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ABSTRACT

It is critical and important for venture investors to find high-potential
startups at their early stages. Indeed, many efforts have been made

to study the key factors for the success of startups through the

topological analysis of the heterogeneous information network of
people, startup, and venture firms or representation learning of
latent startup profile features. However, the existing topological

analysis lacks an in-depth understanding of heterogeneous informa-
tion. Also, the approach based on representation learning heavily

relies on domain-specific knowledge for feature selections. Instead,

in this paper, we propose a Scalable Heterogeneous Graph Markov

Neural Network (SHGMNN) for identifying the high-potential star-
tups. The general idea is to use graph neural networks (GNN) to

learn effective startup representations through end-to-end efficient

training and model the label dependency among startups through

Maximum A Posterior (MAP) inference. Specifically, we first define

different metapaths to capture various semantics over the hetero-
geneous information network (HIN) and aggregate all semantic

information into a summated graph structure. To predict the high-
potential early-stage startups, we introduce GNN to diffuse the

information over the summated graph. We then adopt an MAP

inference over Hinge-Loss Markov Random Fields to enforce la-
bel dependency. Here, a pseudolikelihood variational expectation-
maximization (EM) framework is incorporated to optimize both

MAP inference and GNN iteratively: The E-step calculates the in-
ference, and the M-step updates the GNN. For efficiency concerns,

we develop a GNN with a lightweight linear diffusion architecture

to perform graph propagation over web-scale heterogeneous infor-
mation networks. Finally, extensive experiments and case studies

on real-world datasets demonstrate the superiority of SHGMNN.

CCS CONCEPTS

- Applied computing — Business intelligence; - Computing
methodologies — Neural networks; Maximum a posteriori
modeling.

“Hao Zhong and Hui Xiong are both Corresponding Authors. This work was partially
supported by the National Science Foundation through awards III-2006387, IIS 1814510,
and I1S-2040799.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °21, August 14-18, 2021, Virtual Event, Singapore.

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08...$15.00
https://doi.org/10.1145/3447548.3467383

KEYWORDS

Business Intelligence, Startup Success Prediction, Graph Neural
Networks, Heterogeneous Information Networks, Representation
Learning, Graph Embedding, Graph Mining, Markov Random Fields

ACM Reference Format:

Shengming Zhang!, Hao Zhong?, Zixuan Yuan'!, Hui Xiong?. 2021. Scal-
able Heterogeneous Graph Neural Networks for Predicting High-potential
Early-stage Startups. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD °21), August 14—18, 2021,
Virtual Event, Singapore. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3447548.3467383

1 INTRODUCTION

Startups are Big Smalls, small scales yet with big potentials. As
pointed out by GEM!, entrepreneurship is a truly powerful engine
for economic and social development, generating incomes and jobs
while enabling and enriching individuals and communities. As a
major driving force to job creation, high-growth startups accounted
for only a few percentage of the firms’ population but tended to
create about 60% of new jobs across most countries and sectors [34].
Compared with incumbents, who are more likely to invest on exist-
ing technologies and incremental innovations, startups are more
inclined to promoting disruptive and revolutionary innovations.
Meanwhile, venture capital investors are typically anticipating sig-
nificant financial returns by investing on the startups with great
potential to grow and successfully exit. However, early-stage star-
tups are immature and fragile in the sense that only a significant
small portion can survive and grow. It has never been an easy task
to identify high-potential startups despite its great economic value
and vital societal meanings.

Over the past decades, scholars from various research communi-
ties have made great efforts on addressing high-potential startups
prediction problem. Their methodologies can be roughly grouped
into two categories: (i) Qualitative approaches that process star-
tups’ profile information into features based on knowledge from
interviews, surveys and experts’ inputs [16, 17, 23, 24], typically fol-
lowed by downstream supervised-learning tasks [3, 5, 32, 33, 35, 44].
These study outcomes rely heavily on people’s retrospection which
is subject to relationalization, resulting in post-hoc biases. The
downsides of these approaches include the requirement of in-depth
domain-specific knowledge and overlooking the interactions be-
tween different entities involved in entrepreneurial activities. (ii)
Topological approaches that are using interactions between objects
to construct an information network and further extract network
topological features for identifying high-potential early-stage star-
tups [4, 15, 18, 42]. However, by using solely the topological features,
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Figure 1: Illustrations of the semantic structure of our Het-
erogeneous Business Information Network (HBIN).

these approaches fail to fully employ abundant intrinsic information
over the network.

Instead, we propose to approach the problem by utilizing Hetero-
geneous Graph Neural Network (HGNN) model due to its successful
applications on a wide-range of research problems involving Het-
erogeneous Information Networks (HIN) [36, 40, 43]. Regardless of
its strength in distilling information from heterogeneous graphs,
one essential drawback is that the predictions are based solely on
the aggregation of node attributes, overlooking the joint depen-
dency among object labels. To alleviate this problem, [27] proposes
a Graph Markov Neural Network (GMNN) that utilizes Statistical
Relational Learning (SRL) to model the object label dependency.
However, directly applying GMNN for identifying high-potential
startups remains at least three challenges: (i) GMNN is initially
designed for homogeneous graphs, while most real-world business
networks are heterogeneous with multiple types of entities involved
(as one example shown in Figure 1). (i) GMNN uses Graph Convo-
lutional Network (GCN) to model object label dependency, whereas
previously reported improvement of using GCN for label capacity
is minor, near to that by a mean-pooling heuristic. (iii) Another
key issue of using GCN to model label capacity is its "short sight" -
aggregating the information from the nodes’ neighbors with order
up to the number of stacked layers. Its incapability of balancing
between scalability and capacity restricts its broader applications
on web-scale business network problems.

To better overcome the aforementioned deficits of GMNN, we
propose a Scalable Heterogeneous Graph Markov Neural Network
(SHGMNN) to address the proposed high-potential early-stage star-
tups prediction problem. Specifically, we regard the prediction of
high-potential startups as a node classification task on the hetero-
geneous information network (HIN). We use metapath instance
counts between startups as closeness measures, and apply train-
able weight parameters to learn the relative importance between
different metapaths. The parameterized summated adjacent graph
structure is used as input of GNN. We conduct a Maximum A Pos-
terior (MAP) inference on the Hinge-Loss Markov Random Fields
(HL-MRFs) to predict unlabeled nodes, then the inference results
are to assist GNN parameters updating. This framework can be effi-
ciently optimized using the variational EM framework, alternating
between an inference procedure (E-step) and a learning procedure

(M-step). In the E-step, the unlabeled nodes are predicted based
on MAP inference, while in the M-step, both labeled and unla-
beled nodes are fed into GNN for parameter updating. To improve
the scalability of our model, we develop a lightweight structured
GNN with only one linear diffusion layer and adopt a fast convex
optimization algorithm for MAP inference.

Finally, we unify all the components into the SHGMNN frame-
work for high-potential early-stage startup prediction. The main
technical contributions of our work are as follows:

e We propose a technique that generates the Parameterized
Summated Adjacent Matrix to integrate and capture the rela-
tive importance of multiple semantic metapaths.

e We propose an MAP inference over Hinge-Loss Markov Ran-
dom Fields for label capacity that can be calculated through
fast convex optimization algorithms.

e We propose a general SHGMNN framework that could take
benifit of both GNN and MAP inference under large-scale
heterogeneous graph settings.

o Extensive experiments and case studies are conducted on
real-world datasets, demonstrating the effectiveness of our
proposed SHGMNN model to handle the unique properties
of the startup success prediction problem.

2 RELATED WORKS

Business Success Prediction: The problem of predicting early-
stage startups’ financing success has long been a hot topic in fi-
nance and management research communities. Early studies in
those fields investigated various factors which might have poten-
tial impacts on new ventures’ success [39]. These works laid a
solid foundation for further feature engineering approaches [9, 22].
Typically, these studies start from crawling a real-world business
dataset with a properly-defined problem, followed by carefully
engineered features using domain-specific knowledge or heuris-
tic guidelines. The handcrafted features are then fed into extant
machine learning models to generate predictive results, such as
decision tree [3, 33], logistic regression [5], naive Bayesian network
[22], neural networks [32], etc. There are also studies aiming to seek
signals of business success using topological features in the net-
work, where most common topological features are centrality-like
ones [4, 15, 18].

Heterogeneous Graph Neural Network: A Graph Neural Net-
work focuses on learning effective object representations for label
prediction problems. In particular, a Heterogeneous Graph Neural
Network (HGNN) is a special type of GNNs designed for Heteroge-
neous Information Networks (HIN) which can essentially exploit
the characteristics of heterogeneity [19, 31, 36, 37, 40, 43]. There is
one specific type of HGNN that uses metapath as a tool for infor-
mation integration on HINs. Conceptually, metapaths in HIN can
be utilized in three different manners: (i) using the metapath-based
neighbors as adjacency information for the node type of interest
[12, 36], (ii) applying a metapath-based sampling technique on the
heterogeneous information network [10], and (iii) designing the
algorithm to automatically find important metapaths [19, 40]. Note
that there is also another strand of research focusing on enhancing
GNN’s scalability to large-scale real-world data [6, 7, 20, 29, 41, 45].



Table 1: Mathematical Notations

Description

B B = {By, By, ..., By} Set of objects
M Number of types of objects

G A graph with nodes V and edges E
P P = {Py, P,, ...Pr} Set of metapaths
T

R

S

Number of defined metapaths
R = {Ry, Ry, ..., Rs} Relationships of objects on G
Number of relationships between objects

p(u,0) A metapath instance connecting node u and v
pe(u,v) Number of metapath instances between u and v
PC PC = {PCy, PCy, ..., PCT} Metapath count matrices
¥ Potential function defined over edges

Yy, Y, Yy Label for all/labeled/unlabeled nodes

Xy Attributes for all the nodes

0,0 GNN model parameters

Ni, NN, N} | All/positive/negative/unlabeled neighbors of i

[Xi] |l| [X;1 Concatenation of two vectors

P Parameters to be updated in M-Step.

q9 Parameters to be updated in E-Step.

a a ={ay, ay, ...,ar} Weight for each metapath
(), &0 Activation functions

A Parameterized summated adjacent matrix

Statistical Relational Learning: In the study of statistical
relational learning (SRL), most research methods model label de-
pendency using probabilistic graphical models, such as Markov
networks [11, 13, 14, 21, 28]. Typically, the following formulation is
employed for modeling the node label distribution Yy conditioned
on the node features Xy with conditional random fields:

POVIXD = 5[] Vol v X0, <1)
(u,0) €E

where (u,v) € E is an edge in graph G(V, E), and Y0 (Yu, Yo, Xv)
is the potential score defined on the edge and Z is the normalization
factor. The potential score is typically defined as linear combina-
tions of variables and given values, such as logical formulae[2].
With this formulation, predicting the labels for unlabeled objects
becomes an inference problem, i.e., inferring the posterior label
distribution of the unlabeled objects p(Yy/|Yr, Xv), in which Yy
and Y7 are the sets of unlabeled and labeled nodes, respectively.
Exact inferencing is usually infeasible due to the complex structures
between object labels, whereas approximate inferencing methods
are favored.

In sum, SRL methods are solid in modeling label dependency over
the entire graph and keeps high interpretability. However, given
its inefficiency of inferencing over complex relational structures,
SRL models may suffer the performance-scalability issue.

3 PRELIMINARIES

In this section, we give formal definitions of some important termi-
nologies pertinent to our work. Table 1 summarizes the methemati-
cal notations appeared in this paper.

Definition 3.1. Heterogeneous Information Network: Given
a list types of objects B = {Bj, By, ..., Byr}, where each type B;
contains n; nodes: {b; 1, b; 2, ...bin, }. Graph G =< V, E > is called

a heterogeneous information network on types B, if V(G) = B and
E(G) = {< bi, bj >}, where bj, bj € B.

Definition 3.2. Metapath: A metapath P is defined as a path

that describes a composit relation between different types of nodes.

R R, R
A metapath of length [ has a form of By =5 By =5 ... = Bji1,

denoting there is a composition of relations R = Ry ¢ Ry ¢ ... o R;
between node type B; and By, ;. Each relation R}Bilx‘Bi*ll is the
adjacent matrix between object B; and Bj41. The total number of
relations [ is the length of the metapath.

Definition 3.3. Metapath Instance: A metapath instance p =
(u, v) represents a specific path instance of metapath P that connects
node u and v.

Definition 3.4. Metapath Count: A metapath count pc(u,v)

R R R
under metapath P = B; —5 By — ... = By41 is the total number
of metapath instances connecting node u and v.

Definition 3.5. Metapath Count Matrix: A metapath count

. Ry R, Ry .
matrix PC under metapath P = By — By — ... — By, is an

adjacent matrix between B; and By, where PCy, = pc(u,0). A
metapath count matrix can be calculated as multiplications of rela-
tions along the metapath:

PC =Ry XRy X...XRy. (2)

Specifically, if B; and By, are of the same type of node, the metap-
ath count is a symmetric square matrix.

Graph Neural Network: In the view of statistical learning,
GNN-based methods model the joint distribution as:

pe(YvIxv) = | | po(yolXv). 3)
veV
For a one-layer GNN, the conditional probability for each node
p(yolXv) is:

po(olXv) =a| > Softmax(@[Xu] I [X:D | (4
SEN;

where © is a trainable model parameter, || is the concatenation
operator and o() is an activation function. GNN can be trained in
an end-to-end manner which updates the model parameter © given
a subset of labeled nodes. From the equation we can see that the
prediction of GNN is based on only aggregation of nodes and its
neighbors’ attributes, ignoring label dependency.

4 SHGMNN FRAMEWORK

In this section, we introduce a novel Scalable Heterogeneous Graph
Markov Neural Network (SHGMNN) model for supervised node
classifications on HINs. The key idea is to take the advantages of
both GNN and SRL: SRL ensures label capacity that GNN neglects,
while GNN helps improve predictability over SRL-based methods.
In particular, we propose to address two major chanllenges here:

e C1: Although extant heterogeneous GNN approaches can
capture heterogeneous network information, it is inevitably
confronted with the scalability issue especially on large-
scale networks. Thus we state Challenge 1 (C1): How to
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Figure 2: The architecture of the Scalable Heterogeneous Graph Markov Neural Network (SHGMNN). Red circled nodes are
labeled as positive, blue circled nodes are labeled as negative and black-dotted circled nodes are unlabeled. The original het-
erogeneous graph is first transferred into a parameterized summated adjacent graph structure using metapath-count and 1-d
convolutions, followed by a variational EM framework. In E-Step, the MAP Inference predicts unlabeled nodes, and pass result
to GNN. In M-Step, the GNN updates parameters based on E-Step’s output, and make predictions for MAP’s parameters update.

incorporate heterogeneity while keeping model com-
plexity under control?

e C2: We expect SRL can model label capacity and potentially
outperform GCN. However, inferencing on a network with
complex node relations can be computationally expensive.
Thus we state Challenge 2 (C2): How to properly model
label capacity using low-cost SRL methods?

4.1 Overview

Our proposed SHGMNN framework models a joint distribution
p(Y|G, §) of object labels Y conditioned on the heterogeneous net-
work G and model parameters ¢. In order to optimize the objective,
we use a pseudolikelihood variational EM framework. In E-step, a
Maximum A Posterior (MAP) inference over Hinge-Loss Markov
Random Fields (HL-MRFs) is used to ensure dependency of object
labels. In M-step, a GNN is used to integrate heterogeneity as well
as to leverage the object attributes. The predicted labels in E-step
together with the ground-truth labels are employed for GNN’s pa-
rameter updating. By using a linear diffusion operator technique
and a fast convex optimization computing algorithm, our SHGMNN
framework can be deployed on large-scale heterogeneous informa-
tion networks. Figure 2 shows the overall architecture of SHGMNN.
We will present the details of SHGMNN in the following sections.

4.2 Pseudolikelihood Variational EM:

We rewrite Equation (2) into a parameterized joint distribution of
object labels conditioned on node attributes: py (Yy |Xy ), where ¢
denotes model parameters. For simplicity, we ignore the specific
formulation of potential functions for now. It is difficult to directly
learn ¢ by maximizing the log-likelihood function logpy (YL|Xv),
since the object labels are partially observed. Instead, we optimize
the evidence lower bound (ELBO) of the log-likelihood function:

Eqo(vu 1xv) [ 109D (Y1, Yo |Xv) = logqe (Yu|Xv)], (5

where qg(Yy7|Xy) can be any distributions over Y. According to
[25], the ELBO can be optimized using variational EM algorithm
that alternates between a variational E-step and an M-step. In the
variational E-step, the goal is to fix ps and update the variational

distribution q¢(Yy|Xy) to approximate the true posterior distribu-
tion pg (Yu|YL, Xv), in which the objective is:

09 = " Ep(yaixv) [10990 (unlXv)] + > logg(yalXv).  (6)

nelU nel

In the M-step, qg is fixed and py is updated to maximize the
following objective function:

Og = > logpy(ao(ynlXv)IXv) + > logpy(ynlXv),  (7)

neU neL

where U and L are the sets of unlabeled and labeled nodes respec-
tively. For labeled nodes, the supervised log-likelihood objective
function is optimized, while for unlabeled nodes, the log-likelihood
is approximated by the inference resulted from the E-step. It is
worth to note that if 6 is empty, the variational E-step will become
a regular E-step in which no parameters updates are needed.

4.3 M-step: GNN with Parameterized Adjacent
Matrix Using Meta-path Count-Based
Heterogeneity Summation

Some of the existing HGNN methods [19, 40, 43] groups all types
of nodes on the heterogeneous information network, generating a
very large node space. However, in most cases only a certain type of
nodes are of our interests, corresponding to a very small proportion
of the entire node space. Our startup success prediction problem
is a typical example that only Startup nodes are of our particular
concern. Accordingly, a meta-path count-based summation strategy
is introduced to effectively reduce the node space.

Consider a heterogeneous information network G(V, E) with
two types of nodes: Startup (S) and People (P). A metapath starts
from a Startup node, traverses through its People neighbors, then

ends at connected Startup nodes, i.e. S & P i S. Here Ry can
represent the relation of a startup hiring a person, while Rz can
denote a startup founded by a person. Such a metapath can be
denoted in short as "SPS". As introduced in Section 3, we could
use matrix multiplications to calculate the total number of metap-
ath instance counts between different nodes, which generates the
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posed matrix.

metapath count matrix:
T
PCsps = Agp X Agp, ®)

where Agp is the adjacent matrix from Startup nodes to People nodes.
Figure 3 illustrates the procedure of calculating the meta-path count
matrix (PC) of metapath "SPS" with adjacent matrices multiplica-
tions. We select a set of symmetric metapaths which starts and ends
at nodes of our interests, generating a set of symmetric metapath
count matrices. Each matrix corresponding to one type of metapath
can be treated as a closeness adjacency measure between nodes of
interest under a certain semantic meaning. To leverage the weights
of different semantic meta-paths, we introduce a parameterized
summation over the normalized meta-path count matrices:

P~Csoft = Z ar X P~Ct, (9)
teT

where PC; = D%PCtD_% is the normalized metapath count matrix,
Dj; = 3. PCij is the row-summated diagnal matrix. T is the set
of selected metapaths and « is a trainable relative weight param-
eter constrained by a softmax function among all the meta-path
count matrices. To simplify the notation, we let A = PCy, ft- The
above operation is equivalent to applying a 1-d convolutional layer
over the normalized adjacent matrices, resulting in a parameter-
ized weighted adjacent matrix to represent the overall adjacency
between each nodes. The parameterized summated adjacent matrix
can be input of any form of Graph Neural Network architectures
and it empowers any GNN to handle heterogeneity. In the M-step of
variational EM framework, we seek to update the parameters of the
GNN model together with the weight parameters that maximizes
the objective Oy. More specifically, we will use both groundtruth
labels and inference results from E-Step to update the parameters
¢ ={a, ©}, © denotes to the parameters of GNN.

4.4 E-Step: Maximum A-Posterior (MAP)
Inference

At this stage, we form a Hinge-Loss Markov Random Fields [1]
(HL-MRFs) over the graph. A Hinge-Loss Markov Random Fields
can be formulated as a log-concave conditional probability density
function over the graph:

R
POAIXA) = Sexp(= Y Adr(Ea X)), (10

r=1

where A represents the set of weight parameters and Z a normal-
ization constant. The potential function i, (Y, X) for HL-MRFs is
specifically defined as:

lpr(Y>X) = (max (lV(Y’X)’O))p> (11)

where I, is a linear function of Y and X while p € {1, 2}. We de-
fine specifically three types of potential functions in our problem
settings: positive, negative and unknown potentials. The positive
potential function is defined as:

pp(V,X) = 3 > Al j)(max (1-y;,0)F,  (12)
ieYy jeN}

where A(i, j) represents the edge weight of i, j in the parameter-
ized summated adjacent matrix. N}" is the set of positively labeled
neighbors of i. This potential function assigns higher probabili-
ties for any unlabeled nodes with positive neighbors, since the
higher y; becomes, the smaller the “distance-to-satisfaction” is, i.e.
non-negative hinge-loss decreases. Similarly, we have negative con-
straint potential function:

IN(LX) = L AG ) (max (5 - 0,0)P,  (13)
i€Yy JEN;
where N; is the set of negatively labeled neighbors of i.

The above two potential functions jointly constrains the label
capacity given nodes’ first-order neighbors, which is equivalent
to a single layer GCN. Previous work[27] needs multiple stacks of
GCN layers to consider neighbors of higher orders. We solve by
using a third potential function to constrain the unlabeled nodes
not only with labeled neighbors, but also with unlabeled neighbors
by forcing neighboring unlabeled nodes to be close in probabilities:

Ju(V,X)= > > AG, j)(max (y; - yj,0)? +max (y; - y;, 0))°

ieYy jEN}

DD Ay -y,

i€Yy jeN}

(14)

where N} is the set of unlabeled neighbors of i. By adding the third
potential function, the label capacity can be propagated to the entire
graph. More rigorously, the conditional probability density function
of HL-MRFs based on the three pre-defined potential functions can
be formally written as:

POV = Zexp(= Y (Ap D A, J) X max(1 - ;07

i€Yy  jeN}
+AN Z A, j) X max(y; — 0,0)F (15)
JEN;
Y AG ) < |y y;1P)),
JEN}

where Ap, AN and Ay are the weight parameters corresponding to
each potential function. The Maximum A-Posterior (MAP) inference
can be calculated by maximizing the conditional probability density
function, which is equivalent to minimizing the sum potentials.
Given the hinge-loss potentials are convex, the inference can be
optimized to reach the global optimal solution efficiently. The pre-
dicted labels will be used by GNN in the back-propagation stage,
updating the parameters. Using MAP inference, we can ensure label



dependency which is overlooked by the GNN model and therefore
properly address Challenge 2 (C2).

4.5 Scalable Optimization

Till now, we have fully presented the general architecture of our
proposed SHGMNN framework. In this subsection, we will intro-
duce how to optimize our SHGMNN in a scalable setting so that it is
applicable to large-scale real-world datasets. It consists of two parts:
efficient GNN model design and fast MAP inference calculation.

Shallow-structure GNN with Linear Diffusions: Previous
work [38] demonstrated that a "shallow" model with single GCN
layer can have the performance on a par with other "deep"” models.
Meanwhile, [29] introduced a strategy of concatenating multiple
diffusion matrices in one linear layer in order to capture the impor-
tance between nodes’ neighbors under different diffusion operators.
We adopt the similar idea by using three diffusion operators: sim-
ple adjacent matrix, Personalized PageRank-based adjacency, and
triangle-based adjacency matrices. All diffusion matrices (together
with their powers) can be pre-calculated before the training stage.
Given only one single linear layer, both the training batch time and
inference time are significantly shorter than most of the sampling-
graph-based approaches, such as ClusterGCN [7] and GraphSAINT
[41]. Formally, we have:

Z = 0([XOg, A1 X0y, ..., A, XO,]),

Y = £(ZQ). (16)

Here, A1, Ay, ..., A, are linear diffusion matrices calculated based
on A, Oy, ...,0,. Q is a set of learnable parameters. o and & are
activation functions. Note that the product of the diffusion matri-
ces and node features can be pre-calculated to avoid redundant
computations.

In addition, our meta-path count-based summation strategy sig-
nificantly reduces the node space by preserving only the nodes
of interest, generating a parameterized adjacent matrix that can
be fed into any form of GNN architectures. Since the 1-d convo-
lutional and the linear diffusion contain very few parameters, our
proposed network structure is rather efficient in comparison with
other HGNN approaches, effectively addressing Challenge 1 (C1).

Parallel Convex Optimization Using ADMM Algorithm:
The design of our MAP Inference over Hinge-Loss Markov Ran-
dom Fields makes the inference objective convex, which allows
acceleration using fast convex optimization algorithms. In order
to calculate the MAP convex inference over a large-scale graph,
we adopt the Alternating Direction Method of Multipliers (ADMM)
algorithm which divides the overall convex optimization problem
into small fractions, which are subsequently addressed in parallel
manner and forced to an agreement progressively.

5 DATASET

5.1 Data Source

To carry out our experiments, we start by collecting information
from the selected business dataset and transfer them into graph-
structured data. Among several potential business data sources,

such as Crunchbase?, Owler?, Preqin4 and S&P Capital IQ5, Crunch-
base is widely recognized as the leading database of business and
investment activities [8], especially for early-stage startups. Crunch-
base data is sourced mainly through two channels: large investor
network and community contributors. More than 3,000 global in-
vestment firms upload monthly portfolio updates to Crunchbase, in
exchange for free data access [8]. In a benchmark of comparison be-
tween multiple business data sources, Chrunchbase demonstrated
its fairly comprehensive coverage. Therefore, we target Crunchbase
as the primary data source for constructing our business informa-
tion network. Specifically, Crunchbase data contains information
about venture capital investments, startup founding members and
individuals in leadership positions, mergers and acquisitions (M&A)
events, media news, industry trends, etc. Among them, we gather
historical investment records, startup firmographics, and members’
profiles to build our Heterogeneous Business Information Network.

5.2 HBIN Construction

In order to construct the Heterogeneous Business Information Net-
work G = (V,E), we target three types of entities commonly in-
volved in entrepreneurial activities: VC Firm, Startup and People.
These entities are regarded as different types of nodes in our hetero-
geneous business information network, i.e. G(V) = {S,V, P}. The
interactions between entities are edges. We extract three business
interactions between different entities:

o VC Investments: If a Startup s was funded by a VC Firm v,
there is an edge (s,v) € E.

o People Investment: If a Startup s receives investment from a
Person p, there is an edge (s, p) € E.

o Employment: If a Startup s hires a Person p, or a Person
founded a Startup s, there is an edge (s, p) € E.

Label Assignment: We model the early-stage startups success
prediction problem as node classifications on the constructed HBIN,
bringing up two questions:

(1) Which stage in startup’s life cycle is regarded as early-stage?

(2) What is the proper indicator of success for early-stage startups?

Extensive studies have conducted on studying the life cycle of
startups [26, 30]. According to [26], the development of a typical
startup can be divided into multiple stages, such as pre-startup stage,
early stage, growth stage, etc. Early-stage startups are generally
referred to those who have received at least one funding round, e.g.
seed round, yet without any profit. When startups start to demon-
strate their capability of generating revenue, such as launching their
first products, VC investors will typically consider further rounds
of investments which are typically called series funding rounds.
The first round of such equity crowdfunding is Series-A funding,
then Series-B,C,D, etc. As our targets, the early-stage startups are
defined as those companies who have received at least one round of
investment but no Series-A funding. Meanwhile, given that receiv-
ing series-A funding is a significant milestone for an early-stage
startup signifying its growth and expansion, we therefore define
whether an early-stage startup could reach Series-A funding round

https://www.crunchbase.com/
3https://corp.owler.com/
*https://www.preqin.com/
Shttps://www.spglobal.com



Table 2: Statistics of two datasets.

CB-2013 | CB-2021
#Startups 7,374 6,741
#Positively Labeled Startups 1,697 1,200
#Negatively Labeled Startups | 5,677 5,541
#People 29,991 20,250
#VC Firms 2,509 6,260
#S-P 35,515 22,544
#S-V 7,052 14,313

as an indicator of success. Note that in rare cases, the companies
who has not received Series-A funding but eventually got acquired
by other companies are also considered “successful”.

5.3 Dataset Description

From Crunchbase, we gather two snapshots of data samples for
our experiments. The first is a snapshot CB-2013 that contains all
investment activities occurring no later than Dec 31th, 2013. Mean-
while, to evaluate our model on the latest business dynamics, we
have collected up-to-date data from Crunchbase website as our
second dataset CB-2021. In the aim of tracking startup behaviors
consistently, we excluded the startups founded over 10 years ago in
the respective snapshots (i.e. those earlier than Jan 1, 2004 for CB-
2013 and those earlier than Feb 1, 2011 in CB-2021). On the other
hand, we observed in CB-2013, 86.54% of startups receive Series-A
investment within 2 years since establishment, and likewise 81.23%
of startups in CB-2021. We therefore decided to exclude startups
founded less than 2 years to ensure necessary performance pe-
riod. To avoid information leakage, we ruled out all the investment
records after Series-A (included) investment rounds. The statistics
of the two snapshots are shown in Table 2.

6 EXPERIMENTS
6.1 Experimental Settings

6.1.1 Baselines. To better demonstrate the performance of our
SHGMNN model, we include a wide range of state-of-the-art base-
lines algorithms. They can be divided into four groups: (i) methods
using only node attributes or topological features (Random, Cen-
trality, Metapath2Vec) (ii) metapath-based heterogeneous neural
network methods (HAN, GTN), (iii) methods using SRL for label
capacity (GMNN, MAP), and (iv) methods with scalable settings
(SGC, SIGN). The descriptions of baselines are presented below. De-
tailed evaluation protocols and experimental setup can be found in
the appendix. We also make our code publicly available at GitHub®.

e Random: Randomly assign value to unlabeled nodes with
respect to the label distribution in the training set.

o Closeness Centrality [4]: It is a topological feature-based
approach using closeness centrality for node ranking. This
represents the state-of-the-art method for graph-based startup
success prediction. We also assign labels with respect to the
label distribution in the training set.

Shttps://github.com/mmichaelzhang/SHGMNN

e Metapath2Vec [10]: It is a metapath-based skip-gram model
for heterogeneous network embedding.

e Heterogeneous Graph Attention Network (HAN) [36]:
It is a metapath-neighbor-based graph neural network with
two attention layers.

e Graph Transformer Networks (GTN) [40]: It is a graph
neural network that automatically extracts metapaths with
multiple graph transformer layers.

e Graph Markov Neural Network (GMNN) [27]: This ap-
proach uses SRL to assist GNN with label capacity on the
homogeneous graph. This represents stat-of-the-art SRL-
assisted GNN method.

e MAP Inference (MAP) [1]: It is a pure SRL method that
infers unlabeled nodes using MAP inference on Hinge-Loss
Markov Random Fields.

e Simplified Graph Convolution (SGC) [38]: It is a simpli-
fied graph convolutional neural network for scalable setting.

e Scalable Inception Graph Neural Networks(SIGN) [29]:
It is a scalable GNN model that precomputes the diffusions
under different operators over graph.

6.2 Experimental Results

6.2.1 Overall Performance. To demonstrate the effectiveness of
our model, we first compare our SHGMNN with all the baseline
methods on performing high-potential early-stage startup predic-
tions. Table 3 presents the experimental results, from which we
can see some interesting facts. First, the performance of SHGMNN
surpasses the baseline methods on all evaluation metrics on CB-
2013. It demonstrates the superior capability of our proposed frame-
work on predicting high-potential early-stage startups. Second, our
SHGMNN obtains much higher overall Precision@K than other
baselines, which exhibits strong ranking ability of our model on
potential candidates, and thus more applicable for real-world sce-
narios. Third, regarding the comparison between HAN and GTN,
we can see that different strategies of using metapaths influencing
the final performance differently, which manifests the necessity of
new heterogeneity integration techniques.

6.2.2  Ablation Study. We also conduct some ablation experiments
to check how each part of our model affects the final results. We
experiment by ablating different parts of our framework, and in-
cluded the results in Table 3. To clarify, SHGMNN-S is SHGMNN
preserving parameterized summation and ruling out the MAP in-
ference while SHGMNN-M is SHGMNN without parameterized
summation, but keeping only the MAP inference. From the results,
we can draw the following arguments: (1) it is clear that both weight
learning and MAP inference help improve the model performance
to certain degrees; (2) the MAP inference provides important rank-
ing support for most-likely candidates, indicated by a significant
increase of Precision@XK values; (3) using a parameterized summa-
tion strategy, the overall performance in classification correctness
is certainly improved, including both accuracy and AUPR score.

6.2.3 Time Efficiency. In order to compare the convergence speed
for GNN-based algorithms, we show their validation accuracy on
CB-2021 dataset as a function of runtime in Figure 4. We observe
that SHGMNN does not only reach a higher validation accuracy,
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Table 3: Overall performance.

Dataset CB-2013 CB-2021
Classification Correctness Precision@K Classification Correctness [ Precision@K
Algorithm F1 [ AUC [ AUPR [ Accuracy | P@10 | P@50 [ P@100 F1 [ AUC ] AUPR [ Accuracy | P@10 | P@50 [ P@100
Random 23.14% | 49.64% | 24.75% 64.20% 26.00% | 26.60% | 26.90% | 19.36% | 50.01% | 19.09% 67.74% 15.00% | 18.80% | 18.90%
Centrality 23.53% | 49.03% | 24.26% 60.97% 40.00% | 28.00% | 25.00% | 20.14% | 48.14% | 18.06% 65.17% 10.00% | 16.00% | 16.00%
Metapath2Vec | 9.85% | 51.38% | 25.84% 73.47% 20.00% | 22.00% | 28.00% | 2.22% | 51.17% | 19.83% 81.59% 40.00% | 14.00% | 20.00%
HAN 33.93% | 59.96% | 31.61% 77.29% 71.00% | 658% | 55.20% | 23.12% | 51.89% | 20.45% 82.06% 53.00% | 40.30% | 35.50%
GIN 32.78% | 59.20% | 34.78% 79.12% 78.00% | 76.60% | 64.20% | 17.72% | 70.19% | 34.13% 81.91% 57.00% | 52.60% | 46.72%
GMNN 31.12% | 68.82% | 35.22% 78.63% 74.00% | 65.60% | 55.70% | 13.11% | 69.39% | 33.93% 81.13% 48.00% | 47.20% | 43.80%
MAP 3236% | 50.88% | 24.95% 53.70% 83.00% | 72.00% | 36.00% | 2433% | 51.16% | 19.10% 58.37% 62.00% | 46.20% | 42.80%
SGC 30.15% | 68.85% | 33.78% 77.83% 65.00% | 58.00% | 56.90% | 11.58% | 68.23% | 35.38% 81.69% 47.00% | 44.20% | 38.30%
SIGN 32.29% | 59.21% | 34.41% 78.49% 70.00% | 61.40% | 57.80% | 13.34% | 68.60% | 33.78% 80.89% 42.00% | 43.60% | 43.10%
SHGMNN-S | 30.02% | 59.94% | 35.09% 78.65% 67.00% | 63.00% | 59.60% | 14.08% | 68.86% | 34.42% 82.39% 42.00% | 44.20% | 44.70%
SHGMNN-M | 31.01% | 70.59% | 41.67% 81.53% 85.00% | 75.50% | 61.70% | 9.47% | 62.29% | 30.08% 81.67% 65.00% | 37.40% | 30.30%
SHGMNN | 33.94% | 70.60% | 42.29% 82.76% | 86.00% | 79.80% | 63.30% | 26.70% | 71.04% | 35.60% 82.28% 52.00% | 47.40% | 41.80%
- The Gauss Surgical is ranked NO.1 in our test set. Regarding
its funding records, we can see an initial seed round of $805,000
<81 . .
= dollars after 10 months of its establishment, followed by another
79 17 . .
g zZCN seed round of over $1.4 million dollars. Up until now, this company
37 HAN has received a total of 7 funding rounds with in sum $51.5 million
o . . . . .
©7s SHGMNN dollars. Undoubtedly, it is a startup with very high potential, and
27 GMNN our model does its job well. Furthermore, by checking its founders,
© —GTN ..
=2 both CEO and CTO are graduates from the School of Medicine at
> Stanford University. It also manifests, from a different perspective,
69 . . . . . .
how the semantic meta-path SPS plays a vital role in identifying
& high-potential startups.
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Figure 4: Convergence speed comparison of different GNN-
based methods on CB-2021.

but also converge faster than GMNN and HAN. Meanwhile, its con-
vergence speed is on a par with the algorithms designed specifically
for scalable training, such as SIGN and S-GCN. From the figure we
can tell that GTN takes significantly longer time for training since
it is not equiped with any node space reduction process. Due to
the two-layer attention structure, HAN also converges slower than
other baselines. The underperformed results from both GTN and
HAN demonstrate our model’s improvement in scalability when
dealing with heterogeneous information networks.

6.3 Case Study

To further illustrate the managerial insights from our SHGMNN
model, we pick four representative startups from the test set of
CB-2013 for case study. Specifically, we sort all startups in the test
set according to their predicted scores, and pick one of the most
representational startups from each of the following categories
in confusion matrix: True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN), as shown in Table 4.

Table 4: Selected startups for each category.

Positive
TP: Gauss Surgical
EN: Airbrite Inc.

Negative
FP: Official.fm
IN: Camiloo, CellCap, Setgo

Predicted (+)
Predicted (-)

Another interesting case is Airbrite Inc., ranked No.2 in our
test set, but the ground truth label is indeed negative, given its
fact that no Series-A funding before 2013 year-end snapshot date.
However, this company received a second funding round of over
$2 million dollars in two months after the snapshot date, and even-
tually got acquired by Indiegogo on May 10, 2016. Our model still
foresees its great potential under the undesired circumstances of
data limitations.

The Camiloo, which only received one seed-round investment
in our CB-2013 dataset, along with its two direct neighbors, (CellCap
and Setgo), do not receive further funding rounds until recently.
Our model makes correct predictions for all these three startups.
Last but not least, Official.fm lies at the bottom of our ordered
startup list (below the bottom 0.5% percentile). According to the
records, it did received Series-A round of investment (labeled as
positive), but no further reported fundings up until current moment.
This case indicates that our model learns knowledge beyond pre-
dicting further funding rounds, and could potentially see long-term
performance of startups.

7 CONCLUSIONS

In this paper, we investigated the high-potential early-stage startup
prediction problem which is of great economic value and man-
agerial meanings. Specifically, we constructed the Heterogeneous
Business Information Network (HBIN) and proposed the Scalable
Heterogeneous Graph Markov Neural Network (SHGMNN) frame-
work to identify high-potential startups. We adopted metapath
count-based summations over different semantic metapaths and
used a 1-d convolutional operator to leverage the relative weights,
generating a parameterized summated adjacent graph structure that



can be input of any GNNs. The GNN architecture we designed fea-
tures at its lightweight linear diffusion structure, which is naturally
ready for scalable training. To keep the label capacity which GNN
ignores, we introduced a convex MAP inference over Hinge-Loss
Markov Random Fields that can be optimized using fast parallel
convex solvers. A variational EM framework is adopted to jointly
optimize GNN and MAP inference. The proposed SHGMNN model
provided a general solution to process large-scale heterogeneous
information networks. Finally, extensive experimental results and
case studies on two real-world datasets demonstrated SHGMNN’s
superiority over all other baselines for high-potential early-stage
startup predictions.
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A APPENDIX

Evaluation Protocols To simulate a real-world scenario, the star-
tups in our datasets are segmented according to their founded dates.
In the 10-year period, we group the startups founded in the first
5 years into training set, the ones founded in the 6-th year into
validation set, and those founded in the 7-8th years into testing set.
(recall that we reserve 2 years as the performance window). As a
result, in CB-2013, there are 2,413 nodes in the training set, 1,097
nodes in the validation set and 3,864 nodes in the testing set, while
in CB-2021, there are 5,066 nodes in the training set, 719 nodes
in the validation set and 956 nodes in the test set. Note that two
datasets with different training/validation/testing distribution can
help evaluate the robustness of our model.

We compare the results on two categories of evaluation metrics.
The first is classification correctness, including accuracy, F1-score,
AUC and AUPR. The other group is ranking metrics, including
the Precision@10, @50, and @100. Note that the Precision@K is

a popular evaluation metric used by business success prediction-
related papers [4, 32].

Experimental Setup We use Metapath2Vec on the HBIN to
generate the node attributes with parameters setting: window size
=7, walks per node = 1,000, walk length = 100, attribute dimension
= 128. Two semantic metapaths are defined: SPS and SVS. We use
the same node attributes for all the baselines and employ two meta-
paths: SPS and SVS. The same set of metapaths are incorporated
for Metapath2Vec and HAN. For GMNN, SIGN and SGC, the
input adjacent matrix is the mean average of two metapath count
matrices to ensure unbiased comparisons. We implement our model
using PyTorch (For GNN training) and Matlab (For MAP Inference).
The hidden layer dimensions are set at 32. In the process of model
training, we use the Adam optimizer for parameter optimization.
We set learning rate at 0.01 and mini-batch size at 32. The parame-
ters of the baselines are set up similarly as our method and carefully
tuned to ensure fair comparisons.
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