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Abstract 
Many lifeforms are found in patches that other lifeforms forage for 
and consume. Here we explore how the patchiness of the former 
and cognition of the latter may emerge through mutual interaction 
in an agent-based model. We use a simple 2D grid world consisting 
of two types of agents—plants (prey) and animals (predators). 
Across three experiments, we investigate how cognition of animals 
influences patchiness of plants and evolves in response to it. Here, 
cognition is a probabilistic model with two parameters, one for 
distance of perception and the other for determinacy versus 
stochasticity of movement. We found that plant patchiness 
emerged alongside the evolution of animal cognition. In addition, 
greater distance of perception reduced patchiness, while greater 
determinacy of movement increased patchiness. Conversely, 
greater patchiness of plants led animals to evolve perception across 
greater distances but also led to evolution of less deterministic 
foraging. Environmental patchiness and foraging cognition thus 
appeared to mutually create a stable dynamic interaction leading to 
a self-regulating system. 

Introduction 
Most forms of life are patchily distributed (e.g., forests of trees, 
herds of deer). Such distributional patterns of the environment 
greatly influence the cognition and behavior of organisms that 
evolve within it. For instance, studies in ecology have found 
that animals living in environments where their food comes in 
patches have evolved near-optimal cognitive strategies for 
foraging (Krebs, Ryan, & Charnov, 1974). Similar findings are 
also reported in artificially simulated foraging studies. Todd 
and Yanco (1996) evolved simple agents (“minimats”) in grid 
worlds with varying environmental patchiness. They found that 
agents evolved looping movements that allowed them to 
regularly return to patches of regrowing resources. Similarly, 
in Hills' (2004) simulations, agents evolved simple memory-
based policies that restricted search to areas with resources. 
Roberts and Goldstone's (2006) behavioral studies and agent-
based models found that foragers initially used locations of 
other foragers as indicators of potential food—an effective 
strategy when food is patchy. 

The majority of such existing studies focus on the 
unidirectional influence of patchiness on cognition. Hence, in 
such investigations, patchiness is regarded as an independent 
variable that is mostly uninfluenced by the cognition and 
behavior of agents within it. For instance, in the agent-based 
model described in Hills (2006), areas of the grid world were 

pre-allotted as patches of resources and once these were 
consumed new resources could only regrow in those specified 
patches. Similarly, in other artificial life work, distributional 
structures of the environment are typically preordained, largely 
unaltered by agent interactions (e.g., Todd & Yanco, 1996). 

While this approach is effective for studying the influence of 
patchiness on cognition, it neglects the mutual interaction 
between environmental patchiness and agent cognition that is 
representative of real-world patchiness. Distributions of 
ecological resources are not always static, but rather are 
emergent, dynamic, and sensitive to the consumption behavior 
of agents interacting with them. While patchiness on larger 
scales may be static and dependent on extrinsic factors (e.g., 
climatic conditions prevent uniform distributions of species), 
small-scale patchiness is more dynamic and dependent on 
species interactions (Levin, 1992). For example, krill are 
patchily distributed on multiple scales of analyses—while on 
broader scales, their distribution is influenced by temperature 
and other habitat necessities, on smaller scales their patchiness 
emerges autonomously through food search behaviors (Hamner 
et al., 1983). Evidence from ecological studies suggests many 
behavioral causes of patch formation including predation, 
competition, and aggregation (Deutschman et al., 1993). Such 
small-scale dynamic patchiness is ultimately what matters for 
cognitive evolution since individual behaviors occur in 
response to the environment at this level. Therefore, combining 
ecological evidence with results from cognitive modeling, it 
appears that dynamic patchiness both influences the evolution 
of cognition, and is influenced by evolved cognition in turn. 

In the current work, we use agent-based modelling to 
investigate this dynamical interaction of patchiness and 
cognition in a simple two-trophic system (plants and animals). 
The animals forage for plants and both shift spatially and can 
evolve over time, enabling us to explore how cognition of 
animals interacts with patchiness of plants over short and long 
time-scales. Unlike some previous studies, in our model, plants 
can grow anywhere in the world, allowing their distribution to 
be uniform, random, or patchy. Our simulations start with a 
roughly uniform distribution of plants in the world; the 
distribution of plants that emerges subsequently depends on the 
consumption behavior of the animals, as dictated by their 
cognition. We imagine the animals as primitive organisms and 
use a simple two-parameter probabilistic model of perception-
based decision-making for their cognition. The cognition 
parameters evolve via genetic selection depending solely on 
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their adaptive benefit in the environmental structure. This 
approach allows the dynamic interaction between cognition and 
patchiness to freely emerge. We expect that patchiness in 
distribution of plants will emerge alongside evolution of animal 
cognition for finding and consuming plants. 

The current work is structured as three experiments. In 
Experiment 1, we evolve the model described above—
patchiness and cognition are left unconstrained to determine if 
patchiness emerges as animals evolve cognition. In Experiment 
2, we fix cognition parameters at various values to explore the 
influence of animal cognition on plant patchiness. Finally, in 
Experiment 3, we explore the corresponding reverse influence 
of patchiness on cognition. The three experiments together 
allow us to draw a holistic picture of the mutual interaction of 
cognition and patchiness. 

The Model 
The world in our model is a 2D square grid of 200×200 cells 
arranged in a toroid. On every time step, the two types of 
agents, plants and animals, can perform a small repertoire of 
basic behaviors if conditions for the behaviors are met. These 
behaviors regulate the amount of energy units an agent has 
during its lifespan. An agent starts with 10 energy units and it 
dies if it runs out. The regulatory behaviors are: 

1) Eat. On every timestep, plants eat and gain 5 energy units of 
an invisible uniformly distributed resource (akin to sunlight). 
Since the resource consumed by plants is uniformly distributed, 
if left undisturbed, plants also become uniformly distributed. 
An animal can eat if it lands in a cell containing a plant—it then 
gains all energy units of the plant, causing the plant to die. 

2) Metabolize. On every timestep, both plants and animals lose 
3 energy units as a metabolic cost. Animals lose 1 additional 
energy unit (leading to a total 4 energy unit loss) which is the 
metabolic cost of their cognitive and movement abilities. 
Therefore, if an animal fails to find plants to eat for several 
timesteps, it will run out of energy units and die. 

3) Reproduce. Both plants and animals reproduce asexually 
whenever they have more than 20 energy units. At this point, 
half their energy units are given to a single offspring which by 
default is “born” in a cell adjacent to theirs. This is a 
simplification of real-world dispersal—in many species (e.g., 
with dispersing seeds or eggs), birth-position of offspring is not 
always adjacent to parent-position. However, most species 
have a higher probability of shorter distances between birth-
positions and parent-positions, justifying our simplification. 
We manipulate the extent of dispersal in Experiment 3 to 
observe its influence on cognitive evolution. 

The parameters associated with these regulatory behaviors 
remain fixed for all agents within a given simulation—they do 
not evolve. The amount of energy units consumed and lost by 
agents through these behaviors was chosen arbitrarily. 
However, our results are robust to reasonable changes in these 
values. Results only diverge if these parameter values are 
changed drastically—for instance, if on every timestep, animals 
metabolized fewer energy units than plants, they would 
overpopulate the grid, producing catastrophic declines in plant 
populations, followed by an extinction of animal agents. 

Plant agents are introduced at timestep 1 and animal agents 
are introduced at timestep 300. This allows plants to first 
densely populate the grid, ensuring that when animals are 
introduced, there is enough food in the world, such that they do 
not die immediately due to starvation. Further, by timestep 300, 
plants become roughly homogeneously distributed—this 
ensures that any subsequent patchiness that emerges after 
introduction of animals is not a result of initial patchiness of 
plants.  

For both plants and animals, we initially introduce only 20 
agents, dropped at random grid positions. Population sizes 
increase as agents reproduce. One gridcell can only hold one 
agent at a time. If an animal moves into a plant cell, it eats the 
plant; if a plant is born into an animal cell, it fails to take birth; 
if two agents of the same type land on a cell (i.e., animal on 
animal cell or plant on plant cell), the agent with the higher 
number of energy units survives, while the other agent 
disappears from the grid.  

Cognition 
Unlike plant agents, animal agents in our simulations are 
capable of movement and minimal cognition, parameterized to 
produce variations in foraging behavior. By default, animal 
agents do a random walk, moving at a constant velocity of one 
grid cell per timestep. Hence, this limits their possible moves 
to one of their eight neighboring cells, the choice of which is 
made through cognition. The animals have basic smell-like 
perception and simple decision making for deciding where to 
move next, defined by two cognition parameters: 

1) Perceptual strength. An animal agent calculates the food 
value of each one of its eight neighboring cells based on the 
amount of food it perceives that it can get from that cell, as well 
as from the other cells close to that one. Imagine that the animal 
takes a “sniff” in each of its adjacent cells and picks up the 
combined scent of any food in that cell and all the cells 
surrounding that one, decaying with increasing distance 
(depicted as darkness of blue in Figure 1). An animal’s 
perceptual strength (PS), varying from 0.0 (lower range) to 1.0 
(higher range), determines how strongly it perceives the 
surrounding grid cells. Strength of perception decays 
exponentially as distance of grid cells increases, at a rate 
specified by the animal’s PS: 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖) = ∑ ( 𝑃𝑃𝑃𝑃𝑑𝑑 ∙ ∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑  )20

𝑑𝑑=0      (1)  
Here, d is the Chebyshev distance of grid cells to neighboring 
celli, and Σfoodd is the total amount of food in all the cells that 
are exactly d distance from 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 . For instance, 
an agent with PS=0 can only perceive food in its neighboring 
cells and has no perception beyond that (00 ⋅  Σ food0 +  01  ⋅ 
Σfood1 …). On the other hand, with PS=1, an agent can perceive 
all food in a radius of 20 grid cells with equal weight given to 
all (10 ⋅ Σfood0 + 11 ⋅ Σfood1 …). An intermediary PS value lets 
an agent perceive food from adjacent grid cells with greater 
strength than that from distant grid cells, as illustrated in Figure 
1. We have capped the maximum distance that an animal can 
perceive to a radius of 20 grid cells to increase speed of 
computation. Further, given our agents’ lifespan length 
(typically <20 steps), they are unlikely to evolve abilities to 
attend to food that is more than 20 grid cells away. 
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Intuitively, extreme values of PS are not adaptive. At low 
values, an agent will be unable to perceive distant food 
quantities and so cannot aim toward more promising directions 
of future food; and at high values, an agent would perceive both 
close and distant food similarly strongly and thereby not be able 
to attach greater value to immediate food. 

2) Decision Determinacy: After sniffing in the eight 
neighboring cells, the animal must decide which one it will 
move into. The food-based values of the neighboring cells, 
calculated as in Equation (1) based on an agent’s PS, are 
converted into decision probabilities using the decision 
determinacy (DD) parameter (in range 0.0-1.0). It controls how 
deterministic or stochastic the resulting movement is. The 
choice of which cell to move into is calculated through a 
softmax function: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖) =  
𝑒𝑒4 ∙ 𝐷𝐷𝐷𝐷 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖)

∑ 𝑒𝑒4 ∙ 𝐷𝐷𝐷𝐷 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗)8
𝑗𝑗=1

     (2) 

where value(celli) is the food value of the neighboring cells 
calculated via Equation (1). The closer DD is to 0, the more 
equiprobable the movement to the eight neighboring cells 
becomes, with 0 leading to pure random movements. DD 
values close to 1 increase weighting of higher-value cells, 
leading to nearly deterministic movement to the cell with the 
highest value. Similar softmax functions have been used to 
produce stochastic movement in other foraging agent-based 
models (e.g., Roberts & Goldstone, 2006). 

As with PS, agents tend to evolve intermediate values of 
DD—high values of DD can be less adaptive as they lead all 
agents to become stuck in local maxima of food. Very low 
values of DD are also less adaptive, as having some 
stochasticity in movement decisions enables animals to explore 
their environment for possibly better but not-yet-perceived 
sources of food. Further, it reduces competition for resources 
by leading agents to become more randomly distributed across 
the grid instead of congregating at the same local maxima. 

Figure 1 demonstrates intermediate values of this parameter. As 
can be seen, probability of movement (as indicated by darkness 
in shades of green) is higher for high valued cells (i.e., cells that 
have greater amounts of food close to them). 

In Experiments 1 and 3, values of both cognition parameters 
are allowed to evolve over time. Adaptive cognitive abilities 
will help animals to consume higher quantities of food which 
in turn will enable them to survive longer and have more 
offspring. An offspring inherits its parent’s cognition parameter 
values with some mutation. At mutation, a random number 
generated from a normal distribution (mean 0, SD 0.025), is 
added to the offspring’s cognition parameters. Since plants are 
finite, animals need to compete for food and less fit agents die 
out. Hence, inheritance (with mutation) and competition lead 
the cognition parameters to become adapted to the 
environmental structure (which itself is changing through the 
agents’ actions). 

Patchiness 
In our simulations in Experiments 1 and 2, patchiness is not 
manipulated, but emerges through plant-animal interactions. 
Throughout each run, we track the patchiness level of plants in 
the grid, using a variation of the Nearest Neighbor (NN) metric 
(Clark & Evans, 1954). This is a popular measure of patchiness 
used in ecology (e.g., Hubbell, 1979; Parrish, Viscido, & 
Grünbaum, 2002). For the NN calculation, the average distance 
of each agent to its nearest neighbor is calculated; this is then 
divided by the expected nearest-neighbor distance for a random 
spatial distribution of equivalent density, as derived from a 
Poisson distribution. Therefore, NN is equal to 1 if plants are 
randomly distributed, less than 1 if plants are patchy, and 
greater than 1 if plants are overdispersed. For ease of 
understanding, we used 1-NN as our measure of patchiness, so 
that greater values indicate greater patchiness, and 0 indicates 
a random distribution. With small variations, the NN 
calculation can be generalized to measure patchiness based on 
the 2nd, 3rd, 4th or nth neighbor (Thompson, 1956). We measured 
NN using a wide range of nth neighbors and obtained similar 
results for all. In this paper, we report patchiness based on NN 
using the 5th nearest neighbor, as it was most consistent across 
multiple simulations. Therefore, patchiness is calculated as 
follows: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑀𝑀5
𝐸𝐸5

 ;      
 𝑀𝑀5 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 𝑡𝑡𝑡𝑡 5𝑡𝑡ℎ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏; 

𝐸𝐸5 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 𝑡𝑡𝑡𝑡 5𝑡𝑡ℎ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏 =  
1.2305

�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 

Figure 1: Functioning of cognition parameters. Darkness of 
blue illustrates perceptual strength as agent A calculates the 
food value from neighboring cells N1 and N2 (refer Eq. 1); only 
two cells are displayed here, but the process is repeated for all 
eight neighboring cells. Darkness of green illustrates the 
probability of movement to neighboring cells based on agent 
A’s decision determinacy (refer  Eq. 2). As can be seen, 
probability of movement is higher (green is darker) to 
neighboring cells that have larger amounts of food nearby. 

Figure 2: Calculated patchiness values for various spatial 
distributions within the range typically observed in simulations. 
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Figure 2 shows the patchiness values for different spatial 

distributions of agents. In our simulations, patchiness usually 
does not go higher than ~0.4. This is because our patchiness 
formula limits the upper range of patchiness values depending 
on plant population densities. For instance, if plant density is 
0.25, the maximum patchiness value that can be theoretically 
achieved is 0.42; at higher densities, patchiness is further 
restricted. 

Expt 1: Mutual Interaction of Cognition and 
Patchiness 

We first ran simulations of the full model described above, 
wherein patchiness was free to emerge and cognition was free 
to evolve. Plants started with a roughly uniform distribution 
(patchiness ~0) and cognition parameters of animals 
(perceptual strength and decision determinacy) started at 0.  

Across the run, we expected animals to evolve higher values 
of cognition parameters through reproduction with mutation. 
Concurrently, we expected the distribution of plants to be 
driven to patchiness by the foraging behaviors of the animals 
(produced by their evolving cognition). 

Results and Discussion 
We ran 5 simulations, each consisting of 2000 timesteps-- 
Figure 3A displays the results for one representative 
simulation. Results are displayed for timestep 300 onward, 

when animals are introduced in the world and agent interactions 
begin to take place. Figure 3B displays a snapshot of the grid at 
the end of the simulation run. Results from all the simulations 
and videos can be found in our online Supplemental Materials. 

Soon after the introduction of animals, patchiness and 
cognition parameters begin to escalate. The variables stop 
increasing and reach stable levels at around timestep 750. 
Across all 5 simulations, after timestep 750, plants have an 
average patchiness of 0.41 and animals achieve an average 
perceptual strength of 0.54 and an average decision 
determinacy of 0.6. The cognition parameters of all animals in 
the grid were normally distributed around these means. 

As expected, animals evolved intermediary values of 
cognition parameters. Intermediary perceptual strength allows 
animal agents to perceive distant food while simultaneously 
prioritizing adjacent food. An interesting effect in our 
simulations is that artificially extending the life of agents (by 
changing the death threshold to -5 energy units) makes higher 
average values of PS evolve. This makes sense since animals 
that can live longer and are more resilient to low food 
consumption can afford passing up adjacent food for a higher 
amount of distant food. Decision determinacy also evolved to 
an intermediate level, enabling agents to be exploitative enough 
to move towards food while also allowing some beneficial 
exploration of unperceived fertile regions. 

Correlations between patchiness and the cognition 
parameters across timesteps are high (0.80 for PS and 0.81 for 
DD; p<.001). These correlations primarily represent the 
simultaneous escalation of all variables from timestep 300 to 
750. However, later in the simulation, oscillatory patterns of 

Figure 3: (A) Cognition of animals (PS in blue and DD in green) and patchiness of plants (in red) across an evolutionary run. 
The parameters increase simultaneously and later develop oscillatory patterns. (B) Snapshot of the grid at the end of an 
evolutionary run. (C) Patchiness of plants when cognition of animals is restricted to 0. With restricted cognition, patchiness 
does not emerge. (D) Snapshot of the grid at the end of a restricted cognition run.  
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patchiness and cognition appear, with the parameters 
sometimes moving in the same direction and at other times in 
opposite directions. This might suggest a more dynamical 
relationship rather than a linear one, which we explore further 
in the following experiments. 

In this model, increases in patchiness could be a result of 
possible confounds such as dispersal patterns of agents (here 
the birth-position of offspring is next to parent-position, which 
is likely to produce patchy growth). To help ensure that the 
emergent patchiness was due to an interaction with cognition 
and not due to such confounding variables, we ran simulations 
of a restricted cognition model, where cognition parameters of 
all animals were restricted to 0 with no mutation. Results of one 
simulation of this model are shown in Figure 3C and a snapshot 
of the final grid in Figure 3D. As can be seen, in this case, 
patchiness remained stagnant at around 0.03, suggesting that 
the high patchiness of the full model was due to the foraging of 
animals with higher levels of cognition rather than a 
confounding variable. 

Results from this experiment provide support for our 
expectation that patchiness emerges alongside the evolution of 
cognition. Further, through our restricted cognition model, we 
establish that this emergence of patchiness is not just a result of 
other confounds. The oscillatory pattern of activity between the 
cognition and patchiness parameters across a simulation 
suggest a dynamical interaction between them. However, the 
nature of this dynamical interaction is not clear—which 
cognition parameters influence patchiness, and how is the 
cognition of animals influenced by the patchiness of plants? We 
tackle these questions in the next two experiments. 

Expt 2: Influence of Cognition on Patchiness 
The previous experiment showed that patchiness and cognition 
increased together, but did not reveal which of the two 
cognition parameters influenced patchiness and how—we 
explored this with the current experiment. Here, we 
systematically varied cognition parameters, fixing them to 
various values. At the end of each simulation, we measured 
patchiness to determine the influence of the cognition 
parameter combinations on patchiness. Hence, we did not let 
cognition evolve, and instead in each simulation all agents had 
the same cognition parameter value throughout. We ran five 
simulations of each of 121 parameter combinations—both PS 
and DD were fixed at values from 0 to 1 at 0.1 intervals. Each 
simulation was run for only 1000 timesteps, based on the 
observation that parameter values stabilized after the 750th 
timestep in Experiment 1. 

Results and Discussion 
Figure 4 displays average patchiness levels in the last 50 
timesteps across the five simulations for various combinations 
of PS and DD. In some parameter combinations, animal agents 
in the grid went extinct before the 1000 steps were up. These 
simulations have been marked with numbers 1-5 on Figure 4, 
providing a count of the simulations with extinction of animals 
for that parameter combination. In these extinction simulations, 
average patchiness of the 50 timesteps before the extinction of 
animals is used. We present the data from before the extinction 
of animals because after their extinction plants grow uniformly 

across the grid with no foraging to limit their growth—hence 
results from after the extinction are not representative of the 
interaction between patchiness and cognition. 

As can be seen in Figure 4, patchiness declined as perceptual 
strength increased. This is probably because at higher values of 
PS, animals prioritized movement toward larger amounts of 
plants, even if they were distant. Therefore, no patch of plants 
grew too large—if it did, it would attract animals who would 
then forage from it, leading to an overall uniform spread of 
plants. However, when agents had low PS, patchiness was high. 
In these simulations, animals only searched for food locally and 
remained and reproduced within those localities, allowing 
plants to grow elsewhere in the grid. 

The opposite trend was found in the relationship between 
patchiness and decision determinacy—as DD increased, so did 
patchiness. This makes intuitive sense—at low levels of DD, 
animal movement and foraging were highly stochastic, 
allowing for more equal and random distribution of plants. On 
the other hand, at high levels of DD, animals were extremely 
exploitative and strongly attracted toward the highest-valued 
cells which allowed growth of plant patches in low-valued 
areas. Once those low-valued areas became more fertile than 
the high-valued cells being foraged on, the previously ignored 
low-valued areas would become the new points of attraction. 
Hence, patches of plants emerged and moved dynamically 
across the grid (videos can be found in online Supplemental 
Materials).  

Patchiness was therefore highest when low PS was combined 
with high DD. These are also the simulations wherein 
extinction tended to occur. In these combinations, agents 
deterministically exploited nearby localities of food. They 
moved towards local maxima, and once they ran out of plants 

Figure 4: Average patchiness values (shown in levels of 
darkness with the scale on the right) in the last 50 steps across 
combinations of cognition parameters. Patchiness decreases 
with increases in perceptual strength but increases with 
increases in decision determinacy. Numerals indicate number 
of simulations (out of 5) that experienced extinction of 
animals. The star marks the combination of parameters that 
evolved in Experiment 1. 
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there, they did not have the perceptual strength to detect and 
find more distant food, leading to starvation. On the other hand, 
higher ranges of perception and higher levels of stochasticity 
enabled agents to explore more and continually move toward 
global maxima, preventing extinction.  

The cognition parameter values that evolved in Experiment 
1, a PS of ~0.5 and DD of ~0.6, are indicated by the star on 
Figure 4. Interestingly, these evolved parameter values are at 
the edge of the combinations that led to extinction. It is possible 
that being short-sighted and highly deterministic is a generally 
successful strategy, but if all agents followed such strategies it 
can produce instability, leading to extinction. Possibly, in 
simulations of Experiment 1, animals tended to evolve lower 
PS and higher DD to become more exploitative in local patches. 
This then led them to get stuck in local maxima and starve, 
letting the plants grow less patchy and giving an advantage to 
other animals with greater PS and lower DD. This dynamic 
would explain the oscillation patterns of cognition parameters 
and patchiness in Figure 3A. 

This experiment clarifies how the cognition of foraging 
animal agents influences the patchiness of plant resources: 
Having low perceptual strengths and high decision determinacy 
leads to greater patchiness. However, so far, our simulations 
have not provided insight into the influence of patchiness on 
cognition—this is tackled in the next experiment. 

Expt 3: Influence of Patchiness on Cognition 
In this experiment, we artificially manipulated the patchiness 
of plants and measured its influence on the evolution of animal 
cognition parameters. Patchiness was manipulated by altering 
the dispersion of new plant offspring across experimental 
conditions. In our previous experiments, a new plant’s birth 
position was always adjacent to the parent—hence, dispersion 
was minimal. In the current experiment, an offspring could 
potentially be placed some distance away from the parent; that 
is, dispersion could be greater. An offspring’s birth position 
depended on the dispersion rate of that experimental condition: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖) =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)−1  

Here, distance (celli, parent cell) is the distance between the 
grid cell under consideration and the parent cell; disp rate is the 
dispersion rate and was varied between 0 and 1 at 0.1 intervals 
across eleven experimental conditions.  

In our simulations we found that dispersion rate had a 
roughly negative linear relationship to the patchiness measure. 
For instance, at a dispersion rate of 1, new offspring would 
occupy random positions in the grid, leading to patchiness of 
~0 in the grid. On the other hand, a dispersion rate of 0 
resembled our previous simulations wherein offspring always 
occupied adjacent cells and it represents the highest patchiness 
condition for this experiment. Thus, dispersion rate serves as a 
useful means of manipulating patchiness. (Directly 
manipulating patchiness by preallocating grid cells to resources 
would end up artificially restricting population sizes of the grid, 
hence altering population dynamics.) Furthermore, using 
intermediate values of dispersion in our simulations resembles 
real-world dispersal (Portnoy & Willson, 1993), allowing for 
possible comparison with field studies. 

However, a drawback of the current patchiness manipulation 
is that we cannot produce a full upper range of patchiness 
values—the maximum patchiness value we could artificially 
generate was ~0.4 using a dispersion rate of 0. This arises 
primarily because the nearest neighbor metric restricts the 
upper range of values depending on the plant density. Refer to 
Figure 2 for visuals of the grid at varied values of patchiness. 

Results and Discussion 
Overall, the range of patchiness values we could produce 
(between 0 and 0.4) proved to be sufficient to observe its 
influence on the evolved cognition parameters of animals.  

As in our previous experiments, five simulations were run 
for each of the 11 patchiness conditions. The distributions of 
evolved cognition parameters in the last 50 steps of all 
simulations across conditions are shown in Figure 5. For each 
condition, the x-axis indicates the mean patchiness value of the 

Figure 5: Distribution of cognition parameters in the last 50 
steps across various patchiness conditions. Animals agents in 
the first two patchiness conditions went extinct (marked by 
the cross). The x-axis labels the average patchiness values 
along with the corresponding fixed dispersion rates (in 
brackets, bottom row) for the different conditions.  (See 
Figure 2 for examples of corresponding patchiness levels.) 
With increases in patchiness, perceptual strength increases 
but decision determinacy decreases. Simple regression 
indicated significant influence of patchiness on both cognition 
parameters at p<.001 (results were significant with and 
without inclusion of the extinction conditions in the analyses). 
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last 50 steps averaged across all five simulations and the fixed 
dispersion rate (in brackets) that was used to achieve that 
patchiness value. 

As seen in Figure 5A, greater values of perceptual strength 
evolved in higher patchiness conditions. This is perhaps 
because greater perceptual strength allows an agent to 
discriminate locations of patches, which might often be at a 
distance. However, in less patchy environments, food is 
randomly scattered around the agent and perceptual distance 
provides no discriminatory advantage. Instead, it is more 
advantageous for the animal to prioritize immediate food, as 
enabled by a lower perceptual strength in our simulations. 

In contrast, there is a downward trend of decision 
determinacy with increasing patchiness (Figure 5B). This might  
be because in patchy environments, where food locations  
across the grid are autocorrelated, some stochasticity is not 
harmful—if an agent has already found some food (in a patch), 
it is likely to find more food nearby regardless of the direction 
it moves in. In fact, extreme determinacy in patchy 
environments might be harmful as it would tend to draw 
animals to the same high-valued patches, leading to potentially 
lethal competition for resources. On the other hand, when 
plants are randomly scattered across the grid, animals need to 
be extremely deterministic in selecting and moving to the 
specific neighboring cells that hold plants.  

Interestingly, PS and patchiness had an inverse relationship 
in Experiment 2 (increases in PS produced reductions in 
patchiness), but they have a direct relationship in Experiment 3 
(increases in patchiness produced increases in PS). In a similar 
fashion, DD also displayed opposing trends across the two 
simulations—DD and patchiness had a direct relationship in 
Experiment 2 (increases in DD produced increases in 
patchiness), but they have an inverse relationship in 
Experiment 3 (increases in patchiness produced reductions in 
DD). These opposing patterns perhaps lead cognition and 
patchiness parameters to regulate each other in Experiment 1, 
where both variables are left unrestricted. For instance, as DD 
increases, patchiness increases; however, increases in 
patchiness produce reductions in DD (through starvation of 
high-DD agents), which in turn produces reductions in 
patchiness. This process could go on, preventing either 
parameter from reaching catastrophic extremes. 

Animal agents in the lowest two patchiness conditions went 
extinct at around 500 steps in all five simulations (as depicted 
by the crosses in Figure 5). Further, population levels of agents 
(not depicted here) were stable at higher levels with increases 
in patchiness. This is in tune with ecological studies that found 
greater stability of population levels of predators and prey in 
patchy environments than in randomly dispersed environments 
(Huffaker, 1958; Monro, 1967). These studies argue that in 
patchy environments, small patches of prey obtain temporary 
refuge while predators exploit larger patches, allowing them to 
increase in size. These cycles of refuge and predation increase 
overall stability of prey populations, and of predators in turn. 
However, in random distributions, predation is more 
continuous, leading to massive declines in prey populations, 
followed by extinction of predators. Given the importance of 
dispersal rates in maintaining patch dynamics and stability of 
populations in our simulations, future work can use genetic 
algorithms to allow populations to evolve optimal dispersal 
rates. 

General Discussion and Future Directions 
Our three experiments explored the mutual interaction between 
cognition of animal agents (parametrized as perceptual strength 
and decision determinacy) and patchiness of plants. 
Experiment 1 showed that when both were left unrestricted, 
patchiness emerged alongside the evolution of cognition, 
suggesting a mutual interaction between them. In Experiment 
2, we explored the unidirectional influence of cognition on 
patchiness, and found that increases in PS produced decreases 
in patchiness while increases in DD produced increases in 
patchiness. Next, in Experiment 3, we conversely looked at the 
influence of patchiness on cognition: greater patchiness 
evolved higher PS and lower DD. Thus together, Experiments 
2 and 3 verified our expectation that cognition of animal agents 
influences the distribution of plants in the environment and in 
turn evolves in response to the distributional structure of the 
environment. 

Further, we also found that patchiness and cognition 
potentially regulate each other through their pattern of 
interaction. For instance, as patchiness of plants increases, 
perceptual strength of animals also increases (because 
identifying distant patches is useful); increases in PS reduces 
patchiness of plants (because distant viewing allows for more 
uniform grazing of food); this reduction of patchiness then 
leads to reduction in PS, and the pattern continues. A similar 
pattern holds for decision determinacy, and PS and DD also 
both influence each other through their effects on patchiness. 
Figure 6 provides a quick summary of these causal interactions 
suggested by Experiments 2 and 3. This pattern of interactions 
is probably responsible for the oscillatory movements of 
parameters in Experiment 1 (see Figure 3). It also possibly 
regulated the evolved cognition parameters from escalating to 
values that would produce extinction (see Figure 4)—hence 
creating a self-regulating system. 

Interactions in our study are examples of niche 
construction—ecological processes wherein organisms alter 
the selective environment of future generations, leaving behind 
an ecological inheritance in addition to a biological one 
(Laland, Odling-Smee, & Feldman, 1999). There has been 
considerable research on niche construction within the artificial 

Figure 6: Mutual interaction between patchiness and 
cognition parameters. Arrows display the direction of the 
causal relationship and are labelled with the experiment that 
demonstrates the relationship. 
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life field, from Harvey’s (2004) Daisyworld model where 
differentially reproducing organisms regulated climatic 
conditions to remain within habitable ranges, to Chiba et al.’s 
(2016) simulation of the evolution of building physical 
structures that last across generations. Our study provides an 
intermediate example of self-regulating effects of niche 
construction—here, plants and animals impact each other’s 
locations (hence creating the environment for subsequent 
generations), and through their mutual influence, patchiness 
and cognition parameters are maintained within specific 
ranges. 
     Across our simulations, population sizes of animal and plant 
agents showed Lotka-Volterra style population dynamics 
(Lotka, 1920)—see Supplemental Materials. This provides a 
strong parallel to real world predator-prey systems, as have 
been found in other artificial life simulations (Yang et al., 
2018). In our simulations where agents went extinct, the Lotka-
Volterra dynamics were extremely chaotic, leading ultimately 
to population crashes.  

A limitation of our study is the instantiation of cognition as 
a simple two-parameter probabilistic model. It provides us the 
benefit of interpretability through a reduced representation of 
common real-world foraging search. However, real animals 
have evolved a wide variety of cognitive search strategies that 
are not accounted for by our model. Future work can explore 
other cognitive models of search (e.g., memory-based area 
restricted search—Hills, 2006) or use neural networks that are 
less presumptive of the cognitive model. 

The current work also focused on prey (plants) that were 
immobile. If modeled prey were capable of movement (like 
fish, deer), active aggregation behaviors such as schooling and 
flocking could arise. Previous research has shown that flocking 
can emerge in simple predator-prey systems with limited 
sensation-action abilities (Sunehag et al., 2019). Our research 
makes a useful contribution in demonstrating how aggregation 
can emerge in prey without active aggregating behavior on their 
part, simply through the impact of evolved search patterns of 
predators. 

Supplemental Materials 
Supplemental materials, code, and data for this project are 
available online at https://github.com/mahiluthra/cognition-
patchiness 

Acknowledgments 

We thank Marina Dubova and Rob Goldstone for feedback on 
the paper. This research was supported in part by the John 
Templeton Foundation grant, “What drives human cognitive 
evolution” to the first and third author, by the NSF-NRT grant 
1735095, ‘Interdisciplinary Training in Complex Networks and 
Systems’ to the first author, and by Lilly Endowment, Inc., 
through its support for the Indiana University Pervasive 
Technology Institute. 

 

References 
Chiba, N., Suzuki, R., & Arita, T. (2016). How ecological inheritance 

can affect the evolution of complex niche construction in a 2D 
physical simulation.  In Artificial Life Conference Proceedings 
2016 (pp. 426-433).  Cambridge, MA: MIT Press. 

Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbor as a 
measure of spatial relationships in populations. Ecology, 35(4), 
445-453.  

Deutschman, D. H., Bradshaw, G. A., Childress, W. M., Daly, K. L., 
Griinbaum, D., Pascual, M., … Wu, J. (1993). Mechanisms of 
patch formation. In S. A. Levin, T. M. Powell, & J. W. Steele 
(Eds.), Patch dynamics (pp. 184–209). Berlin, Springer. 

Hamner, W. M., Hamner, P. P., Strand, S. W., & Gilmer, R. W. (1983). 
Behavior of Antarctic krill, Euphausia superba: chemoreception, 
feeding, schooling, and molting. Science, 220(4595), 433-435.  

Harvey, I. (2004). Homeostasis and rein control: From daisyworld to 
active perception. Artificial Life Conference Proceedings, 9, 309-
314. 

Hills, T. (2004). ARS-genetics: A genetic algorithm that evolves 
individual foragers. Retrieved from http:// 
ccl.northwestern.edu/netlogo/models/community/ARS-Genetics 

Hills, T. (2006). Animal foraging and the evolution of goal-directed 
cognition, 30, 3–41. 

Hubbell, S. P. (1979). Tree dispersion, abundance, and diversity in a 
tropical dry forest. Science, 203(4387), 1299-1309.  

Huffaker, C. (1958). Experimental studies on predation: dispersion 
factors and predator-prey oscillations. Hilgardia, 27(14), 343-
383. 

Krebs, J. R., Ryan, J. C., & Charnov, E. L. (1974). Hunting by 
expectation or optimal foraging? A study of patch use by 
chickadees. Animal Behaviour, 22, 953-964. 

Laland, K. N., Odling-Smee, F. J., & Feldman, M. W. (1999). 
Evolutionary consequences of niche construction and their 
implications for ecology. Proceedings of the National Academy 
of Sciences, 96(18), 10242-10247. 

Levin, S. A. (1992). The problem of pattern and scale in ecology. 
Ecology, 73(6), 1943–1967. 

Lotka, A. J. (1920). Analytical note on certain rhythmic relations in 
organic systems. Proceedings of the National Academy of 
Sciences, 6(7), 410-415.  

Monro, J. (1967). The exploitation and conservation of resources by 
populations of insects. The Journal of Animal Ecology, 36(3), 
531-547. 

Parrish, J. K., Viscido, S. V., & Grunbaum, D. (2002). Self-organized 
fish schools: an examination of emergent properties. The 
biological bulletin, 202(3), 296-305.  

Portnoy, S., & Willson, M. F. (1993). Seed dispersal curves: behavior 
of the tail of the distribution. Evolutionary Ecology, 7(1), 25-44. 

Roberts, M. E., & Goldstone, R. L. (2006). EPICURE: Spatial and 
knowledge limitations in group foraging. Adaptive Behavior, 
14(4), 291–313. 

Sunehag, P., Lever, G., Liu, S., Merel, J., Heess, N., Leibo, J. Z., … 
Graepel, T. (2019). Reinforcement learning agents acquire 
flocking and symbiotic behaviour in simulated ecosystems. 
Artificial Life Conference Proceedings, 31, 103–110. 

Thompson, H. R. (1956). Distribution of distance to nth neighbour in 
a population of randomly distributed individuals. Ecology, 37(2), 
391-394.  

457

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal2020/32/450/1908536/isal_a_00330.pdf by guest on 11 Septem
ber 2021



Todd, P. M., & Yanco, H. A. (1996).  Environmental effects on 
minimal behaviors in the minimat world.  Adaptive Behavior, 
4(3-4), 365-413. 

 
Yang, Y., Yu, L., Bai, Y., Wen, Y., Zhang, W., & Wang, J. (2018). A 

study of AI population dynamics with million-agent 
reinforcement learning. Proceedings of International Conference 
on Autonomous Agents and MultiAgent Systems,17, 2133-2135. 

 

458

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal2020/32/450/1908536/isal_a_00330.pdf by guest on 11 Septem
ber 2021


