearly, the non-blocking connectivity can be significantly

enhanced via increased transmission power.

For a given observation duration t, the mean and variance

of the remaining non-blocking connectivity durations over the

simulated data and the estimations based on both the model-

based and the data-driven methods are shown in Figs. 5b and

5c, respectively. Note that the simulation scenario exhibits

different trends at low and high t values and the number of

training data samples reduces with increasing both t and R0.

Since the model-based approach is highly biased to the Weibull

model, the accuracy of its mean and variance estimations is

high only in the regimes where the majority of the training

data lies, and degrades with increasing t and R0 as illustrated
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(a) Impact of transmit power on the predicted trans-
mission duration.

(b) Expected time to fail for the observed data and
predictions.

(c) Variance of failure time for the observed data
and predictions.

Fig. 5. Impact of transmit power on the predicted duration (τ�) ensuring (1 − ε) reliability (left), expected time to fail (middle), and its variance (right).

in Figs. 5b and 5c. In contrast, due to having lower bias, the

data-driven approach generalizes throughout all t and R0, but

with a price of significant accuracy losses in the mean and

variance estimations.

V. CONCLUSIONS

In this letter, we have analyzed the non-blocking connec-

tivity of URC systems through the lens of model-based and

data-driven methods in order to estimate connectivity statistics

using a set of non-blocking connectivity duration training

samples. Therein, we have measured the reliability of the

connectivity by using statistical tools from survival analysis.

We have also validated our analysis based on simulations.

The results show that the Weibull model-based method can

be accurately estimated with low sample complexity and

characterizes well the tail events without the knowledge on

the channel statistics. In contrast, the data-driven design aligns

well with the highly probable events under large sizes of

training data highlighting the bias-variance tradeoff between

the aforementioned two approaches. Finally, this work pro-

vides insights about the choice of transmit power in terms

of channel blocking statistics. Future work will investigate

hybrid approaches combining both data-driven and model-

driven techniques.

APPENDIX A

PROOF OF PROPOSITION 1

Let T = t + τ . By differentiating (5), the conditional

PDF is found as ft(T ) = ξ
σξ T

ξ−1e−(T/σ)ξe(t/σ)
ξ

for all

T ≥ t. Then, the N th moment is given by E [TN ] =∫∞
t

ξ
σξ T

N+ξ−1e−(T/σ)ξe(t/σ)
ξ

dT . Using the change of vari-

ables with z = (T/σ)ξ and dT = σz1/ξ−1dz,

E [TN ] =
∫∞
(t/σ)ξ σ

NzN/ξe−ze(t/σ)
ξ

dz,

= σNe(t/σ)
ξ

Γ
(
(t/σ)ξ; 1 +N/ξ

)
,

where Γ(α, β) =
∫∞
α xβ−1e−xdx is the upper incomplete

gamma function.
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