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Abstract—Silicon carbide (SiC) metal-oxide-semiconductor
field-effect transistor (MOSFET) power modules are being used
for high power applications because of their superior thermal
characteristics and high blocking voltage capabilities over
traditional silicon power modules. This paper explores
monitoring the temperature distribution of the baseplate of an
SiC MOSFET power module for online condition monitoring of
the power module. A radial basis neural network (RBFN) is
trained to follow the operational temperature data of a healthy
power module. As a module deteriorates the temperature
distribution changes as well. Comparing the trained RBFN
output and an unhealthy module’s temperature output at the
same point, the differences in temperature signify deterioration
in the health of the module. The proposed method of online
condition monitoring is applied to an SiC MOSFET power
module and validated by computer simulations using finite
element analysis models for the power module in both healthy
and unhealthy conditions.
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I. INTRODUCTION

Power modules contain power semiconductors that are used
for high power applications, such as three-phase inverters in
medium-voltage drives or wind turbines. Silicon carbide (SiC)
is a wide-bandgap semiconductor material being used for its
efficient thermal conductivity characteristics and high blocking
voltage capabilities [1]. All SiC metal-oxide-semiconductor
field-effect transistor (MOSFET) power modules have recently
been used as a replacement of their all silicon predecessors.
Both types of power semiconductors are subject to some of the
same factors of deterioration, such as electrical stress, power
cycling, and mechanical vibration [2], [3]. The power
semiconductors inside the power modules are mounted on a
series of different layers of materials to provide efficient
cooling, electrical isolation from the baseplate, and structural
rigidity [4], [5]. The mismatch of thermal expansion
coefficients between the different materials used in the
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semiconductor mounting layers causes each layer to expand by
a different amount during a power cycling event. This
mismatch of expansion causes mechanical stresses at the
interfaces of each mismatched layer. Existing cracks in the
solder layers grow with each thermal expansion event due to
the mechanical stresses at the layer interfaces [6]. Larger cracks
in the solder layer can manifest as a constriction of the heat
conduction path from the semiconductor chips to the baseplate
[7]. Constriction of the heat conduction path can cause
overheating in the semiconductor chips. This overheating
results in a buildup of mechanical stresses at the solder joints of
the bond wires, leading to bond wire lift-off and failure of the
power module [8], [9]. Constriction of the heat conduction path
also results in changes in the temperature distribution across
the baseplate of the power module.

During the operation of a power module, the switching and
conduction losses in the semiconductor chips conduct through
the power module with a certain heat flow path, causing a
specific temperature distribution for a healthy module.
Thermomechanical fatigue is the dominant failure mechanism
experienced by the packaging materials in a power module
[10]. A healthy module without any cracks in the solder layer
conducts heat differently than an unhealthy module with
cracks. A direct way of measuring for solder fatigue is to
monitor the temperature directly in the solder layer or at
different points inside the module. However, power modules
are manufactured to optimize power density and lower cost and
adding these sensors would increase the size and
manufacturing cost of the module [11]. Therefore, a non-
invasive means of measuring this change in heat flow is
needed. Since cracks in the solder layers cause constriction of
the heat flow path from the semiconductor chips to the
baseplate, which causes a change in the temperature
distribution across the baseplate of the power module, a method
for identifying deviations in the temperature distribution across
the baseplate of the power module can be used to monitor for
solder cracks in the power module.

Solder fatigue in insulated-gate bipolar transistor (IGBT)
power modules has been identified non-invasively by
monitoring for changes in the temperature distribution across
the baseplate in the IGBT power modules [12], [13]. However,
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Fig. 1. Flowchart of the proposed method.

current case temperature monitoring methods do not scale the
temperature sensing parameters automatically for different
operating conditions. Current case temperature monitoring
methods also do not account for the changes in temperature
distribution at different points in time during a power module’s
operation which can aid the diagnosis of solder fatigue.
Artificial neural networks (ANNSs), such as radial basis
function network (RBFN) can be wused for function
approximation applications [14]-[16]. One application of
function approximation would be learning the change in
temperature at a point on the baseplate of a healthy power
module over the course of its normal operation. ANNs can
learn complex relationships given an ample supply of training
data. The relationship between the baseplate temperature and
the heat generation at the semiconducting chips for multiple
operational states of a power module can be taught to an ANN
using training data gathered from a finite element analysis
(FEA) simulation of a healthy power module. This allows for
the consideration of the time-varying temperature across the
baseplate for different operating states when diagnosing solder
fatigue.

This paper proposes an RBFN-based online condition
monitoring method for SiC MOSFET power modules. In the
proposed method, an RBFN is trained to approximate and
follow the case temperature at a specific point on a healthy
power module’s baseplate over the full operational range. The
trained RBFN is then used online to estimate the case
temperature at the same point on the power module during
operation. If the health status of the power module deteriorates
with significant solder cracks, a difference between the
measured case temperature from the unhealthy power module
and the output of the RBFN trained on the health power

module is expected to be observed. This difference in case
temperature can be used to identify deterioration in the power
module device, thus resulting in a non-invasive means of online
condition monitoring for a power module device.

The remainder of the paper is organized as follows. Section
II presents the proposed method for online condition
monitoring of power modules using an RBFN trained either
online or offline. Section III presents the FEA simulation
results and the RBFN training results for three different points
on the baseplate of a simulated SiC MOSFET power module.
Section IV discusses the final conclusions and future work
related to these topics.

II. PROPOSED METHOD

An overview of the proposed method can be seen in Fig. 1.
An RBFN can be trained either offline or online which differ in
methodology and data used for training. For online training, an
RBFN can use temperature data gathered directly from the
device using temperature sensors while the device is in
operation. For offline training, there is no device in operation
for direct data sensing. Therefore, training data can instead be
generated by simulating the device using computer aided
design (CAD) software, performing power loss analysis using
circuit simulation software, and then generating the resulting
temperature data by performing a thermal analysis of the
device regarding the power loss using FEA software. Training
of an RBFN is performed the same way regardless of the data
being used.

A trained RBFN is used for online monitoring to diagnose
solder fatigue during real-time operation of a power module.
This is performed by first obtaining the operational heat
generation data of the power module by calculating the power
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loss of the semiconductor chips during the power module’s
operation. An RBFN is trained to take the operational heat
generation data as an input across the entire operational range
of the power module and output the resulting temperature of a
healthy power module at a specified monitoring point on the
baseplate of the modules. Three monitoring points were used to
diagnose the health of the module: the point on the baseplate
directly below the center point of the semiconducting
MOSFET chip, the point on the baseplate to the side of the
center point of the chip directly below the edge of the solder
layer, and the midpoint on the baseplate between these two
points. The three points as seen in Fig. 2 were selected for
judgement of the effects of solder cracking. If the module is
healthy, then the monitoring temperature will match the RBFN
output at each of the monitoring points. If there are unhealthy
cracks in the solder layer, then for each point when compared
to the RBFN output, the point beneath the center of the chip
will have a greater temperature, the point at the edge of the
solder layer will have a lower temperature, and the midpoint
between these two points will not have a significant deviation
in temperature. If these differences are each above a specified
error tolerance, then the device should be scheduled for
maintenance.

For offline training of the RBFN, a CAD model of a power
module can be constructed using CAD software. The
dimensions and materials of a power module can be obtained
from a manufacturer datasheet and used to build a CAD model
of the power module. The module’s operating parameters, such
as blocking voltage, conducting current, switching frequency,
and average switching and conducting losses can be used in
circuit simulation software to calculate the heat generation on a
semiconductor chip during its operation. FEA software can
then be used to perform a thermal analysis of the power loss
resulting from the circuit simulation using the CAD model. The
power loss calculated at each semiconducting chip of an SiC
MOSFET power module is a heat generation input for the FEA
simulation. The output of the FEA simulation is the
temperature at each point in the mesh of the thermal model. For
a healthy module, the solder layer has a specified length, width,
and thickness in the module. In an unhealthy module, solder
cracks grow from the outside of the layer inwards. After a
significant period of wear, the cracks cause an increase in
thermal impedance on the outer area of the solder layer, thus
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constricting the heat flow towards the inside of the solder layer
resulting in an increase in temperature below the chip on the
baseplate and a decrease in temperature at the point below edge
of the solder layer on the baseplate.

An RBFN is composed of three layers, the input layer, the
hidden layer, and the output layer [17], [18]. The hidden layer
consists of any number of units where each unit is fed an input
vector and calculates a Gaussian density function which is a
localized basis function. The outputs of all the units are then
weighted and summed with corresponding bias values
individually for the specified number of outputs. The Gaussian
density function with a center vector C, input vector x, and
scalar width parameter f can be seen in (1).
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For this application, each MOSFET and diode used in a
power module has a corresponding heat generation curve
associated with it. Each of these heat generation curves is an
input to the RBFN as seen in Fig. 3 where Q; (i = 1, ---, n) is the
heat generation input of the ith semiconductor chip and n
specifies the number of MOSEFTs and diodes. There is only
one output, the temperature at the selected point on the
baseplate, specified as Y in Fig. 3. After specifying how many
units to use for an RBFN and accumulating a large amount of
input data to train the RBFN, the algorithm k-means clustering
can be used to find the optimal place for the centers of the units
so that the centers can be positioned in a way that the distance
from each input vector to a center is at a minimum for all input
patterns. Once the center positions of the units are found, the
widths of the units can be calculated using the P-nearest
neighbors heuristic algorithm. This calculates the optimal width
for each node by calculating the root-mean-squared distance or
2-norm, from a centroid to its neighbors using (2) where S is
the width, 7 is the unit number, C is a center value, p is the
number of neighbors being considered, and j is the index for
the summation.
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Once the centers and widths are calculated for a given
number of units, the values are fixed and the weights V' = [b,



V1, =+, V] of the RBFN are calculated using the pseudoinverse
method expressed by (3)-(7).
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where the element of the matrix G in (3) is defined in (4) which
is the result of each unit’s Gaussian distribution function output
in response to an input pattern; the weight matrix ¥ in (3)
determines ¥, the output of the RBFN; the vector C and scalar
f in (4) are the center and width of the unit, respectively. The
training procedure becomes an optimization problem of
minimizing the difference between the healthy module output

Fig. 4. Autodesk Inventor CAD model of a CREE CCS050M12CM2 SiC
MOSFET power module.

Fig. 5. Side view of a healthy power module.

Fig. 6. Side view of an unhealthy power module.

and the calculated RBFN output. In this case, the healthy
module output is the simulated FEA solution of the chip
temperature over a certain period. If the actual output was the
same as the RBFN output, then ¥ would be equal to ¥. Thus,
the optimal weights /" would be obtained by (6) by multiplying
the inverse of G by Y. Usually the inverse of G is not a square
matrix, so the pseudoinverse can be used by first creating a
square matrix using G then multiplying it by Y as shown in (7).
Using the resulting weights in V" from (7), this pseudoinverse
method can be used to find the output of the RBFN.

III. RESULTS AND DISCUSSION

Shown in Fig. 4 is the CAD model used for simulating an
SiC MOSFET power module. The module was created in
Autodesk Inventor which is a CAD design program freely
available to students. The module’s dimensions and material
properties are based off the datasheet parameters listed for the
CREE CCS050M12CM2 All-SiC Six-Pack Module [19]. There
are three material stacks each for a single phase of a three-
phase inverter. The power module geometry measurements and
material properties are listed in [20]. Each material stack has its
own solder to baseplate layer that was reduced in volume to
simulate appropriate wear in the solder layer. Shown in Fig. 5
is the cross-sectional view of a healthy power module while
shown in Fig. 6 is the cross-sectional view of an unhealthy
power module. The solder layer in the unhealthy power module
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Fig. 8. COMSOL thermal simulation of a CREE CCS050M12CM2 SiC
MOSFET power module.



seen in Fig. 6 has not decreased in thickness but has decreased
60% in conducting cross-sectional area to the point where the
conducting region is further inward than the edge of the chip.
The square chips at the top of the transistor stacks seen in
Fig. 4 are the SiC MOSFETs used in the module while the
rectangular chips above the MOSFETs are the SiC free-
wheeling diodes used in conjunction with the MOSFETs. Each
diode and MOSFET has a heat generation curve associated
with a specific operating condition. The heat generation curves
for each of the SiC MOSFETs and diodes were created in
Matlab/Simulink with the add-on Simscape. This environment
has a transistor MOSFET model that will output the power loss
the transistor will experience depending on the simulated
circuit. A sine-triangle pulse-width modulation switching
scheme was used with the inverter to drive an induction motor
load. The inverter used a 400 V DC-link voltage, 60 A peak
sinusoidal output current, 5 kHz switching frequency, and 60
Hz line frequency. Shown in Fig. 7 is Phase-A of power loss or
heat generation outputs from this simulation. Each phase
consists of a top and bottom MOSFET and diode. The curves
of each phase were used for the COMSOL thermal simulation

Center Point - 0-1 sec 230 units
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shown in Fig. 8 with an ambient temperature of 60°C and a
cooling convection coefficient with a value of 10,000 W/m?K
applied to the bottom of the baseplate.

The results in Fig. 9 demonstrate three RBFNs trained on
the center, side, and middle points shown in Fig. 2 for the left
MOSFET chip of the left material stack in Fig. 4. The results in
column (a) of Fig. 9 correspond to the point on the baseplate
underneath the center of the MOSFET chip. The results in
column (b) of Fig. 9 correspond to the point on the baseplate to
the side of the MOSFET chip underneath the outer perimeter of
the solder layer. The results in column (c) of Fig. 9 correspond
to the midpoint between the two points considered in column
(a) and column (b). The first row of plots shows the
comparison between the healthy baseplate temperature training
data from COMSOL and the output of the trained RBFN. The
second and third rows of plots show the comparison between
the trained RBFN and the unhealthy temperature data for a
whole second of data. The fourth row of plots shows the MSE
between the trained RBFN and the unhealthy data at every
point across the entire simulation range with the MSE plotted
logarithmically. Comparisons between different error statistics
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Fig. 9. Comparisons of trained RBFN and FEA temperature data at (a) center point, (b) side point, and (c) middle point.



Table. I: Error Comparisons between Center, Side, and Middle Points.

Point |y ¢ V.ANN | Y & Unhealthy | YANN & | Y-ANN & Unhealthy | Y-ANN& 4 o oo I Thresholds| L ANN &

On MSE (°C) MSE (°C) Unhealthy qu Temperature | Unhealthy Mean Description | for Error Unhealthy
Module MSE (°C) Difference (°C) Error (°C) Percentage Change
Center 0.5652 0.8104 1.2273 3.7831 1.2219 Increase >1.75% 2.05%

Side 0.2831 0.9542 1.1103 2.5850 -1.1073 Decrease | >1.75% 1.85%
Middle 0.4884 0.4152 0.4045 3.4942 0.0535 Constant <1% 0.6%

for the center, side, and middle points can be seen in Table I.
The maximum averaged mean squared error (MSE) for a
sequence of 200 points was found between the healthy output
Y, the unhealthy output, and the trained RBFN output Y-ANN.
The trained RBFN can be seen to follow the healthy data well
in the first row of plots, with an MSE of 0.5652°C, 0.2831°C,
and 0.4884°C for the center, side, and middle points,
respectively. The MSE between Y-ANN and the unhealthy
output for the three points indicates a substantial increase in
temperature for the center point, a decrease in temperature for
the side point, and a consistent temperature for the middle
point. The temperature differences all indicate a solder crack
fault has occurred when using the listed thresholds in Table I as
markers for diagnosis. Diagnosis of the solder fault can be
further strengthened by noting the time of maximum
temperature difference at 1 second and 0.4 seconds for the
center and side points, respectively.

IV. CONCLUSIONS AND FUTURE WORK

This study explored the effectiveness of using an RBFN to
monitor for changes in the thermal distribution across an SiC
MOSFET power module to identify the existence of solder
cracks in the module. The RBFN was trained using healthy
FEA thermal simulation data. The output of the RBFN was
then compared to the unhealthy FEA simulation data at three
specific points on the baseplate of the power module. As solder
cracks expand from the outer edges of the solder layer towards
the center of the module, constricting the heat flow inwards, the
temperature at different points on the baseplate changes as
well. The comparison between the trained RBFN and the
unhealthy FEA simulation data shows significant changes in
temperature on the baseplate depending on the location. The
future work for this study lies in incorporating more power
module operational states to provide a more accurate heathy
model as well as investigating a way to update the parameters
of the healthy model once a fault is detected for continued
monitoring.
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