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SUMMARY 

Hypoxia is a critical factor in solid tumors that has been associated with cancer progression and 
aggressiveness. We recently developed a hypoxia fate-mapping system to trace post-hypoxic cells 
within a tumor for the first time. This approach uses an oxygen-dependent fluorescent switch and 
allowed us to measure key biological features such as oxygen distribution, cell proliferation and 
migration. We developed a computational model to investigate the motility and phenotypic persistence of 
hypoxic and post-hypoxic cells during tumor progression. The cellular behavior was defined by phenotypic 
persistence time, cell movement bias and the fraction of cells that respond to an enhanced migratory 
stimulus. This work combined advanced cell tracking and imaging techniques with mathematical 
modeling, to reveal that a persistent invasive migratory phenotype that develops under hypoxia is 
required for cellular escape into the surrounding tissue, promoting the formation of invasive structures 
(“plumes”) expanding towards the oxygenated tumor regions. 

 

INTRODUCTION 
Intratumoral hypoxia, or oxygen (O2) deprivation, is associated with an increased risk of metastasis, 
treatment failure and worse patient outcome (Gilkes and Semenza, 2013; Muz et al., 2015). Hypoxia 
occurs in 90% of solid tumors as a result of rapid cancer cell proliferation and inefficient vasculature  
(Michiels, 2008). Studies using an Eppendorf electrode demonstrated that the median partial pressure of 
oxygen (pO2) in solid tumors in patients with breast cancer was 10 mmHg (1.3% O2) compared to normal 
breast tissue whose median pO2 was 65 mmHg (8.6% O2) (Vaupel et al., 2007). 

The cellular response to hypoxia is driven by the hypoxia-inducible factors 1 and 2 (HIF-1 and HIF-
2). The alpha subunits of HIF-1 and HIF-2 are subject to proteosomal degradation under well- 
oxygenated conditions. Under hypoxia, HIF-1α and HIF-2α are stabilized, translocate to the nucleus, and 
heterodimerize with HIF-1β (Berra et al., 2001). HIF-1 and HIF-2 heterodimers transcriptionally regulate gene 
expression when O2 is limited. Hypoxia has been reported to regulate the expression of more than a 
thousand genes (Ye et al., 2018), the majority of which are induced by HIFs.

Jo
urn

al 
Pre-

pro
of



2/21  

Current methods to detect hypoxia within a tumor are limited to distinguishing cells that are hypoxic 
at the time of measurement. Consequently, upon reoxygenation, the hypoxic stimulus is lost, and the 
ultimate fate of the post-hypoxic cells is unknown. To overcome this obstacle, we recently developed 
a hypoxia fate-mapping system that uses a Loxp-Cre approach to drive a permanent fluorescent switch 
from DsRed to GFP expression once a cell experiences hypoxia. Using this strategy, our preliminary data 
demonstrated that cells exposed to hypoxia in the primary tumor are 5 times more efficient at forming 
lung metastasis in mouse models of breast cancer (Godet et al., 2019). Moreover, as we monitored tumor 
progression in an orthotopic mouse model during a time-course experiment, we visualized the appearance 
of GFP+ tumor regions lining the necrotic core of the tumor that eventually progress to larger GFP+ areas. 
Although these observations were insightful, we could not fully characterize the dynamic cellular 
changes that occur in response to the O2 gradients within the tumor. Intravital imaging would allow us 
to acquire real-time dynamics in select areas of the tumor; however, it is limited to short time intervals 
where the animal is immobilized on the microscope stage and only small tumor volumes can be analyzed. 
Therefore, the goal of our current work is to establish a computational model based on in vivo and ex 
vivo data that captures the spatio-temporal dynamics of hypoxic cells at large length scales, and use it to 
explore potential hypotheses driving post-hypoxic cell behavior. 

There is a large body of work on mathematical modeling of cell migration in the context of tumor 
progression (Anderson et al., 2000; Prahl and Odde, 2018; Rangarajan and Zaman, 2008; Stonko et al., 
2015). To date, many mathematical models have included hypoxia when modeling the dynamics of 
tumor growth (Alarcón et al., 2004; Lima et al., 2014; Macklin et al., 2012; Macnamara et al., 2020; 
Meaney et al., 2019; Rocha et al., 2018). Macklin et al. (2012) used a model for ductal carcinoma in situ 
where cells exposed to hypoxia could not recover to their non-hypoxic state, and immediately became 
necrotic. In Lima et al. (2014), hypoxic cells released pro-angiogenic factors such as VEGF into the tumor 
microenvironment, which stimulated endothelial cells to promote angiogenesis and partially relieved 
hypoxia. A model combining hypoxia-activated prodrugs (HAP) with radiation therapy was developed 
by Meaney et al. (2019). The migratory advantage of hypoxic cells was modeled by Macnamara et al. 
(2020). However, modeling both hypoxic and post-hypoxic cells has not been attempted due to the lack of 
experimental data required to build such model. 

Here, we have the unique opportunity to gather biological data from cells within different tumor 
regions: necrotic and viable. The tumor cells have distinct phenotypic states according to O2 distribution: 
normoxic cells localize in oxygenated tumor regions (DsRed+), hypoxic cells localize adjacent to the 
necrotic core (GFP+), post-hypoxic cells localize in oxygenated regions (GFP+) after migration, and 
non-viable cells localize in the necrotic core (Figure 1A). Experimental data gathered from this set-up 
were used to establish a multiscale continuum-discrete model within the PhysiCell simulation framework 
(Ghaffarizadeh et al., 2018). In vivo O2 measurements performed in tumors using an optical probe defined 
the O2 gradient. To obtain motility measurements, we used tumor-isolated cancer cells cultured in an 
ex vivo 3D spheroid model. Using the approximate Bayesian computation (ABC) technique (Beaumont 
et al., 2002), we calibrated key parameters to model cell motility derived from biological experiments, 
particularly speed and movement bias (Figure 1B). Proliferation was assessed using Ki67 staining, which 
marks cells in active and inactive phases of the cell cycle (Figure 1C). 

To design a representative model of tumor progression, we defined the following parameters to 

characterize the GFP+ cells: phenotypic persistence time (Tp), bias of the cell migration (b∗), and fraction 
of cells that can respond to a migration stimulus (Fr). Phenotypic persistence time is defined as the 
persistence of the migratory response once the cell leaves the hypoxic region. The motility bias illustrates 
the tendency of cell migration to align with the O2 gradient. Lastly, the fraction of responders represents 
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the number of GFP+ cells that experience an enhanced migration when compared to the remaining  
GFP+ population, as suggested by our biological experiments. By testing a range of these parameters,  
we explored different scenarios predicted by our model and compared them to the in vivo observations 
from tissue sections of the primary tumor both in 2D and 3D. A qualitative comparison with the in vivo 
output demonstrates that our model accurately recapitulates the biological observations of GFP+ invasive 
structures. 

This work combines the hypoxia fate-mapping system with computational modeling to gain new 
biological insights on the dynamical behavior of post-hypoxic cancer cells. The hypoxia fate-mapping 
allows us to visualize invasive tumor structures, while the computational model allows us to explore the 
cell behavioral hypotheses and dynamics that can and cannot recapitulate the invasive structures. We then 
“close the loop” using targeted experimental imaging to test the simulation hypotheses. In particular, this 
integrative approach will show that a persistent post-hypoxic phenotype is needed to explain “plumes” of 
GFP+ cells in well-oxygenated tumor regions. The work demonstrates how the marriage of imaging and 
computational modeling can drive advances in understanding hypoxia-driven cancer invasion. 

 
RESULTS 
Fate-mapping intratumoral hypoxia enables characterization of a hypoxic/post-hypoxic 
phenotype 
We recently developed a approach to fate-map hypoxic cells in vivo during tumor progression in murine 
models of breast cancer (Godet et al., 2019). The model was developed by delivering two lentiviral vectors 
to the human metastatic breast cancer cell line, MDA-MB-231. The first vector contains a constitutively 
active promoter and encodes an expression cassette for a red fluorescent protein (DsRed) flanked by 
tandem loxP sites and followed by a gene encoding a green fluorescent protein (GFP). The second vector 
contains four hypoxia responsive elements (HREs) that transcriptionally regulate the expression of a  
Cre gene which was altered by adding an oxygen-dependent degradation domain (ODD). Consequently, 
under hypoxia, Cre promotes the cleavage of the DsRed gene leading to the permanent expression of GFP 
(Figures 2A and 2B). 

To investigate the emergence and progression of hypoxia in primary breast tumors, hypoxia fate- 
mapping MDA-MB-231 cells were implanted in the mammary fat pad of NSG mice. Tumors were 
harvested, cryo-sectioned, mounted and imaged following 15, 20, 35 and 40 days of tumor growth (Figures 
2C and S1A). GFP+ cells were localized to peri-necrotic regions of the tumor, and GFP+ areas within the 
tumor increased over time (Godet et al., 2019). We also observed the leading edge of GFP+ tumor areas 
invading into DsRed+ tumor regions (Figure 2C). 

In order to build a mathematical model of our in vivo system, we conducted experiments to define key 
parameters, such as the spatial distribution of O2 in MDA-MB-231-derived orthotopic tumors and the 
proliferative capacity of GFP+ and DsRed+ cells. Using an optical detection probe, O 2 measurements 
were recorded at 0.5 mm depth increments within the 2 mm viable rim. The maximum recorded pO 2 
was 43-46 mmHg at the periphery of the tumor, while in the perinecrotic region, the pO2 dropped to 
6 mmHg (Figure 2D). To assess the proliferative capacity of DsRed+ and GFP+ cells in tumors, we 
immunofluorescently labeled tumor tissue sections with Ki67, which marks cells in active phases of the  
cell cycle (Bruno and Darzynkiewicz, 1992). Image analysis revealed that overall, 50 to 55% of cancer 
cells were Ki67+, which is in line with previously reported Ki67 indexes in MDA-MB-231 derived tumors 
(Warin et al., 2010). Moreover, there was no significant difference between Ki67 expression in DsRed+ 
and GFP+ cells (Figures S1B and S1C), suggesting that proliferation is not distinct between the two cell  
populations. 
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Given previous findings (Ju et al., 2020, 2017; Lewis et al., 2016) that hypoxia enhances cell migration 
and invasion, we investigated the migratory-invasive behavior of tumor-derived cells in a spheroid model. 
In our studies, we isolated GFP+ and DsRed+ cells from primary orthotopic mouse tumors and used them 
to generate spheroids containing 10-20% tumor-derived cells and 80-90% unlabeled type cells. Using live 
cell imaging, we tracked individual cells migrating within the spheroid as well as invading into the adjacent  
collagen matrix (Figure 2E). GFP+ cells displayed a higher mean speed and maximum displacement 
(s= 0.38 µm/min and dmax = 111.11 µm) compared to DsRed+ cells (s = 0.28 µm/min and dmax = 
68.34 µm) (Figure 2F). The observations suggest that even after reoxygenation, GFP+ cells are more motile 
than DsRed+ cells. 

 
Biological observations calibrate cellular motility in hypoxia computational model 
We calibrated our model based on the previously observed cell motility experiments using tumor-derived 
cells. To extract the displacement profile of these cells, we simulated the random migration tracks of 100 
cells seeded at the same initial position. We modeled each cell’s migration as independent to focus on  
the distribution of individual cell tracks. We set the motility persistence time (τ) to 15 minutes to match 
the experimental sampling frequency, and we calibrated the speed (s) and the bias (b) for DsRed+ and 
GFP+ cells. By applying Bayesian inference with ABC methodology, in particular the LF-MCMC method 

(Marjoram et al., 2003), we obtained the posterior distribution of (b, s) conditioned to the experimental 
data yo for the simulated displacement of the DsRed+ and GFP+ cells (Figure 3A). 

According to the distributions obtained, we extracted the maximum a posteriori probability (MAP) of 
speed and bias, and we recomputed the simulated cell tracks using these estimated parameters. Finally, 
we compared the simulated displacements and trajectories with the experimental data and verified that 
our model was effective at recapitulating the biological observations (Figures 3B and 3C). Moreover, the 
average displacement obtained by the model closely approximated the observational data for both cells 
types, specifically, the residual for DsRed+ and GFP+ cells was 12.92 µm and 12.86 µm, respectively. The 
cell trajectories have a similar profile when compared to the experimental data; however, trajectories with 
greater displacement were observed in the experimental data, which might suggest that a sub-population 
of GFP+ cells have a stronger response to migration stimuli. 

 
Computational model captures diverse spatial-temporal dynamic patterns 
To study the effects of the enhanced migratory phenotype of the GFP+ cells on the spatiotemporal progres- 
sion of the tumor without the confounding complexities of in vivo models, we designed a computational 
model for virtual thought experiments (Macklin, 2017, 2019). In our virtual system, we simulated a 3 
mm square (2D) or cube (3D) with an initial tumor comprised entirely of DsRed+ cells. We arranged the 
cells at the center of the domain in a packed disc with a radius 0.25 mm. We then applied the parameters 
calibrated in the previous section, along with other parameters defined according to literature, or estimated 
as specified in Supplementary Table 1. We used this virtual system to assess the impact of varying 
the simulation rules that correspond to hypotheses on cell phenotypic responses to hypoxic conditions. 
Because there is uncertainty in how long a GFP+ cell can maintain its migratory phenotype after leaving a  
region of hypoxia, we defined a parameter for phenotypic persistence time (Tp) and analyzed the impact of 
its variation on the dynamics of tumor evolution. We first assessed the impact of phenotypic persistence 
when hypoxic (GFP+) cells had the calibrated migrational bias (b = 0.1718) under three sets of hypotheses: 

1. No phenotypic persistence (Tp = 0 h): This represents the hypothesis that GFP+ cells do not 
show phenotypic persistence; they immediately resume a normoxic, non-migratory phenotype upon 
leaving hypoxic tissue regions. 
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2. Transient phenotypic persistence (0 < Tp < ∞): This represents the case where a hypoxic cell 
maintains its hypoxic migratory phenotype for a certain duration (Tp) after leaving hypoxic regions. 

We fixed Tp = 50 h. 

3. Permanent phenotypic persistence (Tp = ∞): This represents the scenario where hypoxic cells 
maintain their migratory phenotype permanently. 

In this first virtual experiment, we found that increasing Tp promoted the mixing of DsRed+ and GFP+ 
cells along the hypoxic boundary region and in the viable rim. Furthermore, no GFP+ cells were able to  
escape through the viable rim to invade the surrounding tissue (Figure S2). 

Because this does not match our in vivo observations where GFP+ cells frequently invade the surround- 
ing tissues and seed distant micrometastases, we surmise that additional behavioral rules are needed for 
the GFP+ cells. Phenotypic persistence in the absence of strong directional cues for migration cannot 
drive invasion in the computational model system. 

We next varied the motility bias (b) of the GFP+ cells and set Tp to 0 to assess whether changes in the 
randomness of migration alone could drive invasion of GFP+ cells. We evaluated the changes associated 

with either partially Brownian (0 < b < 1), or completely polarized (b = 1) movement along the oxygen 
gradient ∇σ. We found that increasing b caused the overall tumor to spread more quickly, allowing 
hypoxic cells to escape prior to necrotic death. However, none of these cells were able to completely 
escape the viable tumor region to begin invasion. Thus, increased directionality of cell migration alone 
cannot explain tissue invasion (Figure S3). 

We then investigated whether the combination of increased migrational polarization (increased mi- 
gration bias b) and phenotypic persistence (Tp > 0) could lead to tissue invasion by GFP+ cells. As 

noted, increasing migrational bias (b = 0.5) with no phenotypic persistence (Tp = 0) did not lead to 
GFP+ invasion beyond the tumor edge. Instead, the tumor grew radially, and it was composed of three 
homogeneous layers of necrotic, GFP+ and DsRed+ cells (Figure 4A). However, when we introduced 

transient (Tp = 50 h) or permanent (Tp = ∞) phenotypic persistence, we found that GFP+ cells formed 
“plume” structures that invaded into the well-oxygenated DsRed+ regions of the tumor (Figures 4B and 
4C) . For sufficiently long phenotypic persistence times, we found that GFP+ cells eventually migrated 

through the entire DsRed+ tumor region to invade the surrounding tissue (see t = 130 h in Figure 4B 
(Tp = 50 h) and Figure 4C (Tp = ∞)). Thus, a persistence hypoxic migratory phenotype – when coupled 
with sufficiently directed migration – is sufficient to drive GFP+ cell invasion through the non-hypoxic 
DsRed+ tumor regions and into the surrounding tissue. 

Because our experimental observations showed significantly higher displacement for a small fraction 
of GFP+ cells in the trajectory analysis, we hypothesized that invasion may be driven by a smaller 
subpopulation of “responder” cells: GFP+ cells that are capable of responding to hypoxia with a strong  
migratory phenotype. To computationally assess the potential impact of a responder subpopulation, we 
assumed that only a fraction of the GFP+ cells (Fr) had a more directed motility along the O2 gradient 

with an elevated directional bias b∗ = 0.5, while all other GFP+ cells retained the lower bias of b = 0.1791 
obtained from our earlier calibration work. For simplicity, all GFP+ cells shared the same value of 

phenotypic persistence time (Tp = 50 h). 
We found that as Fr decreased from 100% to 50%, 10%, and 1%, the formation of invasive GFP+ 

plumes was suppressed, while the extent of necrosis increased. Without directed migration, the non- 
responder GFP+ cells failed to escape low-oxygen regions, leading to increased necrotic death (Figure 
4D). We note that even when only 1% of GFP+ cells could respond with increased migrational bias, GFP+ cells 
escaped the tumor to invade the surrounding tissue. 
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To better automate our analysis of the qualitative behavioral responses across the (b , Tp , Fr) parameter 
space, we developed an image processing pipeline to extract three morphometric features (Figure S4). For  
each simulation, we assessed (1) whether GFP+ “plumes” were present, (2) whether GFP+ cells escaped 
the main tumor bulk, and (3) whether a necrotic core was present. In our analysis, we found that these 
Boolean features were robust to stochastic variations in the simulations (e.g., from choosing a different  
random seed value). See the supplementary materials for an example where we show these features for 
several stochastic replica on a parameter set (Figure S5). 

This automated analysis further confirmed that increasing phenotypic persistence time (Tp) and motility 

bias (b∗) are associated with the formation of invasive plume structures and metastatic cell escape from the 

tumor bulk. Moreover, in scenarios with a substantial bias (b∗ > 0.5), decreasing the fraction of responders 
(Fr) is associated with increased necrosis and smaller tumor radii (Figures S6, S7, and S8). On the other 

hand, in scenarios of null bias (b∗ < 0.1), a cell would have a low probability of leaving the hypoxic 
region, preventing the formation of post-hypoxic plumes (Figures S7 and S8). 

 
Computationally predicted hypoxic patterns are observed in vivo 
We performed parameter space exploration using the simulation model system to assess the emergent 
tumor behaviors under a variety of hypotheses on migration, phenotypic persistence, and heterogeneity in 
hypoxic response. For several conditions with phenotypic persistence (Tp > 0), increased migrational bias 

(increased b∗ for GFP+ cells), and heterogeneous hypoxic responses (Fr < 100%), the model predicted 
the emergence of GFP+ plumes into DsRed+ well-oxygenated regions, and the formation of substantial 

necrotic cores. For instance, see in Figure 4, adopting Tp = 50 h, b∗ = 0.5 and Fr = 50%. These 
computationally predicted features are frequently observed in our in vivo tissue sections, where a necrotic 
core and GFP+ plumes were visible. 

To further determine how well the computational model recapitulated the tumor biology, we visually 
compared a 2D tumor tissue section to our model output (Figure 5A). Strikingly, our model accurately 
predicted GFP+ invasive structures (Figures 5B and 5C). More specifically, we observed well defined 
persistent GFP+ plumes (1), as well as a second type of plume (2) that is larger and contains a mix of GFP+ 
and DsRed+ cells. Furthermore, the computational model also predicted DsRed+/GFP+ regions adjacent 
to the necrotic core (3) that were also observed experimentally. In both the simulation and experimental 
models, these double-positive cells begin to express GFP but the DsRed protein is not fully degraded 
indicating that these cells are currently hypoxic. All together, the data suggest that our computational 

model adopting Tp = 50 h, b∗ = 0.5 and Fr = 50% most faithfully recapitulates the spatial localization of 
GFP+ cells in vivo during tumorgenesis, highlighting the formation of persistent invasive plumes. 

 
Invasive plumes are exclusively driven by post-hypoxic cells 
The GFP+ plumes appeared to extend into tumor regions with higher O2 content. Thus, we hypothesized 
that the GFP+ cells localized within the invasive plumes were no longer experiencing hypoxia, but rather 
were cells that had been previously hypoxic and were now reoxygenated. To experimentally test this, we 
utilized Hypoxyprobe, a well established antibody for the detection of hypoxic regions in tissue. Dual  
imaging of Hypoxyprobe and GFP expression allowed us to differentiate hypoxic cells (Hypoxyprobe+) 
from post-hypoxic cells (GFP+/Hypoxyprobe-) in vivo. While post-hypoxic cells (GFP+/Hypoxyprobe-) 
migrated into DsRed+ regions generating plumes, hypoxic cells (Hypoxyprobe+) localized adjacent to the 
necrotic core (Figure 6A). To visualize the hypoxic and post-hypoxic phenotypes in the computational 
model, we labeled the simulated cells localized alongside the perinecrotic region as Hypoxyprobe+ (Figure  
6B). Remarkably, the computational model accurately recapitulated the observed biological differences. 
Together, these data suggest that the experimentally observed GFP+ invasive structures are composed 
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exclusively of post-hypoxic cells (GFP+/Hypoxyprobe-), thus we termed them invasive post-hypoxic 
plumes. 

 
Computational model recapitulates intratumoral hypoxic patterns in 3D 
We further tested whether the computational model’s predictions would extend to 3D by comparing  
simulations to a 3-D volume of tumor tissue. A 3D tumor (approximately 1, 100 X 800 X 500 µm3) was 
reconstructed after CUBIC-tissue clearing, where the native fluorescence was imaged using confocal 
microscopy in a z-stack. The surface rendering of the 3D-reconstructed image demonstrated the presence 
of post-hypoxic plumes (Figure 7A). However, initial 3-D simulations (using the same parameter values 

as in 2D: Tp = 50 h, b∗ = 0.5, and Fr = 50%) predicted less well-defined post-hypoxic GFP+ plumes than 
we observed experimentally (Figure 7B). We hypothesized that this apparent discrepancy arose due to 
differences between the computational and experimental geometries: the 3-D computational spheroid had a 
relatively small radius and hence high surface curvature, which contributed to dispersal of migrating  
GFP+ tumor cells. Under this hypothesis, 3-D simulations would better match experimental observations and 
earlier 2-D computational predictions for larger tumors in regions with flatter surface curvature. 

We tested this by simulating a radial section of a larger 3-D tumor with flatter surface curvature: we 
modified the simulation domain to a 0.5 mm3 “core” (2 mm X 0.5 mm X 0.5mm) with no cell or 
substrate flux in the non-radial (y and z) directions, and with free cell and substrate flow in the radial (x) 
direction (see this geometry in Figure 7C). As hypothesized, necrotic regions and post-hypoxic GFP+ 
plumes were better defined in this 3-D geometry, and 2-D cross-sections were consistent with earlier 2-
D simulation results (Figure 7C). 

Taken together, the computational model accurately predicted the localization of cells exposed to 
hypoxia within a tumor and anticipated the formation of post-hypoxic plumes both in 2D and 3D. 

According to our model using Tp = 50 h, b∗ = 0.5 and Fr = 50%, the resulting phenotype depends upon a 
balance of phenotypic persistence time, the fraction of responders, and migrational bias of the cellular 
movement, supporting the hypothesis of an enhanced migratory hypoxic/post-hypoxic phenotype. 

 
DISCUSSION 
We combined an approach to fate-map cells that experience intratumoral hypoxia with advanced 
imaging and mathematical modeling to predict the dynamics of hypoxic and post-hypoxic cells during 
tumor progression. Investigating GFP+ (hypoxic/post-hypoxic) and DsRed+ (normoxic) cells in tumor 
tissue sections revealed that both cell populations have similar proliferation rates. On the other hand, 
GFP+ cells are more migratory ex vivo as compared to DsRed+ cells. Using these characteristics and the 
O2 distribution in a tumor, we modeled the dynamics of GFP+ cells with three key parameters: 
phenotypic persistence time (Tp), fraction of responders (Fr) and directional bias of the migrating GFP+ 

responders (b∗). 
Our computational studies best recapitulated in vivo biological observations of (1) localization of 

GFP+ and GFP/DsRed double-positive cells to the perinecrotic regions of the tumor, (2) migration towards 
more oxygenated regions, (3) invasive GFP+ post-hypoxic plumes, (4) substantial necrosis, and (5) escape 
of GFP+ cells from the tumor bulk, when we defined phenotypic persistence (Tp = 50 h), increased 
directional bias of migrating GFP+ cells (b∗ = 0.5), and included heterogeneity in response to hypoxic 
stimuli (Fr = 50%). Furthermore, by examining the Hypoxyprobe marker for currently hypoxic cells 
both in vivo and in silico models, we determined that the GFP+ invasive structures were exclusively 
driven by post-hypoxic cells. The results support the conclusion that post-hypoxic plumes form due to a 
persistent migratory 
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∼ 

phenotype that develops when a cell becomes hypoxic and persists even when the cell is reoxygenated. 
The ex vivo spheroid model used to determine cell motility consisted of measuring the displacement of 

tumor-derived cells (DsRed+ and GFP+) at the invasive front of spheroids embedded in a 3D collagen 
matrix. We observed enhanced speed, total displacement, and persistent time of GFP+ cells, suggesting that 
both migration and invasion contribute to cell motility in this model. In these experiments, we also observed 
that a fraction of GFP+ cells showed significantly higher displacement when compared to the remaining 
GFP+ cells, suggesting that only a subset of GFP+ cells acquire an increase in migration . To account for 

this in the model, we varied the directional bias for cell migration (b∗) for this responder subpopulation, and 

observed that higher values (b∗  0.5) promoted the formation of post-hypoxic plumes. This phenomenon 
was surprisingly robust to perturbation: post-hypoxic plumes were consistently observed even when only 

50% of the cells were responders (Fr = 50%). However, experimentally-observed necrotic materials 
could only accumulate in the computational model when not all GFP+ cells were responders (Fr < 100%). 
There are several potential biological explanations for this finding. First, the spatial localization of a 
cell within the O2 gradient in the tumor may cause heterogeneity in the level of migratory response. For 
example, cells localized closer to the necrotic core in a tumor experience lower O2 concentrations (<1%) 
and have higher levels of HIF expression, and therefore higher levels of HIF-dependent pathways that 
promote cell migration and invasion, such as RhoA-ROCK (Gilkes et al., 2014), ITGA5 (Ju et al., 2017), 
ADAM12-HB-EGF-EGFR (Wang et al., 2021), Notch (Chen et al., 2010), and miR-219-SMC4 (Chen 
et al., 2019), among others. Additionally, the observed invasion pattern suggests that cells localized 
in the invasive front must overcome matrix resistance by opening tracks, which would facilitate the 
invasion/migration of cells that follow, increasing their bias in a leader-follower-like manner (Haeger et al., 
2015; Khalil and Friedl, 2010; Mayor and Etienne-Manneville, 2016). 

We explored a range of the phenotypic persistence time(s) and found that any sufficiently high value 
(50 hours or more in our studies) would result in the formation of GFP+ plumes. This suggests that the  
formation of post-hypoxic plumes is associated with a persistent phenotype that is maintained in GFP+ 
tumor cells for a considerably long duration. Although HIF-1 protein levels return to baseline within 
minutes after reoxygenation to room air ( ≈ 20% O2) (Jaakkola et al., 2001; Semenza and Wang, 1992), 
the time required for the protein products of HIF-regulated genes to return to baseline will depend upon 
the half-life of the protein. Moreover, the hypoxic cells within a tumor encounter a slower reoxygenation 
as they migrate towards the oxygenated areas, and experience a lower O2 gradient (1% to 6% O2) causing 

prolonged HIF-signaling when compared to in vitro studies. Therefore, post-hypoxic cells within Tp = 50 h 
will retain an increased level of HIF-target gene and protein expression which could, in part, explain the 
lengthy persistence time. Indeed, we previously demonstrated that cells exposed to intratumoral hypoxia,  
but not short-term in vitro hypoxia, retain the increased expression of a subset of hypoxia-regulated 
genes, even upon reoxygenation and long-term culture (Godet et al., 2019). Further studies would be 
necessary to establish whether the expression of one or multiple genes plays a causal role in phenotypic 
persistence. However, it is tempting to speculate that the ‘hypoxia memory’ genes LOX or DNAH11 could 
be implicated, as they can regulate cell movement (Lai et al., 2016; Payne et al., 2005). 

In the future, we plan to extend the mathematical model to include cell signaling and to more 
accurately match the dynamics such as O2 distribution, proliferation and tissue and cell mechanics. The 
implementation of new calibration protocols to leverage High Performance Computing (HPC) and ABC 
techniques will be crucial to simultaneously evaluate all these parameters. Ultimately, we will also aim 
to advance our single-cell tracking and plan to include additional cell cycle markers. The labeling and 
characterization of blood vessels in tumor sections (CD31 or dextran) could be used to assess angiogenesis.  
In addition, the contribution of the extracellular matrix and the leader-follower dynamics will be important 
to consider. The HIF-response could be incorporated in our computational model by building a network of 
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protein interactions and considering their half-life times, which could further develop our studies in the 
hypoxic/post-hypoxic phenotypes. 

In summary, we developed a computational model based on the characterization of normoxic, hypoxic 
and post-hypoxic cancer cell phenotypes that accurately predicted the formation of structures that we 
termed ‘invasive post-hypoxic plumes’. Although it is well established that hypoxia promotes migration 
and invasion in vitro during exposure to hypoxia, we show that post-hypoxic cells retain a migratory 
phenotype that contributes to plume formation. While at the macroscopic level the invasive plumes 
appear to be driven by collective invasion (a coordinated and guided migration) (Yang et al., 2019), 
our computational findings demonstrate that these structures can spontaneously arise without any direct 
cell-cell coordination. The results show the potential for combining experimental approaches with 
computational modeling: the hypoxia fate mapping system rendered the previously unobserved post- 
hypoxic plumes visible, computational modeling allowed us to probe the underlying dynamics to suggest 
hypotheses that can generate the structures, and targeted experimental analyses were able to confirm the 
computational predictions. 

 
Limitations of the study 
Interestingly, we noticed that the observed computational plumes seem narrower than the biological ones.  
While our in vivo tumors reach diameters of 10 mm, our computational model reached a radius of about 
0.6 mm. Therefore, it could be expected that larger tumors would give origin to larger plumes. The 
computational time to model a tumor with a diameter of 10 mm is not feasible. Moreover, imposing 
dynamics of leader-follower / collective invasion that can potentially be happening in vivo could drive larger 
computational plumes. Lastly, the in vivo time scale is larger than the computational one, and therefore, 
proliferation of GFP+ cells might be contributing to larger plumes as well. Overall, our computational  
model recapitulates GFP+ plume formation, and perhaps larger tumors and longer time-scales could 
contribute to generate larger plumes. 

It is important to note that the MDA-MB-231 orthotopic tumors modeled in this work are uniformly 
radial and homogeneous. To test if our observation of GFP+ plume formation would still occur in 
heterogeneous environments, we performed a simulation varying the location and number of O2 sources. 
In order to avoid non-physical behaviour, we imposed restrictions on cell proliferation and migration in 
regions of higher cell density. In this heterogeneous scenario, GFP+ plumes were still observed, mainly  
around more oxygenated regions (Figure S9) This suggests that our observation of GFP+ plume formation 
is robust and O2-dependent and not simply a consequence of radial growth. Human breast tumors have a 
slower growth rate, and therefore have additional time for angiogenesis to occur. Angiogenesis results in a 
random distribution of functional vasculature within the tumor that can cause heterogeneous O2 gradients 
(Vaupel et al., 2007). Together, these factors promote multiple microregional O2 gradients that exist 
within a larger O2 radial gradient across the tumor. It would be interesting to incorporate an intermittent 
subscale O2 distribution, by modeling angiogenesis and blood supply dynamics. Transient changes in 
O2 gradients that occur locally have been reported but occur in the range of 1.3-2.6% (Matsumoto et al., 
2010). However, the overall O2 distribution within a viable rim of 2 cm in a large tumor ranges from 0 to 
6% O2 (Godet et al., 2019) suggesting that the radial O2 gradient observed in our experimental tumors is 
the largest contributor to plume formation. Therefore, we hypothesize that the model would reveal similar 
radial O2 gradients with GFP+ plumes formation on both macro and microscales. 
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Main figures 
Figure 1 - Overview of the computational model. (A) The O2 distribution in the 
microenvironment defines the viable and necrotic regions of the tumor (left). Phenotypic changes defined 
by the concentration of O2 and permanent switch to GFP fluorescence (right). (B) Random migration 
with a directional bias along the O2 gradient. (C) Scheme of the cell cycle, where the transition rate 
from Ki67- (non-cycling) to Ki67+ (cycling) scales with O2 availability. 
Figure 2 - Fate-mapping intratumoral hypoxia. (A,B) Lentiviral vectors used to generate the 
hypoxia fate-mapping system. Fluorescent images (A) and flow cytometry analysis (B) of the 
MDA-MB-231 hypoxia fate-mapping cells following exposure to 20% or 0.5% O2 for 5 days. (C) 
Fluorescent images of the full cross-section of an orthotopic tumor derived from MDA-MB-231 
hypoxia fate-mapping cells. (D) O2 measurements performed using a fixed-needle micro-probe are 
displayed as a function of distance from the tumor core. Data are represented as mean +/- SEM. (E,F) 
Representative spheroid used to track migrating tumor-derived GFP+ or DsRed+ cells (E) and 
corresponding average speed and maximum displacement of individual cells (F) fit by Gaussian non-
linear regression. 
Figure 3 - Calibration of cell migration in the model. (A) Frequency histograms of the 
posterior distributions for b (migration bias) and s (migration speed) for DsRed+ cells (labeled red) 
and GFP+ cells (labeled green) using the LF-MCMC method. (B) Longitudinal changes in displacement 
(mean and standard deviation) obtained by simulating the model with the MAP (ℓ2 norm of the residuals 
between the data average and the simulated values are approximately 12.9 µm). (C) Trajectories of all 
cells (74 cells DsRed+ and 69 cells GFP+) over 15 hours and frequency histogram of the displacement, 
in which the gray graphs are the biological data, and the red and green graphs are associated with the 
DsRed + and GFP + cells, respectively. 
Figure 4 - Impact of phenotypic persistence for directed migration. (A) Increasing migrational 
bias (b∗ = 0.5) without phenotypic persistence (Tp = 0) does not drive invasion of GFP+ cells outside the 
tumor. (B) Under intermediate phenotypic persistence (Tp = 50 h), GFP+ invasive “plumes” form inside the 
normoxic DsRed+ zones. Some GFP+ cells escape to invade the surrounding tissue. (C) Escape of 
GFP+ cells increases under permanent phenotypic persistence (Tp = ∞). (D) For transient phenotypic 
persistence (Tp = 50 h) and intermediate migrational bias (b∗ = 0.5), decreasing the number of “responder” 
cells to 50%, 10%, and 1% gradually inhibits the formation of invasive plumes, although GFP+ cells 
continue to escape the tumor. 
Figure 5 - Computational model predicts the formation of post-hypoxic plumes. (A) 
Comparison of computational output to a 2D tumor section. (B) Zoom of an orthotopic tumor section. 
Dashed white outline highlights post-hypoxic plumes. (C) Zoom of a  computational output using Tp = 50 
h, b∗ = 0.5 and Fr = 50%. Numbers show analogous structures in both scenarios. 
Figure 6 - Comparison of Hypoxyprobe staining with hypoxia fate-mapping system. (A) 
Fluorescent image of orthotopic tumor section stained with Hypoxyprobe (HP). (B) Computational 
output without (left) and with (right) Hypoxyprobe (purple) marker. 
Figure 7 - Computational model recapitulates intratumoral hypoxic patterns in 3D. (A) 
Reconstruction of cleared tumor section in the perinecrotic region. Raw reconstruction (top) and surface 
rendering of GFP+ signal (bottom). (B) Small spheroid generated by the 3D computational model. (C) A 
3D simulation of a radial core section in a large tumor with low surface curvature, showing the same 
intratumoral hypoxic pattern. The 3D core simulation is consistent with earlier 2D predictions, shown here for 
comparison. 
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STAR METHODS 
Resource availability 
Lead contact 
Further information and requests for resources and reagents should be directed to and will be fulfilled by 
the Lead Contact, Paul Macklin, PhD (macklinp@ui.edu). 

Materials availability 
The vectors used to generate the hypoxia fate-mapping system in this article are available at Addgene 
(#141147 and #141148). 

Data and code availability 
• The code used to simulate the model and generate the results included in the figures is avail- 

able at: https://github.com/PhysiCell-Models/breastcancer-hypoxia. The 
parametric calibration code and observational data used are available at: https://github. 
com/heberlr/Motility_Calibration. Image classifier was developed in Python3 using 
the OpenCV and NumPy libraries, and is available at: https://github.com/heberlr/ 
Image_Classifier. 

• This study did not generate/analyze datasets. 

• We used xml2jupyter (Heiland et al., 2019) to generate a Jupyter-based graphical user interface 
(GUI) from our PhysiCell model. An online interactive version of the model is available at: 
https://nanohub.org/tools/pc4tumorhypoxia. 

Experimental Model 
Cell culture 
Mycoplasma-free human breast cancer cell line MDA-MB-231 was obtained from the American Type 
Culture Collection (ATCC) and maintained in DMEM (Sigma-Aldrich) with 10% FBS (Corning) and 
1% penicillin/streptomycin (Invitrogen). An InvivO2 workstation (Baker) with an ICONIC (Baker) 
electronically controlled gas-mixing system was used to achieve hypoxic conditions in a controlled 

environment at 37◦C and 75% humidity, and balanced at 0.5% O2, 5% CO2, and 94.5% N2. 

Animal model 
Female 5- to 7-week-old NOD-SCID Gamma (NSG) mice were used according to protocols approved 
by the Johns Hopkins University Animal Care and Use Committee. Mice were anesthetized by the 
intraperitoneal injection (i.p.) of 100 mg/kg Ketamine, 16 mg/kg Xylazine, Vet One. 2x106 MDA-MB-231 
hypoxia fate-mapping cells were injected into the mammary fat pad (MFP) closest to the second nipple. 
Mice were i.p. injected with 1.25 mg of pimonidazole in saline (12.5 mg/ml) (Hypoxyprobe™-1) 1 h 
prior to sacrificing. Tumors were excised at various time points, formalin fixed (Sigma-Aldrich) for 1 h, 

saturated in 30% sucrose (Sigma-Aldrich) at 4◦C overnight, embedded in OCT media (Fisher Scientific), 
frozen in liquid nitrogen, sectioned via a cryotome CM1100 (Leica), and mounted onto Superfrost Plus 
Microscope Slides (Fisher Scientific). Tumor tissue sections were stained with DAPI (1:1000 for 15 min, 
RT) and mounted with anti-fade solution. To assess the entire cross-section of the tumor, slides were 
imaged with an Olympus (UPLFLN 4X) objective using Cytation 5 microscope (BioTek Instruments).  
Multiple image tiles were linearly stitched with Gen5 Software (BioTek Instruments). 
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Method details 
Hypoxia fate-mapping system 
The loxp-DsRed-loxp-eGFP sequence was PCR amplified from the plasmid pMSCV-loxp-DsRed-loxp- 
eGFP-Puro-WPRE (#32702, Addgene). This sequence was then ligated into the pENTRA1 vector 
and the Gateway System TM (Invitrogen) was used to recombine the pENTR1A shuttle vector with  
pLenti CMV/TO Zeo DEST (644-1) (#17294, Addgene) generating lentiviral vector 1. The sequence 
GTGTACGTG (1HRE) spaced with random 5 base pairs of nucleotides was used to generate tandem 
copies of 4 HREs that were directly synthesized (IDT) as gBlocks (Coralville). The CRE-ODD nucleotide 
sequence was also independently synthesized as a gBlock (IDT). The pRRLSIN.cPPT.PGK-GFP.WPRE 
(#12252, Addgene) was digested to remove the PGK promoter and EGFP cassette. In-Fusion cloning 
(Clonetech) was used to ligate the 4-HRE gBlock, the β -globin gBlock and the CRE-ODD gBlock into 
the linearized pRRLSIN.cPPT.PGK-GFP.WPRE vector to generate vector 2. Finalized lentiviral vector 
1 encoding CMV-loxp-DsRed-loxp-eGFP (Addgene #141148) or lentiviral vector 2 encoding 4xHRE- 
MinTK-CRE-ODD (Addgene #141147) were co-transfected with plasmid psPAX2 (#12260, Addgene) 
and plasmid pMD2.G (#12259, Addgene) into 293T cells using Polyjet (SL10088, Signagen). Filtered 
viral supernatant generated from lentiviral vector 1 was collected 48 h post-transfection and added to 
MDA-MB-231 cells with 8 µg/mL polybrene (Sigma–Aldrich) overnight. After 24 h in fresh media, 
zeocin (Invitrogen) was added to the medium of cells for selection (100 µg/mL). Following selection, 
cells were transduced with lentivirus from lentiviral vector 2 encoding 4xHRE-MinTK-CRE-ODD. The 
cell lines were sorted, single-cell cloned and screened by image analysis and flow cytometry. More details 
in Godet et al. (2019). 

Oxygen measurements 
In vivo O2 measurements were conducted on mouse tumors using a fixed-needle (0.9 mm / 230 µm) 
REDFLASH mini-sensor (FireStingO2, Pyroscience) mounted on a manual micrometer. The probe was 
inserted approximately 2 mm into the tumor, and after recording the hypoxic level, it was slowly retracted 
and O2 measurements were recorded at 0.5 mm intervals until reaching the tumor edge. The needle-probe 
was carefully washed and calibrated to atmospheric O2 before each measurement. 

Immunofluorescence staining 
Tumor tissue sections were washed 3x with PBS-T (PBS, 0.1% Tween) and briefly air-dried. Using a 
hydrophobic pen (Dako, Angilent), a circle was drawn around the tumor sections, and they were then 
incubated with 1% Triton-X at room temperature for 10 min in the dark. After a new wash with PBS-T, 
the tissue sections were incubated with 2% BSA at room temperature for 30 min in the dark. The Alexa 
Fluor 647 Mouse anti-Ki-67 antibody (BD Biosciences, #558615) was used at 1:50 dilution in BSA at 
room temperature for 1.5 h in the dark. For Hypoxyprobe™-1 staining, slides were incubated overnight 
at 4°C with the primary antibody (dilution at 1:50). On the following day, mouse (#A21237) secondary  
Alexa Fluor 647™(Invitrogen) antibody was used at 1:1000 dilution for 1.5h at RT. New PBS-T wash 
was followed by staining with DAPI at 1:1000 dilution in PBS at room temperature for 15 min in the dark.  
Slides were washed and mounted with anti-fade solution. Images were taken with an Olympus (UPLFLN 
10X) objective using Cytation 5 microscope (BioTek Instruments). Image analysis was performed by 
determining the ratio of Ki67+ nuclei over total nuclei in each RFP and GFP channels using the image 
calculator tool available on ImageJ. 

Spheroid model 
Cell spheroids were formed in round-bottom 96-well tissue culture plates. Briefly, a mixture of (1x104) 
cells, 80-90% unlabeled cells and 10-20% hypoxia fate-mapping cells derived from orthotopic tumors,
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were plated per well in spheroid formation media 1:1 DMEM (Sigma-Aldrich) and Methocult H4100 
(STEMCELL Technologies). Plates were centrifuged at 1200 rpm for 7 min, twice. After 72 h incubation,  
each spheroid was transferred to a petri dish, where they were individually isolated with the collagen  
solution (2 mg/ml) and quickly transferred to the center of a semi-crosslinked collagen gel in a 96 

well-plate at 37◦C. After complete crosslinking, warm media was added. Following 4 days in culture, 
spheroids were imaged in an environmentally controlled microscope every 15 min for 16 h using an 
Olympus (UPLFLN 4X) objective in Cytation 5 (BioTek Instruments). Cell trajectories were tracked using 
MetaMorph software to obtain x,y coordinates at each time. More details available at Ju et al. (2017); 
Valencia et al. (2015). 

CUBIC tissue clearing 
Tumor tissue clearing was achieved by following the CUBIC protocol (￼￼￼Susaki et al.￼, 2015), and 
CUBIC-I (water 35% wt, urea 25% wt, Quadrol 25% wt, Triton-X 15% wt) and CUBIC-II (sucrose 50%, 
urea 25%, water 15%, triethanolamine 10%) solutions were made prior to use. Tumors resected at day 20 

were fixed in formalin at 4◦C overnight. Tumors were then incubated with 1:1 CUBIC-I/water overnight 

at 37◦C and 60 RPM in an orbital shaker. On the following day, tumors were transferred to CUBIC-I 

and kept at 37◦C and 60 RPM in an orbital shaker until desired clearness was achieved (approximately 
2.5 weeks), with CUBIC-I being replaced every other day. Once clearing was satisfactory, tumor were 
transferred to CUBIC-II for 2 days. Tumors were imaged in mineral oil using confocal microscopy to 
obtain z-projections of tumor sections with approximately 500 µm depth using a 10X/0.45 PlanApo 
(dry, no DIC) objective in a Zeiss LSM780-FCS microscope. Z-stacks spaced at 6.3 µm intervals were 
processed into a 3D image via Imaris version 9.2 (Bitplane) and 3D surface rendering was used to visualize 
the GFP+ invasive structures in 3D. 

PhysiCell: agent-based cell modeling 
The computational model was developed using PhysiCell, an open-source C++ framework allowing the 
construction of multicellular models at various scales in 2D and 3D (Ghaffarizadeh et al., 2018) on a broad 
variety of computing platforms. In this structure, each cell has its phenotypic and physical properties  
individually characterized through an agent-based model. Generally, cell dynamics are partially determined 
by diffusion of substrates such as oxygen, glucose, and growth factors in the microenvironment. To model 
the distribution of these substrates in the tissue environment, PhysiCell uses an open-source biological 
diffusion solver, BioFVM (Ghaffarizadeh et al., 2016). The coupling between these computational tools is 
defined by the consumption and secretion of substrates by each cell. PhysiCell has been applied to a broad 
variety of multicellular problems, such as oncolytic virus therapy, cancer immunology, tissue mechanics, 
infection dynamics and tissue damage, and drug screening, among others (Ghaffarizadeh et al., 2018; 
Jenner, 2019; Ozik et al., 2019). Please see Ghaffarizadeh et al. (2018) for further computational details 
and performance testing. 

Computational model 
Using our biological observations, we applied PhysiCell (version 1.6.1) to develop a mathematical model 
representative of tumor progression that incorporates the cell phenotype, location, and exposure to spatially 
dependent O2 concentrations. In this model, we differentiate the normoxic, hypoxic and necrotic state of 
the cancer cell based on the level of pO2. The O2 concentration is distributed in the environment using the 
standard transport equations from BioFVM and PhysiCell (Ghaffarizadeh et al., 2016, 2018). Here, we 
define the pO2 as σ. In regions outside the tumor, we set the O2 concentration to a (maximum) far-field 
value, denoted by 𝜎. 

A change in phenotype from normoxic to hypoxic occurs only in response to a decrease in O2 
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availability below the threshold, σH. When the O2 level decreases further, below a σT threshold, the cell 
is modeled necrotic (or dead). (Full details on the necrosis model can be found in Ghaffarizadeh et al. 
(2018).) When a hypoxic cell migrates to a region with a high supply of oxygen, we characterized it as 
a post-hypoxic or reoxygenated cell. The concentration of pO2 also contributes to the rate of cellular 
proliferation in this model. We use the built-in Ki67 basic model of the PhysiCell, where each cell has two 

states according to its current stage in the cell cycle. The first state [Ki67-] represents cells with absence of 

Ki67 expression, and the second state [Ki67+] represents positive expression of Ki67, in which cells 
have already started the proliferation process. 

In our hypoxia fate-mapping system, all cells begin by expressing DsRed, and upon exposure to 
hypoxia they permanently switch from DsRed to GFP expression. The process of transitioning from 
DsRed to GFP protein expression is modeled through a system of two ordinary differential equations  

(ODEs), in which given a set of (normalized) genes G = (G0, G1) encoding the proteins, the (normalized) 
protein concentration in each cell is denoted by: 

 
𝑑[𝐷𝑠𝑅𝑒𝑑]

𝑑𝑡
= 𝛼0𝐺0(1 − [𝐷𝑠𝑅𝑒𝑑]) − 𝛽0[𝐷𝑠𝑅𝑒𝑑](1 − 𝐺0)   (1) 

𝑑[𝐺𝐹𝑃]

𝑑𝑡
= 𝛼1𝐺1(1 − [𝐺𝐹𝑃]) − 𝛽1[𝐺𝐹𝑃](1 − 𝐺1)     (2)

where αi is a protein production rate and βi is a protein degradation rate. (Note that in this normalized 
model, each protein i decays exponentially with rate βi when its gene expression is 0, and it tends towards 
a steady state value of 1 when its gene expression is 1.) We calibrated the production and degradation rates 
of GFP and DsRed, respectively, based on our experimental data. As an initial condition, we assumed that 

[DsRed](0) = 1 and [GFP](0) = 0. As a simplifying assumption, we define G = (1, 0) as gene expression 

of normoxic cells that never experienced hypoxia, and G = (0, 1) as permanent gene expression of cells 
that have been subjected to hypoxia. It is important to note that GFP expression is permanent once cells 
experience hypoxia due to the gene editing mechanism (Figures 2A and 2B). 

Cellular motility is characterized in the model by four intrinsic properties: persistence time (τ: the 
mean time that the cell maintains its current speed and direction); migration speed (s: the speed of cellular 
migration in the absence of other forces); the migration bias direction (d: the preferred direction of 
migration), and migration bias (b: a value between 0 and 1 that represents the extent that cell trajectory 

mimics Brownian motion). Zero bias (b = 0) represents purely Brownian motion, whereas b = 1 is 
completely deterministic motion along its preferred direction d. (See Ghaffarizadeh et al. (2018) for further 
details, or an online motility demonstrator at https://nanohub.org/tools/trmotility.) In the 
present model, we use the O2 gradient ∇σ as the preferred direction of motility for biased migration (d = 
∇σ ). 

Based on our biological observations (Figures S1B and S1C), we assume that DsRed+ and GFP+ 
cells have identical proliferation capacity under identical conditions. In contrast, cell migration has 
specific characteristics for each type of cell. As seen in the biological experiments, GFP+ cells have a 
more pronounced migratory phenotype. 

Approximate Bayesian Computation 
Model parameters were calibrated using an Approximate Bayesian Computation (ABC) method. ABC 
is a class of inference techniques based on Bayesian statistics without the explicit construction of the 
likelihood function, and this terminology has been used since 2002 (Beaumont et al., 2002). This approach 
has become quite popular and has been applied to problems of parametric inference and model selection. 
Particularly, this technique has been widely used in the analysis of complex problems in the biological  
sciences (such as systems biology, ecology, and others) (Sunnåker et al., 2013). 
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In a general Bayesian inference procedure, we want to estimate the parameters associated with the 
model, such that the observational values are matched with the model outputs. Here, we apply an ABC 
method proposed by Marjoram et al. (2003), named Likelihood-free Markov chain Monte Carlo (LF-

MCMC). We compute an approximation of the posterior distribution of the model parameters, πLF (θ|yo), 

based on an a priori distribution of the parameters, π(θ ), and observational data, yo. Thus, an approximate 
version of Bayes’s theorem (Sisson and Fan, 2011) is: 
 

𝜋𝐿𝐹(𝜃|𝑦0) ≈  
𝜋(𝜃)

𝑆
∑ 𝜋𝜖(𝑦0|𝑥𝑠 , 𝜃)𝑆

𝑠=1      (3)

where x1,…, xS are independent draws from the model π(x|θ ) and ε is a tolerance value of the residual 
between the experimental data (yo) and the model output (x). It is important to note that when ε is small 
enough, using a conventional metric, the approach to posterior distribution is more accurate. However, 
choosing a small epsilon requires a high computational effort. In this work, for simplicity, we used the  
metric induced by the ℓ2 norm and estimate epsilon values based on the observational data. 

Image classifier 
We built an image Boolean classifier to define the occurrence of plumes, escaping cells, and necrotic core  
(see the example in Figure S4). To check whether plumes formed, we extract the green cells from the 
image (Figure S4A) and then select bigger contour of the cell cluster. We fit that contour by an ellipse EG 
and by a piecewise polynomial function FG. Based on the distance of the vertices of the function FG and 
ellipse EG, we define whether there is a plume or not, according to tolerance εP (Figure S4B). For the cell 
escape test, we fit an ellipse ET to the tumor and search for green cells outside that ellipse, and then we 
verify if the sum of these cells’ areas is greater than εS (Figure S4C). The existence of the necrotic nucleus 
in the image occurs when the area fraction of necrotic cells is greater than εN (Figure S4D). In general, the 
tests are defined as: 

 

Plumes: 𝑑(𝜈, 𝐸𝐺), 𝜈 vertex of 𝐹𝐺      
True, if d(v, EG) > εP

 
False, else 

Cell escape: 𝐴 =  ∑ 𝐴𝑖 , 𝐴𝑖  area of the GFP+ cell 𝑖 outside of 𝐸𝑇  True, if A > εS
 

False, else 

Necrotic core: FN =
𝑁𝑒𝑐𝑟𝑜𝑡𝑖𝑐 𝑎𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
  True, if FN > εN         

False, else 

 

in which d is distance function. In this work, we used εP = 30 px, εS = 20 px2, and εN = 0.06. This 
classifier was developed in Python3 using the OpenCV and NumPy libraries (https://github.com/ 
heberlr/Image_Classifier). 

Since our model is stochastic, we conducted a study to test the capability of our model to maintain the 

same classification. Thus, we executed 20 replicas of our model for the following parameters: Fr = 50%, 

b∗ = 0.5, and Tp = 50h. According to Figure S5, we found that 19 replicates were classified with 
plumes, 18 with cell escape, and all replicates without a necrotic nucleus. This experiment shows that the 
classification does not substantially change for the fixed parameters. After verifying this, we performed a 
study of the response associated with the parametric space (Figures S6-S8). 
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Simulation of heterogeneous oxygen distribution 
To investigate a scenario with multiple O2 sources, we display the simulation of the model for the case in 

which we arranged oxygen sources randomly in the computational domain, adopting Fr = 50%, b = 0.5, 

and Tp = 50 h. This simulation showed that the distribution of oxygen modified the geometry of the tumor,  
changing the mechanical aspect of tumor growth. In Figure S9A, we found that the constant flow of GFP+ 
cells towards regions of greater oxygenation (proximity to blood vessel sections) implies a rapid saturation 
of cell density, losing invasive “plumes" and may even generate non-physical phenomena, such as the 
overlapping of cellular nuclei. Based on this observation, we added new mechanical restrictions on the 
dynamics of migration and proliferation. We applied restrictions based on the dimensionless mechanical 
pressures in each cell (simple_pressure of PhysiCell). When the mechanical pressure is above a 
certain threshold as in regions of high cell density (10, estimated), the cell will not proliferate and will  
have a migration stimulus in the opposite direction. In Figure S9B, we present a simulation including  
negative feedback on proliferation and migration. Note that in this new formulation of the model, the 
invasive structures remain well defined along time evolution. Another interesting topic that could be 
included in this new approach would be incorporating the mechanical effects of cell intravasation into  
the blood vessels. Based on the mechanical pressure around the blood vessels, tumor cells would have 
a probability of breaking through the barrier to the basement membrane of the capillaries. This, in turn, 
would reduce the cell density near the vessels, allowing further proliferation and cell flux. 

 
Additional resources 
nanoHUB platform 
The computational model built is available for simulations on the nanoHUB platform (Madhavan et al., 
2013). The nanoHUB platform is an open and free environment that offers several services aimed at the 
dissemination of science and engineering products. In particular, it offers a toolkit for the development of  
graphical user interfaces (GUIs) that allow greater accessibility and reproducibility of software. 

 
Supplemental items 
Figure S1 - Fate-mapping intratumoral hypoxia and proliferation analysis, Related to Figure 2. 
Figure S2 - Impact of phenotypic persistence time with migratory bias fixed (b = 0.1791), Related to  Figure 
4. 

Figure S3 - Impact of migratory bias without phenotypic persistence (Tp = 0), Related to Figure 4. 
Figure S4 - Image classifier output, Related to STAR Methods. 
Figure S5 - Boolean image classification, Related to STAR Methods. 
Figure S6 - Study varying b and Tp with Fr = 10%, Related to STAR Methods. 
Figure S7 - Study varying b and Tp with Fr = 50%, Related to STAR Methods. 
Figure S8 - Study varying b and Tp with Fr = 100%, Related to STAR Methods. 
Figure S9 - Impact of heterogeneous and multiple oxygen sources, Related to STAR Methods. 
Table S1 - Parameter values utilized in the simulations of the computational model, Related to Figure 4. 
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 A fluorescent fate-mapping system allows tracking of hypoxic and post-hypoxic cells 
 Computational modeling predicts the formation of post-hypoxic invasive plumes 
 Simulations show post-hypoxic cells must maintain migration to form plumes 
 Tracking cells exposed to intratumoral hypoxia confirms persistent migration 
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