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ABSTRACT
Query and Point-of-Interest (POI) matching, aiming at recommend-

ing themost relevant POIs from partial query keywords, has become

one of the most essential functions in online navigation and ride-

hailing applications. Existing methods for query-POI matching,

such as Google Maps and Uber, have a natural focus on measur-

ing the static semantic similarity between contextual information

of queries and geographical information of POIs. However, it re-

mains challenging for dynamic and personalized online query-POI

matching because of the non-stationary and situational context-

dependent query-POI relevance. Moreover, the large volume of

online queries requires an adaptive and incremental model training

strategy that is efficient and scalable in the online scenario. To this

end, in this paper, we propose an Incremental Spatio-Temporal Graph
Learning (IncreSTGL) framework for intelligent online query-POI

matching. Specifically, we first model dynamic query-POI interac-

tions as microscopic and macroscopic graphs. Then, we propose an

incremental graph representation learning module to refine and up-

date query-POI interaction graphs in an online incremental fashion,

which includes: (i) a contextual graph attention operation quan-

tifying query-POI correlation based on historical queries under

dynamic situational context, (ii) a graph discrimination operation

capturing the sequential query-POI relevance drift from a holis-

tic view of personalized preference and social homophily, and (iii)

a multi-level temporal attention operation summarizing the tem-

poral variations of query-POI interaction graphs for subsequent

query-POI matching. Finally, we introduce a lightweight semantic

matching module for online query-POI similarity measurement.

To demonstrate the effectiveness and efficiency of the proposed

algorithm, we conduct extensive experiments on two real-world

datasets collected from a leading online navigation and map service

provider in China.
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1 INTRODUCTION
Recent years have witnessed a worldwide prevalence of online nav-

igation (e.g., Google Maps, Baidu Maps) and ride-hailing applica-

tions (e.g., Uber and Lyft) [24, 33]. For a specific user, the query-POI

matching is developed to retrieve the most relevant destination

POI from a list of candidates based on the (partial) query keywords,

as demonstrated in Figure 1 (a). As one of the most essential map

service functions, query-POI matching is playing a crucial role

in helping users explore new places, improving customer service

experiences, and ultimately boosting the commercial benefits.

The query-POI matching problem has been partially addressed in

previous literature by building semantic relevance between contex-

tual information of queries and static geographical locations [33].

Such method successfully incorporated multi-field semantic fea-

tures of a query-POI pair for semantic similarity measurement, but

ignored the impacts of historical matching records for dynamic

and personalized query-POI matching. To resolve this issue, the

recent advances of graph learning in recommender systems model

the general user-item interactions as a bipartite user-item graph to

capture latent user-item relevance [18, 20]. However, all the above

methods typically require periodic re-training based on all histori-

cal data to capture the gradually adapted user preference, and thus

are difficult to be scaled in an online environment. For instance,

STDGAT [31], the state-of-the-art query-POI matching method,

requires 195.9 hours of training time on a NVIDIA GeForce RTX

2080 Ti GPU to incorporate users’ evolving preferences for the

real-world dataset for Beijing (refer to dataset details in Section 9.1).

In fact, the large-scale online stream data have placed high demand

for both matching effectiveness and learning efficiency, which mo-

tivates us to improve the learning efficiency in an incremental way

without losing matching accuracy, as training on all historical data

from scratch.

However, three major challenges arise to develop such an in-

telligent online query-POI matching system. (i) Dynamic spatio-
temporal correlation. The query-POI relevance is dependent on
the sophisticated situational spatio-temporal context. Based on real-

world large-scale analysis of user queries, Figure 1 (b) summarizes

https://doi.org/10.1145/3442381.3449810
https://doi.org/10.1145/3442381.3449810
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Figure 1: Illustrative example and challenges of online
query-POI matching. (a) An online query-POI matching in-
terface. (b) POI category distribution under different spatio-
temporal contexts. (c) Non-stationary temporal variations
in POI click distribution of query keyword “Beihai”.

the category distribution of user-chosen POIs in three representa-

tive places in Beijing, China, under different time slots from Jan

1, 2019 to Jan 31, 2019. As can be seen, the chosen POI category

distribution differs significantly under different spatio-temporal

contexts, which renders it challenging to integrate such dynamic in-

formation during online query-POI matching. (ii) Non-stationary
relevance drift. The relevances between queries and POIs are non-

stationary and drifting over time (i.e., the relevance distribution

is not i.i.d. in different time periods). For illustration, we extract

historical records of the exemplar query keyword “Beihai” in two

consecutive weeks, and report the distribution of user-chosen POIs

in Figure 1 (c). As can be seen, the user preference on POI candidates

of the corresponding query keyword is changing over time without

significant recurrent pattern. How to model such non-stationary

and drifting user preference is another challenge. Recently, the

behavioral tendency for people to have ties with others, termed

as social homophily, has been successfully applied for user model-

ing [23]. However, it remains unexplored how to integrate social

homophily while preserving individual preference in online query-

POI matching. (iii) Online learning efficiency. Although it is

plausible to incorporate the most recent query history to overcome

the relevance drift, it poses a challenge to capture the time-shifting

user preference and the dynamic contextual information from the

numerous streaming query logs in an online fashion. Most con-

ventional methods regarding streaming data as a sequence of time

windows [18] require periodic model reconstruction based on all

historical data, which are not scalable for online query-POI in-

teraction modeling. Therefore, a more efficient online query-POI

relevance learning framework is desired for large-scale matching

services with billions of query events per day.

To address the aforementioned challenges, in this paper, we pro-

pose an incremental spatio-temporal graph learning (IncreSTGL)

framework for intelligent online query-POI matching. Our key

insight is to continuously encode time-varying query-POI corre-

lations into a unitary graph structure to facilitate online query-

POI matching. Instead of periodically reconstructing the matching

model based on all historical data, our approach directly refines the

unitary graph structure to derive query and POI representations

for query-POI matching, which is therefore more efficient. Specifi-

cally, we first model historical user query records into query-POI

interaction graphs from both macroscopic and microscopic per-

spectives, where the macroscopic graph reflects social homophily

of the general query-POI correlation, and the microscopic graph

retains user-specific preferences. Then, to incrementally capture

query-POI relevance shifts based on new coming user query records,

we propose the incremental graph representation learning module,

where (i) a contextual graph attention is devised to quantify the

query-POI correlation under dynamic situational context in each

time step, (ii) a graph discrimination operation is introduced to

capture the temporally adapted query-POI relevance distributions

among temporally-consecutive graph snapshots, and (iii) a multi-

level temporal attention operation is proposed to integrate the

preference variations among past query-POI graphs and output the

unitary query-POI graph. The incrementally aggregated query-POI

interaction graphs incorporate both past query-POI correlations

and most recent user preferences, which are informative enough

for query-POI relevance learning. Finally, we devise a lightweight

semantic matching module for online POI recommendation solely

based on the most recent query-POI interaction graphs.

Contributions. To the best of our knowledge, this is the first

study of the query-POI matching problem from an online and incre-

mental graph learning perspective. The constructed macroscopic

and microscopic query-POI interaction graphs respectively reflect

social homophily and personalized preference. Moreover, our ap-

proach is capable of continuously integrating past query-POI cor-

relations and most recent user preferences into unitary query-POI

interaction graphs, which significantly improves model update effi-

ciency without losing matching accuracy. Extensive experimental

results on two real-world map search query datasets demonstrate

the efficiency and effectiveness of the proposed framework for

online query-POI matching.

2 PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we first present some definitions and notations,

then formally formulate the query-POI matching problem. The

frequently used notations are listed in Table 1.

2.1 Preliminaries
Definition 1. Map query event is defined as a 4-tuple:𝑚𝑞𝑒 =

{𝑢, 𝜏, 𝑞, 𝑝}, which records the clicked POI 𝑝 when user𝑢 inputs a query
𝑞 at timestamp 𝜏 . A POI 𝑝 includes 3 elements: its location 𝑙𝑝 , name
𝑝𝑤 , and category 𝑝𝑐 , while a query 𝑞 is comprised of 2 elements: its
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Figure 2: Framework overview of IncreSTGL.

Figure 3: Illustrative example of macroscopic and micro-
scopic graphs, and the graph adjacency matrices. Bold lines
indicate greater edge weights.

location 𝑙𝑞 and keyword 𝑞𝑤 . The location (e.g., 𝑙𝑞 and 𝑙𝑝 ) is defined
as geographical coordinates (longitude and latitude).

A map query event records a specific POI click action of a map

query, which indicates a query-POI interaction. Based on historical

interactions, we further construct two types of query-POI interac-

tion graphs as follows.

Definition 2. Macroscopic query-POI interaction graph, or
the macroscopic graph, in the 𝑗-th time period is defined as 𝐺 ( 𝑗)𝑔 =

(𝑉 ( 𝑗)𝑞 ∪𝑉 ( 𝑗)𝑝 , 𝐸 ( 𝑗) ), where𝑉 ( 𝑗)𝑞 ,𝑉 ( 𝑗)𝑝 are vertices of queries and POIs,
and 𝐸 ( 𝑗) is the set of edges connecting pairs of vertices. The weight of
𝑒
( 𝑗)
𝑞𝑝 ∈ 𝐸 ( 𝑗) is initialized by the frequency of map query events from
all users that include both 𝑞 and 𝑝 . As depicted in Figure 3 (a), we
discretize its weighted adjacency matrix r𝑔 as a set of query vectors
to quantify the 1-hop neighbour effects of POIs of each query, denoted
by r𝑔 = {r𝑞1

𝑔 , r𝑞2
𝑔 , . . . , r𝑞𝐿𝑔 }.

Definition 3. Microscopic query-POI interaction graph, or
the microscopic graph, in the 𝑗-th time period is defined as 𝐺𝑢,( 𝑗)

𝑠 =

(𝑉 ( 𝑗)𝑞 ∪𝑉 ( 𝑗)𝑝 , 𝐸 ( 𝑗) ), where the edge 𝑒 ( 𝑗)𝑞𝑝 is weighted by the frequency

Table 1: Table of notations.

Notations Description
U = {𝑢1, 𝑢2, . . . , 𝑢𝑀 } The set of all users. |U| = 𝑀 .

Q = {𝑞1, 𝑞2, . . . , 𝑞𝐿} The set of all queries. |Q| = 𝐿.
P = {𝑝1, 𝑝2, . . . , 𝑝𝑁 } The set of all POIs. |P | = 𝑁 .

𝑞 = (𝑙𝑞, 𝑞𝑤), 𝑞 ∈ Q
A query is a 2-tuple: query location 𝑙𝑞

and query word 𝑞𝑤 .

𝑝 = (𝑙𝑝 , 𝑝𝑤, 𝑝𝑐), 𝑝 ∈ P
A POI is a 3-tuple: POI location 𝑙𝑝 ,
POI name 𝑝𝑤 , and POI category 𝑝𝑐 .

𝑙𝑞 = (𝑙𝑛𝑔, 𝑙𝑎𝑡)𝑞
The location of query 𝑞 is represented

by longitude and latitude.

𝑙𝑝 = (𝑙𝑛𝑔, 𝑙𝑎𝑡)𝑝
The location of POI 𝑝 is represented

by longitude and latitude.

𝑚𝑞𝑒 = {𝑢, 𝜏, 𝑞, 𝑝} A map search query event.

Δ𝑡 The time period interval.

𝐺
( 𝑗)
𝑔

The macroscopic query-POI interaction

graph in the 𝑗-th time period.

𝐺
𝑢,( 𝑗)
𝑠

The microscopic query-POI interaction

graph in the 𝑗-th time period for user 𝑢.

r( 𝑗)𝑔

The macroscopic adjacency matrix

in the 𝑗-th time period.

r( 𝑗)𝑠

The microscopic adjacency matrix

in the 𝑗-th time period.

𝑢, 𝜏 , 𝑔𝑒𝑜
The symbols for user, time slot, and

geographical location separately.

x The notation for each embedding vector.

r The notation for adjacency matrix.

𝑑 The dimension of all representation vectors.

of map query events from the specific user 𝑢 that include both query
𝑞 and POI 𝑝 . Similarly, as shown in Figure 3 (b), the set of query
vectors is derived from its corresponding weighted adjacency matrix,
i.e., r𝑠 = {r𝑞1

𝑠 , r𝑞2
𝑠 , . . . , r𝑞𝐿𝑠 }.

The macroscopic graph is designed to encode all users’ query

behaviors to reflect social homophily, whereas the microscopic

graph is introduced to track individual user’s query records to

preserve personalized preference. Note that, in both graphs, we fix

the dimension of each query vector to the number |𝑉𝑝 | of possible
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POI candidates. The time period is defined as the time range across

two dates, e.g., 01/21/2019 – 01/25/2019.

2.2 Problem Formulation
In this paper, we formulate the problem of online query-POI match-

ing as follows:

Input: A user 𝑢, timestamp 𝜏 , user location 𝑙 , input query 𝑞, the

𝑡-th time period, the macroscopic graph 𝐺
(𝑡 )
𝑔 , and the microscopic

graph 𝐺
𝑢,(𝑡 )
𝑠 .

Output: The personalized ranking function F𝑡+1 in the 𝑡 + 1-th
time period that calculates the estimated probability of clicking a

POI candidate 𝑝:

𝑦 ← F𝑡+1 (𝑝 |𝑢, 𝜏, 𝑙, 𝑞,𝐺 (𝑡 )𝑔 ,𝐺
𝑢,(𝑡 )
𝑠 ) .

3 FRAMEWORK OVERVIEW
Figure 2 presents an overview of the proposed Incremental Spatio-

Temporal Graph Learning (IncreSTGL) framework, which consists

of three major parts: (i) the Representation initialization module,

(ii) the Incremental graph representation learning module, and (iii)

the Query-POI matching module. Specifically, the Representation
initialization module first projects five types of input features (i.e.,

tokenized queries, tokenized POIs, users, timestamps, and geograph-

ical locations) to low-dimensional representation vectors. Then, in

the Incremental graph representation learning module, for each past

time period, a contextual graph attention (CxtAttn) operation in-

corporates multi-factor contextual information to update the graph

structures for historical macroscopic and microscopic graphs. Af-

ter that, a graph discrimination operation (GraphAE) generates a

set of common-structure graphs and distinctive-structure graphs

that separately represent the commonalities and differences of pref-

erence shifts in each time period. Later, a multi-level temporal

attention (i.e., the combination of IntraAttn and InterAttn) periodi-

cally aggregates the above graphs along the timeline, and outputs

the latest unitary query-POI graph. Finally, in the Query-POI match-
ing module, a semantic function (SemFtn) is proposed to update

the query-POI graph with query-POI semantic correlations, and

calculate the query-POI relevance score for the matching task.

4 REPRESENTATION INITIALIZATION
We first develop the Representation initialization module to obtain

low-dimensional feature vectors and adjacencymatrices. During the

𝑗-th time period, where 𝑗 ∈ {1, 2, . . . , 𝑘}, we first extract two types

of inputs: (i) map query events, which include query keywords, POI

names, geographical locations, timestamps, and users; (ii) static

data, which include POI names, POI locations, and POI categories

[33]. Then, we initialize the macroscopic adjacency matrix r( 𝑗)𝑔 and

the microscopic adjacency matrix r( 𝑗)𝑠 based on users’ historical

map query events as described in Definitions 2 and 3. After that,
we project raw features into 𝑑-dimensional dense representation

vectors through a convolutional neural network (CNN) and feed-

forward neural networks (NNs), as detailedly illustrated below.

Queries and POIs are converted into tokenized words and char-

acters. We initialize each word and character by random vectors,

and embed them through CNN.

Figure 4: The contextual graph attention.

Geographical locations are comprised of query location 𝑙𝑞 and

POI location 𝑙𝑝 . We feed longitudes and latitudes into separate

NNs, and finalize with the representation vectors of corresponding

longitudes and latitudes.

Timestamps are mapped to the pre-defined time periods, and dis-

cretized into one-hot embeddings. Due to the temporal periodic-

ity [30], we split the day into 24 non-overlapping time slots.

Users are represented by their previous query behaviors. Specif-

ically, we first partition POIs into ℎ pre-defined POI categories

(e.g., resident, transport, education, etc.), and generate a ℎ × 24-
dimensional vector for each user, where 24 is the number of time

slots in each day, the 𝑖 × 𝑗-th dimension is the portion of the user’s

clicks on the 𝑖-th POI category in the 𝑗-th time slot. We further

project the user vector to 𝑑-dimensional embedding through NNs.

Note that user embeddings of the same user in different map query

events are identical.

5 INCREMENTAL GRAPH REPRESENTATION
LEARNING

Then, we present the Incremental graph representation learning mod-

ule to capture drifting query-POI relevance incrementally, including

the contextual graph attention, the graph discrimination, and the

multi-level temporal attention operation.

5.1 Contextual Graph Attention
Existing studies have uncovered the repetitive patterns of human

mobility [19]. For a specific user, his current query is highly cor-

related with his historical query records under various situational

contexts. To capture such influence of historical query events on the

new coming queries, one straightforward method is to construct

unified representation vectors that entail situational information

such as timestamps, geographical locations, and users. However,

the dynamic dependencies among these exogenous factors signifi-

cantly challenge the representation effectiveness of unified repre-

sentations. We therefore introduce the contextual graph attention

(CxtAttn) operation. Figure 4 illustrates the detailed architecture
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of CxtAttn within the specific 𝑗-th time period, 𝑗 ∈ {1, 2, . . . , 𝑘}.
Specifically, for each new query event𝑚𝑞𝑒𝑛 , we first extract map

query events of 𝑁𝑝𝑟𝑒𝑣 previous days, and then update its corre-

sponding query vectors in the macroscopic graph 𝐺
( 𝑗)
𝑔 and mi-

croscopic graph 𝐺
𝑢,( 𝑗)
𝑠 . Note that the 𝑁𝑝𝑟𝑒𝑣-day query history is

relatively small (less than one Gigabyte when 𝑁𝑝𝑟𝑒𝑣 ≤ 30), and
separately stored in the corresponding graphs on a daily basis.

For query 𝑞, 𝑁
𝑔
𝑞 and 𝑁 𝑠

𝑞 represent the total number of relevant

query events in the macroscopic graph and microscopic graph, re-

spectively. The embeddings of past map query events {x𝑖𝑔 }1≤𝑖≤𝑁𝑔
𝑞
,

{x𝑖𝑠 }1≤𝑖≤𝑁 𝑠
𝑞
and new query event x𝑛𝑔 , x𝑛𝑠 w.r.t. macroscopic and

microscopic graphs are defined as:

x𝑖𝑔 = x𝑖𝑢 ∥ x𝑖𝜏 ∥ x𝑖𝑔𝑒𝑜 ; x𝑖𝑠 = x𝑖𝜏 ∥ x𝑖𝑔𝑒𝑜 , (1)

x𝑛𝑔 = x𝑛𝑢 ∥ x𝑛𝜏 ∥ x𝑛𝑔𝑒𝑜 ; x𝑛𝑠 = x𝑛𝜏 ∥ x𝑛𝑔𝑒𝑜 , (2)

where x𝑖𝑢 , x𝑖𝜏 , x𝑖𝑔𝑒𝑜 are the embeddings of users, timestamps, and

geographical locations in the 𝑖-th query event. ∥ denotes vector
concatenation operation. By considering the edge weights in the

macroscopic graph and the microscopic graph, the update operation

of query vectors is:

r𝑞𝑔
′

=

𝑁
𝑔
𝑞∑

𝑖=1

exp(𝛼 (x𝑖𝑔 , x𝑛𝑔 ))∑
𝑣𝑝 ∈𝑁 (𝑣𝑞 ) exp(𝛼 (x𝑖𝑔 , x𝑛𝑔 ))

r𝑞𝑔 , (3)

r𝑞𝑠
′

=

𝑁 𝑠
𝑞∑

𝑖=1

exp(𝛼 (x𝑖𝑠 , x𝑛𝑠 ))∑
𝑣𝑝 ∈𝑁 (𝑣𝑞 ) exp(𝛼 (x𝑖𝑠 , x𝑛𝑠 ))

r𝑞𝑠 , (4)

where the updated query vectors r𝑞𝑔
′
, r𝑞𝑠
′
are derived from an at-

tention mechanism based on their original query vectors r𝑞𝑔 , r
𝑞
𝑠 in

corresponding macroscopic graph and microscopic graph, respec-

tively. 𝑣𝑝 ∈ 𝑁 (𝑣𝑞) represents the 1-hop neighbours of node query

𝑞. 𝛼 (·) is the unnormalized attention weight, defined as:

𝛼 (𝑥,𝑦) = (W𝑥𝑥 + b𝑥 ) · (W𝑦𝑦 + b𝑦)⊤, (5)

where W( ·) and b( ·) are learnable weight matrices and bias terms

that measure the dynamic correlations among situational features.

By applying the contextual attention operation, we can update the

structures of all macroscopic graphs and microscopic graphs in

each time step by re-evaluating the importance of raw query-POI

retrieval records. For instance, for a new coming query, the matched

POIs of historical queries that possess a similar situational context

tend to be recommended by allocating a higher query-POI edge

weight through CxtAttn.

5.2 Graph Discrimination
In a query-POI graph, the edge 𝑒𝑞𝑝 indicates the proximity between

each query-POI pair (𝑞, 𝑝), where 𝑞 ∈ Q and 𝑝 ∈ P. Based on the

updated macroscopic and microscopic graphs in each time step, we

propose the graph discrimination operation (GraphAE) to incorpo-

rate the social effects and personalized preference by capturing the

non-stationary and drifting user preference. Specifically, GraphAE

incrementally distills the similarity and difference of both general

and user-specific preference shifts between two consecutive time pe-

riods and respectively embed them into the common-structure and

distinctive-structure graph adjacency matrices. As demonstrated

Figure 5: The auto-encoders for common-structure and
distinctive-structure learning.

in Figure 5, the common-structure graph discrimination stores the

shared query-POI edges, while the distinctive-structure graph dis-

crimination keeps the differential query-POI edges.

Although the straightforward linear-dependent approach [1] is

applicable for graph discrimination operation, it suffers from two

weaknesses: (i) it aggravates the sparsity issue of extracted graphs,

and (ii) extremely high-dimensional adjacency matrix produces

tremendous unnecessary parameters, thus burdening the model’s

training efficiency. To this end, beyond the linear model, we employ

two independent auto-encoders to learn latent representations of

common-structure graph and distinctive-structure graph, respec-

tively. Specifically, the auto-encoder is comprised of an encoding

phase and a decoding phase. We describe the common-structure

auto-encoder, and the distinctive-structure auto-encoder is in the

same architecture. In the training stage, the encoding phase takes

the common-structure linear extraction 𝑓 𝐿𝐸𝑐 (r1, r2) of two adja-

cency matrices r1, r2 as input, and projects them into latent space:

r = 𝑓 𝐿𝐸𝑐 (r1, r2),
h1 = 𝜎 (W1r + b1),
h𝐻 = 𝜙𝐻 (. . . 𝜙2 (h1)),
𝜙 𝑗 (h𝑗−1) = 𝜎 (W𝑗h𝑗−1 + b𝑗 ),
h𝐻+1 = 𝜎 (W𝐻+1h𝐻 + b𝐻 ) .

(6)

The decoding step then reconstructs the common-structure ad-

jacency matrix r̂ based on latent vectors as output:
ĥ1 = 𝜎 (Ŵ1h𝐻+1 + b̂1),
ĥ𝐻 = 𝜙𝐻 (. . . 𝜙2 (ĥ1)),
𝜙 𝑗 (ĥ𝑗−1) = 𝜎 (Ŵ𝑗 ĥ𝑗−1 + b̂𝑗 ),
r̂ = 𝜎 (Ŵ𝐻+1ĥ𝐻 + b̂𝐻 ),

(7)

whereWs, bs are the learnable weights and biases. 𝑗 ∈ {2, . . . , 𝐻 }.
{h𝑖 }1≤𝑖≤𝐻+1, {ĥ𝑖 }1≤𝑖≤𝐻 are hidden vectors at the 𝑖-th hidden layer

in the encoding phase and decoding phase correspondingly. 𝜎 (·) is
the non-linear activation function.
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The loss function between the common-structure adjacency ma-

trix r generated by the linear model and the reconstructed adjacency

matrix r̂ generated by the auto-encoder model is defined as:

L𝐴𝐸 =
1

2





(r − r̂)



2
2

. (8)

The abstracted representation by each layer in the auto-encoder

usually contains information in different granularity [26]. We fur-

ther introduce 𝐻 + 1 fully-connected layers to transform the latent

feature representations {h𝑖 }1≤𝑖≤𝐻+1 in each layer and aggregate

them via an attention operation (EvoAttn) to derive the final repre-

sentation z of the common-structure adjacency matrix:{
z = 𝐴𝑡𝑡𝑛(𝑓 𝑐1 (h1), . . . , 𝑓 𝑐𝐻+1 (h𝐻+1))
𝑓 𝑐 𝑗 (h𝑗 ) = W̃𝑗h𝑗 + b̃𝑗

, (9)

where W̃𝑗 and b̃𝑗 s are the trainable weight matrices and bias terms,

𝐴𝑡𝑡𝑛(·) is the general form of attention used throughout the paper:
v𝑗 = 𝜎 (Wx𝑗 + b)

𝛼 𝑗 =
exp(v𝑗 ·v⊤𝑗 )∑
𝑖∈I exp(v𝑖 ·v⊤𝑖 )

y =
∑
𝑗 ∈I

𝛼 𝑗v𝑗

, (10)

in which the vector y is derived from the whole sequence {x𝑗 }𝑗 ∈I ,
and I is the index set of input variables.

We use the GraphAE to generate a series of common-structure

and distinctive-structure adjacency matrices for each time step,

as depicted in Figure 2. Take common-structure graph discrimi-

nation (𝐴𝐸𝑐 ) for instance. In the first time period, it outputs the

common-structure adjacency matrix r(1)𝑐 = 𝐴𝐸𝑐 (r(1)𝑔 , r(1)𝑠 ). In
the second time period, it computes the macroscopic one r(2)𝑐,𝑔 =

𝐴𝐸𝑐 (r(2)𝑔 , r(1)𝑐 ) and microscopic one r(2)𝑐,𝑠 = 𝐴𝐸𝑐 (r(2)𝑠 , r(1)𝑐 ). In the

remaining time periods, it generates the macroscopic one r( 𝑗)𝑐,𝑔 =

𝐴𝐸𝑐 (r( 𝑗)𝑔 , r( 𝑗−1)𝑐,𝑔 ) and microscopic one r( 𝑗)𝑐,𝑠 = 𝐴𝐸𝑐 (r( 𝑗)𝑠 , r( 𝑗−1)𝑐,𝑠 ),
𝑗 ≥ 3. The distinctive-structure graph generation process is defined

in the same way.

Overall, GraphAE has three major advantages: (i) During the

consecutive time periods, GraphAE preserves the shared informa-

tion that indicates users’ invariant map query patterns as well as

the distinctive properties that convey user’s preference drifts. (ii)

Compared to the linear method, GraphAE can extract higher-order

representations and alleviate the data sparsity issue by recover-

ing the missing data from the latent space. (iii) For efficiency con-

cern, GraphAE distills structural information of previous graphs

and avoids subsequent repetitive, redundant computations. Note

that the replacement of such auto-encoder architecture with other

unsupervised graph approaches (e.g., ABCGraph-Adv [6]) is also

compatible with our framework.

5.3 Multi-Level Temporal Attention
The users’ preferences are changing gradually over time [27]. GraphAE

preserves the intermediate preference shift by learning common-

structure graphs and distinctive-structure graphs. Nowwe integrate

the distilled preferences from the long-term view via a multi-level

Figure 6: The workflow of intra temporal attention.

temporal attention network. As illustrated in Figure 2, the multi-

level temporal attention is comprised of two components: (i) the

intra temporal attention (IntraAttn), which aggregates user prefer-

ence variation in both common-structure and distinctive-structure

adjacency matrices within each time period, and (ii) the inter tempo-

ral attention (InterAttn), which integrates user preference variation

patterns along the timeline and output the unitary graph structure.

Intra temporal attention. We use IntraAttn to summarize the

variations of user preference for each time period. As depicted in

Figure 6, IntraAttn is comprised of three layers: (i) conditional layer

(CondAttn) emphasizes the exact influence of same typed graphs

in consecutive time steps, (ii) homogeneous layer (HomoAttn) com-

bines all common-structure graphs and distinctive-structure graphs

respectively in each time step, and (iii) heterogeneous layer (Het-

erAttn) aggregates the combined common-structure graphs and

distinctive-structure graphs to form a unified graph feature rep-

resentation. Since the process on common-structure graphs and

distinctive-structure graphs are identical, we use common-structure

graphs for the explanation of IntraAttn. Formally, in the initial time

period, we skip the conditional layer and homogeneous layer due to

the single number of common-structure and distinctive-structure

adjacency matrices from the start, and jump to the HeterAttn for

adjacency matrix fusion. In the 𝑗-th time period, 𝑗 ≥ 2, CondAttn
incorporates the attention model to calculate the conditional effect

of the current adjacency matrix over attentive embeddings of 1-step

backward one and the current one. Such conditional effect captures

the exact influence of the current adjacencymatrix, which is derived

from the previous one. Then, HomoAttn attentively aggregates a

set of common-structure adjacency matrices and outputs the com-

bined common-structure adjacency matrix r( 𝑗)𝑐 . After that, in each

time period, HeterAttn takes these combined common-structure

and distinctive-structure adjacency matrices r( 𝑗)𝑐 , r( 𝑗)
𝑑

as input, and

generates the unified adjacency matrix r( 𝑗) in an attentive manner.

Inter temporal attention. Different from IntraAttn, InterAttn is

introduced to capture the users’ time-shifting preference. While

there exist other temporal network alternatives (e.g., LSTM [7]),

for the sake of computational efficiency, we reuse the attention

mechanism defined in Equation (10) to incorporate the sequential

variations of user preference. That is, based on the unified adjacency

matrix r( 𝑗) in past time periods, 𝑗 ≥ 1, we leverage the attention
mechanism to generate the temporal graph structural embedding

r̃( 𝑗) along the timeline.
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6 QUERY-POI MATCHING
Finally, we present the semantic function (SemFtn) to refine the

aforementioned adjacency matrices with semantic information.

SemFtn is designed to leverage the adjacency matrix of a bipartite

query-POI graph as input, where the edge 𝑒𝑞𝑝 is weighted by the

semantic similarity between query 𝑞 and POI 𝑝 via Gestalt pattern
matching algorithm [17]. Note that other pre-training techniques

(e.g., Bert [4]) can also be applied here for query-POI semantic

similarity learning.

Formally, SemFtn derives the ultimate graph structural repre-

sentation r( 𝑗)
𝑢𝑙𝑡

based on the semantic adjacency matrix r𝑠𝑒𝑚 and

temporal adjacency matrix r̃( 𝑗) as:

r( 𝑗)
𝑢𝑙𝑡

= W𝑈1
(𝜎 (W𝑈2

r̃( 𝑗) + b𝑈2
) ∥ r𝑠𝑒𝑚) + b𝑈1

, (11)

where W𝑠 and b𝑠 are the trainable weight matrices and bias terms.

The purpose of W𝑈2
and b𝑈2

is to project the low-dimensional

adjacency matrix back to the adjacency matrix with original dimen-

sion |𝑉𝑝 | (i.e., the dimension of query vector). The motivation of

SemFtn is two-fold. First, it can integrate semantic information to

facilitate query-POI matching. Second, it can alleviate the cold start

problem even if there is no historical check-in for new users, POIs,

or queries. In this case, the macroscopic graph will dominate the

query-POI matching, since the microscopic graph is a set of nodes

without edge connection (i.e., a zero matrix) and contributes less to

query-POI relevance calculation.

Since the learned graph structural representation of correspond-

ing queries and POIs preserves the query-POI correlation in the

unitary graph structure, we adopt the following simple yet effective

function to calculate the relevance between the query 𝑞 and the

POI candidate 𝑝:

𝑦 (𝑞, 𝑝) =
exp(r( 𝑗)

𝑢𝑙𝑡
{𝑒𝑞𝑝 })∑ |𝑉𝑝 |

𝑖=1 exp(r( 𝑗)
𝑢𝑙𝑡
{𝑒𝑞𝑝𝑖 })

, (12)

where r( 𝑗)
𝑢𝑙𝑡
{𝑒𝑞𝑝 } represents the edge weight of 𝑒𝑞𝑝 in the ultimate

adjacency matrix r( 𝑗)
𝑢𝑙𝑡

.

7 TRAINING AND OPTIMIZATION
Overall, IncreSTGL aims to minimize the error of estimated simi-

larity score [33]:

L = 𝑦 (𝑞, 𝑝) =
exp(r( 𝑗)

𝑢𝑙𝑡
{𝑒𝑞𝑝 })∑ |𝑉𝑝 |

𝑖=1 exp(r( 𝑗)
𝑢𝑙𝑡
{𝑒𝑞𝑝𝑖 })

. (13)

To further improve the discriminative power, we employ nega-

tive sampling [2] for training set augmentation, such that for each

query-POI pair, we randomly select four unclicked, semantically

similar POIs {𝑝−
𝑗
} as negative samples, and move the embeddings

of queries away from the ones of POIs. Then, given a query 𝑞,

the probability of a POI 𝑝 to be clicked is calculated by a softmax

function of its similarity score:

L1 = −log
∏
𝑞,𝑝+

𝑃𝑟 (𝑝+ |𝑞), (14)

𝑃𝑟 (𝑝 |𝑞) = exp(𝑦 (𝑞, 𝑝))∑
𝑝′∈{𝑝+ }∪{𝑝−

𝑗
} exp(𝑦 (𝑞, 𝑝 ′))

. (15)

8 COMPLEXITY ANALYSIS
Computational efficiency is the first-class consideration of the on-

line learning process. We argue the drifting user preference is

mainly reflected by the time-varying query-POI interaction graphs,

while the content feature representations and semantic matching

function are relatively stable. Therefore, we directly adopt the ini-

tialized feature representations and SemFtn function obtained in

early stages of training, which avoids𝑂 ( |𝑉 ( 𝑗)𝑞 | |𝑉𝑝 |2) representation
initialization cost and 𝑂 ( |𝑉 ( 𝑗)𝑞 | |𝑉𝑝 |𝑑) semantic function learning

cost in online learning. Moreover, the incremental graph representa-

tion learning module in IncreSTGL provides an online incremental

infrastructure that focuses on the incremental discrepancies of

user’s query preferences. Concretely, as illustrated at the bottom of

Figure 2, we enable online incremental graph representation learn-

ing based on the pre-learned temporal query-POI adjacency matri-

ces. In the current time period 𝑡 = 𝑗 , where 𝑗 ≥ 2, temporal adja-

cencymatrix r̃( 𝑗−1) that encodes the past user preference variations
are directly loaded from memory, and fused with the newly-learned

adjacency matrix r̃(𝑡 ) for subsequent online query-POI matching.

The incremental graph representation learning module is computa-

tionally efficient from three aspects: (i) CxtAttn only considers the

vectorized situational information, macroscopic and microscopic

graphs in the most recent period, of which the computational com-

plexity is 𝑂 ( |𝑉 (𝑡 )𝑞 | |𝐸 (𝑡 ) |𝑑2). (ii) GraphAE simply produces the lat-

est common-structure and distinctive-structure adjacency matrices

[r(𝑡 )𝑐,𝑔 , r
(𝑡 )
𝑐,𝑠 , r

(𝑡 )
𝑑,𝑔

, r(𝑡 )
𝑑,𝑠
] without re-training, of which the computa-

tional cost is 𝑂 ( |𝑉 (𝑡 )𝑞 | |𝑉𝑝 |𝑑 + 𝐻 |𝑉
(𝑡 )
𝑞 |𝑑2). (iii) Multi-level temporal

attention further computes the newest temporal adjacency matrix

r̃(𝑡 ) , of which the learning cost is𝑂 ( |𝑉 (𝑡 )𝑞 |𝑑2 + |𝑉
(𝑡 )
𝑞 | |𝐸 (𝑡 ) |𝑑). Note

that 𝑉
(𝑡 )
𝑞 and 𝐸 (𝑡 ) are the union of query vertices and edges in

current time period, respectively.

9 EXPERIMENTS
In this section, we evaluate the proposed framework on two real-

world datasets with respect to: (i) the query-POI matching accuracy

of IncreSTGL, (ii) the effectiveness of each component in IncreSTGL,

(iii) the influence of hyper-parameters, (iv) learning and matching

efficiency, (v) matching robustness of IncreSTGL, (vi) the analysis

of user satisfaction, and (vii) qualitative study.

9.1 Data Description
We use two real-world large-scale datasets, Beijing and Shanghai,

to evaluate our model. All data are randomly sampled from 60
consecutive days in 2019. We split the dataset into three parts: 80%
for training, 10% for validation, and 10% for testing.

9.2 Baselines
In order to verify the prediction accuracy, we compare the proposed

predictor with two dynamic graph neural network methods, four

deep learning based semantic models, and two spatio-temporal

recommendation models:

• DySAT [18] utilizes graph structure features and temporal

patterns to learn node representations in dynamic graphs.
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Table 2: Overall performance.

Algorithm

Beijing Shanghai
Hits@1 Hits@3 Hits@5 NDCG@3 NDCG@5 NDCG@10 p-value Hits@1 Hits@3 Hits@5 NDCG@3 NDCG@5 NDCG@10 p-value

DySAT 0.5837 0.6270 0.6893 0.5984 0.6539 0.7148 5.30e-16 0.6025 0.6416 0.7125 0.6157 0.6583 0.7221 2.03e-15

CTDNE 0.5662 0.6292 0.6741 0.5843 0.6488 0.6902 3.38e-11 0.5930 0.6530 0.7304 0.6218 0.6892 0.7315 1.07e-14

DPSM 0.5497 0.6221 0.6819 0.5945 0.6424 0.6804 7.32e-17 0.5901 0.6178 0.6537 0.5984 0.6127 0.6689 4.54e-17

LSTM-DSSM 0.6045 0.6439 0.7303 0.6312 0.6996 0.7483 8.58e-12 0.5826 0.6197 0.7382 0.6292 0.7088 0.7576 7.49e-12

PALM 0.6139 0.6755 0.7390 0.6628 0.7053 0.7671 6.43e-9 0.6153 0.6579 0.7550 0.6344 0.7306 0.7694 8.37e-14

STDGAT 0.6382 0.7213 0.8027 0.7022 0.7730 0.8035 6.21e-5 0.6487 0.7356 0.8191 0.7254 0.7690 0.7992 3.59e-6

STGN 0.5772 0.6142 0.6793 0.5871 0.6320 0.6891 7.02e-10 0.5543 0.6038 0.6528 0.5731 0.6319 0.6932 3.92e-11

LSTPM 0.5538 0.6011 0.6591 0.5721 0.6067 0.6523 2.58e-15 0.6021 0.6204 0.6731 0.6154 0.6518 0.7013 8.16e-14

IncreSTGL 0.6945 0.7531 0.8175 0.7240 0.7954 0.8237 - 0.7039 0.7734 0.8320 0.7428 0.7806 0.8114 -

In the experiments, we input both macroscopic and micro-

scopic graphs for dynamic graph embedding learning via

additional graph embedding attention network during each

time window.

• CTDNE [15] leverages random walk based methods to learn

the time-evolving network embeddings among dynamic

graphs. In the experiments, we adopt the identical operations

in DySAT.

• DPSM [34] proposes a deep semantic based model to effec-

tively extract query and POI information features for the

query-POI matching.

• LSTM-DSSM [16] is an extended version of the Deep Struc-

tured Semantic Model (DSSM) [8], which applies LSTM [7]

to capture the temporal effects for semantic matching.

• PALM [33] proposes an attention-based neural network to

incorporate semantic similarity and geographical correlation

to quantify the query-POI relevance. For fair evaluation, we

merge the timestamp vector with the geographical represen-

tations as a new spatio-temporal feature.

• STDGAT [31] proposes a spatio-temporal dual graph atten-

tion network to capture the evolving query-POI matching

preference based on specific-user and global-user records.

• STGN [35] introduces multiple neural gates to capture the

spatio-temporal relationship among consecutive query events

for POI recommendation. For fair competition, we fuse the

semantic representations of POI with original input vector

during each time window.

• LSTPM [21] leverages non-local contextual network and

geo-dilated LSTM to model long-term and short-term pref-

erences, respectively. For fair comparison, we introduce the

similar process in STGN.

9.3 Evaluation Metrics
We adopt 𝐻𝑖𝑡𝑠@𝐾 [25] and 𝑁𝐷𝐶𝐺@𝐾 [9] for evaluation, where

𝐾=1, 3, 5 for 𝐻𝑖𝑡𝑠 and 𝐾=3, 5, 10 for 𝑁𝐷𝐶𝐺 . For 𝐻𝑖𝑡𝑠@𝐾 , it com-

putes what percentage of POIs among the top-𝐾 recommended POIs

based on queries has been selected by a given user. For 𝑁𝐷𝐶𝐺@𝐾 ,
it takes both relevance score and the orders of all potential POI

destinations into account, and demonstrates the ranking quality of

prediction list. The formal definition is shown as below:

𝐻𝑖𝑡𝑠@𝐾 =
𝑃𝑢,𝑞 ∩ 𝑅𝑢,𝑞 (𝐾)

𝐾
, (16)

𝑁𝐷𝐶𝐺@𝐾 =
1

𝐼𝐷𝐶𝐺

𝐶∑
𝑖=1

2𝑟𝑒𝑙𝑖 − 1
log(1 + 𝑖) , (17)

Figure 7: Ablation study.

where 𝑃𝑢,𝑞 is a set of selected POIs based on query 𝑞 for a user

𝑢. 𝑅𝑢,𝑞 (𝐾) records the top-𝐾 recommended POIs based on query

q for user 𝑢. 𝐼𝐷𝐶𝐺 stands for the maximum possible 𝐷𝐶𝐺 for a

given top-𝐾 POI recommendation list, and we set 𝑟𝑒𝑙𝑖 as 1 if the

POI at position 𝑖 is clicked and 0 otherwise. The parameter C is the

number of correctly recommended POIs.

9.4 Implementation
Our model IncreSTGL is implemented by using the PaddlePaddle

platform
1
. IncreSTGL is optimized to have its dimension 𝑑 of all

representation vectors set to be 600, and we use 1-layer CNN and

1-layer neural network in representation block. We set the learning

rate 𝜂 to 0.0001, the time period interval Δ𝑡 to 1 (day), and the num-

ber of hidden layers𝐻 in auto-encoder to 4. The activation function

𝜎 (·) is LeakyReLU activation function with slope 0.2. The number

of training epochs is set to 40. The number 𝑁𝑝𝑟𝑒𝑣 of previous days

considered in CxtAttn is set to 21, since we found that for over 70%
users, the average time span between recent frequent usage and the

previous one is 3 weeks. The tokenized words and characters are

obtained with jieba
2
. For fair comparison, we fine-tune the model

parameters and set the number of training epochs to be 40 for all

considered baselines.

Since most queries are uncorrelated with a large portion of POIs,

we further downscale the dimension of query vector in both macro-

scopic and microscopic graphs. Specifically, for each query vector

r𝑞𝜔 , 𝜔 ∈ {𝑔, 𝑠} in the 𝑗-th time period, 𝑗 ≥ 1, we use the Gestalt
pattern matching algorithm [17] to extract the top-𝑆 semantically

similar POIs based on query 𝑞, reducing the dimension of query

vector |𝑉𝑝 | from 𝑁 to 𝑆 , where 𝑁 is the number of POIs and 𝑁 ≫ 𝑆 .

Here, 𝑆 is set to 5, 000 such that all possible POI candidates have

been considered based on a given query.

1
https://github.com/PaddlePaddle

2
https://github.com/fxsjy/jieba
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Figure 8: Results of hyper-parameters.

9.5 Overall Performance
The overall performance comparison is presented in Table 2. As

can be seen, IncreSTGL achieves the best performance compared

with all baselines on both datasets using all metrics, where all

the p-values between our IncreSTGL and each baseline are much

smaller than 0.05, demonstrating the statistical significance of im-

provements. Specifically, IncreSTGL outperforms the state-of-the-

art baseline, STDGAT on both datasets, by (5.63%, 3.18%, 1.48%,

2.18%, 2.24%, 2.02%), and (5.52%, 3.78%, 1.29%, 1.74%, 1.16%,

1.22%) in terms of six metrics respectively. In addition, both dy-

namic graph based models perform relatively better than DPSM,

STGN, and LSTPM, but slightly worse than PALM, LSTM-DSSM and

STDGAT, which indicates that dynamic graphs are competitive to

deep neural networks in learning the representations of queries and

POIs, and unifying them together may achieve better representation

vectors. Finally, our full approach IncreSTGL outperforms all base-

lines by (10.86%, 11.13%, 11.05%, 10.74%, 12.52%, 10.55%) in

average on Beijing dataset, and (10.53%, 12.97%, 11.52%, 11.61%,

9.91%, 8.10%) in average on Shanghai dataset. Indeed, the introduc-

tion of dynamic situational context and user preference variations

does exert positive influence on query-POI matching.

9.6 Ablation Study
In this subsection, we study the superiority of IncreSTGL by eval-

uating the impact of two factors, i.e., various situational context

and dynamic user preference. In particular, we compare with two

variants of IncreSTGL: (i) IncreSTGL-C is a basic variant without

considering CnxAttn during the incremental graph representation

learning. (ii) IncreSTGL-G is another basic variant that removes the

graph discrimination step. Note that in each time period, macro-

scopic and microscopic graphs are attentively aggregated in the

temporal layer.

Justification of various situational context. Figure 7 shows that
IncreSTGL outperforms IncreSTGL-C by (4.24%, 6.08%, 4.86%) on
Beijing dataset, and (5.50%, 5.79%, 6.01%) on Shanghai dataset,

demonstrating positive effect of the situational context. Largely,

the situational context that consists of temporal and geographical

factors delineates the user’s real-time status. However, existing

semantic approaches neglect such information, and therefore gen-

erate relatively static recommendations, which is not practical in

our scenarios. Hence, by weighing the past influences based on con-

textual information, contextual graph attention enables dynamic

recommendations for new queries.

Justification of dynamic user preference.According to Figure 7,
IncreSTGL dominates IncreSTGL-G by (6.23%, 9.03%, 6.44%) on
Beijing dataset, and (7.65%, 8.67%, 9.12%) on Shanghai dataset.

One possible reason is that our proposed graph discrimination helps
to quantify the dynamicity of user preference, an essential role

in predicting user behaviors, including online destination inquiry.

Specifically, it can explore the time-shifting correlations between so-

cial homophily and user-specific preference in a latent vector space,

where the low-dimensional vectors keep track of their temporal

variations, and reduce the computational cost along the timeline.

9.7 Impact of Hyper-Parameters
We report the experimental results of hyper-parameters in In-

creSTGL based on Beijing dataset, including the latent vector di-

mension 𝑑 , the learning rate 𝜂, the number 𝐻 of layers in GraphAE,

and the time period interval Δ𝑡 . The results on Shanghai are sim-

ilar, and we omit them due to space limit. Due to the stability of

IncreSTGL, once these hyper-parameters are optimized, there is no

need for additional tweaks in future online incremental learning.

First, we vary the latent vector dimension 𝑑 from 200 to 1000.
Figure 8 (a) reports the performance improvements when we in-

crease 𝑑 from 200 to 600 and performance degrades when we

further increase 𝑑 from 600 to 1000. These results illustrate that
600-dimensional latent vector is powerful enough to capture the

semantic information.

Second, we vary the learning rate 𝜂 from 10−5 to 1. Figure 8 (b)
shows that the performance rises when 𝜂 increases from 10−5 to

10−4, and gradually falls when 𝜂 increases from 10−4 to 1, probably
because large learning rate results in divergent weight updates,

oscillating the model performance.

Third, we vary the number 𝐻 of layers in GraphAE from 1 to

5. Figure 8 (c) demonstrates the optimal performance when 𝐻 = 4,
and the performance degrades when 𝐻 is either too small or too

large. One possible reason is that an inappropriate𝐻 value is unable

to precisely extract useful feature representations for quantifying

the behavioral patterns.

Fourth, we evaluate the impact of time period interval Δ𝑡 . As
shown in Figure 8 (d), we vary Δ𝑡 from 1 to 5. Generally, the perfor-
mance reaches optimal when we set Δ𝑡 = 1. We observe remarkable

performance degradation when we increase Δ𝑡 .

9.8 Efficiency Test
We further compare the training efficiency and latency of IncreSTGL

with all baselines. As reported in Figure 9, for the Beijing dataset
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Figure 9: Model efficiency and latency test.

of one million records with a hundred thousand different POIs,

IncreSTGL took the shortest training time and matching latency,

compared with all baselines. For the training time and matching

latency, IncreSTGL is 11.6× and 2.2× faster than its closest com-

petitor, DySAT, respectively on average. According to the compar-

ison of model structures, DySAT trains structural attention and

temporal attention layers, but IncreSTGL only preserves the graph

structure in each time period, thereby saving running time by avoid-

ing repeated graph representation learning. Moreover, the running

time and matching latency of IncreSTGL are comparable to other

deep learning based models (i.e., DPSM, LSTM-DSSM, PALM, and

STDGAT) that contain sophisticated neural layers, indicating the

effectiveness of the concise design in our approach. For the upward

trend, compared to all the baselines, both training efficiency and

matching latency of IncreSTGL witness milder increases with the

number of query events.

Justification of incremental learning efficiency.Online deploy-
ment requires efficient training speed for the arrival of new in-

stances. Unlike traditional methods that repeatedly train the entire

data, IncreSTGL supports incremental learning. Furthermore, since

graph structural information can explicitly model node correlations,

we use graph-based structure to directly measure query-POI rele-

vance, rather than introducing additional graph neural networks,

and thus significantly improve the computational efficiency.

9.9 Robustness Check
To test the robustness of our approach, we evaluate the perfor-

mances of IncreSTGL and all baselines on different user groups

clustered by different monthly query frequency. As reported in

Figure 10 (a), it is notable that higher query frequency leads to

better performances for all models. Compared with all baselines,

IncreSTGL is more stable and has outstanding performance with

sparse data. Furthermore, with the increase of user’smonthly quests,

IncreSTGL’s performance can be improved from 0.6781 to 0.7764,
indicating its potentials in modeling user’s dynamic preference.

9.10 User Experience
In order to evaluate the user satisfaction of model recommendations,

we invite ten domain experts to evaluate the matching results.

To demonstrate the effectiveness of our framework, we compare

IncreSTGL with the existing online query-POI matching service.

We set five levels of satisfaction for performance comparisons: G+,

G, S, B, B-, where G+ represents significantly better, S represents

comparable, and B- represents worsened. Overall, we receive 814

Figure 10: Results of online services.

valid scored recommendations. As depicted in Figure 10 (b), more

than 82.9% users consider the recommendation quality is above G,

while only 3% users complain the worse quality of recommendation

result (B or B-). These results demonstrate that our proposed model

provides better recommendations in terms of user experience.

9.11 Case Study
Finally, we conduct qualitative analysis to analyze how our frame-

work utilizes preference variations of the user communities and

individual users. Specifically, we select exemplar query keyword

“Zhongguancun”, a landmark in Beijing, and its five possible POI can-

didates, i.e., “Zhongguancun Building” (BD), “Zhongguancun Shop-

ping Mall” (SH), “Zhongguancun Library” (SL), “Zhongguancun

Metro Station” (MS), “Zhongguancun Hospital” (HP). We extract

users who have ever searched the keyword as the user community,

and visualize their historical query events that happened within

13:00 — 17:00 from Jan 20, 2019 to Jan 23, 2019. As shown in Fig-

ure 11, IncreSTGL transforms the query-POI matching records of

the target user and user community into adjacency matrices. After

the process of contextual graph attention and graph discrimination,

common-structure and distinctive-structure adjacency matrices are

generated for each day accordingly. As can be seen, the target user

used to click BD and SH, similar to the query preferences possessed

by user community. Therefore, common-structure adjacency matri-

ces out-win the distinctive-structure ones in capturing such taste

similarity by allocating larger weights to BD and SH. After that,

the multi-level temporal attention operation assigns larger impor-

tance (thick, red line) to the common-structure adjacency matrix

compared to the distinctive-structure one (thin, black line). Finally,

the predicted possibilities of POIs to be clicked in the near future

exactly match the real-life events in this scenario, demonstrating

the predictive power of IncreSTGL.

10 DISCUSSIONS AND LIMITATIONS
IncreSTGL is capable of incrementally capturing dynamic prefer-

ence shifts between global users and individual user based on query

semantics and spatio-temporal information. Specifically, given a

query, the proposed incremental graph representation learning

module and semantic function measure the sequential query-POI

relevance variations from a joint perspective of personalized prefer-

ence and social homophily. We argue that such incremental design

will be a crucial ingredient in making high-capacity scalable models

of existing recommender systems.
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Figure 11: Case study.

The current incremental learning framework mainly employs

user click actions as feedback, which remains other behaviors such

as in-app zoom in/out and slide actions, queries from highway road

network, real-world check-in histories unexplored. Besides, the

model only considers typed Chinese characters in query keywords,

which may exclude the information in the Chinese pinyin during

input, despite its ability of handling query keywords in any position

of the given POI name (e.g., keyword in the middle of the POI name).

We left the above limitations as future research.

11 RELATED WORK
In this section, we discuss existing research related to our work,

including dynamic graph construction, deep neural network in

semantic matching, and POI recommendation.

Dynamic graph learning. Dynamic graph learning technique

has gradually received attention from multiple domains, such as

spectral clustering [11], and social recommendation [14]. In [11],

a dynamic affinity graph construction approach provides a robust

affinity matrix for feature partitioning, which is critical in computer

vision tasks. Liu et al. [14] applied random walk with restart pol-

icy for a sequence of user-event bipartite graphs for personalized

upcoming event recommendation. In a sense, one of its amazing ad-

vantages is to efficiently capture the pattern of newly-constructed

graphs by yielding an incremental graph based on the difference

between previous graph and new graph [12, 13, 32]. To our best

knowledge, we are the first of learning graph structure for online

query-POI matching task, and our new architecture, IncreSTGL,

can efficiently capture dynamic situational context and recommend

appropriate POIs for users.

Deep neural network in semantic matching. In recent years,

deep neural networks have demonstrated its effectiveness in the

semantic matching task [16, 31, 33, 34]. LSTM-DSSM [16], the ex-

tension of DSSM [8], considered the long-term contextual influ-

ence within the queries or documents, and used a deep neural

network architecture to map a bag of letter-trigram words from

search queries and documents to low-dimensional semantic embed-

dings. DPSM [34] fully exploited semantic information from queries

and POIs and achieved multi-field matches for query-POI matching

by modeling POI’s name and detailed address, respectively. Most

recently, in order to compensate for the limitations brought by one-

sided semantic source, PALM [33] introduced external geographical

information with semantic similarity for measuring query-POI rele-

vance. However, the above approaches have two major limitations:

(i) they only capture static representations and structures of queries

and documents, and take the risk of losing important user infor-

mation for relevance analysis, and (ii) they ignore the effects of

time-evolving user preference onto the query-POI relevance. To

handle the above problems, STDGAT [31] explored the evolving

query-POI matching preference through the spatio-temporal dual

graph attention network. However, unlike our approach, because

of the expensive graph computation overhead, STDGAT is hard to

be scaled in an online scenario.

POI recommendation. As an emerging LBS service, POI recom-

mendation [22, 28, 36] is characterized by sophisticated contexts

such as temporal information [29], geographical correlation[10],

social effects[5], and successive check-ins between POIs [3]. To

name a few, Yuan et al. [29] focused on incorporating temporal

information in POI recommendations, Kurashima et al. [10] empha-

sized the importance of geographical relevance for user interest

modeling. To improve the recommendation performance, Feng et al.

[5] decoded the triadic closure in social networks, which may in-

fluence personalized preference. Cheng et al. [3] addressed the

successive personalized POI recommendation task using Markov

process and localized features. From a more general perspective,
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query-POI matching can be viewed as an extended problem of POI

recommendation with query text as the additional hint, which only

limited attention has been paid.

12 CONCLUSION
In this paper, we proposed an incremental spatio-temporal graph

learning (IncreSTGL) framework for online query-POI matching.

Different from the existing industry approach that considers tex-

tual semantic similarity and simple spatial relationship, we jointly

modeled dynamic situational context and users’ historical sequen-

tial behaviors in an online paradigm. Specifically, we model the

sophisticated query-POI interactions from both macroscopic and

microscopic perspectives. Then, we proposed the incremental graph

representation learning module to quantify the drifting query-POI

relevance variations from a combined view of personalized prefer-

ence and social homophily. After that, we propose a lightweight

semantic fusion layer for online query-POI matching. To tackle

the computational intractability incurred by large query volumes

in the online environment, we enable the graph representation

learning module to continuously encode the latest user preferences,

which avoids re-training the model from scratch. Finally, exten-

sive experiments using two real-world map search query datasets

demonstrated the efficiency and effectiveness of the proposed In-

creSTGL framework for online query-POI matching.

This work is one step towards incremental learning for user’s

query preferences based on user click actions. Future research in

this area may include the following: (i) modeling other behaviors

as feedback, such as in-app zoom in/out and slide actions, and

(ii) considering the highly incomplete query inputs for real-time

query-POI matching.
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