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Abstract—Silicon carbide (SiC) metal-oxide-semiconductor 

field-effect transistor (MOSFET) power modules are being used 

for high power applications because of their superior thermal 

characteristics and high blocking voltage capabilities over 

traditional silicon power modules. This paper explores 

monitoring the temperature distribution of the baseplate of an 

SiC MOSFET power module for online condition monitoring of 

the power module. A radial basis neural network (RBFN) is 

trained to follow the operational temperature data of a healthy 

power module. As a module deteriorates the temperature 

distribution changes as well. Comparing the trained RBFN 

output and an unhealthy module’s temperature output at the 

same point, the differences in temperature signify deterioration 

in the health of the module. The proposed method of online 

condition monitoring is applied to an SiC MOSFET power 

module and validated by computer simulations using finite 

element analysis models for the power module in both healthy 

and unhealthy conditions. 1 

Keywords—Condition monitoring, metal-oxide-semiconductor 

field-effect transistor (MOSFET), radial basis function network 

(RBFN), power module, silicon carbide (SiC), thermal modeling 

I. INTRODUCTION 

Power modules contain power semiconductors that are used 

for high power applications, such as three-phase inverters in 

medium-voltage drives or wind turbines. Silicon carbide (SiC) 

is a wide-bandgap semiconductor material being used for its 

efficient thermal conductivity characteristics and high blocking 

voltage capabilities [1]. All SiC metal-oxide-semiconductor 

field-effect transistor (MOSFET) power modules have recently 

been used as a replacement of their all silicon predecessors. 

Both types of power semiconductors are subject to some of the 

same factors of deterioration, such as electrical stress, power 

cycling, and mechanical vibration [2], [3]. The power 

semiconductors inside the power modules are mounted on a 

series of different layers of materials to provide efficient 

cooling, electrical isolation from the baseplate, and structural 

rigidity [4], [5]. The mismatch of thermal expansion 

coefficients between the different materials used in the 

 
This work was supported in part by the U.S. National Science Foundation 

under Grant CMMI-1663562. 

semiconductor mounting layers causes each layer to expand by 

a different amount during a power cycling event. This 

mismatch of expansion causes mechanical stresses at the 

interfaces of each mismatched layer. Existing cracks in the 

solder layers grow with each thermal expansion event due to 

the mechanical stresses at the layer interfaces [6]. Larger cracks 

in the solder layer can manifest as a constriction of the heat 

conduction path from the semiconductor chips to the baseplate 

[7]. Constriction of the heat conduction path can cause 

overheating in the semiconductor chips. This overheating 

results in a buildup of mechanical stresses at the solder joints of 

the bond wires, leading to bond wire lift-off and failure of the 

power module [8], [9]. Constriction of the heat conduction path 

also results in changes in the temperature distribution across 

the baseplate of the power module. 

During the operation of a power module, the switching and 

conduction losses in the semiconductor chips conduct through 

the power module with a certain heat flow path, causing a 

specific temperature distribution for a healthy module. 

Thermomechanical fatigue is the dominant failure mechanism 

experienced by the packaging materials in a power module 

[10]. A healthy module without any cracks in the solder layer 

conducts heat differently than an unhealthy module with 

cracks. A direct way of measuring for solder fatigue is to 

monitor the temperature directly in the solder layer or at 

different points inside the module. However, power modules 

are manufactured to optimize power density and lower cost and 

adding these sensors would increase the size and 

manufacturing cost of the module [11]. Therefore, a non-

invasive means of measuring this change in heat flow is 

needed. Since cracks in the solder layers cause constriction of 

the heat flow path from the semiconductor chips to the 

baseplate, which causes a change in the temperature 

distribution across the baseplate of the power module, a method 

for identifying deviations in the temperature distribution across 

the baseplate of the power module can be used to monitor for 

solder cracks in the power module. 

Solder fatigue in insulated-gate bipolar transistor (IGBT) 

power modules has been identified non-invasively by 

monitoring for changes in the temperature distribution across 

the baseplate in the IGBT power modules [12], [13]. However, 



 
 

Fig. 1. Flowchart of the proposed method. 

current case temperature monitoring methods do not scale the 

temperature sensing parameters automatically for different 

operating conditions. Current case temperature monitoring 

methods also do not account for the changes in temperature 

distribution at different points in time during a power module’s 

operation which can aid the diagnosis of solder fatigue. 

Artificial neural networks (ANNs), such as radial basis 

function network (RBFN) can be used for function 

approximation applications [14]-[16]. One application of 

function approximation would be learning the change in 

temperature at a point on the baseplate of a healthy power 

module over the course of its normal operation. ANNs can 

learn complex relationships given an ample supply of training 

data. The relationship between the baseplate temperature and 

the heat generation at the semiconducting chips for multiple 

operational states of a power module can be taught to an ANN 

using training data gathered from a finite element analysis 

(FEA) simulation of a healthy power module. This allows for 

the consideration of the time-varying temperature across the 

baseplate for different operating states when diagnosing solder 

fatigue.  

This paper proposes an RBFN-based online condition 

monitoring method for SiC MOSFET power modules. In the 

proposed method, an RBFN is trained to approximate and 

follow the case temperature at a specific point on a healthy 

power module’s baseplate over the full operational range. The 

trained RBFN is then used online to estimate the case 

temperature at the same point on the power module during 

operation. If the health status of the power module deteriorates 

with significant solder cracks, a difference between the 

measured case temperature from the unhealthy power module 

and the output of the RBFN trained on the health power 

module is expected to be observed. This difference in case 

temperature can be used to identify deterioration in the power 

module device, thus resulting in a non-invasive means of online 

condition monitoring for a power module device. 

The remainder of the paper is organized as follows. Section 

II presents the proposed method for online condition 

monitoring of power modules using an RBFN trained either 

online or offline. Section III presents the FEA simulation 

results and the RBFN training results for three different points 

on the baseplate of a simulated SiC MOSFET power module. 

Section IV discusses the final conclusions and future work 

related to these topics. 

II. PROPOSED METHOD 

An overview of the proposed method can be seen in Fig. 1. 

An RBFN can be trained either offline or online which differ in 

methodology and data used for training. For online training, an 

RBFN can use temperature data gathered directly from the 

device using temperature sensors while the device is in 

operation. For offline training, there is no device in operation 

for direct data sensing. Therefore, training data can instead be 

generated by simulating the device using computer aided 

design (CAD) software, performing power loss analysis using 

circuit simulation software, and then generating the resulting 

temperature data by performing a thermal analysis of the 

device regarding the power loss using FEA software. Training 

of an RBFN is performed the same way regardless of the data 

being used.  

A trained RBFN is used for online monitoring to diagnose 

solder fatigue during real-time operation of a power module. 

This is performed by first obtaining the operational heat 

generation data of the power module by calculating the power 



 

Fig. 2. Side, middle, and center baseplate temperature monitored points. 

 
 

Fig. 3. RBFN expanded diagram. 
loss of the semiconductor chips during the power module’s 

operation. An RBFN is trained to take the operational heat 

generation data as an input across the entire operational range 

of the power module and output the resulting temperature of a 

healthy power module at a specified monitoring point on the 

baseplate of the modules. Three monitoring points were used to 

diagnose the health of the module: the point on the baseplate 

directly below the center point of the semiconducting 

MOSFET chip, the point on the baseplate to the side of the 

center point of the chip directly below the edge of the solder 

layer, and the midpoint on the baseplate between these two 

points. The three points as seen in Fig. 2 were selected for 

judgement of the effects of solder cracking. If the module is 

healthy, then the monitoring temperature will match the RBFN 

output at each of the monitoring points. If there are unhealthy 

cracks in the solder layer, then for each point when compared 

to the RBFN output, the point beneath the center of the chip 

will have a greater temperature, the point at the edge of the 

solder layer will have a lower temperature, and the midpoint 

between these two points will not have a significant deviation 

in temperature. If these differences are each above a specified 

error tolerance, then the device should be scheduled for 

maintenance. 

For offline training of the RBFN, a CAD model of a power 

module can be constructed using CAD software. The 

dimensions and materials of a power module can be obtained 

from a manufacturer datasheet and used to build a CAD model 

of the power module. The module’s operating parameters, such 

as blocking voltage, conducting current, switching frequency, 

and average switching and conducting losses can be used in 

circuit simulation software to calculate the heat generation on a 

semiconductor chip during its operation. FEA software can 

then be used to perform a thermal analysis of the power loss 

resulting from the circuit simulation using the CAD model. The 

power loss calculated at each semiconducting chip of an SiC 

MOSFET power module is a heat generation input for the FEA 

simulation. The output of the FEA simulation is the 

temperature at each point in the mesh of the thermal model. For 

a healthy module, the solder layer has a specified length, width, 

and thickness in the module. In an unhealthy module, solder 

cracks grow from the outside of the layer inwards. After a 

significant period of wear, the cracks cause an increase in 

thermal impedance on the outer area of the solder layer, thus 

constricting the heat flow towards the inside of the solder layer 

resulting in an increase in temperature below the chip on the 

baseplate and a decrease in temperature at the point below edge 

of the solder layer on the baseplate. 

An RBFN is composed of three layers, the input layer, the 

hidden layer, and the output layer [17], [18]. The hidden layer 

consists of any number of units where each unit is fed an input 

vector and calculates a Gaussian density function which is a 

localized basis function. The outputs of all the units are then 

weighted and summed with corresponding bias values 

individually for the specified number of outputs. The Gaussian 

density function with a center vector C, input vector x, and 

scalar width parameter β can be seen in (1).  

𝜑(𝑥) =  𝑒
(−

‖𝑥−𝐶‖2

𝛽2 )
          (1) 

For this application, each MOSFET and diode used in a 

power module has a corresponding heat generation curve 

associated with it. Each of these heat generation curves is an 

input to the RBFN as seen in Fig. 3 where Qi (i = 1, , n) is the 

heat generation input of the ith semiconductor chip and n 

specifies the number of MOSEFTs and diodes. There is only 

one output, the temperature at the selected point on the 

baseplate, specified as Y in Fig. 3. After specifying how many 

units to use for an RBFN and accumulating a large amount of 

input data to train the RBFN, the algorithm k-means clustering 

can be used to find the optimal place for the centers of the units 

so that the centers can be positioned in a way that the distance 

from each input vector to a center is at a minimum for all input 

patterns. Once the center positions of the units are found, the 

widths of the units can be calculated using the P-nearest 

neighbors heuristic algorithm. This calculates the optimal width 

for each node by calculating the root-mean-squared distance or 

2-norm, from a centroid to its neighbors using (2) where β is 

the width, i is the unit number, C is a center value, p is the 

number of neighbors being considered, and j is the index for 

the summation.  

𝛽𝑖 = (
1

𝑝
∑ ‖𝐶𝑖 − 𝐶𝑗‖

2𝑝
𝑗=1 )

1/2

           (2) 

Once the centers and widths are calculated for a given 

number of units, the values are fixed and the weights V = [b1, 



 

 
 

Fig. 4. Autodesk Inventor CAD model of a CREE CCS050M12CM2 SiC 

MOSFET power module. 

 

 
Fig. 5. Side view of a healthy power module. 

 

 
Fig. 6. Side view of an unhealthy power module. 

 

 
 

Fig. 7. Simulink heat generation inputs: Phase-A. 

 

 
 

Fig. 8. COMSOL thermal simulation of a CREE CCS050M12CM2 SiC 

MOSFET power module. 

V1, , Vm] of the RBFN are calculated using the pseudoinverse 

method expressed by (3)-(7). 

𝑌̂ = 𝐺𝑉                (3) 

𝑔𝑖𝑗 = 𝜑(𝑥𝑖) = 𝑒
(−

‖𝑥𝑖−𝐶𝑗‖
2

𝛽𝑗
2 )

            (4) 

𝑌 ≈ 𝑌̂               (5) 

𝑉 = 𝐺−1𝑌                 (6) 

𝑉 = (𝐺𝑇𝐺)−1𝐺𝑇𝑌                     (7) 

where the element of the matrix G in (3) is defined in (4) which 

is the result of each unit’s Gaussian distribution function output 

in response to an input pattern; the weight matrix V in (3) 

determines 𝑌̂, the output of the RBFN; the vector C and scalar 

β in (4) are the center and width of the unit, respectively. The 

training procedure becomes an optimization problem of 

minimizing the difference between the healthy module output 

and the calculated RBFN output. In this case, the healthy 

module output is the simulated FEA solution of the chip 

temperature over a certain period. If the actual output was the 

same as the RBFN output, then Y would be equal to 𝑌̂. Thus, 

the optimal weights V would be obtained by (6) by multiplying 

the inverse of G by Y. Usually the inverse of G is not a square 

matrix, so the pseudoinverse can be used by first creating a 

square matrix using G then multiplying it by Y as shown in (7). 

Using the resulting weights in V from (7), this pseudoinverse 

method can be used to find the output of the RBFN. 

III. RESULTS AND DISCUSSION 

 Shown in Fig. 4 is the CAD model used for simulating an 

SiC MOSFET power module. The module was created in 

Autodesk Inventor which is a CAD design program freely 

available to students. The module’s dimensions and material 

properties are based off the datasheet parameters listed for the 

CREE CCS050M12CM2 All-SiC Six-Pack Module [19]. There 

are three material stacks each for a single phase of a three-

phase inverter. The power module geometry measurements and 

material properties are listed in [20]. Each material stack has its 

own solder to baseplate layer that was reduced in volume to 

simulate appropriate wear in the solder layer. Shown in Fig. 5 

is the cross-sectional view of a healthy power module while 

shown in Fig. 6 is the cross-sectional view of an unhealthy 

power module. The solder layer in the unhealthy power module 
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Fig. 9. Comparisons of trained RBFN and FEA temperature data at (a) center point, (b) side point, and (c) middle point. 

seen in Fig. 6 has not decreased in thickness but has decreased 

60% in conducting cross-sectional area to the point where the 

conducting region is further inward than the edge of the chip. 

The square chips at the top of the transistor stacks seen in 

Fig. 4 are the SiC MOSFETs used in the module while the 

rectangular chips above the MOSFETs are the SiC free-

wheeling diodes used in conjunction with the MOSFETs. Each 

diode and MOSFET has a heat generation curve associated 

with a specific operating condition. The heat generation curves 

for each of the SiC MOSFETs and diodes were created in 

Matlab/Simulink with the add-on Simscape. This environment 

has a transistor MOSFET model that will output the power loss 

the transistor will experience depending on the simulated 

circuit. A sine-triangle pulse-width modulation switching 

scheme was used with the inverter to drive an induction motor 

load. The inverter used a 400 V DC-link voltage, 60 A peak 

sinusoidal output current, 5 kHz switching frequency, and 60 

Hz line frequency. Shown in Fig. 7 is Phase-A of power loss or 

heat generation outputs from this simulation. Each phase 

consists of a top and bottom MOSFET and diode. The curves 

of each phase were used for the COMSOL thermal simulation 

shown in Fig. 8 with an ambient temperature of 60°C and a 

cooling convection coefficient with a value of 10,000 W/m2K 

applied to the bottom of the baseplate.  

The results in Fig. 9 demonstrate three RBFNs trained on 

the center, side, and middle points shown in Fig. 2 for the left 

MOSFET chip of the left material stack in Fig. 4. The results in 

column (a) of Fig. 9 correspond to the point on the baseplate 

underneath the center of the MOSFET chip. The results in 

column (b) of Fig. 9 correspond to the point on the baseplate to 

the side of the MOSFET chip underneath the outer perimeter of 

the solder layer. The results in column (c) of Fig. 9 correspond 

to the midpoint between the two points considered in column 

(a) and column (b). The first row of plots shows the 

comparison between the healthy baseplate temperature training 

data from COMSOL and the output of the trained RBFN. The 

second and third rows of plots show the comparison between 

the trained RBFN and the unhealthy temperature data for a 

whole second of data. The fourth row of plots shows the MSE 

between the trained RBFN and the unhealthy data at every 

point across the entire simulation range with the MSE plotted 

logarithmically. Comparisons between different error statistics 



Table. I: Error Comparisons between Center, Side, and Middle Points. 
Point 

On  

Module 

Y & Y-ANN 

MSE (°C) 

Y & Unhealthy 

MSE (°C) 

Y-ANN & 

Unhealthy 

MSE (°C) 

Y-ANN & Unhealthy 

Max Temperature 

Difference (°C) 

Y-ANN & 

Unhealthy Mean 

Error (°C) 

Qualitative 

Description 

Thresholds 

for Error 

Y-ANN & 

Unhealthy 

Percentage Change 

Center 0.5652 0.8104 1.2273 3.7831 1.2219 Increase >1.75% 2.05% 

Side 0.2831 0.9542 1.1103 2.5850 -1.1073 Decrease >1.75% 1.85% 

Middle 0.4884 0.4152 0.4045 3.4942 0.0535 Constant <1% 0.6% 

 

for the center, side, and middle points can be seen in Table I. 

The maximum averaged mean squared error (MSE) for a 

sequence of 200 points was found between the healthy output 

Y, the unhealthy output, and the trained RBFN output Y-ANN. 

The trained RBFN can be seen to follow the healthy data well 

in the first row of plots, with an MSE of 0.5652°C, 0.2831°C, 

and 0.4884°C for the center, side, and middle points, 

respectively. The MSE between Y-ANN and the unhealthy 

output for the three points indicates a substantial increase in 

temperature for the center point, a decrease in temperature for 

the side point, and a consistent temperature for the middle 

point. The temperature differences all indicate a solder crack 

fault has occurred when using the listed thresholds in Table I as 

markers for diagnosis. Diagnosis of the solder fault can be 

further strengthened by noting the time of maximum 

temperature difference at 1 second and 0.4 seconds for the 

center and side points, respectively. 

IV. CONCLUSIONS AND FUTURE WORK 

This study explored the effectiveness of using an RBFN to 

monitor for changes in the thermal distribution across an SiC 

MOSFET power module to identify the existence of solder 

cracks in the module. The RBFN was trained using healthy 

FEA thermal simulation data. The output of the RBFN was 

then compared to the unhealthy FEA simulation data at three 

specific points on the baseplate of the power module. As solder 

cracks expand from the outer edges of the solder layer towards 

the center of the module, constricting the heat flow inwards, the 

temperature at different points on the baseplate changes as 

well. The comparison between the trained RBFN and the 

unhealthy FEA simulation data shows significant changes in 

temperature on the baseplate depending on the location. The 

future work for this study lies in incorporating more power 

module operational states to provide a more accurate heathy 

model as well as investigating a way to update the parameters 

of the healthy model once a fault is detected for continued 

monitoring. 
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