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ABSTRACT
Motivated by the success of pre-trained language models such as
BERT in a broad range of natural language processing (NLP) tasks,
recent research efforts have been made for adapting these models
for different application domains. Along this line, existing domain-
oriented models have primarily followed the vanilla BERT architec-
ture and have a straightforward use of the domain corpus. However,
domain-oriented tasks usually require accurate understanding of
domain phrases, and such fine-grained phrase-level knowledge is
hard to be captured by existing pre-training scheme. Also, the word
co-occurrences guided semantic learning of pre-training models
can be largely augmented by entity-level association knowledge. But
meanwhile, there is a risk of introducing noise due to the lack of
groundtruth word-level alignment. To address the above issues, we
provide a generalized domain-oriented approach, which leverages
auxiliary domain knowledge to improve the existing pre-training
framework from two aspects. First, to preserve phrase knowledge
effectively, we build a domain phrase pool as auxiliary knowledge,
meanwhile we introduce Adaptive Hybrid Masked Model to incor-
porate such knowledge. It integrates two learning modes, word
learning and phrase learning, and allows them to switch between
each other. Second, we introduce Cross Entity Alignment to lever-
age entity association as weak supervision to augment the semantic
learning of pre-trained models. To alleviate the potential noise in
this process, we introduce an interpretable Optimal Transport based
approach to guide alignment learning. Experiments on four domain-
oriented tasks demonstrate the superiority of our framework.

CCS CONCEPTS
•Computingmethodologies→Natural language processing.

KEYWORDS
Domain language modeling, pre-training, masked language model,
optimal transport.

* Corresponding authors. This work was partially supported by the National Science
Foundation through awards III-2006387, IIS 1814510, and IIS-2040799.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467215

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BERT

ALBERT

RoBERTa

Three-word phrase Two-word phrase Single word

Figure 1: The single-word and phrase reconstruction accu-
racy of several existing language pre-training models.
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1 INTRODUCTION
Recent years have witnessed the great success of pre-trained lan-
guage models (PLMs), such as BERT [7], in a broad range of nat-
ural language processing (NLP) tasks. Moreover, several domain-
oriented PLMs have been proposed to adapt to specific domains
[4, 8, 10]. For instance, BioBERT [13] and SciBERT [2] are pre-
trained leveraging large-scale domain-specific corpora for biomedi-
cal and scientific domain tasks respectively. However, in the above
models, the same pre-training scheme as BERT is reused straight-
forwardly, while insightful domain characteristics are largely over-
looked. To this end, we raise a natural question: for domain language
pre-training, can we go further beyond the strategy of vanilla BERT +
domain corpus by leveraging domain characteristics? In this paper,
we explore this question under e-commerce domain and present
promising approaches that can also be generalized to other domains
when auxiliary knowledge is available.

We first discuss the characteristics of domain-oriented tasks, and
the limitations of current pre-training approaches, then present
two major improving strategies, corresponding to leveraging two
types of auxiliary domain knowledge smartly. On the one hand, un-
derstanding a great variety of domain phrases is critical to domain-
oriented tasks. As shown in Table 1, the review aspect extraction
task, widely used in the e-commerce domain, requires language
models to understand domain phrases to extract the correct an-
swers. However, such phrase-level domain knowledge is hard to
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Table 1: An example of review aspect extraction, where cor-
rect answers (marked in color) are usually phrases.

Review: That included the extra Sony Sonic Stage software, the 
speakers and the subwoofer I got (that WAS worth the money), the 
bluetooth mouse for my supposedly bluetooth enabled computer, 
the extended life battery and the docking port. […]

be captured by Masked Language Model (MLM) [7] (i.e., the self-
supervised task employed in most language pre-training models).
Figure 1 depicts the language reconstruction performance of three
existing language pre-training models on a public e-commerce cor-
pus. As can be seen, the reconstruction accuracy drops drastically
when the prediction length is increased from single word to multi-
word phrase. We attribute this to the fact that MLM is a word-
oriented task, i.e., it only reconstructs randomly masked words from
the incomplete input however does not explicitly encourage any
perception ability for domain phrases. Although later works [11, 32]
propose to mask phrases instead of words in MLM to enable BERT
for phrase perception, they have two major drawbacks: (i) Overgen-
eralized phrase selection, they use chunking [31] to randomly select
phrases to mask, without considering the quality of phrases and
the relatedness to specific domains. (ii) Discard of word masking,
word masking helps to acquire word-level semantics essential for
phrase learning, hence should be preserved in pre-training.

On the other hand, pre-trained language models are limited by
corpus-level statistics such as co-occurrence, which can be miti-
gated by auxiliary domain knowledge. For instance, to learn that
Android and iOS are semantically related, a large number of co-
occurrences in similar contexts are required in the pre-training
data. For domain-oriented learning, this can be mitigated by auxil-
iary knowledge, i.e., entity association. As shown in Table 2, when
leveraging the “substitutable” association to pair the description
texts of two product entities, Samsung galaxy and iPhone, we can
augment the co-occurrence of some words/phrases (e.g, 5G network
vs 4G signal; Android vs iOS) by learning the alignments of similar
words across entities. However, the above intuition is challenging
to fulfill in practice as it constitutes a weakly supervised learning
task. In other words, only weak-supervision signals (i.e., entity-
level alignments) are available, while the word-level groundtruth
alignments across entities are hard to obtain. Hence, the aligning
problem needs a robust learning algorithm to overcome the poten-
tial noises under the weak supervision. Moreover, the algorithm
should also offer decent interpretability over the alignment for the
ease of understanding and validation.

Based on the above insights, we propose an enhanced domain-
oriented framework for language pre-training. Our framework
takes the mentioned domain characteristics into consideration, and
introduces two approaches to tackle the challenges. First, to en-
able language pre-training with the perception ability for domain
phrases, we propose an advanced alternative for Masked Language
Model, namely, Adaptive Hybrid Masked Model (AHM). In contrast
to MLM only masking and reconstructing single words, AHM in-
troduces a new sampling scheme for masking quality phrases with
the guidance of an external domain phrase pool, and meanwhile, a
novel phrase completeness regularization term is proposed for sophis-
ticated phrase reconstruction. Furthermore, since both word-level
and phrase-level semantics are critical to language modeling, we

Table 2: An example of relational text in the e-commerce do-
main, where product descriptions are connected by the “sub-
stitutable” product association.

Product Description
Samsung Galaxy S10 OS: Andriod; 5G network; Dynamic AMOLED; …

iPhone XS iOS; 4G signal; T-Mobile service; OLED screen; …

unify the word and phrase learning modes via a loss-based parame-
ter. It allows the adaptive switching between each other, ensuring a
smooth and progressive learning process resembling the human cog-
nition of language. Second, to exploit the rich co-occurrence signals
hidden in entity associations, we formulate a new pre-training task,
namely, Cross Entity Alignment (CEA). Specifically, CEA aims to
learn the word-level alignment matrix of entity association based
text pair (e.g., description pair) with only weak supervision, i.e., only
knowing two entities are related but no word-level groundtruth
alignments available. Moreover, we propose an alignment learning
scheme leveraging Optimal Transport (OT) to train this task in a
weakly-supervised fashion. At each round, the OT objective helps
to find the pseudo optimal matching of similar words (or phrases)
and returns a sparse transport plan, which reveals robust and inter-
pretable alignments. The language model is further optimized with
the guidance of the transport plan to minimize the Wasserstein
Distance of the aligned entity contents, enabling the model to learn
fine-grained semantic correlations.

To validate the effectiveness of the proposed approach, we con-
duct extensive experiments in the e-commerce domain to compare
our pre-training framework with state-of-the-art baselines. Specif-
ically, we employ the pre-training corpus created from publicly
available resources and fine-tune on four downstream tasks, i.e.,
Review-based Question Answering (RQA), Aspect Extraction (AE),
Aspect Sentiment Classification (ASC), and Product Title Catego-
rization (PTC). Quantitative results show that our method signifi-
cantly outperforms BERT and other variants on all the tasks. Ad-
ditionally, the visualization of OT-based approach reveals feasible
alignment results despite the weak supervision, meanwhile, present-
ing convincing interpretability as the alignment vector is enforced
to be sparse. Lastly, while we demonstrate the effectiveness of our
approach in the e-commerce domain, the ideas of the framework
can be generalized to broader domains since the aforementioned
auxiliary knowledge is free of annotation cost. The domain phrase
pool can be constructed from domain corpus. Entity association is
broad and general, which is easy to obtain in main domains.

2 RELATEDWORK
Pre-trained Language Models. Recently, the emergence of pre-
trained language models (PLMs) [7, 23, 26] has brought natural
language processing to a new era. Compared with traditional word
embeddingmodels [20], PLMs learn to represent words based on the
entire input context to tackle polysemy, hence captures semantics
more accurately. Following PLMs, many endeavors have been made
for further optimization in terms of both architecture and training
scheme [3, 15, 16, 32]. Along this line, SpanBERT [11] proposes
to reconstruct randomly masked spans instead of single words.
However, the span consists of random continuous words and may
not form phrases, thus fails to capture phrase-level knowledge



effectively. ERNIE [31] integrates phrase-level masking and entity-
level masking into BERT, which is closely related to our masking
scheme. Differing from their work simply using chunking to get
general phrases, we build high-quality domain phrase pool to assist
learning domain-oriented phrase knowledge. Also, we propose
a novel phrase regularization term over the reconstruction loss
to encourage complete phrase learning. Moreover, we combine
word and phrase learning cohesively according to their optimizing
progress, achieving better performance than each single mode.
Domain-oriented PLMs. To adapt PLMs to specific domains, sev-
eral domain-oriented BERTs such as BioBERT [13], SciBERT [2],
and TweetBERT [25], have been proposed recently. BERT-PT [36]
proposes to post-train BERT on a review corpus and obtains better
performance on the task of review reading comprehension. Gu-
rurangan et al. [9] proposes an approach for post-training BERT
on domain corpus as well as task corpus to obtain more perfor-
mance gains on domain-specific tasks. DomBERT [37] proposes to
select data from a mixed multi-domain corpus for the target do-
main, improving the diversity of domain language learning. More
work along this line can be referred to [18, 28]. Similarly, incor-
porating domain knowledge has shown effectiveness in broader
areas [14, 33, 38–41] such as representation learning. The above
solutions have primarily leveraged domain corpus for pre-training
in a straightforward way, without considering insightful domain
characteristics and domain knowledge such as domain phrase and
entity association. Our work is the first leveraging auxiliary domain
knowledge to enhance domain-oriented pre-training.

3 PRELIMINARIES
In this section, we give a brief introduction to two essential concepts
that are related to our work, namely, Masked Language Model and
Optimal Transport.
Masked Language Model. Masked Language Model (MLM) [7]
refers to the self-supervised pre-training task that have been applied
in pre-trained language models (e.g., BERT, RoBERTa, etc.). It is
considered as a fill-in-the-blank task, i.e., given an input sequence
partially masked (15% tokens), it aims to predict those masked
words using the embeddings generated by the language model:
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where F (;𝜃 ) denotes the Transformer based language model. 𝑋
is the full input sequence, 𝑀 denotes the indices of all masked
tokens in 𝑋 , 𝑋𝑚 indicates one of the tokens in 𝑀 , \ is set mi-
nus. [F

(
𝑋\𝑀 ;𝜃

) ]
𝑚

denotes the output vector corresponding to the
masked token 𝑋𝑚 and𝑊 ⊤ denotes the softmax matrix with the
same number of entries as the vocabularyV .

Maximizing 𝑝
(
𝑋𝑚

��𝑋\𝑀
) enforces F (;𝜃 ) to infer the meaning of

masked words from their surroundings, in other words, preserving
contextual semantics.
Optimal Transport and Wasserstein Distance. Optimal Trans-
port (OT) studies the problem of transforming one probability distri-
bution into another one (e.g., one group of embeddings to another)
with the lowest cost. When considering the “cost” as distance, a
commonly used distance metric for OT is Wasserstein Distance
(WD) [34]. Formal definition is as follows[5]:
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Figure 2: Framework overview.

Definition 3.1. Let 𝝁 ∈ P(X),𝝂 ∈ P(Y) denote two probability
distributions, formulated as 𝝁 =

∑𝑚
𝑖=1 u𝑖𝛿𝒙𝑖 and 𝝂 =

∑𝑛
𝑗=1 v𝑗𝛿𝒚𝑗

,
with 𝛿𝒙 as the Dirac function centered on 𝒙 . Γ(𝝁,𝝂) denotes all the
couplings (joint distributions) of 𝝁 and 𝝂 , with marginals 𝝁 (𝒙) and
𝝂 (𝒚). The optimal Wasserstein Distance between the two distribu-
tions 𝝁,𝝂 is defined as:

D𝑤 (𝝁,𝝂) = inf
𝜸 ∈Γ (𝝁,𝝂)

E(𝒙,𝒚)∼𝜸 [𝑐 (𝒙,𝒚)]

= min
T∈Γ (u,v)

⟨T,C⟩ = min
T∈Γ (u,v)

𝑚∑
𝑖=1

𝑛∑
𝑗=1

T𝑖 𝑗 · 𝑐 (𝒙𝑖 ,𝒚 𝑗 ) , (2)

where Γ(u, v) = {T ∈ R𝑚×𝑛
+ |T1𝑛 = u,T⊤1𝑚 = v}, 1𝑚 denotes an

𝑚-dimensional all-one vector, the weight vectors u = {u𝑖 }𝑚𝑖=1 ∈ Δ𝑚
and v = {v𝑖 }𝑛𝑖=1 ∈ Δ𝑛 belong to the𝑚- and 𝑛-dimensional simplex,
respectively (i.e.,

∑𝑚
𝑖=1 u𝑖 =

∑𝑛
𝑗=1 v𝑗 = 1). And 𝑐 (𝒙𝑖 ,𝒚 𝑗 ) is the cost

function evaluating the distance between 𝒙𝑖 and 𝒚 𝑗 (samples of
the two distributions). Computing the optimal distance (1st line)
is equivalent to solving the network-flow problem (2nd line) [17].
The calculated matrix T denotes the “transport plan”, where each
element T𝑖 𝑗 represents the amount of mass shifted from u𝑖 to v𝑗 . We
propose an Optimal Transport based approach to the cross entity
alignment problem in Section 4.2.

4 METHODOLOGY
In this section, we provide an in-depth introduction to our en-
hanced framework for domain-oriented language pre-training. Fig-
ure 2 presents an overview of the framework, consisting of two
major improvements, i.e., Adaptive Hybrid Masked Model (AHM)
to replace MLM and a new weakly-supervised pre-training task,
OT-based Cross Entity Alignment (CEA). The former leverages a
domain corpus and a domain phrase pool to learn both word-level
and phrase-level semantics, the latter utilizes the same corpus and
an entity association graph to obtain text pairs for augmenting do-
main semantic learning. Moreover, we employ continual multi-task
pre-training [32] to jointly train AHM and CEA. Lastly, the model
is fine-tuned to be deployed in domain-oriented applications.
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4.1 Adaptive Hybrid Masked Model
In order to enhance the phrase perception ability of language model
while meantime preserving its original word perception ability, we
introduce a new masked language model, namely, Adaptive Hybrid
Masked Model (AHM). Specifically, we set two learning modes in
AHM, i.e., word learning and phrase learning, which in a nutshell,
masks then reconstructs word units and phrase units, respectively.
Moreover, we combine the two learningmodes by adaptively switch-
ing between them, enabling the model to capture the word-level
and phrase-level semantics simultaneously and progressively. Figure
3 provides an illustration of the model.

4.1.1 Word Learning Mode
In this mode, given an input sequence 𝑋 𝑡 (𝑡 denotes the 𝑡𝑡ℎ itera-
tion), we first randomly sample words from 𝑋 𝑡 iteratively until the
selected words constitute 15% of all tokens. Then we replace them
with: (1) the [MASK] token 80% of the time, (2) a random token 10%
of the time, (3) the original token 10% of the time. Next, we predict
all the masked/perturbed tokens by feeding their embeddings of
the language model to a shared softmax layer. Equivalently, we
optimize the log-likelihood function below:

L𝑤 = − log
∏

𝑚∈W𝑡

𝑝
(
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��𝑋 𝑡
\W𝑡
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whereW𝑡 denotes the indices of all themasked/perturbed tokens in
𝑋 𝑡 . 𝑋 𝑡

𝑚 and 𝑋 𝑡
\W𝑡 denotes the𝑚𝑡ℎ masked token and perturbed in-

put, respectively. 𝑝
(
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𝑚

��𝑋 𝑡
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)
follows the definition in Eq.(1). This

mode resembles the original masking scheme in MLM except that
we only mask whole words. It helps to learn preliminary word-level
semantics, which is not only the basis of language understanding
but also essential for phrase learning.

4.1.2 Phrase Learning Mode
In the phrase learning mode, we randomly mask consecutive tokens
that constitutes quality domain phrases and train the language
model to reconstruct them. First, given an input sequence 𝑋 𝑡 and a
domain phrase pool P𝐷 (comprising high-quality phrases and their
quality scores)1, following Algorithm 1, we detect domain phrases
1In this paper, we leverage AutoPhrase [30] to obtain domain phrase pool.

and sample to obtain 15% tokens. Then similar to the word mode,
we replace the selected tokens with [MASK] token 80% of the time,
a random token and the original token 10% of the time respectively.
Next, we optimize the following loss function to reconstruct the
masked phrases:
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where the first term is defined the same way as Eq.(1) and (3) ex-
cept that P𝑡 denotes indices of all the masked tokens obtained via
Algorithm 1. With the first term, we reconstruct masked phrases by
predicting their tokens. Additionally, we propose an completeness
regularization term (the second term) over the masked phrases to
encourage complete phrase reconstruction, i.e., the model will get
more rewards when an entire phrase is correctly predicted. As de-
fined in Eq.(5), where P̂𝑡 also denotes the indices of masked tokens
but grouped by phrases, 𝑃 denotes one of the group in P̂𝑡 , we first
average all the token embeddings of a phrase to obtain the merged
phrase feature (i.e., Avg

( [
F
(
𝑋\𝑀 ;𝜃

) ]
𝑃

)
). Then we predict each

complete phrase instead of the tokens in it using its merged feature
along with a new phrase softmax matrix (i.e., 𝑪⊤).V𝑃 represents
the set of all phrases in corpus.

4.1.3 Adaptive Hybrid Learning
As both word-level and phrase-level semantics are critical to lan-
guage modeling, we combine the two learning modes via a dynamic
parameter 𝛼 based on the feedback losses of them. At each iteration,
as shown in Figure 3, the model automatically selects the weaker
mode according to the value of 𝛼 .
Calculating 𝜶 . We calculate 𝛼 based on the relative loss reduction
speed of the two modes. Specifically, at each iteration (assuming
𝑡𝑡ℎ), we first calculate a special variable for both modes to track
2Fulfill via a rule-based phrase matcher, https://spacy.io/usage/rule-based-matching



IPOTTransformer

Transformer

Language Model

Cost Matrix C Transport Plan TAdidas White Sneakers…

Nike Basketball Shoes…

X

Y

𝓛𝑶𝑻𝑨
𝐶&'

Entity X

EntityY

Figure 4: Illustration of the OT based approach for learning the word-level alignments for entity association based text pair.

Algorithm 1 Token sampling algorithm for the phrase mode.

Input: An sequence 𝑋 𝑡 ; The domain phrase pool P𝐷 .
Output: Token indices of domain phrases, denoted by P𝑡 ; Token

indices grouped by phrases, denoted by P̂𝑡 .
1: Detect phrases2 in 𝑋𝑡 that intersect with P𝐷 , denoted by P𝑇 ;
2: Retrieve their quality scores {𝑠𝑖 } from P𝐷 ;
3: Normalize all the scores by softmax, i.e.,

𝑠𝑛,𝑖 = exp(𝑠𝑖 )/exp(
∑

𝑗 exp(𝑠 𝑗 ));
4: Let count = 0, P𝑡 = ∅, P̂𝑡 = ∅;
5: while count/num_token(𝑋𝑡 )<15% do
6: Sample a phrase 𝑝 from P𝑇 based on the normalized

scores, i.e., {𝑠𝑛,𝑖 };
7: Add the indices of all tokens in 𝑝 into P𝑡 ;
8: Add the indices in 𝑝 as a list into P̂𝑡 ;
9: count += 1;
10: end while
11: Return P𝑡 , P̂𝑡 .

their fitting progress, i.e., 𝜂𝑡𝑤 and 𝜂𝑡𝑝 . The larger 𝜂𝑡𝑤 (𝜂𝑡𝑝 ) is, the less
sufficient the model is trained on the word (phrase) mode. Then
𝛼𝑡+1 for next iteration is calculated as the rescaled ratio of 𝜂𝑡𝑤 and
𝜂𝑡𝑝 , i.e.,

𝜂𝑡𝑤 =
Δ𝑡,𝑡−1
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, (6)

𝛼𝑡+1 = tanh
(
𝜂𝑡+1𝑤 /𝜂𝑡+1𝑝

)
. (7)

where L𝑡
𝑤 denotes the loss of the word learning mode and will only

be updated if word mode is selected at the 𝑡-th iteration. Function
[𝑥]+ is equivalent to𝑚𝑎𝑥 (𝑥, 0). Δ𝑡,𝑡−1𝑤 denotes the loss reduction of
word mode between the current and last iteration. Δ𝑡,1𝑤 denotes the
total loss reduction. Δ𝑡,𝑡−1𝑝 , Δ𝑡,1𝑝 , L𝑡

𝑝 represents the same variables
in the phrase mode. Thus, 𝜂𝑡+1𝑤 and 𝜂𝑡+1𝑝 indicates the relative loss
reduction speed of the two modes respectively, and the ratio them
(𝜂𝑡+1𝑤 /𝜂𝑡+1𝑝 ) reflects the relative importance of the word mode. The
non-linear function tanh is used to rescale the ratio to [0,1].
Loss Function of AHM. The overall loss function of AHM is the
combined losses of the two learning modes, with weights dynami-
cally adjusted by 𝛼𝑡 , i.e.,

LAHM =
1
|D|

∑
𝑋 𝑡 ∈D

I(𝛼𝑡 ) · L𝑤 + I(1 − 𝛼𝑡 ) · L𝑝 , (8)

I(𝑥) =
{
1 if 𝑥 > 0.5,
0 if 𝑥 ≤ 0.5.

(9)

where D represents the training corpus. I denotes the indicator
function defined in Eq.(9). As can be seen, when 𝜂𝑡+1𝑤 ≫ 𝜂𝑡+1𝑝 ,

𝛼𝑡+1 ≈ 1, the word mode becomes dominating, and vice versa. In
other words, 𝛼 is able to control the model to switch to the weaker
learning mode adaptively.

4.2 OT-based Cross Entity Alignment
To exploit the co-occurrence signals hidden in entity associations,
we formulate a new pre-training task, i.e., Cross Entity Align-
ment (CEA), as defined below. We first exploit the entity association
graph to extract a collection of associated text pairs from the domain
corpus as training data. Next, an Optimal Transport (OT) based
approach is introduced to train CEA effectively.

Definition 4.1. Given two paired entity contents denoted by word
sequences {𝑥𝑖 }𝑚𝑖=1 and {𝑦 𝑗 }𝑛𝑗=1, Cross Entity Alignment aims to
learn an word-level alignment matrix A, where A𝑖, 𝑗 ∈ [0, 1] indi-
cates the correlation of 𝑥𝑖 and 𝑦 𝑗 (s.t.

∑
𝑗 A𝑖, 𝑗 = 1,

∑
𝑖 A𝑖, 𝑗 = 1).

The task is challenging due to the lack of groundtruth alignment
matrix A′. A common solution to this problem involves design-
ing advanced attention mechanisms to simulate soft alignment.
However, the learned attention matrices are often too dense and
lack interpretability, inducing less effective alignment learning. On
the other hand, OT possesses ideal sparsity that makes it a good
choice for cross-domain alignment problems [5]. Specifically, when
solved exactly, OT yields a sparse solution T∗ ∈ R𝑚×𝑛 containing
(2𝑟 − 1) non-zero elements at most, where 𝑟 =𝑚𝑎𝑥 (𝑚,𝑛), leading
to a more interpretable and robust alignment. Hence, we propose
an OT-based approach to the address CEA. Figure 4 presents an
overview illustration of our Optimal Transport based approach for
CEA. Concretely, we follow the below procedures to fulfill it.
Content Embeddings and Cost Matrix. Given the entity pair
(𝑋,𝑌 ), we first feed their content texts into the language model
(Transformer) respectively to get the contextual embeddings, de-
noted by 𝑿 = {𝒙 𝒊}𝑚𝑖=1 and 𝒀 = {𝒚𝒋}𝑛𝑗=1. Then we calculate a
cost matrix C ∈ R𝑚×𝑛 , where C𝑖 𝑗 defines the cost (distance) of
shifting one mass from 𝒙 𝒊 to 𝒚 𝑗 , where we use cosine distance
𝑐 (𝒙𝑖 ,𝒚 𝑗 ) = 1 − 𝒙⊤

𝑖 𝒚𝑗

| |𝒙𝑖 | |2 | |𝒚𝑗 | |2 as the cost function.
Computing Transport Plan as Alignments. Next, by regarding
the two set of content embeddings 𝑿 , 𝒀 as two probability distri-
butions, we calculate the optimal transport plan T∗ ∈ R𝑚×𝑛 of
transforming one distribution to the other. Here T∗ is obtained via
substituting 𝑿 , 𝒀 into Eq.(2), i.e.,

T∗ = argmin
T∈Γ (u,v)

⟨T,C⟩ = argmin
T∈Γ (u,v)

𝑚∑
𝑖=1

𝑛∑
𝑗=1

T𝑖 𝑗 · 𝑐 (𝒙𝑖 ,𝒚 𝑗 ) , (10)



where each element T∗
𝑖 𝑗
in T∗ denotes how much mass should be

shifted from 𝒙 𝒊 to 𝒚𝒋 . To be noted, the value of T∗
𝑖 𝑗
can be automat-

ically optimized smaller if 𝒙 𝒊 and 𝒚𝒋 are not very correlated, i.e.,
having a high cost value C𝑖 𝑗 . In other words, T∗ actually reflect the
strength of correlations between the word-level content pair across
two products. Therefore, after jointly optimized with the language
model, we use T∗ as the approximation to the alignment matrix.
Efficient Solver: IPOT. Unfortunately, it is computational intractable
[1, 29] to compute the exact minimization over T. Hence, to ensure
an efficient training on large neural networks of language mod-
els, we propose to apply the recent introduced Inexact Proximal
point method for Optimal Transport (IPOT) algorithm [35] to com-
pute the optimal transport plan T∗. IPOT approximates the exact
solution by iteratively solving the following optimization problem:

T(𝑡+1) = argmin
T∈Γ (u,v)

{
⟨T,C⟩ + 𝛽 · B(T,T(𝑡 ) )

}
(11)

where B(T,T(𝑡 ) ) is the proximity metric term used to penalizes
solutions that are too distant from the latest approximation. We
do not choose Sinkhorn algorithm [6] to solve the efficiency issue
as it is too sensitive to the choice of the hyper-parameter 𝜀 in
experiments.
Loss Function of CEA. Lastly, we train the language model via
optimizing the OT distance (i.e., Wasserstein distance) between the
aligned content embeddings, with overall loss function defined as:

L𝑂𝑇𝐴 (𝑿, 𝒀 ) =
〈
T∗,C

〉
=

𝑚∑
𝑖=1

𝑛∑
𝑗=1

T∗𝑖 𝑗 · 𝑐 (𝒙𝑖 ,𝒚 𝑗 ) , (12)

L𝑂𝑇𝐴 =
1
|R |

∑
(𝑿,𝒀 ) ∈R

L𝑂𝑇𝐴 (𝑿, 𝒀 ) (13)

where R denotes the set of entity association based text pairs.

5 EXPERIMENTS
In this section, we conduct extensive experiments in the e-commerce
domain to validate the effectiveness of the proposed framework. We
first introduce the external and internal baselines compared in the
paper. Next, we present the corpus as well as the auxiliary domain
knowledge data used during pre-training. Besides, we elaborate the
downstream tasks (definitions, datasets, performance metrics) for
evaluating all the models. Lastly, we report the main performance
comparison, ablation studies, case studies, and visualization of the
OT-based alignments.

5.1 Baseline Models
External Baselines. In this paper, we compare our framework to
following external baselines. (1) BERT: The vanilla BERT which is
pre-trained on large-scale open-domain corpora by huggingface. (2)
BERT-PT [36]: The vanilla BERT that is further post-trained on
review data. This can be considered as the domain-oriented vanilla
BERT. (3) BERT-NP: The vanilla BERT using a different masking
strategy, i.e., masks noun phrases instead of words. We contrast
this method with another internal baseline (DPM) to reveal the
effects of different phrase selection schemes. (4) SpanBERT [11]:
An variant of BERT which masks spans of tokens instead of in-
dividual tokens. We compare with it to further validate the effect

of different masking schemes. (5) RoBERTa [16]: A robustly opti-
mized variant of BERT which deletes the Next Sentence Prediction
task. (6)ALBERT [12]: A memory-efficient lite BERT that also high
performances. To enable the above baselines (2)-(6) to be domain-
oriented, like most existing work, we pre-train them on the same
domain corpus as our method (except BERT for validating the
effects of using domain corpus).
Internal Baselines. For ablation studies (validating the effects of
each component in framework), we further comparewith the follow-
ing internal baselines: (1) DPM: The vanilla BERT that only masks
domain phrases using our phrase pool, abandons word masking. (2)
DPM-R: The vanilla BERT that onlymasks domain phrases and fur-
ther employs the phrase regularization term, abandons word mask-
ing. (3) HM-R: The vanilla BERT that masks domain phrases and
words in a hybrid way (50%/50% of the time), employs the phrase
regularization term. (4) AHM: Adaptive Hybrid Masked Model,
without leveraging entity association knowledge by Cross Entity
Alignment. (5) AHM+CEA: The full version of our framework,
combines AHM, OT-based CEA via continual multi-task learning.
All internal baselines are pre-trained on the same domain corpus.

5.2 Domain-oriented Tasks and Metrics
Weperform evaluations on four tasks of e-commerce. The definition,
fine-tuning head and metric of each task is provided below.
Review Question Answering (Review QA). Given a question
𝑞 = {𝑞𝑖 }𝑚𝑖=1 about a product and a related review snippet 𝑟 = {𝑟𝑖 }𝑛𝑖=1,
it aims to find the span 𝑠 = {𝑟𝑖 }𝑒𝑖=𝑠 from 𝑟 that can answer 𝑞. We
employ the same BERT fine-tuning head [7] as which on span-based
QA to fine-tune this task, which maximizes the log-likelihoods of
the correct start and end positions of the answer.
Review Aspect Extraction (Review AE). Given a review 𝑟 =

{𝑟𝑖 }𝑛𝑖=1, the task aims to find product aspects that reviewers have
expressed opinions on. It is typically formalized as a sequence la-
beling task [36], in which each token is classified as one of {𝐵, 𝐼,𝑂},
and tokens between 𝐵 and 𝐼 are considered as extracted aspects.
Following [36], we apply a dense layer and softmax layer on top of
BERT output embeddings to predict the sequence labels.
ReviewAspect Sentiment Classification (ReviewASC). Given
an aspect 𝑎 = {𝑎𝑖 }𝑙𝑖=1 and the review sentence 𝑟 = {𝑟𝑖 }𝑛𝑖=1 where 𝑎
extracted from, this task aims to classify the sentiment polarity (pos-
itive, negative, or neutral) expressed on aspect 𝑎. For fine-tuning,
following [36], both 𝑎 and 𝑟 are input into our framework, and we
feed the [CLS] token to a dense layer and softmax layer to predict
the polarity. Training loss is the cross entropy on the polarities.
Product Title Categorization (PTC). Given a product title 𝑥 =

{𝑥𝑖 }𝑛𝑖=1, the task aims to classify 𝑥 using a predefined category
collection C. Each title may belong to multiple categories, hence
being a multi-label classification problem. We feed the embedding
of [CLS] token to a dense layer and the multi-label classification
head for fine-tuning.
Evaluation Metrics. For review QA, we adopt the standard eval-
uation script from SQuAD 1.1 [27] to report Precision, Recall, F1
scores, and Exact Match (EM). To evaluate review AE, we report
Precision, Recall, and F1 score. For review ASC, we report Macro-F1
and Accuracy following [36]. Lastly, we adopt Accuracy (Acc), and
Macro-F1 to evaluate product title categorization.



Table 3: The statistics of the pre-training datasets.

Resources Volume Size
Product Corpus # titles and descriptions: 5,436,547 1.4 GB
Review Corpus # product reviews: 9,636,112 2.3 GB
Domain Phrase Pool # phrases: 536,332 −
Entity (Product)
Association Graph

# product entities: 5,125,352
# entity associations: 6,484,325 −

Table 4: High-quality phrases of the e-commerce domain.

Category Representative phrases

Automotive jumper cables, cometic gasket, angel eyes,
drink holder, static cling

Clothing, Shoes and
Jewelry

high waisted jean, nike classic, removable tie,
elegant victorian, vintage grey

Electronics ipads tablets, SDHC memory card, memory
bandwidth, auto switching

Office Products decorative paper, heavy duty rubber, mailing
labels, hybrid notebinder

Sports and
Outdoors

basketball backboard, table tennis paddle,
string oscillation, fishing tackles

Toys and Games hulk hogan, augmented reality, teacup piggies,
beam sabers, naruto uzumaki

5.3 Experimental Datasets
5.3.1 Pre-training Resources
In the paper, we collect and leverage a domain corpus and two
domain knowledge datasets. Table 3 shows the datasets statistics
and below presents the detailed collecting steps.
Domain Corpus. We extract millions of product titles, descrip-
tions, and reviews from the Amazon Dataset[22] to build this cor-
pus. The entire corpus consists of two sub-corpus, i.e., product
corpus and review corpus. In the first corpus, each line corresponds
to a product title and its description, while in the second, each line
corresponds to a user comment on a specific product. The corpus
serves as the foundation for language models to learn essential
semantics of the e-commerce domain.
Domain Phrase Pool. To build the e-commerce domain phrase
pool, we extract one million domain phrases from the above corpus
leveraging AutoPhrase3, a high efficient phrase mining algorithm,
which is able to generate a quality score for each phrase based on
corpus-level statistics such as popularity, concordance, informative-
ness, and completeness. Moreover, we filter out phrases that have a
score lower than 0.5 to keep quality domain phrases. Table 4 shows
the top-ranked phrases from six product categories.
Entity Association Graph. We build this graph to store the prod-
uct entity associations in the form of associated entity pairs. In the
paper, we only consider the “substitutable” associations and use
a shopping pattern based heuristic method [19] to extract corre-
sponding product pairs with this relation. We exploit all entity pairs
in this graph to extract the same amount of associated text (title,
description) pairs from the product corpus for the task of CEA.

Figure 5 presents when sampling phrases on the same domain
corpus, the overlap between the results by our phrase pool based
scheme and the ones by chunking based scheme. Results are re-
ported based on nine categories of the product corpus. Each entry
3https://github.com/shangjingbo1226/AutoPhrase

The overlap between
the domain phrases
selected by our scheme
and the general phrases
obtained by chunking
from the same domain
corpus. As can be seen,
the overlap ratio (%) is
relatively low, indicating
our phrases are more
domain-oriented.

Figure 5: The overlap of different phrase sampling schemes.

represents the ratio of the overlapped phrases to the general chunk-
ing based phrases. As can be seen, the overlap ratio is relatively
low across all the sub categories, indicating our phrase pool based
scheme yields more domain-oriented phrases.

5.3.2 Task-specific Datasets
For reviewQA, we evaluate on a newly released Amazon QA dataset
[21], consisting of 8,967 product-related QA pairs. For the task of re-
view AE and review ASC, we employ the laptop dataset of SemEval
2014 Task 4 [24] which contains 3,845 review sentences, 3,012 an-
notated aspects and the sentiment polarities on them. For product
title categorization, we create an evaluation dataset by extracting a
subset of Amazon metadata, consisting of 10,039 product titles and
98 categories. The first three datasets above are publicly available
from prior works and we will share the fourth dataset in future. For
all the datasets, we divide them into training/validation/testing set
with the ratio of 7:1:2.

5.4 Implementation Details
Pre-training details. All the models are initialized with the same
pre-trained BERT (the bert-base-uncased by Huggingface, with
12 layers, 768 hidden dimensions, 12 heads, 110M parameters). We
post-train all the models (except BERT) on the domain corpus for
20 epochs, with batch size 32 and learning rate 1e-5. For our frame-
work, we adopt Continual Multi-task Learning [32] to combine
AHM and CEA. Specifically, we first train AHM alone on the entire
corpus for 10 epochs with the same batch size and learning rate.
Then, we train AHM and CEA jointly on the product corpus (with
instances reformatted as text pairs by entity associations) for an-
other 10 epochs. In AHM, to initialize 𝛼 and ensure a stable training,
we fix 𝛼𝑡 = 0.6 for t=1∼1,000 (word learning mode is easier and
provides preliminary knowledge, hence we weigh it more for initial
iterations). For training OT-based CEA, we set 𝛽 = 0.5 in the IPOT
algorithm. All the pre-training is performed on a computational
cluster with 8 NVIDIA GTX-1080-Ti GPUs with 20 days duration.
Fine-tuning Details. In each task, we adopt the same task-specific
architecture (task head) as aforementioned for all the models. We
choose the learning rate and epochs from {5e-6, 1e-5, 2e-5, 5e-5}
and {2,3,4,5} respectively. For each task and each model, we pick
the best learning rate and number of epochs on the development
set and report the corresponding test results. We found the setting
that works best across most tasks and models is 2 or 4 epochs and
a learning rate of 2e-5. Results are reported as averages of 10 runs.



Table 5: Performance comparison of baselines and our model on the e-commerce downstream tasks (%).

Models\Tasks Review QA Review AE Review ASC PTC
P. R. F1 EM P. R. F1 Acc. Ma-F1 Acc. Ma-F1

External
Baselines

BERT 58.91 62.18 60.50 40.22 83.15 84.66 83.90 86.01 62.87 78.76 76.83
BERT-PT 60.28 62.25 61.25 41.23 84.33 84.09 84.21 86.43 64.96 80.41 78.99
BERT-NP 61.39 64.57 62.94 43.35 85.23 85.71 85.47 85.79 63.21 81.19 79.32
SpanBERT 62.52 64.77 63.63 43.94 85.67 86.22 85.94 86.56 65.13 81.36 80.11
RoBERTa 62.76 63.98 63.36 44.12 85.82 86.51 86.16 86.71 65.34 82.57 81.25
ALBERT 61.89 63.80 62.83 43.82 85.35 86.01 85.68 86.47 65.12 81.45 80.79

Internal
Baselines

DPM 63.76 67.02 65.35 44.53 86.81 88.47 87.63 87.84 68.02 83.12 81.92
DPM-R 64.47 68.11 66.24 44.98 87.29 89.24 88.25 88.45 69.18 84.18 82.34
HM-R 64.69 68.24 66.42 45.25 87.38 89.32 88.34 88.69 69.21 84.30 82.40
AHM 65.38 68.93 67.11 45.86 88.12 89.89 88.99 88.93 69.35 85.01 82.68

AHM + CEA 67.21 70.13 68.64 46.98 88.05 90.55 89.28 89.32 70.55 86.32 83.12

5.5 Experimental Results
5.5.1 Main Results Analysis
Table 5 presents the performance comparison of all the baselines
and our framework on the four tasks. The key observations and
conclusions are: (1) Our framework (AHM, AHM+CEA) easily
outperforms all the external baselines by a large margin (4.1% in
average), indicating the effectiveness of our general idea, i.e., lever-
aging auxiliary domain knowledge to enhance domain-oriented lan-
guage modeling. (2)BERT-PT outperformsBERT, proving that for
domain-oriented tasks, capturing domain semantics by pre-training
on a domain corpus is necessary. (3) The effects of different masking
schemes: BERT-NP and SpanBERT can perform better consis-
tently than BERT-PT, indicating the advantage of phrase/span
based masking strategy over word based masking strategy. (4) The
effects of different phrase selection schemes: DPM achieves more
improvements over BERT-NT and SpanBERT, certificating that
the domain phrase pool based sampling outperforms general chunk-
ing based phrase sampling. We attribute this to that: the domain
phrase pool, serving as a “supervisor”, enables the language model
to “focus” more on domain-oriented phrases, and these phrases have
more effects over the downstream tasks.

5.5.2 Ablation Studies
The bottom of Table 5 shows the performance comparison of the in-
ternal baselines. As can be seen, (1)DPM-R outperformsDPM, val-
idating the effectiveness of the proposed phrase regularization term.
Compared with reconstructing phrases by tokens, it encourages
complete phrase reconstruction, leads to a more accurate phrase
perception learning. (2) HM-R uses hybrid masking in a straight-
forward way, achieves slightly better performances than DPM-R.
Besides, AHM achieves more improvements on DPM-R thanHM-
R. This indicates that both word learning and phrase learning are
essential for language models, and the adaptive hybrid learning
method is a more solid way to combine them. (3) AHM+CEA fur-
ther improves the performances by 0.5%∼1.2% over AHM on the
four tasks, certificating the effectiveness of our idea of leverag-
ing entity association knowledge to augment semantic learning.
Moreover, the proposed OT-based alignment pre-train task can
successfully exploit the hidden co-occurrence signals in entity as-
sociation based text pairs.

Table 6: Case studies of Aspect Extraction (AE). Given a re-
view, it aims to extract specific product “aspects” that are
discussed. Ground-truth answers are marked in color. For
answers consisting of multi-word phrases, our model make
more comprehensive predictions than BERT.

Review Model Extracted Aspects

We love the size of the screen, although it is 
still light-weight and very easy to tote around. 
The resolution is perfect for living room.

BERT-PT screen, resolution

Ours size of the screen, 
resolution

That included the extra Sonic Stage software, 
the speakers and the subwoofer I got (that WAS 
worth the money), the bluetooth mouse for my 
supposedly bluetooth enabled computer, the 
extended life battery and the docking port.

BERT-PT software, bluetooth
mouse, battery

Ours

Sonic Stage 
software, bluetooth
mouse,  battery, 
docking port

5.5.3 Case Studies and Visualizations
Table 6 shows a case study of the review aspect extraction task.
We compare our model with BERT-PT, both are pre-trained on the
same domain corpus, and employ the same fine-tuning architecture
and task-specific dataset. As can be seen, for “aspects” that span
multiple words, ourmodel offers better predictions than BERT-PT in
terms of the phrase completeness (size of the screen vs screen) . This
indicates that our model indeed possesses fine phrase perception
ability needed for phrase-intensive tasks.

Figure 6 presents the visualization of the optimal transport
alignment for two product pairs, where darker color indicates
stronger correlations. Example (a) is about Mandoline Slicer
and Steel Chopper, example (b) is about a Docking station and
Dell Monitor. As can be seen, in both examples, OT alignments
are sparser and offers better interpretability, with meaningful word
alignment pairs being discovered automatically (Slicer vs Chopper,
Vegetables vs Veggies, Monitor vs Display). This certificates that the
OT-based alignment task can indeed benefit semantic learning by
automatically correlating similar words/phrases across entity pairs.

6 CONCLUSION
In this paper, we introduced how to improve domain-oriented lan-
guage modeling by leveraging auxiliary domain knowledge. Specifi-
cally, we proposed a generalized pre-training framework enhancing



(a) Two kitchen products. (b) Two electronic products.

Figure 6: Visualizing the optimal transport plan in two real
examples.

existing works from two perspectives. First, we developed Adap-
tive Hybrid Masked Model (AHM) to incorporate auxiliary do-
main phrase knowledge. Second, we designed Cross Entity Align-
ment (CEA) to leverage entity association as weak supervision for
augmenting the semantic learning of pre-trained models. Without
the loss of generalization, we performed the experimental valida-
tion on four downstream e-commerce tasks. The results showed
that incorporating phrase knowledge via AHM can improve the
performance on all the tasks, especially the phrase-intensive ones.
Also, utilizing the entity association knowledge via CEA can fur-
ther improve the performances and the learned alignments revealed
meaningful semantic correlation across word pairs.
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