
Journal of Parallel and Distributed Computing 157 (2021) 201–219

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Evolving PDC curriculum and tools: A study in responding to

technological change

Joel C. Adams

Department of Computer Science, Calvin University, Grand Rapids, MI, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 November 2020
Received in revised form 9 June 2021
Accepted 3 July 2021
Available online 15 July 2021

Keywords:
Beowulf cluster
Education
HPC
PDC
Supercomputing

Much has changed about parallel and distributed computing (PDC) since the author began teaching the
topic in the late 1990s. This paper reviews some of the key changes to the field and describes their
impacts on his work as a PDC educator. Such changes include: the availability of free implementations
of the message passing interface (MPI) for distributed-memory multiprocessors; the development of the
Beowulf cluster; the advent of multicore architectures; the development of free multithreading languages
and libraries such as OpenMP; the availability of (relatively) inexpensive manycore accelerator devices
(e.g., GPUs); the availability of free software platforms like CUDA, OpenACC, OpenCL, and OpenMP for
using accelerators; the development of inexpensive single board computers (SBCs) like the Raspberry
Pi, and other changes. The paper details the evolution of PDC education at the author’s institution in
response to these changes, including curriculum changes, seven different Beowulf cluster designs, and the
development of pedagogical tools and techniques specifically for PDC education. The paper also surveys
many of the hardware and software infrastructure options available to PDC educators, provides a strategy
for choosing among them, and provides practical advice for PDC pedagogy. Through these discussions,
the reader may see how much PDC education has changed over the past two decades, identify some
areas of PDC that have remained stable during this same time period, and so gain new insight into how
to efficiently invest one’s time as a PDC educator.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

In 1996-97, the author was a young faculty member in the De-
partment of Computer Science (CS) at Calvin University. At that
time, the department had no course on parallel computing and de-
cided that this was a significant gap in Calvin’s CS curriculum. The
author’s dissertation topic was in the area of distributed systems,
which was conceptually closer to parallel computing than that of
anyone else in the department, so the author was tasked with de-
signing a course to fill this gap. With no direct training in parallel
computing, the author had no curricular models to draw on, which
was disconcerting.

Fortunately, Chris Nevison from Colgate University and Nan
Schaller from the Rochester Institute of Technology led a week-
long NSF-sponsored faculty development workshop on parallel
computing at Colgate during the summer of 1997. This workshop
included an overview of different parallel and distributed com-
puting (PDC) hardware platforms, an introduction to parallel algo-
rithms, and hands-on practice using PDC software platforms. The

E-mail address: adams@calvin.edu.
https://doi.org/10.1016/j.jpdc.2021.07.003
0743-7315/© 2021 Elsevier Inc. All rights reserved.
workshop leaders also provided the syllabi of their parallel com-
puting courses, sample assignments, PowerPoint presentations, and
other useful materials. In short, this workshop provided the author
with an excellent introduction to the subject, and a good set of
resources for developing his own course.

The rest of this paper reviews how parallel computing educa-
tion has changed since that summer, particularly the impact of
technologies such as MPI, Beowulf clusters, multithreading and
multicore systems, accelerator devices such as GPUs and soft-
ware platforms (e.g., CUDA, OpenCL) to program them, and similar
changes. The paper is organized as roughly five-year intervals: Sec-
tion 2 provides background for the rest of the paper, describing the
author’s early experiences in the late 1990s. Section 3 describes
the impact of technology innovations in the early 2000s. Section 4
describes the significant changes that began to occur as single-core
processors began to disappear after 2005. Section 5 describes the
impact of new technologies of the early 2010s, and Section 6 de-
scribes how PDC technology has continued to change since 2015.
Section 7 discusses various insights regarding PDC infrastructure
and pedagogy, and Section 8 provides some concluding remarks.

https://doi.org/10.1016/j.jpdc.2021.07.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.07.003&domain=pdf
mailto:adams@calvin.edu
https://doi.org/10.1016/j.jpdc.2021.07.003

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219

Fig. 1. Calvin CS Lab as a Star-Topology NoW Multiprocessor. (For interpretation of the colors in the figure(s) and table, the reader is referred to the web version of this
article.)
2. Background

Through 2021, Calvin University has followed a “4-1-4” calen-
dar in which an academic year consists of a normal four-month
Fall semester, a one-month January term (J-term), and a normal
four-month Spring semester. During the J-term, a student takes
one course that meets three hours per day for fifteen days. By
“compressing” a fifteen-week semester-course into fifteen days,
the J-term provides an ideal opportunity to test-drive experimen-
tal courses that explore topics outside of the normal curriculum.
If successful, such courses can eventually be turned into regular
courses that meet during a normal semester.

2.1. 1998: parallel computing, iteration 1

Encouraged by his positive experience at the Colgate workshop,
the author offered an initial Parallel Computing course during Calv-
in’s 1998 J-term. 15 students enrolled in the course. The course
content was heavily based on material from the Colgate workshop;
it included exposure to parallel computing concepts, with expe-
riential learning through hands-on activities and six homework
projects. The course text was Pacheco’s book Parallel Programming
with MPI [23], and the course met in the CS department’s com-
puter lab of 32 Sun Sparcstations running Solaris, connected with
Ethernet. The conceptual material included coverage of the Flynn
Taxonomy; parallel hardware organization and network topologies;
parallel algorithms (e.g., odd-even transposition sort, parallel ma-
trix multiplication, parallel Eratosthenes Sieve); analysis of parallel
complexity (speedup, parallel efficiency, scalability and Amdahl’s
Law); and parallel computing history.

One goal of the course was for students to experience two
different models of parallelism: SIMD and MIMD computing. For
SIMD computing, the author installed Parallaxis-III [14] on each
lab workstation. Parallaxis is a machine-independent framework
for defining virtual SIMD architectures, specifying parallel algo-
rithms (in Modula-2), and running a specified algorithm on a
defined architecture. To support MIMD computing, the author in-
stalled MPICH [20], a free, open source implementation of the
message passing interface (MPI), on each of the lab’s workstations,
thus turning the lab into a star-topology network-of-workstations
202
(NoW) multiprocessor. Fig. 1 presents a schematic of this multipro-
cessor.

Students spent the first half of the course using Parallaxis to
explore SIMD computing. Parallaxis includes a simulator that lets a
student run their parallel algorithm on their workstation to expe-
rience pseudo-parallel execution. Students used Parallaxis to com-
plete three SIMD projects of increasing difficulty levels.

In the second half of the course, the students explored MIMD
computing using MPICH. With the lab configured as a NoW mul-
tiprocessor, students could use it to run hands-on MPI active-
learning activities, plus three MPI projects of increasing difficulty
levels.

Using the lab as a NoW multiprocessor provided students with
hands-on experience using MPI, but unless there were few other
students in the lab, this NoW did not provide them with a realistic
experience of the benefits of parallel computing. More precisely,
students were unable to experience consistent speedup because
the remote MPI processes they were launching were competing
with the other students’ processes for the NoW’s limited unicore
CPU resources. Students who were willing to come to the lab very
early in the morning (i.e., when no one else was present) could
have all of the workstations to themselves and experience consis-
tent parallel speedup, but this was not a general solution to the
problem. The only good solution to this problem was to somehow
acquire a dedicated multiprocessor for students to use, and a small
university like Calvin lacked the budget to buy a commercial mul-
tiprocessor.

2.2. 1999: a first Beowulf cluster

One of the parallel hardware topics covered in the course was
the Beowulf cluster, created by Thomas Sterling and Donald Becker
at NASA [13]. Their Beowulf cluster was a dedicated multiproces-
sor workstation, built from commodity off-the-shelf PC hardware,
connected with a standard network (e.g., Ethernet), and running
open source software (e.g., Linux, MPI, etc.).

In January of 1999, the author submitted a proposal to the
U.S. National Science Foundation’s Major Research Instrumentation
(NSF-MRI) program, requesting funding to build a Beowulf clus-
ter for research and education at Calvin. This proposal was not

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219

Fig. 2. MBH’99.
funded, and a key reason was a reviewer’s skepticism that an un-
dergraduate institution could build such a cluster. At the time,
every cluster listed on the Beowulf.org website was either built by
PhD researchers at government labs or by graduate students from
university research labs.

However, one of the students in the author’s 1998 course—
Mark Ryken—was fascinated by Loki, a Beowulf cluster built by
Dr. Michael Warren at Los Alamos National Labs [18]. Loki con-
sisted of sixteen Pentium-200 PCs connected with Fast Ethernet in
a star+hypercube (4D) topology. Ryken decided to build a similar
cluster as his senior capstone project. Ryken worked part-time in
Calvin’s Information Technology group and leveraged his connec-
tions there to acquire a dozen castoff 25-Mhz Intel-486 PCs. From
these, he was able to assemble nine working PCs, providing a head
node plus eight compute nodes. An internal Calvin grant provided
funds for a Fast Ethernet switch and enough network interface
cards to connect the PCs into a star+hypercube (3D) topology. The
result was MBH’99, a name that at various times stood for either
“Mark’s Beowulf Hypercube” or “Mark’s Big Headache” depending
on how the project was going. Fig. 2 presents a schematic and pic-
ture for MBH’99.

In Fig. 2, the solid lines are the star-topology links; the dashed
lines are the hypercube links. Each node in a star+hypercube
topology cluster requires N+1 network adaptors, where N is the
dimension of the hypercube; the extra adaptor connects the node
to the network switch at the center of the star. With a star+hy-
percube (3D) topology, each node of MBH’99 required 4 adaptors.

Shortly after MBH’99 was built, the author learned about “Am-
dahl’s Other Law” [10], which defines a “balanced” computing sys-
tem as one in which the hertz of CPU performance, the bytes of
main memory, and the bits per second of I/O bandwidth are all at
least roughly the same. In using nodes of 25-MHz I-486 CPUs con-
nected with “Fast” (100Mbps) Ethernet, MBH’99 was CPU-bound,
not balanced. MBH’99 was thus too slow to be of practical use in
solving real-world problems, but it served to demonstrate for the
first time that an undergraduate student could build a working Be-
owulf cluster [6].

3. The early 2000s

Calvin discourages its faculty members from offering the same
J-term course in consecutive years, so it was January 2000 before
the author’s parallel computing course was offered again.

3.1. 2000: parallel computing, iteration 2

During Calvin’s 2000 J-term, the author offered the Parallel
Computing course a second time, with an enrollment of 16 stu-
dents. This second offering followed the same syllabus as the 1998
203
course, with minor adjustments to fix issues that arose in the pre-
vious offering of the course.

3.2. 2000: a high performance Beowulf cluster

Also in January 2000, the author submitted a revised NSF-MRI
proposal to build a Beowulf cluster at Calvin, using MBH’99 as a
prior-work prototype to demonstrate the feasibility of the project.
This proposal was approved and about $60,000 was awarded in Au-
gust 2000. During Fall 2000, the author designed the new cluster,
purchased the components, and recruited students to help assem-
ble and configure it. The new cluster was dubbed Ohm (for Our
Hypercube Multiprocessor); it became operational in early 2001
[5]. Ohm consisted of 16 worker nodes, two head nodes (a primary
and a backup, which could serve as a 17th compute node when not
in use), and an NFS-mounted RAID-array/file server node through
which all nodes could access their users’ home directories. To cre-
ate Ohm as a “balanced” cluster, each node contained a 1-GHz
AMD Athlon-64 CPU, 1GB of RAM, and the nodes were connected
using Gigabit Ethernet. Using HP-Linpack, Ohm was benchmarked
at 10.4 GFlops (RMax), which was reasonably “high performance”
at the time. Fig. 3 shows a schematic of Ohm.

For research purposes, the author designed Ohm’s interconnect
as a star+hypercube (4D) topology. Using software written by stu-
dent Kevin DeGraff, the cluster’s working topology could be varied
on-the-fly between a star (the solid green links in Fig. 3), a hyper-
cube (the dashed blue links), or a star+hypercube (all of the links).
This let the author conduct a cost-benefit analysis, which revealed
that for an Amdahl’s-other-law “balanced” cluster, the star topol-
ogy was the most cost-efficient of these three topologies, even for
communication-intensive applications.

The star+hypercube interconnect required each node to have
five Gigabit Ethernet adaptors. These first-generation GigE adap-
tors generated significant heat, so each node was housed in a 4U
rackmount case to provide adequate ventilation and cooling. Calvin
upgraded the room’s air conditioning and electrical power systems.
Three UPS systems were also used to provide clean, uninterrupt-
able power to the cluster, and two keyboard-video-mouse (KVM)
switches were added to make it easier for a sysadmin to main-
tain the 19 nodes. To accommodate all of these components, three
racks were needed, as shown in Fig. 4.

In 2001, the department was seeking a full-time sysadmin, so a
series of upper-level students were hired and trained to administer
and maintain Ohm, including David Vos, Kevin DeGraff, Matthew
Post, and Matthew Koop. During summer 2002, the department
hired a full-time sysadmin, and responsibility for administering
Ohm was part of this new hire’s job description. Initially, this new
sysadmin just supervised the students in their day-to-day admin-

http://Beowulf.org

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219

Fig. 3. Schematic of Ohm.
Fig. 4. Ohm.

istration of Ohm, but he took on a more active management role
as those students graduated.

It is worth noting that Ohm’s primary purpose was to support
multidisciplinary research, but at Calvin, most research takes place
204
during the summer, providing open time during the academic year
to use the cluster for educational purposes.

3.3. 2002: high performance computing, iteration 1

With the acquisition of a dedicated Beowulf cluster, the 2002
J-term course was renamed High Performance Computing and the
course was revised to utilize the new cluster. 13 students en-
rolled in the course. The content of this HPC course was similar
to the previous courses, except that in the second (MPI) half, after
using the lab NoW to develop and debug their MPI programs, stu-
dents now transferred their programs to Ohm and ran them there,
varying the numbers of processes to test their scalability. Having
a dedicated cluster provided the students with far more accurate
timing data, allowing the students to assess the scalability of their
programs (up to 18 processes, beyond which performance would
plateau). By running their programs via a batch queueing system
on Ohm, students could experience the speedup of parallel com-
puting, resulting in a much richer learning experience than using
a NoW.

3.4. 2003: high performance computing, iteration 2

The presence of Ohm created demand for Calvin’s HPC course
two years in a row, so the author offered the course again during
the 2003 J-term, with 15 students enrolling. This course differed
from the previous courses in two significant ways.

The first change came in response to student feedback: Stu-
dents in the 2002 course wanted earlier and more hands-on expe-
rience using Ohm, so the segment on MPI and distributed-memory
parallelism was moved to the first half of the course.

The second change was driven by external forces: Symmetric
multiprocessors (SMPs) were increasingly affordable and common-
place, so the department had acquired a two-CPU Sun SMP sys-
tem. Coverage of multithreading and shared-memory parallelism
was deemed to have higher priority than SIMD computing, so the
second half of the HPC course was mostly devoted to SMP com-
puting using OpenMP [22]. Multithreading thus replaced most of
the SIMD computing content.

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219
3.5. 2004: a NCSI workshop at Oklahoma

In summer 2004, the author attended a parallel computing
workshop sponsored by the National Computational Science Insti-
tute (NCSI) and the Shodor Education Foundation [28], hosted at the
University of Oklahoma. This workshop focused on using MPI to
solve science problems, and let the attendees explore MPI-based
solutions to a variety of compelling problems, such as an N-body
galaxy-formation simulation, a Monte Carlo forest fire simulation,
and others. The author subsequently used these examples to “re-
fresh” the content of his HPC course (see below).

One of the many interesting sessions at this workshop was a
demonstration of LittleFe [25], a six-node miniature Beowulf clus-
ter. Created by Charlie Peck, Paul Gray, David Joiner, and Tom
Murphy, LittleFe was small enough to fit into a checked-luggage
suitcase or wheel into a classroom, but still useful for demon-
strating parallel speedup. One could (for example) run the N-body
galaxy-formation simulation with one process to watch a spiral
galaxy form very slowly, then re-run the simulation with six pro-
cesses and watch the galaxy form about six times as fast. It was
clear to this author that a portable cluster like LittleFe would open
up many possibilities, ranging from taking the cluster to a techni-
cal conference to live-demo parallel software, to taking the cluster
to a local high school class to demonstrate how parallel computing
can accelerate scientific discovery.

Following this workshop, email exchanges between the author
and Charlie Peck subsequently catalyzed a series of LittleFe Build-
outs at the annual Supercomputing and SIGCSE conferences. At
these day-long events, each participant would arrive, receive a box
of LittleFe hardware components, spend the morning assembling
their own LittleFe, install and configure software (including Linux,
MPI and MPI-based example applications), and then spend the rest
of the day learning the basics of MPI. Thanks to sponsorship by
Intel, at the end of the day, each participant could take home the
LittleFe s/he had assembled. Through these LittleFe Buildout events
over the next several years, dozens of U.S. colleges and universities
received a free LittleFe Beowulf cluster suitable for teaching stu-
dents about parallel computing.

3.6. 2005: distributed computing in Iceland

The author spent the first six months of 2005 as a Fulbright
scholar in Iceland, at what is now the School of Engineering of
Reykjavik University. While there, he was asked to teach a course
on distributed-memory parallel computing using MPI. The uni-
versity had no distributed-memory multiprocessor, but provided
funds to build one, so the author and his 14 students spent the
first few weeks of the course designing and building a Beowulf
cluster within the provided budget. The students named their new
cluster Sleipnir, after Odin’s eight-legged horse. To keep its CPUs,
memory, and network bandwidth somewhat balanced, each node
contained a 3.8-GHz Intel Pentium-4 CPU and 2GB of RAM, and a
Gigabit Ethernet interconnect. The nodes were connected using a
simple star topology, as shown in Fig. 5.

Using HP-Linpack, Sleipnir was benchmarked at 20.25 Gflops
(RMax), which was quite remarkable for such a modest cluster.

Some of the students in this course were from eastern Eu-
rope and had difficulty understanding spoken English, making it
a challenge for the author to explain the behaviors of the vari-
ous MPI functions in ways they could understand. However, these
students were adept at reading C code. After discovering this, the
author replaced many of his static Powerpoint lectures on MPI
with live-demoes of minimalist MPI programs, each containing just
enough code to illustrate the behavior of a particular MPI func-
tion: send+receive, broadcast, reduce, scatter, gather, creating a
parallel for loop, the master-worker approach, and so on. By only
205
Fig. 5. Schematic of Sleipnir.

including the bare minimum of what was needed to illustrate a
given MPI function’s behavior, running the program, and then re-
lating its output-behavior to the source code that produced that
behavior, the author was able to teach these students the basics
of distributed-memory multiprocessing using MPI, despite the lan-
guage barrier.

These minimalist programs were so useful for explaining the
behavior of MPI functions, the author continued to use them in
his courses after returning to Calvin. That proved so successful, he
subsequently used this same approach to create additional mini-
malist programs to illustrate other parallel design patterns [19] in
MPI, OpenMP, and other parallel platforms.

3.7. 2005: high performance computing, iteration 3

In 2005, the author offered the Calvin HPC course for the first
time during the regular Fall semester instead of the J-term. With
CS enrollments in decline nationwide, just six students enrolled.
This offering was a significant revision in several ways.

One change was that a new course text was adopted: Parallel
Programming in C with MPI and OpenMP by Quinn [27]. The syllabus
from 2003 was adjusted in this 2005 course to match the presen-
tation of material in the new text.

Another change was that science problems from the 2004 NCSI
workshop (e.g., the forest fire simulation) were incorporated into
this 2005 course. These replaced less-compelling examples, and
so made the course more interesting without affecting its overall
structure.

Another change was that the author replaced some of his Pow-
erpoint presentations with live-demos of the minimalist MPI pro-
grams he had developed in Iceland, as well as newly created min-
imalist OpenMP programs to illustrate the behaviors of different
OpenMP constructs. The resulting set of programs formed the basis
for the patternlets—minimalist programs illustrating parallel design
patterns—that have been shown to improve student understanding
of parallel concepts [3].

With the expanded focus on HPC, another change was the ad-
dition of a lecture on how to improve program performance via
compiler optimizations, introducing students to different optimiza-
tion techniques and discussing how to implement them by hand
in “cutting edge” languages whose compilers (or interpreters) did
not support optimization.

When offered as a 15-day J-term course, students were only
taking that one course, allowing them to focus on it exclusively.
However, the J-term’s compressed schedule did not leave much
outside-the-classroom time for students to digest and internal-
ize parallel thinking. Moving the course to the regular semester
in 2005 expanded its duration to 15 weeks, which gave students
more outside-of-class time to better digest and internalize this
new way of thinking, and thus gain significantly more skill.

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219

Fig. 6. Schematic and photo of Microwulf.
One final observation from this 2005 course was that students
noticed that they could get faster performance testing and debug-
ging their MPI programs in our lab than they could running them
on Ohm. The workstations in our lab were replaced every three
years; thanks to Dennard Scaling, they now contained 3.2-GHz
AMD Athlon-64 CPUs, which were much speedier than Ohm’s 1.0-
GHz Athlon-64 CPUs. Just four years old, Ohm was already starting
to show its age.

4. 2006-2010: the multicore era begins

Early in 2006, the author submitted a follow-up proposal to the
NSF-MRI program for funding to replace Ohm with a new cluster.
This proposal was not funded, but the program officer encouraged
the author to revise and resubmit the next year.

In 2005, AMD released their dual-core Athlon-64 X2 CPU, and
in 2006, Intel followed with their Core-2 Duo CPU, marking the
beginning of the multicore era. During the same period, Gigabit
Ethernet (1000Mbps) replaced “Fast” Ethernet (100Mbps) as the
standard on-board networking hardware on most computer moth-
erboards. These two changes—multicore CPUs and standard Gigabit
Ethernet—opened up the possibility of building a portable Beowulf
cluster with far more computational density (and correspondingly
higher performance) than was previously possible.

4.1. 2006: Microwulf: a personal, portable HPC cluster

During the 2006-2007 academic year, the author designed and
helped Calvin senior Tim Brom assemble Microwulf, a personal,
portable, computationally-dense Beowulf cluster. Fig. 6 shows a
schematic and photo.

One goal of the Microwulf design was to achieve as much com-
putational performance as possible within a $2500 budget, while
maintaining portability. By using microATX motherboards, 3.8-GHz
AMD Athlon-64 X2 (dual core) CPUs in each of four nodes, and
connecting those nodes with Gigabit Ethernet, Microwulf achieved
26.25 Gflops (RMAX) on the HP-Linpack benchmark for just $2,470,
making it the first Beowulf cluster to break the $100/Gflop price
barrier [4]. (By August 2007, the price of Microwulf’s components
had decreased to $1,255, improving its price/performance ratio to
less than $48/Gflop.) At 11 × 12 × 17 inches and weighing just 31
pounds, Microwulf was small and light enough to fit on a desktop
or in a checked-luggage suitcase, thus maintaining portability.

Recall that the original Beowulf cluster was designed as a mul-
tiprocessor workstation. Over the years, this vision had been lost
as people (this author included) built clusters that were shared
by many remote users in a centralized fashion. Just as the micro-
computer enabled a paradigm shift from centralized mainframe or
206
minicomputer computing to personal computing, Microwulf em-
bodied the concept of a microcluster, shifting cluster-computing
away from centralized Beowulf clusters shared by many users, back
towards Sterling and Becker’s original vision of personal Beowulf
clusters operated by individuals.

4.2. 2007: high performance computing, iteration 4

Early in 2007, the author submitted a revised proposal to the
NSF-MRI program for funding to replace Ohm. This proposal was
funded late in the summer of 2007, providing about $206,000 for a
new centralized Beowulf cluster for multidisciplinary research (and
education) at Calvin.

In Fall 2007, the HPC course was offered again, with 12 students
enrolling. The funding for the new cluster was awarded too late to
be used in the Fall 2007 semester. However, with four-node Mi-
crowulf being over 2.5 times faster than 18-node Ohm, the author
revised his Fall-2007 HPC course to use Microwulf instead of Ohm
for the MPI segment of the course, and to use one of Microwulf’s
dual-core nodes instead of the department’s comparatively slow
Sun SMP system for the OpenMP segment.

Another change was that this 2007 course incorporated cov-
erage of new MPI-2 and OpenMP 2.0 features into the MPI and
OpenMP segments of the course. For example, since sequential I/O
has historically been a key bottleneck in many parallel computa-
tions, MPI-2 added a new parallel I/O mechanism to address this
bottleneck, so coverage of parallel I/O was incorporated into the
2007 course. Likewise, OpenMP-2.0 contained a new mechanism
for user-defined reduction operations, so coverage of that mecha-
nism was added to the course. Both MPI and OpenMP continue to
evolve, so these standards must be regularly reviewed and course
materials updated as appropriate. To make room for these changes,
the coverage of the history of parallel computing was slightly com-
pressed/reduced.

By replacing Ohm with Microwulf, the lab NoW was no longer
faster than the course’s Beowulf cluster, but with just eight cores,
Microwulf’s scalability was limited. More precisely, Microwulf was
faster than the lab’s NoW using 1-8 MPI processes, but the two
multiprocessors performed about the same with 16 processes. If a
student had the lab to herself, the NoW’s slower but more numer-
ous CPUs could outperform Microwulf’s eight faster cores at 32 or
more processes.

Ohm continued to be used as a research multiprocessor by
Calvin’s scientists during Fall 2007, but with funding having been
acquired for a new cluster, its time was clearly coming to an end.

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219

Fig. 7. Schematic and photo of Dahl.
4.3. 2008: Dahl, a new HPC Beowulf cluster

The author designed the new cluster during Fall 2007, pur-
chased its components in December of that year, assembled it
in early 2008, and configured it during spring 2008. Since this
new cluster would be heavily used for running simulations, it was
named Dahl in honor of Ole Johan Dahl, the Norwegian computer
scientist who co-invented the Simula programming language. With
the help of students Kathy Hoogeboom and Jon Walz, Dahl was
fully operational by May 2008, at which point Ohm was decom-
missioned. Fig. 7 shows a schematic and photo of Dahl.

Ohm had required three racks to store 18 nodes. Thanks to
Moore’s law increasing computational density, Dahl needed just
one rack to store 45 nodes plus 40Gbps Infiniband and Gigabit
Ethernet networks for data and administrative traffic, respectively.
Each node contained at least two Intel 2.2-GHz Xeon quad core
CPUs and 4GB of RAM; providing over 360 cores and 3.7 Tflops
(RPEAK) of performance [7]. As a Tflops-scale machine, Dahl was
a major upgrade from Ohm and Microwulf; it greatly accelerated
several Calvin scientists’ research programs, facilitating over 20 re-
search publications.

4.4. 2008: parallel computing in CS2

By 2008, dual- and quad-core CPUs were commonplace, and it
was apparent that in the near future, virtually all software would
be running on multicore processors. In order for software perform-
ance to improve as it was ported from devices with fewer cores
to devices with more cores, it would have to be designed and
implemented with parallelism in mind. To the author, it was ev-
ident that all CS majors needed experience in parallel computing,
especially shared-memory parallelism via multithreading. As de-
partment chair, the author saw two options for ensuring that all
CS majors gained such parallel experience:

1. Add a new course on parallelism to the CS core curriculum
(ensuring that all students took it), or
207
2. Incorporate parallel topics into existing courses in the core CS
curriculum, as appropriate.

The CS curriculum is quite full, and there are other topics com-
peting for coverage (e.g., databases, security), making option #1
problematic. Option #1 also only provides a single (concentrated)
exposure to parallelism, which seemed unlikely to change students’
software development skills, if they only saw and used sequential
computing in the rest of their CS coursework.

For option #2, the biggest problem seemed to be getting fac-
ulty members to agree to incorporate parallelism into their core
courses; some faculty members were hoping that parallelism was
just a fad that would go away. However, option #2 had the clear
advantage of ensuring that students would receive consistent and
repeated exposure to parallelism throughout the core CS curricu-
lum. Recent studies such as [17] and [29] indicate that introducing
students to parallelism early is beneficial.

The author regularly taught Calvin’s CS2 course (Data Struc-
tures, implemented in C++), so as a first step toward option #2,
he added a week on parallelism and multithreading to each sec-
tion of his CS2 course during the 2008-9 academic year. To make
room for this new material, a week’s worth of coverage of graphs
was shifted from CS2 to CS3.

Thanks to Calvin’s use of C++ in CS2, it was fairly easy to
introduce multithreading using OpenMP. The author gave three
lectures, in which he used OpenMP patternlets to live-demo fork-
join multithreading, parallel loops, race conditions, synchroniza-
tion, and reductions. He also created a lab exercise in which stu-
dents: (i) timed sequential Matrix addition and transpose opera-
tions, (ii) used OpenMP to parallelize those operations, (iii) timed
the parallel versions using 1, 2, 4, 6, and 8 threads, and then
(iv) used a spreadsheet line-chart to visualize the changing per-
formance. The author also had the students parallelize the other
Matrix operations as homework and added four questions related
to multithreading to the final exam.

The author also regularly taught Calvin’s Operating Systems &
Networking course, a core CS course in which all majors are in-
troduced to shared-memory and distributed-memory concurrency.

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219
It was easy to expand the shared-memory coverage with material
on thread performance, software issues specific to multicore cache
performance (e.g., false sharing), and so on.

With these changes, the author began to ensure that all Calvin
CS majors learned about shared-memory parallelism.

4.5. 2009: high performance computing, iteration 5

In Fall 2009, the author offered Calvin’s HPC course again, with
an enrollment of 7 students. The course content was stable: once
again, the first half covered distributed-memory parallelism using
MPI and the second half covered shared-memory parallelism using
OpenMP, but with Dahl replacing Microwulf. Since each of Dahl’s
nodes now had at least 8 cores (some had 16), students could use
it to better test their programs’ scalability in both the MPI and
OpenMP segments of the course.

As in previous HPC offerings, students developed each program
using the department’s lab workstations and then moved that pro-
gram to Dahl to empirically measure the program’s scalability. The
2009 lab workstations contained 3.6-GHz Intel i7 (quad core) CPUs
that were over 50% faster than the dual 2.2-GHz Intel Xeon (quad
core) CPUs in each of Dahl’s compute nodes. Because of this clock-
speed difference, the lab NoW multiprocessor would typically out-
perform Dahl for MPI computations using 1, 2, 4, and 8 processes.
Beyond that point, the performance of lab NoW multiprocessor
would plateau due to the NoW’s slower network and contention
with other students, but Dahl’s performance would continue to
improve through 16, 32, 64, 128, and 256 processes. The perfor-
mance cross-over point where Dahl would match the lab NoW was
usually about 16 processes. Beyond about 400 processes, Dahl’s
performance would plateau or degrade, letting the students di-
rectly experience how hardware limitations ultimately constrain a
program’s scalability.

Similarly, for OpenMP computations, the lab workstations
would generally outperform Dahl when using 1, 2, and 4 threads;
but Dahl’s nodes would prevail using 8-16 threads. The 2009 HPC
course thus let students directly experience the strengths and
weaknesses of NoW multiprocessors vs. Beowulf clusters, shared-
memory vs. distributed-memory, and so on.

5. 2010-2015: accelerating parallelism

In 2010, the author used the last of that NSF-MRI grant’s funds
to add an “accelerator” node to Dahl, containing an eight-core In-
tel Xeon CPU, an Nvidia GeForce GTX 470 GPU, with CUDA and
OpenCL installed. This and other developments set the stage for
expanding Calvin’s coverage of parallel topics to include accelera-
tors.

5.1. 2010: the TCPP early adopter program

In 2010, the NSF/IEEE TCPP group began their Early Adopter Pro-
gram [21], which offered mini-grants for CS faculty or departments
to adopt their Curriculum Recommendations [26] and incorporate
parallelism into CS courses. As department chair, the author ap-
plied for and received one of these mini-grants, which he then
used as to provide financial incentives for his faculty members to
incorporate a week’s worth of parallel computing content into CS
core courses, specifically:

• In Calvin’s Algorithms and Advanced Data Structures course, the
instructor added coverage of parallel algorithm design, select
parallel algorithms, distributed graph algorithms, and parallel
asymptotic analysis.

• In Calvin’s Programming Language Concepts course, the instruc-
tor expanded coverage of shared memory parallelism, includ-
ing a new lab exercise in which students explored the parallel
208
mechanisms of Ada, C++ with OpenMP, and Ruby, measuring
and comparing each program’s scalability (or lack thereof).

• In Calvin’s Intro to Computer Architecture course, the instruc-
tor expanded the coverage of multicore processor and cache
organization, and the implications for bus bandwidth, main
memory, memory controllers, and so on.

• In Calvin’s Software Engineering course, the instructor expanded
the coverage of how to create distributed computing apps for
mobile devices that access cloud-computing services via those
services’ APIs.

All of these are core CS courses at Calvin, so the TCPP Early
Adopter program played a key role in providing the incentives
needed to get other Calvin faculty to incorporate parallelism into
their courses, providing at least a week’s coverage of PDC topics in
nearly all of Calvin’s core CS courses.

5.2. 2010: CSinParallel, iteration 1

In summer 2010, the author attended the ITiCSE conference in
Ankara, Turkey. There he participated in a working group organized
by Drs. Richard Brown and Elizabeth Shoop who had launched
CSinParallel.org, an NSF-funded web-repository for modular parallel
computing course materials that had been tested at multiple insti-
tutions [15]. One of the outcomes of this working group was an
influential paper on how to incorporate parallel computing topics
into the CS curriculum [16]. Another outcome was that the author
was invited to join the CSinParallel project, laying the groundwork
for a follow-up NSF proposal.

5.3. 2011: high performance computing, iteration 6

The author offered Calvin’s HPC course again in Fall 2011, with
12 students enrolling in the course. The major change in this it-
eration was a new module on accelerators, specifically CUDA and
OpenCL on GPUs. Several lectures about CUDA and OpenCL were
added, plus lab exercises and projects for both of these frame-
works, using Dahl’s new accelerator node.

To make room for this new material, some of the OpenMP con-
tent was trimmed from the course. The topics removed were now
receiving significant coverage in Calvin’s core CS courses, making
their coverage in the HPC course redundant.

Most students had no problems completing the CUDA mate-
rial, but nearly all found OpenCL to be very challenging. OpenCL’s
added complexity (e.g., discovering platforms and devices, setting
up queues for each, compiling the kernel for each, and so on)
seemed to cross a cognitive threshold for these students; many just
could not implement good OpenCL solutions in a timely fashion.
The author found this very disappointing, as unlike CUDA, OpenCL
was an open, non-proprietary standard.

5.4. 2012: CSinParallel, iteration 2

In 2012, the CSinParallel group applied for and received NSF
TUES-2 funding to develop new parallel computing modules, ex-
pand the CSinParallel.org website with new interfaces, and hold
faculty development workshops to help CS faculty start incorpo-
rating parallel topics into existing CS courses. Over the next few
years, this group was highly productive, developing 15 new course
modules; creating new search-interfaces for CSinParallel.org based
on course, software platform, or hardware platform; hosting 19
conference or summer faculty development workshops; organizing
five conference special sessions or panels; and giving numerous
presentations, all promoting PDC education.

http://CSinParallel.org
http://CSinParallel.org
http://CSinParallel.org

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219

Fig. 8. Image inversion (4 threads).
5.5. 2013: ACM/IEEE CS curriculum 2013

In 2013, the ACM/IEEE CS 2013 Curriculum Recommendations
(CS2013) were released [2]. Thanks to the active involvement of
NSF/IEEE TCPP representatives, CS2013 included PDC as a new
knowledge area and recommended that all CS majors receive sig-
nificant exposure to PDC, especially the shared-memory parallel
techniques needed to make efficient use of the multicore CPUs
present in most devices. Thanks to the changes noted in Sec-
tion 5.1, Calvin’s core CS courses satisfied the CS2013 PDC Core
recommendations; our HPC course covered the majority of the CS
2013 PDC Elective recommendations.

5.6. 2012-2013: coprocessors

In 2012, Adapteva released the Parallella, a single-board com-
puter (SBC) that provided a 1-GHz dual-core ARM processor plus a
16-core coprocessor, for $99. (Note: With 18 1-GHz cores, the Par-
allella’s RPEAK performance was about the same as that of Ohm,
Calvin’s first Beowulf cluster, but where Ohm occupied 3 racks,
a Parallella was the size of a credit card!) That same year, Intel
released the Xeon Phi, a family of coprocessors offering 57 or 61
Intel-x86 cores, depending on the model purchased. (Later mod-
els offered 64, 68, and 72 cores.) In 2013, China’s Tianhe-2 system
burst onto the scene as the world’s fastest supercomputer through
its use of 48,000 Xeon Phi coprocessors. Coprocessors appeared to
be the future of HPC.

During summer 2013, Calvin acquired a Xeon Phi 3120 co-
processor—a PCI card that was added to Dahl’s accelerator node.
Each of the Phi’s 57 1.1-GHz cores contained four hardware
threads, providing substantial computational power. To support
communication between the cores, the Phi contained a sophisti-
cated internal network that allowed the Phi to be used in either of
two ways: (i) as a cluster-on-a-chip with MPI, or (ii) as a shared-
memory manycore processor using OpenMP.

5.7. 2013: high performance computing, iteration 7

In Fall 2013, the author offered Calvin’s HPC course again, with
23 students enrolling. This iteration was a significant overhaul of
the course, with (i) the adoption of a new textbook, An Introduc-
tion to Parallel Programming by Pacheco [24]; and (ii) the use of
parallel design patterns [19] as a unifying theme throughout the
course. The general structure of the course remained similar to
the 2011 course: the first half used MPI to explore distributed-
memory parallelism; a second segment explored shared-memory
parallelism using OpenMP; followed by a final segment on accel-
erators. However, parallel design patterns were used to provide
a consistent thematic structure throughout the course, across all
three segments.
209
The new textbook included a unit on Pthreads, so the author
added a new week on Pthreads to the shared-memory segment,
before the OpenMP material. After having to complete a program-
ming project using Pthreads’ explicit multithreading, the students
were far more appreciative of OpenMP’s implicit multithreading!

Another change was the addition of a week on heterogeneous
architectures between the shared-memory segment and the accel-
erator segment, with lectures plus an MPI+OpenMP lab exercise
and project.

A final change was that, where the 2011 course’s accelera-
tor module only explored GPUs, the 2013 course added a week’s
worth of content on coprocessors. This included lectures on the
Parallella and Xeon Phi architectures, plus a lab exercise and as-
signment to provide hands-on experience using the Xeon Phi. To
make room for this content, the OpenCL content was reduced to a
single lecture, leaving the CUDA content as the primary GPU com-
ponent.

5.8. 2014-15: seeing parallelism

As part of his work with the CSinParallel group, the author be-
gan work in 2014 on real-time visualizations of shared-memory
parallel algorithms. Shared-memory parallelism was a logical start-
ing point, since parallel entities would need to draw on a shared
canvas. This ultimately became a multiyear project that has been
worked on by students Ian Adams, Zachary Chin, Patrick Crain,
Christopher Dilley, Samuel Haileselassie, Elizabeth Koning, Chris-
tiaan Hazlett, Mark Vander Stel, and Ryan Vreeke.

Since existing graphics libraries were not thread-safe, the first
step was to create a library that was. The result was the Thread
Safe Graphics Library (TSGL),1 an object-oriented C++11 library that
allows multiple threads to safely draw to the same canvas in near
real-time. In Spring 2015, the author ran an experiment, in which
half of his CS2 (Data Structures) students did the existing lab exer-
cise in which they parallelized Matrix operations, while the other
half of the students did an experimental lab exercise in which they
parallelized an image-processing operation. Both groups timed the
operations and measured the parallel speedup, but the latter group
could see the parallelization occurring in real-time, thanks to TSGL.
The results of this controlled experiment provided strong evidence
that the visualization improved student understanding of OpenM-
P’s parallel for abstraction [8]. As a result, the author replaced the
Matrix-processing exercise with the visual image-processing exer-
cise in all subsequent offerings of his CS2 course. Fig. 8 shows (a)
the original image, (b) the partially completed inverse of that im-
age using 4 threads, and (c) the completed inverse of the image,
with each thread’s contribution outlined in a unique color.

1 TSGL is freely available from its github repository: https://github .com /Calvin -CS /
TSGL.

https://github.com/Calvin-CS/TSGL
https://github.com/Calvin-CS/TSGL

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219

Fig. 9. Nasser Giacaman’s office analogy: visualizing one-thread-per-task parallelism.
Relatedly, in May 2015, the author met Dr. Nasser Giacaman
(University of Auckland) at the 2015 EduPar workshop of the In-
ternational Parallel and Distributed Processing Symposium (IPDPS). Dr.
Giacaman was developing a visual analogy of a multicore CPU,
using a workplace office with four desks to represent processor
cores, people to represent threads, and paperwork to represent
the tasks to be performed [1]. Giacaman’s visualizations allowed
a user to choose: (a) a computation’s workload (many fine-grained
tasks, fewer coarse-grained tasks, or a mixture of fine- and coarse-
grained tasks), and (b) its thread policy (sequential, one thread per
task, one thread-per-core static, one thread-per-core dynamic), and
then see an animation of the computation’s behavior. Different
choices produced markedly different behaviors. For example, if the
user specified one thread per task and many fine-grained tasks,
then many people (threads) would stand around waiting and more
time was spent context-switching, reducing efficiency (see Fig. 9a).
If the user specified a thread per task and fewer coarse-grained
tasks, then fewer people (threads) stood idle and less time was
lost context-switching, increasing efficiency (see Fig. 9b).

With a shared interest in visualizing parallel computing con-
cepts, the author and Dr. Giacaman became good friends and re-
search collaborators. Dr. Giacaman spent part of a 2018 sabbatical
at Calvin; the images in Fig. 9 stem from that work.

5.9. 2015: high performance computing, iteration 8

In Fall 2015, the author offered Calvin’s HPC course again, with
28 students enrolling. One change in this iteration was that the
parallel visualizations created using TSGL were incorporated into
the course, allowing students to see the behaviors of specific par-
allel algorithms and patterns (e.g., the parallel loop).

Another change was catalyzed by CSinParallel: By summer
2015, this group had authored several modules using Apache
Hadoop [11] and its Hadoop Distributed File System (HDFS) to ex-
plore the MapReduce framework. With HDFS providing a dis-
tributed file system to spread very large data sets (i.e., those too
big to fit into a single computer’s memory) across a cluster, plus
Hadoop for processing those data sets in parallel, this technology
was interesting and useful for students to experience. To introduce
students to this technology, a lecture was added explaining the
MapReduce conceptual framework, plus a lab exercise to provide
hands-on experience using HDFS and Hadoop. To make room for
this content, the coverage of HPC history was compressed to a sin-
gle lecture.

One other observation from this iteration was that Dahl was
now 7 years old. The CS lab machines had been replaced twice
since Dahl was created, and their improved CPU performance made
it increasingly difficult for Dahl to surpass the performance of the
210
CS lab NoW multiprocessor. Dahl’s nodes also began failing, indi-
cating it was nearing its end.

5.10. 2015-16: SBC microclusters

In 2014, the author began hearing from different individuals
who were building Beowulf microclusters from single board com-
puters (SBCs), and using those clusters as PDC learning platforms.
Some of these people included:

• Jacob Caswell (St. Olaf College). An undergraduate student
from St. Olaf College, Jacob had built a 5-node Beowulf cluster
using Raspberry Pi SBCs, which he was using to learn about
MPI distributed multiprocessing. The nodes, monitor, and key-
board (with integrated touchpad) were all housed inside a brief-
case, at a cost of just $240.

• Dr. Suzanne Matthews (West Point). For her course, Dr.
Matthews had built a cluster whose nodes were Adapteva Par-
allella SBCs, each with a 2-core CPU and a 16-core Epiphany
coprocessor. The Parallella’s co-processor was “a cluster on a
chip”, so the Parallella supported learning about multithread-
ing and MPI distributed multiprocessing. Matthews was also
experimenting with power-efficient clusters using Raspberry
Pi SBCs as the nodes. About this time, Dr. Matthews joined the
CSinParallel team, bringing new ideas and energy to the team.

• Dr. Elizabeth Shoop (Macalester College). Dr. Shoop had partic-
ipated in a LittleFe Buildout and eventually decided to design
and build her own 6-node microcluster using Nvidia Jetson
TK1 SBCs as the nodes. Each Jetson SBC offered a quad-core
ARM CPU plus a 192 CUDA-core GPU, providing a single hard-
ware platform on which Shoop could teach her students about
OpenMP multithreading, MPI distributed multiprocessing, and
CUDA GPU computing.

• Dr. David Toth (Centre College). Instead of having his PDC stu-
dents purchase a textbook, Dr. Toth had them purchase a kit
containing two of Hardkernel’s ODROID multicore SBCs, the
needed power supplies and cables, plus a Tupperware con-
tainer in which to store all of these. The resulting “kit” was
about half the size of a shoebox—easily small enough for stu-
dent to carry to and from class in their backpacks. During the
first part of a semester, Toth taught his students about mul-
tithreading using one of the SBCs. During the second part,
he taught his students to turn the pair of SBCs into a mi-
crocluster, which they then used as a platform for learning
about MPI distributed multiprocessing. Toth thus used these
inexpensive SBC kits to provide each student with their own
personal, portable Beowulf cluster.

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219

Fig. 10. Microcluster showcase clusters.
• Dr. James Wolfer (Indiana University, South Bend). Dr. Wolfer
had built a heterogeneous microcluster with an Nvidia Jet-
son TK1 head node and four Raspberry Pi worker nodes.
The head node provided a platform for his students to learn
about shared-memory multithreading and CUDA-GPU com-
puting, while the head node plus the worker nodes let his
students learn about MPI distributed-memory multiprocess-
ing.
211
The author thought it would be interesting to get all of these
people (along with LittleFe’s Charlie Peck) into the same room at
the same time, so at SIGCSE 2015 and 2016, he organized two
Special Sessions titled “Budget Beowulfs” and “The Microcluster
Showcase”, respectively. Each participant brought their microclus-
ter to the conference and assembled it prior to the session. Each
of these Special Sessions was 90 minutes, divided into three 30-
minute thirds:

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219

Fig. 11. Schematic and photo of Borg with the author.
1. In the first third, each person gave a brief presentation intro-
ducing their cluster and how they used it.

2. The middle third consisted of a panel discussion with the au-
dience directing questions to the group as a whole.

3. In the final third, each participant moved to their cluster
where they live-demoed it and answered individual’s ques-
tions.

These Special Sessions proved to be fertile venues for sharing
and cross-pollenating ideas. Participants and audience members
discussed Beowulf cluster design decisions, the tradeoffs involved
in different designs, funding sources, teaching strategies, and a va-
riety of other topics related to using these devices as hardware
platforms for teaching PDC. Fig. 10 shows some of the microclus-
ters shown at these sessions.

6. 2016-present: always reforming

Parallel technology has continued to evolve. Inexpensive single
board computers (e.g., the Raspberry Pi) have gained multicore
CPUs, new languages have appeared with built-in parallel com-
puting support, and some older languages have enhanced their
support for parallelism. As the parallel computing landscape con-
tinues to evolve, PDC educators must also adapt by keeping their
courses up to date.

6.1. 2016-18: a Beowulf cluster for data science

In 2016-17, Dahl was deteriorating too much to support the
needs of local research projects. At the same time, the author
chaired a Calvin committee to design a new Data Science B.S. pro-
gram. To support Calvin research and this new program (i.e., to
store and process large data sets), the author wrote an NSF-MRI
proposal for a new multidisciplinary research cluster costing about
$260,000. This proposal was funded late in the summer of 2017.
The author spent the Fall of 2017 designing and then purchasing
the new cluster, which was named Borg in remembrance of com-
puter scientist Anita Borg.

To process data, Borg was configured with:

• A head node with two 3.6-GHz Xeon Gold (4-core) CPUs and
96 GB of RAM.

• Twenty compute nodes, each with two 3.2-GHz Xeon Gold (8-
core) CPUs and 96GB of RAM.
212
• A virtualization node for running the web services needed by
different research projects. This node was hardware identical
to the head node, so that it could serve as a failover replace-
ment for the head node if necessary.

• A GPU/high-memory node containing the same CPU configura-
tion as the compute nodes, but with 768 GB of RAM, and four
Nvidia Titan V graphics cards. Each of these cards has 5120
CUDA cores for GPU computations plus 640 Tensor cores for
machine learning projects.

• A many-core node, containing two 2.2-GHz AMD EPYC (48-
core) CPUs, 512 GB of RAM, and two Nvidia Quadro P2200
GPUs, each with 1280 CUDA cores and 5GB VRAM.

• Two file-server nodes (one as primary, one as backup), each
with 100TB of tiered RAID storage, equipped with NVMe hard-
ware and extra network links to support parallel access.

The nodes were connected using a 100Gbps Omnipath network
for data and a 40Gbps Ethernet network for administrative traffic.
Fig. 11 shows a schematic and photo.

Borg became operational in May 2018; it was immediately put
to heavy use by Calvin researchers.

6.2. 2017: high performance computing, iteration 9

In Fall 2017, Calvin’s HPC course ran again, enrolling 21 stu-
dents. Because Borg was still being designed that semester, Dahl
was used a final time. This course was thus almost the same as
the 2015 course; one minor difference was that some of the lec-
ture material on MapReduce and Hadoop was revised to explore
the newer, better-performing Apache Spark [12] technology.

6.3. 2017-18: Crayowulf

During the 2017-18 academic year, the author designed and su-
pervised a senior capstone project to build Crayowulf, a $2500 mi-
crocluster commemorating the Cray-1 supercomputer with a cylin-
drical tower case and liquid-cooling system [9]. Crayowulf has five
nodes, each having an Nvidia Jetson TX-2 SBC (a 2-GHz six-core
ARM CPU-complex plus a 256 CUDA-core GPU), connected with Gi-
gabit Ethernet and NFS-mounted shared solid-state storage. Fig. 12
is a schematic and photos of the system.

Thanks to the computational density of the Jetson SBCs, Cray-
owulf has a total of 30 CPU cores and 1280 CUDA cores.

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219

Fig. 12. Crayowulf.
A multidisciplinary team of students worked on the project,
with the following primary responsibilities:

• Philip Holmes, a mechanical engineering major, built the
hexagonal aluminum tower enclosure, which was designed to
have a unique “flower petal” structure to provide easy access
to the interior of the cluster, as shown in Fig. 12c.

• Benjamin Kastner, a CS major, installed and configured the op-
erating system, network services, and software libraries (e.g.,
MPI, CUDA) needed to run homogeneous MIMD or SIMD ap-
plications, or a heterogeneous mixture of the two.

• Peter Oostema, a CS + electrical engineering double major,
built the power system, the lighting system, and wrote spe-
cialized application software.

• Noah Pirrotta, a mechanical engineering major, built a custom
closed-loop liquid-cooling system for the Jetson SBCs, using
de-ionized water as coolant. Testing revealed that this kept the
system about 9 ◦C cooler than air-cooling.

The project was a resounding success. Crayowulf’s unique “flower
petal” design lets students see and touch a multiprocessor’s par-
allel hardware components, and thus build accurate mental mod-
els of the hardware on which a parallel computation runs. From
the time it was completed until it was shut down for the 2020
pandemic crisis, Crayowulf was used for student MPI and CUDA
projects, with spare cycles devoted to the SETI@Home project.

6.4. 2018: CSinParallel, iteration 3

In 2018, the CSinParallel group applied for and received an NSF-
DUE Level 2 grant to fund a project titled “Seeing, Hearing, and
Touching Parallel Computing.” Building on the previous NSF-TUES
2 work, the author continued to work on TSGL to explore new
ways to help students to see parallel algorithmic behavior. How-
ever, since visualization offers limited benefits for students with vi-
sual impairments, the author also began exploring sonification—the
sonic equivalent of visualization—by which students can hear algo-
rithmic behavior. To support the creation of such sonifications, the
author and student Mark Wissink have created the Thread Safe Au-
dio Library (TSAL2), by which a program may be annotated with
method-calls that generate sounds that provide insight into the
program’s algorithmic behavior. To illustrate, imagine that a sorting
algorithm plays a tone whose frequency is scaled to the value the
algorithm is currently processing. Figs. 13 and 14 present spectro-
grams of what one hears when InsertionSort sorts 150 values vs.

2 TSAL is freely available from its github repository; https://github .com /Calvin -CS /
TSAL.
213
QuickSort sorts 10,000 values (so that both take about the same
time).

As can be seen in Figs. 13 and 14, these algorithms sound very
different as they run! The descending arcs in Fig. 13 occur as In-
sertionSort iterates backwards through the sequence, seeking the
insertion point for the current value. The clumps seen in Fig. 14 are
QuickSort’s recursive partitioning of a sequence into subsequences
using pivot values; the curve that gradually ascends from left to
right reflects how the pitch increases as the recursively-sorted sub-
sequences are concatenated.

For contrast, Fig. 15 shows the spectrogram of parallel Merge-
Sort on 25,000 values using 16 threads. Once again, this sonifica-
tion reveals a “sonic signature” that is distinct from that of the
other sorting algorithms. Since each algorithm sounds distinctly
different from the others, such sonifications have the potential
to help students—especially those with visual impairments—better
understand algorithmic behavior, whether sequential or parallel.

Others in the CSinParallel group are exploring ways to let stu-
dents experience parallel algorithmic behavior by touch. For ex-
ample, Dr. Suzanne Matthews is curating a variety of “unplugged”
activities for PDC concepts,3 Dr. Richard Brown has been examin-
ing the benefits of constructing microclusters using single board
computers, and other ideas involving tactile exploration.

6.5. 2019: high performance computing, iteration 10

In Fall 2019, the author offered Calvin’s HPC course again, with
33 students enrolling, a record high enrollment. This iteration was
similar to the 2017 offering, aside from two changes.

One change was that Borg was integrated into the course, re-
placing Dahl. At this time, the CS lab workstations had 3.6-GHz
Intel i7 CPUs, compared to the 3.2-GHz Xeon Gold CPUs in Borg.
However, with 33 students taking the course (i.e., saturating the
lab), Borg’s scalability and faster network generally gave it the
edge, especially on communication-intensive computations.

The other change stemmed from two 2017 developments:
(i) Intel’s announcement that it was halting further work on its
“Knights Hill” Xeon Phi family, and (ii) Adapteva’s halting its pro-
duction of the Parallella SBC. Taken together, these developments
cast serious doubt on the future of coprocessor-based parallel com-
puting. As a result, the author replaced the coprocessor content
and Xeon Phi materials from the 2017 course with expanded cov-
erage of GPU computing, to provide students with additional depth
and hands-on experience using CUDA.

3 https://www.pdcunplugged .org.

https://github.com/Calvin-CS/TSAL
https://github.com/Calvin-CS/TSAL
https://www.pdcunplugged.org

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219

Fig. 13. Spectrogram of InsertionSort (150 values).

Fig. 14. Spectrogram of QuickSort (10,000 values).

Fig. 15. Spectrogram of parallel MergeSort (25,000 values), 16 threads.
Table 1 summarizes the coverage of specific technologies and
topics in the author’s Parallel Computing / HPC course, from its in-
ception in 1998 to the 2019 offering, with the significant platform
changes in a given year highlighted in red.

It is worth noting that those parts of the course that have re-
mained the most stable through the years are those based on the
open standards MPI and OpenMP, as opposed to proprietary tech-
nologies.

7. Discussion

The changes to PDC education over the past 20+ years have
been breathtaking. When the author began his journey in 1996,
a Cray T3D-256 supercomputer that could achieve 25.3 Gflops
cost millions of dollars. In 2007 (a decade later), Microwulf could
achieve 26.25 Gflops for less than $2,500. Today, a single graphics
Table 1
Parallel / high performance computing at Calvin, 1998-2019.
Week 1998 2000 2002 2003 2005 2007

1 Parallaxis Parallaxis Parallaxis MPI MPI MPI
2 Parallaxis Parallaxis Parallaxis MPI MPI MPI
3 Parallaxis Parallaxis Parallaxis MPI MPI MPI
4 Parallaxis Parallaxis Parallaxis MPI MPI MPI
5 Parallaxis Parallaxis Parallaxis MPI MPI MPI
6 MPI MPI MPI MPI MPI MPI
7 MPI MPI MPI OpenMP OpenMP OpenM
8 MPI MPI MPI OpenMP OpenMP OpenM
9 MPI MPI MPI OpenMP OpenMP OpenM
10 MPI MPI MPI OpenMP OpenMP OpenM
11 MPI MPI MPI OpenMP OpenMP OpenM
12 History History History History History History
13 History History History History History History

214
card can outperform either one. This section explores insights the
author has gained through his years of teaching PDC, with respect
to infrastructure and pedagogical issues.

7.1. Infrastructure for teaching PDC

When it comes to PDC infrastructure, this is a golden age, as
PDC educators have many options from which they may choose. In
this author’s opinion, the infrastructure option(s) a PDC educator
should choose depends on two interrelated factors:

• The instructor’s desired PDC student learning outcomes (SLOs),
including the Bloom levels of those outcomes.

• The budget available for the infrastructure.

To illustrate, consider the following scenarios:
2009 2011 2013 2015 2017 2019

MPI MPI MPI MPI MPI MPI
MPI MPI MPI MPI MPI MPI
MPI MPI MPI MPI MPI MPI
MPI MPI MPI MPI MPI MPI
MPI MPI MPI MPI MPI MPI
MPI MPI MPI MPI MPI MPI

P OpenMP OpenMP Pthreads Pthreads Pthreads Pthreads
P OpenMP OpenMP OpenMP OpenMP OpenMP OpenMP
P OpenMP OpenMP OpenMP OpenMP OpenMP OpenMP
P OpenMP OpenMP Hetero Hetero Hetero Hetero
P OpenMP CUDA CUDA CUDA CUDA CUDA

History OpenCL XeonPhi XeonPhi XeonPhi CUDA
History History History Big Data Big Data Big Data

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219
Scenario 1. Suppose an instructor’s SLO is that students will “de-
scribe” or “explain” PDC concepts (i.e., at the lower Bloom levels).
Then no hands-on training is required to achieve the SLO; such
SLOs can be achieved via traditional lectures or active-learning
exercises such as those available on Suzanne Matthews’ PDC Un-
plugged website.4 Without an SLO that requires students to at least
apply PDC concepts, no special infrastructure or budget are needed.

Scenario 2. Suppose an instructor has an SLO that students will
write multithreaded programs and analyze their scalability on
shared-memory multiprocessors. One way to achieve this is to
have students write multithreaded programs and then time their
executions on a shared-memory multiprocessor using different
thread counts. If a student records those execution times in a
spreadsheet, s/he can create charts, compute and compare the pro-
grams’ speedups, and so analyze their programs’ scalability.

For software to achieve this SLO, any language or library that
supports multithreading can be used. A few of these options are:
C/C++ with POSIX threads, C/C++ with OpenMP, C++11 threads, Go,
Java, Rust, Scala, and many others.

In terms of hardware, there are a number of infrastructure op-
tions available, depending on the available budget:

◦ If there is no budget, but there is a lab of multicore work-
stations available, then students can use those workstations to
experience scalability up to the number of cores it provides.

◦ If there is no budget or lab, but the students own laptops, vir-
tually every current laptop has a multicore CPU, so students
can use their laptops to experience scalability up to the num-
ber of cores available on their laptops.

◦ If there is a modest budget available, an alternative approach
is to equip each student with an inexpensive SBC such as the
Raspberry Pi. (This can also be accomplished with no bud-
get via a course fee.) The vast majority of today’s SBCs have
multicore CPUs, so a student can use their SBC to experience
scalability up to the number of cores on the SBC.

◦ If there is a rich budget available, yet another approach is to
purchase a manycore system (e.g., a 128-core server). With so
many cores at their disposal, students will be able to expe-
rience the scalability of their programs up to the number of
cores on the system—a far greater degree than on more com-
mon multicore machines. In this case, a reservation system or
batch queueing system is helpful to prevent the students’ com-
putations from interfering with one another.

Scenario 3. Suppose an instructor has an SLO that students will
write message passing programs and measure their scalability on
a distributed-memory multiprocessor. One way this SLO can be
achieved is by having students write parallel programs that com-
municate via message passing and then time their executions using
different numbers of processes. If students record those times in a
spreadsheet, they can easily compare those execution times, create
charts, compute their speedups, and so on.

For software to achieve this SLO, any language or library that
supports message passing might be used. C/C++ with MPI, Erlang,
Julia, and Scala all support message passing, so any of them might
be used to achieve this SLO.

For hardware, there are a variety of distributed multiprocessor
options available, depending on one’s budget:

◦ If there is no budget but a lab of multicore workstations is
available, these workstations can be configured as a NoW mul-
tiprocessor. As noted earlier, a modern NoW can serve as a
powerful distributed multiprocessor, because a typical student

4 http://www.pdcunplugged .org/.
215
working at a workstation is using just one of its cores. If that
workstation is a quad-core machine, that leaves three other
cores free to host the processes of distributed computations.
In Calvin’s NoW, MPI is configured to run one process per node
and we provide students with a script to generate randomly-
ordered MPI host files. When students run their MPI com-
putations using those host files, their computations are dis-
tributed randomly across the NoW, spreading the demand for
CPU resources across the lab. This provides the students with
reasonably accurate scalability results until the NoW becomes
saturated with processes, which is often sufficient for teaching
students about parallel scalability.

◦ If there is no budget for building a distributed multiprocessor
and no lab, but students have laptops, then those laptops can
be used as front ends to a cluster. There are several cluster
options, including:
– If the instructor’s institution replaces its computers on a

regular basis, then a local Beowulf cluster can be built from
old but serviceable PCs. Since Dennard scaling ended in
2005, today’s “old” PCs (i.e., 3-to-5 years old) may be nearly
as fast as a new PC. By having students help build a local
Beowulf cluster from such PCs, students can gain valuable
hands-on experience building the cluster, enjoy the pride
of “owning” it, and then use it to experience the scalabil-
ity of their distributed programs until the point at which
their processes saturate the cluster.

– If building a local cluster from old PCs is not an option, a
cloud-based research cluster may be an option. In the U.S.,
research clusters such as Chameleon5 and XSEDE6 offer free
grants of time for educational use. These are supercomput-
ers with thousands of nodes and tens of thousands of cores,
allowing students to experience the scalability of their pro-
grams far beyond what is possible on most local clusters.
This has the advantage of providing students with the au-
thentic experience of using a real-world supercomputer.

Note that in both of these options, students should run their
computations using a batch scheduler, to keep them from in-
terfering with other users’ computations.

◦ If there is a budget available for acquiring a new Beowulf clus-
ter, then acquiring such a cluster and having the students run
their distributed computations on it is another option. Some
of the ways this can be done include:
– A centralized local cluster. In this approach, one’s university

uses institutional funds, corporate support, or a government
grant to either acquire a new Beowulf cluster from a vendor,
or purchase the components for a new Beowulf cluster and
build it in-house. The cost of such a cluster is the sum of the
features one chooses (number of nodes, processor models,
amount of memory, amount of storage, network technology,
backup system, and so on). In addition, the university must
provide a secure space to house the cluster, with adequate
climate control, electrical power, and (ideally) an uninter-
ruptable power supply. The university should also commit
to pay a person to administer and maintain the cluster, on
at least a part-time basis. Students can then run their mes-
sage passing programs on the cluster (ideally by submitting
them to a batch queueing system, to avoid conflicts), and
experience their programs’ scalability up to the number of
cores on the cluster.
One disadvantage of this approach are the costs: the up-
front cost to purchase the cluster and the on-going costs
to maintain the cluster. Another disadvantage is that such

5 https://www.chameleoncloud .org.
6 https://www.xsede .org.

http://www.pdcunplugged.org/
https://www.chameleoncloud.org
https://www.xsede.org

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219
hardware historically has a relatively short lifetime before
it becomes obsolete (e.g., 5-8 years in this author’s experi-
ence). With Dennard scaling having ended and Moore’s Law
slowing down, it is possible that this will change, but heav-
ily used equipment wears out, sooner or later.

– Per-student SBC clusters: In this approach, the instructor pro-
vides each student with a kit containing two or more SBCs,
cables, and any other hardware needed to assemble the SBCs
into a microcluster. Using a disk image and following di-
rections provided by their instructor, each student creates
a personal Beowulf cluster from their kit. If a secure lab
space is available, students may keep their clusters there
between classes, to minimize setup and teardown time. Oth-
erwise, thanks to the modest size of an SBC, the instructor
can provide each student with a small plastic container to
store and protect their cluster; students transport their clus-
ter to/from class in their backpack. Each student can write
and run their message passing programs on their personal
cluster, and experience scalability up to the number of cores
on their cluster.
Depending on the SBC chosen and the other hardware pro-
vided in the kit, this approach can cost less than $100 per
student, which can be funded via institutional funds, or by
charging the students a course fee. An alternative is for the
instructor to provide each student with one SBC and have
the students work in groups.
An advantage of this approach is that SBCs like the Rasp-
berry Pi, Hardkernel’s ODROID devices, and Nvidia’s Jetson
devices make it possible to build such clusters at a variety of
price points—in some cases, for less than the price of a stu-
dent textbook. Another advantage is that students can run
their message passing programs directly on their personal
clusters, without going through a batch queueing system.
Another is that the students own their clusters at the end
of the course; the university is not left with an expensive
and depreciating cluster to maintain. The main disadvantage
is that the instructor must spend significant time at the out-
Fig. 16. A decision tree for hardware infra

216
set organizing and purchasing the kits, configuring the SBC
storage images, creating the directions the students follow
to build their clusters, and so on.

Scenario 4. Suppose an instructor has an SLO that students will
write and run a program on a distributed-memory heterogeneous
multiprocessor. Some of the options to accomplish this include:

◦ If there is a NoW or a Beowulf cluster available where each
workstation or node has a multicore CPU, then one way to
achieve this SLO is by having the students write and run pro-
grams that use MPI+OpenMP. In this approach, MPI is used
to launch one process on each workstation or node and for
communication between those processes; each process uses
OpenMP to spawn threads that utilize all of the CPU-cores on
that node to solve that process’s part of the problem.

◦ If there is a NoW or a Beowulf cluster available where each
workstation or node has a GPU, then some ways to achieve
this SLO are by having the students write and run programs
that uses MPI+X, where X is CUDA, OpenACC, OpenCL, or
OpenMP if the GPUs are made by Nvidia; and X is OpenACC,
OpenCL, or OpenMP if the GPUs are not by Nvidia. As before,
MPI is used to launch a process onto each node and for inter-
process communication; each process uses CUDA, OpenACC,
OpenCL, or OpenMP to run a kernel on the GPU that solves
that process’s piece of the problem.

Summary. As the four preceding scenarios indicate, when it comes
to infrastructure, this is a golden age for PDC instruction, as there
are free software resources and many hardware options at a variety
of price points. In making infrastructure decisions, an instructor’s
SLOs, their Bloom levels, and the available budget are all key fac-
tors that should drive the decisions. Fig. 16 presents a decision-tree
for identifying the hardware needed to achieve shared-memory vs.
distributed-memory SLOs.

Regardless of one’s local situation, the key steps are to: (i) spec-
ify the desired SLOs at the outset, (ii) determine the infrastructure
structure to achieve select PDC SLOs.

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219
resources needed to achieve those SLOs, and (iii) seek out those
resources (or the funding needed to acquire them).

If a given SLO cannot be achieved with one’s local situation, it
may be necessary to revise that SLO or delay it until that situa-
tion can be changed. To illustrate, in the first two offerings of his
parallel computing course (1998 and 2000), the author’s SLOs in-
cluding having his students (i) write parallel programs using MPI,
and (ii) measure the speedup of those parallel programs. The first
SLO could be readily achieved by configuring the department lab
as a NoW, but the second SLO could not be achieved using that
NoW, since each workstation had a single core, the network was
slow, and the lab was heavily used. That second SLO had to be
deferred until the 2002 course, when NSF-MRI funding allowed
a dedicated cluster to be acquired, which in turn facilitated the
achievement of that SLO.

7.2. PDC pedagogy

The primary task of PDC educators is to serve their students. To
this author, one aspect of serving students is to help them acquire
useful knowledge and skills, and not teach them ephemera. In this
section, we explore how we can best serve our students through
what we teach, and how we teach it.

Technologies with open standards. In this author’s experience,
technologies that have official, open standards tend to be fairly sta-
ble (i.e., not ephemeral). Such standards will naturally evolve over
time in response to user feedback, but such evolutionary changes
are usually backward-compatible, providing the helpful stability.
The time a PDC educator invests in gaining knowledge and skill
with such technologies is time well-invested, since s/he can con-
tinue to draw on such knowledge and skills for many years. To
illustrate, the time this author invested in learning MPI, OpenMP,
POSIX multithreading, and similar open technologies was time
well-spent, since he could utilize that knowledge over many years
and in different courses.

As a corollary, PDC educators should be cautious about build-
ing their courses around proprietary technologies, as the company
that develops such a technology may (for business reasons) decide
to drop it with little warning. If that happens, the time the edu-
cator spent learning about that technology has been wasted, since
the knowledge and skills are now obsolete. This author made that
mistake with Intel’s Xeon Phi co-processor, though thankfully that
was only one week of his HPC course. PDC educators should be
careful when adopting “hot, cutting edge” technologies unless they
are willing to “bleed” a bit.
Proprietary technologies. However, PDC educators cannot entirely
ignore proprietary technologies and serve their students well: If a
proprietary technology dominates its market, that technology may
become the de facto standard for that market. CUDA is a current ex-
ample of this: Nvidia dominates the GPU market and CUDA dom-
inates the GPU-software market as the technology for writing the
most efficient data-parallel programs for Nvidia GPUs. As a result,
PDC educators are (in this author’s opinion) remiss if they do not
at least introduce their students to CUDA. Thankfully, Nvidia makes
CUDA freely available to educators and developers, even though it
is not fully open-source software.

The reader may be asking, “What about the ‘hot’ technologies
in which my students are interested? Do we just ignore such tech-
nologies?” This author’s approach is to end one’s course with an
open-ended final project, in which the students must write about
and/or present a particular “hot” technology of their choice. Turn
them loose! Students have amazing energy, creativity, and enthu-
siasm, and such end-of-course projects provide positive channels
for their interests and energies. Such projects can also open inter-
esting doorways, as Mark Ryken’s fascination with Loki did for this
author over 20 years ago.
217
Parallel design patterns. Another way PDC educators can serve
their students well is by teaching them the best practices iden-
tified by professional parallel software developers over decades of
experience, also known as parallel design patterns. Having passed
the test of time, these patterns are a stable body of knowledge
amidst the turbulence of PDC technologies. Thanks to that stabil-
ity, these parallel patterns are well worth mastering and teaching
to our students, as they have excellent potential to remain useful
throughout our and our students’ careers.

As a simple illustration, if a student has completed a traditional
CS1 course and is then given a matrix operation to implement, we
would expect that student to know to use two nested for loops
to process the matrix—nested loops are a common sequential pat-
tern for processing 2D structures. If a student has completed a
PDC course and is given the same problem, then we would ex-
pect the student to know to use a parallel loop—a common parallel
pattern—for the operation’s outer loop, to speed up the operation.
Depending on the PDC course, we might also expect the student
to think of the matrix operation as a dataflow problem—a differ-
ent parallel pattern—and consider solving it by using a kernel that
runs on the GPU.

The more we can get our students to think in terms of these
parallel patterns, the more closely their thinking will resemble that
of a professional parallel software developer, and so the better we
will be serving the students. The above-mentioned patternlets pro-
vide an excellent way to introduce students to these parallel design
patterns and the syntax needed to implement them.

PDC early and often. If a student sees only sequential computing
during most of their university program and never sees parallelism
until the final year, their early-year experiences will almost in-
evitably impose “sequential fetters” on their algorithmic thinking.
It is very difficult for a single, upper-level PDC course to free a
student’s mind from these “sequential fetters.”

One way to avoid this problem is to introduce parallelism as
early as possible and incorporate it throughout the computing cur-
riculum as frequently as possible. For example, a CS1 course can
use active-learning exercises from pdcunplugged.org to introduce
introductory students to parallel thinking without introducing new
programming language syntax. Likewise, a Data Structures course
can use a data structure to store a very large data set (e.g., an or-
ganism’s genome) that takes a “long” time to process sequentially,
providing a natural motivation for using parallelism to speed up
the processing. Other courses (Algorithms, Operating Systems, Pro-
gramming Languages, . . .) also provide natural places to introduce
PDC topics. We can serve our students well by introducing PDC
topics early and revisiting them often.

Experiential teaching. When it comes to pedagogy, the more we
can provide our students with direct, hands-on experiences with
technologies in which they apply PDC concepts, the more likely
they are to internalize those concepts. For example, the preceding
paragraph noted that a Data Structures course can motivate par-
allelism by having the students process a large data set that is
stored within a data structure. Most students have no prior expe-
rience with problems that require longer than one second to solve.
(This author has had students mistakenly kill 10-second programs,
assuming they were “hung.”) By requiring students to solve prob-
lems that take ten or more seconds to solve sequentially, a PDC
instructor can leverage a student’s impatience with the sequential
solution, using that impatience as motivation for the student to
create a parallel solution. Watching the execution time drop as a
parallel solution employs more threads or processes can be a vis-
ceral learning experience for many students.

To explore the scalability of a parallel program interactively,
students need to be able to control the degree of parallelism—
the number of processes or threads being used—when executing

http://pdcunplugged.org

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219
the program. MPI lets the user to specify the number of processes
using the -n switch when the program is launched from the com-
mand line. For example, to run the MPI program mpiProgram
with eight processes, one can enter:

mpirun -n 8 ./mpiProgram

One can achieve a similar control capability in OpenMP by us-
ing C’s argc and argv parameters to retrieve the desired number
of threads via a command line argument. If an OpenMP program
named ompProgram begins as follows:

#include <omp.h> // omp functions
#include <stdlib.h> // atoi()

int main(int argc, char** argv) {
int numThreads = (argc >= 2) ? atoi(argv[1]) : 1;
omp_set_num_threads(numThreads);

// ... rest of OpenMP program
}

then running the program with no command line arguments will
run the program with a single thread, but to run ompProgram
with eight threads, one can enter:

./ompProgram 8

Giving students the ability to control the degree of parallelism in
their programs and then having them use it to explore how vary-
ing the degree of parallelism affects their program’s execution time
is one way to support their experiential learning.

Visualization. Many of the concepts in PDC education are highly
abstract, making it easy for students to create incorrect mental
models of those concepts. For example, suppose an array arr con-
tains a large data set, a for loop is being used to process that array,
and an OpenMP parallel loop is used to parallelize the iterations of
the for loop:

#pragma omp parallel for
for (int i = 0; i < SIZE; ++i) {

process(arr[i]);
}

What actually happens if two threads are used? Does thread 0 pro-
cess the first half of the array and thread 1 process the second
half, or does thread 0 process the even array entries and thread 1
process the odd array entries, or does thread 0 process the odd en-
tries and thread 1 process the even entries, or perhaps something
entirely different? For four semesters, the author taught his stu-
dents the actual behavior of this loop through both a lecture and a
hands-on lab exercise, but on their final exams, few students were
able to correctly answer a multiple-choice question about this be-
havior.

However, after the author changed the lab exercise to the
TSGL-based “visual” image-processing exercise shown in Fig. 8,
(statistically) significantly more students answered that same ques-
tion correctly on their final exams. By having the students vary
the number of threads and then seeing the resulting image-
parallelization behavior happening in real time, the students built
a more accurate mental model of the parallel loop’s behavior. The
author believes this principle should guide our PDC pedagogy—PDC
educators should do everything they can to create interactive vi-
sualizations that help their students build accurate mental models
for the abstract concepts being taught. Nasser Giacaman’s office-
analogy visualizations (shown in Fig. 9) follow this principle to
help students understand the interactions of several abstractions:
218
thread scheduling policy, task granularity, context-switch overhead,
and load balancing.

However, visualizations are not effective for all students (e.g.,
those with visual impairments). For these students, TSAL sonifica-
tions (see Section 6.4) have the same goal: to help students build
more accurate mental models of abstract behaviors.

Energy consumption. One of the current challenges facing the
HPC community is limiting the energy consumption of high-
performance systems. The current strategy to address this chal-
lenge is to design high-end systems as heterogeneous clusters of
nodes with manycore CPUs and/or accelerators. Accelerator-based
designs are especially effective, as they reduce the overall energy
consumption by reducing the physical distance a computation’s
data-bits must be moved in order to be processed.

A related challenge is to develop the software for such systems.
To use such systems efficiently, developers must create equally
heterogeneous software solutions. The current strategy is to cre-
ate MPI+X hybrid applications, where MPI is used to distribute a
computation across the system’s nodes, and X is CUDA, OpenACC,
OpenCL, or OpenMP for nodes with accelerators; or X is OpenMP
for multicore nodes without accelerators.

Research on the best way to teach students how to develop
such hybrid software is still in its infancy, as little work has
been done on pedagogy for heterogeneous systems. Even basic
concerns—such as whether this should be taught at the undergrad-
uate or graduate level—are still open questions. Research into such
questions may be the subject of a future report.

8. Conclusions

This paper has explored the evolution of PDC education be-
tween 1997 and 2020, in response to changing PDC tools and
technologies. A few of these changes include: the rapid spread of
Beowulf clusters in the late 1990s; the development of open soft-
ware standards such as MPI, OpenMP, and others; the release of
relatively inexpensive GPUs in the early 2000s and software APIs
for programming them; the appearance of multicore CPUs in 2006
and languages and/or software APIs for multithreading; the prolif-
eration of inexpensive SBCs in the early 2010s; and many others.
While Dennard scaling ended in 2005, Moore’s Law has remained
in effect throughout this period, causing the computational den-
sity of computing systems to consistently increase. As a result of
these changes, the state of the art has been ever-changing, as can
be seen by comparing this author’s seven Beowulf cluster designs
and the six SBC clusters designed by others (see Fig. 10). It will
be interesting to see what will happen when Moore’s Law ends,
which is predicted to occur in the near future.

When it comes to infrastructure, PDC educators have numer-
ous options by which they can introduce their students to PDC.
For hardware, these options include personal laptops and desk-
tops, SBCs, NoWs, GPU-equipped workstations, centralized local
Beowulf clusters, personal SBC-based microclusters, and cloud-
based research clusters. Software options include languages with
built-in multithreading capabilities (e.g., C++, Go, Java); languages
with built-in message-passing capabilities (e.g., Erlang, Scala);
C/C++/Fortran with standards-based libraries such as OpenMP, MPI;
C/C++ with POSIX sockets and threads; C with accelerator libraries
like CUDA, OpenACC, and OpenCL; newer languages like Chapel,7
and other options. While the plethora of options may seem over-
whelming, this abundance is a Good Thing, as it allows an in-
structor to achieve their desired student learning outcomes by
introducing their students to PDC using whatever approach best
fits their local environment.

7 https://chapel -lang .org.

https://chapel-lang.org

J.C. Adams Journal of Parallel and Distributed Computing 157 (2021) 201–219
Curated sites such as CSinParallel.org,8 the Center for Parallel
and Distributed Computing Curriculum Development and Educational
Resources (CDER),9 and Peachy Parallel Assignments10 can help an
instructor by providing tested, ready-to-use resources to achieve
particular SLOs. Visualization (and perhaps sonification) tools are
example resources that can be used to help students build accu-
rate mental models of PDC concepts.

Professional meetings, including the EduPar / EduHPC / Eu-
roEduPar / EduHiPC workshops,11 are great places to learn about
new resources, present one’s own ideas, and meet like-minded col-
leagues. It is difficult to underestimate the importance of building
a professional network of colleagues with similar interests, and this
author is grateful to the many people who have aided and encour-
aged his efforts over the years.

The author’s journey as a PDC educator began with his par-
ticipation in a parallel computing summer faculty development
workshop. This author highly recommends such workshops, as
they have the potential to introduce a person to excellent, career-
changing developmental opportunities. One never knows what
new doorway a workshop will open, nor where stepping through
that doorway may lead!

Finally, the author hopes that this article has been beneficial to
other PDC educators seeking to invest their time wisely as they
strive to teach their students. If we let the past inform our work in
the present, we may be grateful in the future.

CRediT authorship contribution statement

Joel C. Adams: Conceptualization, Data curation, Funding acqui-
sition, Investigation, Methodology, Project administration, Software,
Supervision, Validation, Visualization, Writing – original draft,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The author gratefully acknowledges the support of the National
Science Foundation, specifically DUE-IUSE#1822486,MRI#1726260,
DUE#1225739, MRI#0722819, and MRI#0079739; and the Calvin
University Science Division.

References

[1] M. Abernethy, O. Sinnen, J. Adams, G. De Ruvo, N. Giacaman, ParallelAR: an
augmented reality app and instructional approach for learning parallel pro-
gramming scheduling concepts, in: 2018 IEEE International Parallel and Dis-
tributed Processing Symposium EduPar Workshop (IPDPSW), Vancouver, BC,
Canada, May 2018, pp. 324–331.

[2] ACM/IEEE-CS Joint Task Force on Computing Curricula, Computer Science Cur-
ricula 2013, ACM Press and IEEE Computer Society Press, 2013.

[3] J. Adams, Patternlets: a teaching tool for introducing students to parallel design
patterns, J. Parallel Distrib. Comput. 105 (July 2017) 31–41.

[4] J. Adams, T. Brom, Microwulf: a Beowulf cluster for every desk, in: 39th
SIGCSE Technical Symposium on Computer Science Education, March 2008,
pp. 121–125.

[5] J. Adams, D. Vos, Small college supercomputing: building a Beowulf cluster at
a comprehensive college, in: 33rd SIGCSE Technical Symposium on Computer
Science Education, Covington, KY, February 2002, pp. 411–415.

8 https://csinparallel .org.
9 https://tcpp .cs .gsu .edu /curriculum /?q =node /21183.

10 https://tcpp .cs .gsu .edu /curriculum /?q =peachy.
11 https://tcpp .cs .gsu .edu /curriculum /?q =node /21242.
219
[6] J. Adams, W.D. Laverell, M. Ryken, MBH’99: a Beowulf cluster capstone project,
in: 14th Annual Midwest Computer Conference, Whitewater, WI, March 2000.

[7] J. Adams, K. Hoogeboom, J. Walz, A cluster for CS education in the multicore
era, in: 42nd SIGCSE Technical Symposium on Computer Science Education,
March 2011, pp. 27–31.

[8] J. Adams, et al., TSGL: a tool for visualizing multithreaded behavior, J. Parallel
Distrib. Comput. 118 (P1) (Aug 2018) 233–246.

[9] J. Adams, et al., Crayowulf: a multidisciplinary capstone project, in: 2020 Amer-
ican Society for Engineering Education (Virtual) Annual Conference. Online,
https://www.jee .org /34342. (Accessed 30 August 2021).

[10] G. Amdahl, Storage and I/O parameters and systems potential, in: Proc. of the
IEEE International Computer Group Conference (Memories, Terminals, and Pe-
ripherals), June 1970, pp. 371–372.

[11] Apache Software Foundation, Apache Hadoop, Online, https://hadoop .apache .
org. (Accessed 30 January 2021).

[12] Apache Software Foundation, Apache Spark: lightning fast unified analytics en-
gine, Online, https://spark.apache .org. (Accessed 30 January 2021).

[13] D.J. Becker, J. Salmon, D.F. Sevarese, T. Sterling, How to Build a Beowulf: A
Guide to the Implementation and Application of PC Clusters, MIT Press, 1999.

[14] T. Braunl, Parallaxis-III: a structured data-parallel programming language, in:
Algorithms and Architectures for Parallel Processing (ICA3P-95), May 1995,
pp. 43–52.

[15] R. Brown, E. Shoop, CSinParallel: parallel computing in the computer science
curriculum, Online, https://csinparallel .org/. (Accessed 30 January 2021).

[16] R. Brown, et al., Strategies for Preparing Computer Science Students for the
Multicore World, in: Proceedings of the 2010 ITiCSE Working Group Reports,
Ankara, Turkey, pp. 97–115.

[17] D. Conte, P. de Souza, G. Martins, S. Bruschi, Teaching parallel programming for
beginners in computer science, in: 2020 IEEE Frontiers in Education Conference
(FIE), 2020, pp. 1–9.

[18] J. Hill, M. Warren, P. Goda, I’m not going to pay a lot for this supercomputer!,
Linux J. (January 1998).

[19] T. Mattson, B. Sanders, B. Massengill, Patterns for Parallel Programming,
Addison-Wesley, 2004.

[20] MPICH: High Performance Portable MPI. Online, https://www.mpich .org. (Ac-
cessed 30 January 2021).

[21] NSF/IEEE TCPP Curriculum Initiative, Early adopter program, Online, http://tcpp .
cs .gsu .edu /curriculum /?q =the -early-adopter-program .html. (Accessed 30 Jan-
uary 2021).

[22] OpenMP: Enabling HPC Since 1997. Online, https://www.openmp .org. (Ac-
cessed 30 January 2021).

[23] P. Pacheco, Parallel Programming with MPI, Morgan-Kaufmann, 1996.
[24] P. Pacheco, An Introduction to Parallel Programming, Morgan-Kaufmann, 2011.
[25] C. Peck, et al., LittleFe: parallel and cluster computing on the move, Online,

http://littlefe .net. (Accessed 9 February 2020).
[26] S. Prasad, et al., NSF/IEEE-TCPP curriculum initiative on parallel and dis-

tributed computing - core topics for undergraduates, Online, http://tcpp .
cs .gsu .edu /curriculum /?q =system /files /NSF-TCPP-curriculum -version1.pdf. (Ac-
cessed 30 January 2021).

[27] M. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill,
2003.

[28] Shodor Education Foundation, National computational science institute, Online,
http://computationalscience .org. (Accessed 30 January 2021).

[29] L. Vasconcelos, et al., Teaching parallel programming to freshmen in an un-
dergraduate computer science program, in: 2019 IEEE Frontiers in Education
Conference (FIE), 2019, pp. 1–8.

Joel Adams is professor of Computer Science at
Calvin University, where he has been teaching his stu-
dents about parallel and distributed computing since
the late 1990s. He has been the principle architect
of six Beowulf clusters including Microwulf, the first
cluster to break the $100/GFLOP barrier. He is a PI
on CSinParallel.org, an NSF-funded project to create
and distribute high quality pedagogical materials for
teaching students about parallel and distributed com-

puting. His contributions to that project include the parallel patternlets, the
thread safe graphics library (TSGL) and the thread safe audio library (TSAL). He
is a two-time Fulbright scholar (Mauritius, 1998; Iceland, 2005) and is an
ACM Distinguished Educator.

http://CSinParallel.org
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibA87FF679A2F3E71D9181A67B7542122Cs1
https://csinparallel.org
https://tcpp.cs.gsu.edu/curriculum/?q=node/21183
https://tcpp.cs.gsu.edu/curriculum/?q=peachy
https://tcpp.cs.gsu.edu/curriculum/?q=node/21242
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibC9F0F895FB98AB9159F51FD0297E236Ds1
https://www.jee.org/34342
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibD3D9446802A44259755D38E6D163E820s1
https://hadoop.apache.org
https://hadoop.apache.org
https://spark.apache.org
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bibAAB3238922BCC25A6F606EB525FFDC56s1
https://csinparallel.org/
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
https://www.mpich.org
http://tcpp.cs.gsu.edu/curriculum/?q=the-early-adopter-program.html
http://tcpp.cs.gsu.edu/curriculum/?q=the-early-adopter-program.html
https://www.openmp.org
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib1FF1DE774005F8DA13F42943881C655Fs1
http://littlefe.net
http://tcpp.cs.gsu.edu/curriculum/?q=system/files/NSF-TCPP-curriculum-version1.pdf
http://tcpp.cs.gsu.edu/curriculum/?q=system/files/NSF-TCPP-curriculum-version1.pdf
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib02E74F10E0327AD868D138F2B4FDD6F0s1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib02E74F10E0327AD868D138F2B4FDD6F0s1
http://computationalscience.org
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S0743-7315(21)00149-0/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://CSinParallel.org

	Evolving PDC curriculum and tools: A study in responding to technological change
	1 Introduction
	2 Background
	2.1 1998: parallel computing, iteration 1
	2.2 1999: a first Beowulf cluster

	3 The early 2000s
	3.1 2000: parallel computing, iteration 2
	3.2 2000: a high performance Beowulf cluster
	3.3 2002: high performance computing, iteration 1
	3.4 2003: high performance computing, iteration 2
	3.5 2004: a NCSI workshop at Oklahoma
	3.6 2005: distributed computing in Iceland
	3.7 2005: high performance computing, iteration 3

	4 2006-2010: the multicore era begins
	4.1 2006: Microwulf: a personal, portable HPC cluster
	4.2 2007: high performance computing, iteration 4
	4.3 2008: Dahl, a new HPC Beowulf cluster
	4.4 2008: parallel computing in CS2
	4.5 2009: high performance computing, iteration 5

	5 2010-2015: accelerating parallelism
	5.1 2010: the TCPP early adopter program
	5.2 2010: CSinParallel, iteration 1
	5.3 2011: high performance computing, iteration 6
	5.4 2012: CSinParallel, iteration 2
	5.5 2013: ACM/IEEE CS curriculum 2013
	5.6 2012-2013: coprocessors
	5.7 2013: high performance computing, iteration 7
	5.8 2014-15: seeing parallelism
	5.9 2015: high performance computing, iteration 8
	5.10 2015-16: SBC microclusters

	6 2016-present: always reforming
	6.1 2016-18: a Beowulf cluster for data science
	6.2 2017: high performance computing, iteration 9
	6.3 2017-18: Crayowulf
	6.4 2018: CSinParallel, iteration 3
	6.5 2019: high performance computing, iteration 10

	7 Discussion
	7.1 Infrastructure for teaching PDC
	7.2 PDC pedagogy

	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

