

1 **Dorsal CA1 Hippocampal Place Cells Form a Multi-Scale**
2 **Representation of Megospace**

3
4 Bruce Harland ^{1,2}, Marco Contreras ¹, Madeline Souder ¹, Jean-Marc Fellous ^{1,3 *}
5
6

7 **Summary**
8

9 **Spatially firing “place cells” within the hippocampal CA1 region form internal maps**
10 **of the environment necessary for navigation and memory. In rodents, these neurons have**
11 **been almost exclusively studied in small environments (<4 m²). It remains unclear how place**
12 **cells encode a very large open 2D environment, which is more analogous to the natural**
13 **environments experienced by rodents and other mammals. Such an ethologically realistic**
14 **environment would require a more complex spatial representation, capable of**
15 **simultaneously representing space at overlapping multiple fine to coarse informational**
16 **scales. Here we show that in a ‘megospace’ (18.6 m²), the majority of dorsal CA1 place cells**
17 **exhibited multiple place subfields of different sizes, akin to those observed along the septo-**
18 **temporal axis. Furthermore, the total area covered by the subfields of each cell was not**
19 **correlated with the number of subfields, and this total area increased with the scale of the**
20 **environment. The multiple different-sized subfields exhibited by place cells in the megospace**
21 **suggest that the ensemble population of subfields form a multi-scale representation of space**
22 **within the dorsal hippocampus. Our findings point to a new dorsal hippocampus ensemble**
23 **coding scheme that simultaneously supports navigational processes at both fine- and coarse-**
24 **grained resolutions.**

25
26 **Keywords:** Place cell, large environment, multi-scale, dorsal CA1, place field
27
28

29 **Introduction**
30

31 Seminal place cell studies found that the majority of place cells formed a single field in the
32 ‘classic’ environments (<1 m²) tested¹⁻³. When such environments were expanded, place field size
33 also expanded^{2, 4}. It was also shown that individual place cells along the dorso-ventral axis of the
34 hippocampus coded areas of increasingly larger sizes^{1, 5}. Taken together, these findings suggested
35 that the larger ventral hippocampus place fields may be involved in representing large-scale
36 environments. How this multi-scale information is effectively integrated and used is however
37 unknown, especially given the dynamic nature of the code as observed through, for example,
38 remapping experiments⁶. An alternative theory is that the multi-scale nature of the spatial code is
39 not purely predicated on the anatomical location of place cells, and that it is the result of dynamic
40 ensemble coding throughout the entirety of the hippocampus⁷. However, experimental support for
41 ensemble place cell coding of multiple spatial scales has, to this day, been lacking.

¹Computational and Experimental Neuroscience Laboratory, Department of Psychology, University of Arizona, Tucson, USA. ²School of Pharmacy, University of Auckland, New Zealand. ³Department of Biomedical Engineering, University of Arizona, Tucson, USA. *email: fellous@email.arizona.edu.

42 Fenton et al. (2008) showed that in a larger classic environment (2.1 m^2), place cells have
43 multiple irregularly arranged, enlarged place fields. Since then, several studies have further
44 reported multi-field place cells on long linear running tracks (10.3m, 18m, and 48m)^{5, 8, 9} in rats,
45 and a 200m tunnel in bats¹⁰. However, because animals are constrained to run in a particular
46 direction in these linear environments, place cells operate differently than in open-fields, by
47 forming for example, bi-directional selectivity¹¹. In a large open-field arena (2.5 m^2), Park et al.
48 (2011) showed multiple field place cells in dorsal hippocampal CA1, CA3, and dentate gyrus.
49 While the area of the largest subfield per cell increased on average from a small to a larger
50 environment, no significant change in area was noted when all subfields were accounted for, unlike
51 previous studies which showed that the average field size increased^{2, 12}. Overall, this experimental
52 work challenged existing place cell models, which were based on the idea of one-place-cell / one-
53 location. This resulted in an alternative computational model positing the existence of a
54 ‘megamap’ in which individual place cells feature multiple subfields of similar sizes, capable of
55 enlarging to fill any infinite space¹³. Experimentally, it is still unclear how enlarged multiple-field
56 place cells would effectively encode a large ‘megospace’ at multiple spatial scales. Understanding
57 how place cells encode multiple spatial scales has additional theoretical value as these same
58 hippocampal neurons are thought to be involved in encoding human autobiographical memory
59 along multi-scale mnemonic hierarchies¹⁴⁻¹⁶.

60 Here, we compared place cell properties in a megospace (18.6 m^2), considerably larger than
61 previous published studies, with those in a classic environment. We used wireless recording and a
62 new behavioural paradigm in which rats were trained to follow a small food-baited robot to obtain
63 place cell recordings with sufficient coverage within the megospace. We found that place cells
64 exhibited multiple spatially distributed subfields of many sizes in the megospace. We found that
65 the average place field size increased with the size of the environment. We also show that the
66 subfields of each individual cell were of different sizes and that the number of subfields per cell
67 was not correlated with the total area covered by a cells subfields.

70 **Results**

71 *Robot following facilitated high resolution place cell recordings in the megospace*

72 Rats were recorded in a megospace ($5.3 \times 3.5\text{ m}$; 18.6 m^2 , Figure 1A, Video S1) in between
73 visits to a smaller environment ($1.8 \times 1.2\text{ m}$; 2.2 m^2). The megospace is considerably larger than
74 environments used in previously published studies to record place cells (Figure 1B). To obtain
75 sufficient coverage of this environment, we trained rats to follow a small food-baited robot
76 ('Sphero') controlled by an experimenter (Figure 1C). Previously, we have shown that rats can
77 attend to their surrounding by learning an allocentric spatial task while following the robot and
78 that place cells did not remap in a small environment during robot following¹⁷. Here, we compared
79 behavioural and place cell parameters between separate robot following ($N = 39$) and traditional
80 foraging ($N = 15$; Figure 1D) sessions using one-way Anova (see Figure S1A-C for example
81 trajectories). In the megospace, robot-following ensured greater behavioural coverage ($F_{(1,53)} =$
82 25.43 , $P < 0.0001$; Figure 1E) and movement velocity ($F_{(1,53)} = 54.26$, $P < 0.0001$; Figure 1F)
83 compared with foraging. Similarly, coverage and velocity were also increased in the small
84 environment in robot-following sessions (Figure S1D-E).

87 There were no significant differences in place cell characteristics in the small environment
88 between robot following and foraging sessions (Figure S1F-I). Place cell characteristics in the
89 megaspace did not differ between session types for number of fields ($F_{(1,381)} = 0.33, P = 0.57$;
90 Figure 1G), average firing rate ($F_{(1,381)} = 0.05, P = 0.83$; Figure 1H), and mean size of place fields
91 ($F_{(1,381)} = 1.15, P = 0.28$; Figure 1I). The total area of place subfields for a given cell in the
92 megaspace was slightly higher for cells in robot-following sessions (mean=2.15m²; SD±0.47m²)
93 than for cells during foraging (mean=1.99m²; SD=0.44m²; $F_{(1,381)} = 10.57, P < 0.01$; Figure 1J).
94 This difference was due to the lower average velocity in foraging sessions; when a sub-set of
95 velocity-matched robot following and foraging sessions (n = 6 each) were compared, there were
96 no differences in place cell characteristics, including total area of place subfields in the megaspace
97 (Figure S1L-P). Robot following generally resulted in greater distances travelled in a shorter time
98 (Figure 1K) without altering place cell function, therefore place cells in robot-following and
99 foraging sessions were pooled for all further analyses.

100
101 *Most place cell had multiple subfields of different size in the megaspace*
102

103 We recorded 539 place cells from dorsal CA1 over 54 sessions in five rats (Small 1 –
104 Megaspace – Small 2; Figure 1A). Tetrode positions in the dorsal CA1 were confirmed
105 histologically (Figure 1L) and the position of each tetrode analyzed was verified to be within the
106 CA1 area of the hippocampus (Fig. S2). To ensure that activity in the megaspace could not be
107 explained by tetrode drift over the long sessions, only spatially firing place cells active in all three
108 environments, with stable place fields in both small environments, were retained for analysis (n =
109 383 place cells; 71% of total place cells). We compared place cell characteristics between small 1,
110 small 2, and the megaspace using one-way Anova's and Tukey's HSD tests.

111 Most place cells had multiple subfields with a broad range of sizes in the megaspace
112 (Figure 2A; more examples shown in Figure S3), exhibiting more spatial subfields per cell
113 compared to within the small environments ($F_{(2,1146)} = 405.6, P$'s < 0.0001). The majority of cells
114 (82%) exhibited 2-5 subfields in the megaspace compared to 1-2 subfields (91%) in the small
115 environments (Figure 2B). Place subfields in the megaspace were also significantly larger on
116 average, both in terms of the mean area of their subfields ($F_{(2,1146)} = 560.2, P$'s < 0.0001; Figure
117 2C) and their sum area ($F_{(2,1146)} = 6203.5, P$'s < 0.0001; Figure 2D). The up-scaled multiple-
118 subfield representation yielded only 2% more relative coverage per place cell in the megaspace
119 than in the small environment ($F_{(2,1146)} = 95.4, P$'s < 0.0001; Figure 2E), which was 8.8 times
120 smaller in overall area. This coverage difference was reduced to 0.9% in a sample of megaspace
121 and small environment visits matched for rat velocity (data not shown). Number of subfields, mean
122 and sum area of subfields, and percentage of environment did not differ between Small 1 and Small
123 2 (Tukey's post-hoc comparisons, P 's > 0.85). Cells exhibited a comparable average firing rate in
124 the different sized environments ($F_{(2,1146)} = 1.92, P = 0.15$), and the average firing rate in the
125 megaspace was 0.93 ± 0.64 SD (Figure 2F).

126 Most multi-field place cells in the megaspace had subfields that greatly ranged in size, with
127 most cells (79%) having a subfield area range greater than 0.6 m² (Figure 2G). There was only a
128 weak negative correlation between subfield area range and number of subfields suggesting cells
129 with either few or many subfields had the capacity to be 'multi-scale' in the megaspace (Figure
130 2H). We confirmed that place subfield locations were not correlated between the small
131 environment and megaspace within each sessions (Figure S4A-E), and that in a smaller 'classic
132 environment' (<1m²), most place cells (94%) had only one place field (Figure S4F-I, 'very small').

133

134 *In megaspace, the number of subfields a cell had was not correlated with the total area of floor
135 space covered by the cell.*

136

137 We next investigated the relationship between the number of subfields per cell and the
138 megaspace area covered by those subfields. We found that the more subfields a cell possessed, the
139 smaller the average size of these subfields, as described by a negative exponential distribution (r
140 = 0.86; Figure 2I). In contrast, the average total area of all subfields remained constant irrespective
141 of the numbers of subfields (linear fit, $r = 0.027$, Figure 2J). Figure 2K, shows examples of different
142 place cells with 1 to 6 subfields, each covering this average sum area of all subfields. However,
143 comparing sum area across cells is problematic as the cell-specific threshold used for labelling
144 place fields and the rejection of low firing rate cells (< 0.1 Hz) resulted in a narrow range of
145 subfield sum areas (Figures 2L and S4J) compared to the wide range of sum areas evident when a
146 1 Hz threshold to define place fields was applied across all cells (Figure 2M and S5).

147 One advantage of having multiple subfields is to allow each cell to contribute to an
148 ensemble spatial representation in multiple regions within the environment. Indeed, most place
149 cells in the megaspace had subfields distributed in 2-4 quadrants (86%), with the highest
150 proportion covering 3 (Figure 2N). In contrast, place cell's subfields in the small environment
151 mostly covered 1-2 quadrants (95%) with the highest proportion of cells covering only 1.

152 The finding that cells in the megaspace possessed a wider range of place subfield sizes,
153 persisted when we changed the bin-size (Figure S4K-N), included a larger population of place
154 cells (Fig. S4O-Q), used the fixed 1 Hz common threshold for labelling place fields (Figure S5),
155 and when a range of cell-specific firing rate thresholds for subfield detection were applied (Figure
156 S6). The lack of correlation between number of subfields and sum area of subfields also persisted
157 but was slightly negatively correlated when the 1 Hz threshold was applied (Figure S5E).

158

159 *The ensemble of subfields in the megaspace formed a multi-scale representation of space*

160

161 A subset of 125 (out of 383) cells were used to plot the set of 'idealized' (circular,
162 equivalent area) place fields in the three environments, categorized into seven color-coded size
163 ranges (Figure 3A). This subset included only one cell (best isolation) per tetrode per session, and
164 was used to ensure that findings were not contaminated by overlap errors in cluster cutting. Place
165 fields in the smaller environments were all of a similar scale, mostly falling into the two smallest
166 color-bands (purple and dark blue, Figure 3A). In contrast, fields in the megaspace were of many
167 different scales forming a near-uniform multi-scale representation of space (Figure 3B) with
168 increased variability of subfield sizes (Figure 3C). A major functional advantage of the multiple-
169 place field representation in the megaspace was a significant increase in the number of overlapping
170 subfields (One-way Anova: $F_{(1,198)} = 12.21$, $P < 0.001$; Figure 3D) compared with the small
171 environment. Such highly overlapping ensemble patterns of activity within a population of place
172 cells can in principle accurately estimate location⁷.

173 This ensemble of small and large overlapping place fields may contribute to both fine- and
174 coarse-grained spatial representations of the environment as well as to the disambiguation of
175 spatial location, with each location within the megaspace being uniquely characterized by a
176 specific set of subfields of different sizes. Coarse-grained representations would support fast
177 traversal of open space at the scale of meters whereas fine-grained representations would support
178 higher resolution navigational operations at the scale of centimeters. A coarse-grained spatial

179 representation would consist of very large overlapping place fields and would require much fewer
180 fields than a fine-grained representation of smaller overlapping place fields (Figure 3E). This may
181 explain the distribution of place field sizes in the megaspace (Figure 3F) which is well fitted by a
182 negative exponential curve ($r = 0.995$) with the majority of fields (78%) having an area of 1m^2 or
183 less, and the remainder (22%) between 1m^2 and 4m^2 . In contrast, in the smaller environments, the
184 distribution of subfield sizes was well fitted by a Gaussian function ($r = 0.985$; Figure 3G),
185 although it became quasi linear when lower thresholds for labelling subfields were applied (Figure
186 S6F). Individual place subfields covered less fraction of the environment in the megaspace
187 compared to the small environment (One-way Anova: $F_{(2,2440)} = 196.37, P < 0.0001$; Figure 3H).
188 We tested whether each cell's subfields had different peak firing rates, which could allow for
189 within-cell differentiation of spatial position (Figure 3I) and found that these firing rate differences
190 were small, both in the megaspace and the small environments (Figure 3J). Altogether, these data
191 suggest that small and large overlapping place fields from many simultaneously active place cells
192 form a multi-scale ensemble representation of the animal's position within the megaspace.
193

194 *Place cells exhibited irregular patterns of subfields distribution across the megaspace*
195

196 The distribution and spatial position of the population of place subfields were consistent
197 with an ensemble coding scheme of spatial position in which the population discharges at each
198 location are unique⁷. The population of subfield centers from all place cells was spread out within
199 the megaspace, with no evidence of clusters or repeated positional patterns (Figure 4A). There was
200 a small accumulation of fields near the walls, possibly because walls were 'cue-rich', whereas
201 fields located in the rooms center were 'cue-poor'¹⁸. However, there was only a moderate positive
202 linear correlation ($r = 0.36$) between subfield size and distance to the closest wall in the megaspace
203 (Figure 4B). Interestingly, there was more wall clustering (Figure 4C) and a stronger positive linear
204 correlation ($r = 0.40$) between field size and distance to closest wall in the small environment than
205 in the megaspace (Figure 4D), despite the more limited range of subfield sizes. We quantified the
206 percentage of place fields in each environment that contacted the walls, the corners, and those that
207 did not contact any boundary, "middle cells" (Figure 4E). In spite of the very different
208 environmental scales, and characteristics of place cells in the different environment, there were
209 similar proportions of corner, wall and middle located subfields in the megaspace and small
210 environment (Figure 4F). We next investigated the distance between subfields within each cell in
211 the megaspace. The configurations of individual place fields per cell in the megaspace appeared
212 to be irregular¹² as evidenced by the fact that they were normally distributed both for average
213 distance between field centers, (Kolmogorov-Smirnov test; $D_{(345)} = 0.044, P > 0.2$; Figure 4G) and
214 field edges ($D_{(345)} = 0.037, P > 0.2$; Figure 4H). Randomly generated place field positions in the
215 megaspace (Fig. 4I) also produced a normally distributed pattern of average distances between
216 place fields per cell ($D_{(345)} = 0.057, P > 0.2$), however, slightly offset to the left towards lower
217 average distances (Figure 4J). The more abundant fields in the corners in the data resulted in more
218 high distance field pairs compared to the more dispersed simulated field centers.
219

220 *Place cell representations were more dynamic in the megaspace than in classic environments*
221

222 We next investigated the stability of the spatial representation in the megaspace after
223 environment changes. We recorded 125 place cells from additional sessions in which two of the
224 rats experienced the megaspace (Mega 1), followed by the small environment, followed by the

225 megospace (Mega 2) again (Figure 5A). We compared the stability of place fields between Mega
226 1 and Mega 2 visits with the stability of fields between Small 1 and Small 2 visits in the main
227 experiment sessions (Small 1 - Mega – Small 2). This analysis included all place cells defined
228 from the main experiment sessions ($n = 539$). An independent t-test showed that place cells were
229 less stable between megospace visits than between small environment visits ($t_{(920)} = 8.33, P <$
230 0.0001 ; Figure 5B). However, both populations included place cells that changed in size, position,
231 and firing rates between environmental visits. This may be related to the large shift in
232 environmental scale between the small and megospace environments.

233 We compared place cell characteristics between the three environmental visits using one-
234 way Anova and found that the number of subfields did not vary between megospace visits ($F_{(2,313)} =$
235 $90.2, P < 0.0001$; Tukey's Mega 1 vs Mega 2, $P = 0.37$; Figure 5C), and cell-to-cell variation in
236 subfield numbers was unimodal but not normally distributed (Kolmogorov-Smirnov test; $D_{(114)} =$
237 $0.13, P < 0.5$; Figure 5D). As expected, there were less subfields in the small environment
238 (Tukey's, Mega 1 and Mega 2 vs Small, $P = 0.0001$), which had a comparable distribution of
239 subfield numbers as small environment visits in the main experiment ($F_{(1,847)} = 0.79, P = 0.37$;
240 Figure 5E and 2). The average area ($F_{(2,313)} = 56.78, P < 0.0001$; Figure 5F) and sum area ($F_{(2,304)} =$
241 $864.1, P < 0.0001$; Figure 5G) of subfields per cell were different between environment visits,
242 which was driven by differences between the megospace visits and small environment (Tukey's,
243 $P's < 0.0001$). Although the average area of subfields per cell was comparable between Mega 1
244 and Mega 2 ($P = 0.97$), the sum area of place subfields was larger in Mega 2 than in Mega 1 ($P <$
245 0.05). However, the average (Figure 5H) and maximum (Figure 5I) firing rates were not different
246 between megospace visits (One-way Anova's, Mega 1 vs Mega 2; Mean rate: $F_{(1,238)} = 0.12, P =$
247 0.73 ; Max rate: $F_{(1,238)} = 1.22, P = 0.27$). These findings suggest that both spatial and non-spatial
248 associations may be more continuously updated¹³ in large environments than in smaller ones.
249 Some of these differences may also be associated with larger distances to anchoring cues in the
250 megospace, the different duration spent in the environments, or different time intervals between
251 re-visits. These additional sessions also demonstrated that the multi-field place cell phenomenon
252 was not specifically related to switching from small to subsequently larger environments, which
253 has been the favored design in other studies^{7, 9, 12}.

254

255 *Place subfield properties are modulated by environmental scale*

256

257 To study how the place cell representation changed with the scale of the environment, we
258 recorded 130 additional place cells in two rats from sessions in which the environment size
259 increased in three stages (Figure 6A). In between navigating in the small environment and the
260 megospace, rats experienced a “large” environment which was intermediate in size (350 x 235 cm;
261 8.2 m^2). As expected, the sum area of all place subfields increased as the environments expanded
262 in size (One-way Anova; $F_{(2,336)} = 1488.37, P < 0.0001$; Figure 6B). In contrast, the proportion of
263 the environment covered by place fields per cell did not increase linearly (Figure 6C); instead, it
264 was similar for the two larger environments ($F_{(2,336)} = 78.6, P < 0.0001$; Tukey's, Large vs Mega,
265 $P = 0.92$). We found that the number of place subfields also increased with the scale of the
266 environment ($F_{(2,387)} = 133.22, P < 0.0001$) with the highest proportion of cells exhibiting 1-2
267 subfields in the small environment, 3 subfields in the large environment, and 4-10 subfields in the
268 megospace (Figure 6D). Variability in place field size also increased with environmental scale
269 (Figure 6E), whereas the ratio between the peak and average firing rate within place fields
270 decreased slightly ($F_{(2,1128)} = 9.97, P < 0.0001$; Figure 6F). The total area covered by a cells

271 subfields was not correlated with the number of subfields and increased for larger environments
272 (Figure 6G). We compared the fraction of the environment covered by place fields for each cell in
273 the small vs large (Figure 6H), small vs mega (Figure 6I), and large vs mega (Figure 6J)
274 environments, and found the correlations to be low, suggesting that they were unrelated. Across
275 all recordings from the four different sized environments used in the study (Figure 6K), the number
276 of place subfields increased linearly with environment size ($R^2 = 0.9776$; One-way Anova; $F_{(3,2152)} = 608.8$, $P < 0.0001$; all Tukey post-hoc comparisons, P 's < 0.001 ; Figure 6L). Similarly, the sum
277 area of all subfields per cell increased significantly ($R^2 = 0.9801$; $F_{(3,2152)} = 7774.6$, $P < 0.0001$; all
278 Tukey post-hoc comparisons, P 's < 0.0001 ; Figure 6M) but with a strong exponential fit ($r = 0.996$)
279 which matched the increase in area between the four environments ($r = 0.987$).
280

283 Discussion

284 Our results show that the area of the environment covered by each dorsal CA1 place cell
285 increases with the size of the environment, and that each cell is active in several distributed
286 subfields of various sizes. The ability to exhibit different subfield sizes gives each place cell the
287 capability to form a multi-scale representation of space. These multiple subfields also allow each
288 cell to be active in several sections of the same environment, possibly spatially binding them, and
289 allows for each location of the environment to be represented by a unique combination of subfields
290 of different sizes¹⁹. Ensembles of dorsal CA1 place cells therefore form complex multi-scale codes
291 capable of supporting concurrent and interdependent coarse- to fine-grained spatial
292 representations, extending our current understanding of the hippocampal spatial code in large
293 ethologically realistic environments.
294

295 The propensity for multiple place fields and up-scaling of field size increased as the
296 environment size increased; an efficient way for a finite population of place cells to encode vast
297 natural environments measured in kilometers^{20, 21}. Place cells may be intrinsically multi-scale
298 (multi-field) in all environments, even though only one or two place subfields can be physically
299 reached by the animal in smaller 'classic' environments. An interesting question is how place cells
300 with multiple spatial subfields can accurately represent the position of an animal? We found no
301 within-field firing rate pattern that might explain how subfields from the same cell could be
302 differentiated based on spiking activity. Instead, it is likely that overlaps from many different cell's
303 subfields use an ensemble pattern decoding scheme that can accurately estimate the animal's
304 current location^{7, 12, 22}. Multiple subfields allow a cell to contribute to the ensemble in multiple
305 regions of the environment at multiple scales. This raises the interesting possibility that in large
306 environments, place cells may contribute to the spatial 'binding' of different subareas within the
307 same environment, contributing to the animal understanding of the space as being the 'same
308 space', whether it is physically located in one side of the room or in another²³. The multiscale
309 nature of the code also raises questions about the interactions of these CA1 cells with other types
310 of cells known to be theoretically useful to spatial navigation, such as head direction cells,
311 boundary vector cells²⁴ or landmark-vector cells²⁵.

312 Our work supports the findings of others showing that place cells exhibit multiple
313 irregularly-arranged place fields in a large open environment^{7, 12}. However, here we show a greater
314 enlargement of place fields than would have been predicted and that in even larger environments,
315 place subfields also greatly range in size, forming a representation at multiple spatial scales. Rich
316 et al. showed multi-field place cells when rats traversed a winding 48m-long linear track⁹, but did

317 not report a multi-scale representation. Although the animals travelled a considerable linear
318 distance when the track was fully extended, the total floorspace available to the animal was more
319 than four times smaller than that of the megaspace. Furthermore, as cells were only recorded during
320 one novel exposure session, direct comparison between the studies is difficult. It is likely that the
321 encoding of novel environments is significantly different to that of a familiar one, at least in the
322 requirement for the latter to retrieve and process memories. Rich et al. concluded, similarly to
323 previous studies, that dorsal multi-field place cells may operate alongside a dedicated ventral
324 hippocampal place cell population in order to encode differently sized environments.

325 Alongside others, we have also previously suggested a multi-scale representation of large-
326 scale space involving the longitudinal axis of the hippocampus in which fine- and coarse-grained
327 representations are supplied by the dorsal and ventral hippocampus, respectively²¹. However,
328 considering the structural, connective, and functional gradients present along the dorsoventral
329 hippocampus²⁶, it is likely that representations of different scales are in fact integrated along the
330 entire hippocampus. Our results suggest this is indeed the case within the dorsal CA1. In
331 correspondence to the manner in which single-field place cells increase in size along the dorsal-
332 to-ventral hippocampal axis¹, we predict that the total area of the environment covered by multi-
333 field place cells would also increase along the axis. Within large environments, the majority of
334 ventral place subfields would be larger, but smaller place fields would also be exhibited, which
335 could explain in part previous reports of smaller ventral place fields²⁷. The concept of a dorsal-
336 ventral functional gradient of small-to-large scale representations is challenged by our finding that
337 individual multi-field cells within dorsal CA1 can exhibit a wide range of subfield sizes. Instead
338 we propose that the multi scale coding is pervasive throughout the axis, and that place fields at all
339 levels may be directly connected through the dense web of CA3 connections present along the
340 longitudinal axis²¹. Large place fields at all levels may form distinct neural ensembles dedicated
341 to encoding a lower-resolution and less computationally intensive representation supporting coarse
342 travel. Simultaneously, longitudinal neural ensembles utilizing smaller place fields from these
343 same cell populations are overlaid to provide higher resolution and details where needed within
344 the environment²⁰. Information selectively received by ventral levels (e.g. amygdala or prefrontal
345 cortices) would then modulate all levels of the longitudinal axis simultaneously, at multiple scales.
346 There is already evidence in human fMRI studies of fine- and coarse-grained hippocampal
347 representations²⁸⁻³⁰. Interestingly, reliance on cognitive maps, and better navigational performance
348 are related to greater posterior (dorsal), relative to anterior (ventral), hippocampal volume³¹⁻³³.
349 Other virtual navigation studies found that the anterior hippocampus became mainly involved
350 when navigating through large and complex environments, whereas the posterior hippocampus
351 was always active^{28, 30}. Certainly, humans must make use of complex place cell maps utilizing
352 three dimensions³⁴, over many overlapping spatial scales, from single rooms, to buildings, to
353 streets, to cities, and beyond. It would be interesting to incorporate the concept of multi-scale place
354 cells into models of how these hippocampal cells support networks of semantic cognitive space³⁵.
355 The idea of multi-scale overlapping place subfield ensembles may also be suited to understanding
356 how mnemonic hierarchies may be encoded in autobiographical memory¹⁶. For example, memory
357 of a life-event may constitute overlapping ensembles that encode both contextual (large subfields)
358 and detailed (small subfields) features of the memory.

359 The increased navigational complexity inherent to the megaspace representation, which
360 incorporates multiple subfields per cell and a wide range of subfield sizes, may require more
361 flexibility and adaptive capability than previously thought when studying behavior in smaller
362 environments. Our results suggest that place cell characteristics were more dynamic upon

363 revisiting the megaspace compared to when revisiting the small environments, however this would
364 need to be studied more directly, ideally with a second different megaspace room. The irregular
365 patterns of place subfields observed in the current study suggests a flexible representation
366 consisting of unique ensemble discharges of overlapping fields at any one location, rather than an
367 orderly partitioning in which each region contains a field from each cell^{7,13}.

368 Taken together, our findings reveal new coding properties and point to new ways in which
369 place cells may operate in larger-scale navigational space and will require new generations of
370 computational models of multiscale spatial navigation¹³ and new experimental paradigms to be
371 developed.

372
373 **Acknowledgements:** This research was supported by: NSF CRCNS #1429937 and NSF IIS
374 #1703340. We thank S. Gianelli and S. V. Srivaths for technical assistance. We thank Dr. Bruce
375 McNaughton and Dr. Andre Fenton for their constructive comments on previous versions of the
376 manuscript.

377
378 **Author Contributions:** B.H. and J.M.F. conceived and planned the experiments. B.H. performed
379 the surgeries and collected the electrophysiological data with assistance from M.C. and M.S. B.H.,
380 J.M.F., and M.C. contributed to the interpretation of the results. B.H. led the analysis and writing
381 the manuscript. All authors discussed the results and commented on the manuscript.

382
383 **Declaration of Interests:** The authors declare no competing interests.

386 Main Figure and Title Legends

387
388 **Figure 1: Methods and comparisons between robot-following and foraging sessions.** (A) Top
389 view of recording environments. Yellow dotted line shows position of small environment within
390 the megaspace (18.6 m², Video S1). (B) The megaspace is over four times larger than environments
391 from other published studies which also included dorsal CA1 place cell recordings: 1 = 48m track⁹;
392 2 = Large box⁷; 3 = Monkey cage¹²; 4 = 18m track⁵. (C) Rats were trained to follow a small baited
393 robot ('Sphero'). A wireless headstage allowed for recordings in the megaspace. Robot-following
394 was compared with (D) traditional foraging, also see Figure S1. (E) Robot-following (Sph, green)
395 resulted in a greater fraction of the room covered by the occupancy map, and (F) greater average
396 speed in the megaspace than during classic foraging (For, orange). Place cells in the megaspace
397 had similar (G) numbers of subfields, (H) average firing rates, and (I) average place field sizes in
398 robot following and foraging sessions. (J) The sum area of place fields per cell was greater in robot
399 following sessions in the megaspace. (K) Robot-following sessions (green circles) yielded more
400 distance traveled in a smaller amount of time compared with foraging (orange crosses). (L)
401 Coronal section showing dorsal hippocampus, also see Figure S2. Arrowheads show electrolytic
402 lesions indicating the end of tetrode tracks. For all panels * = $P < 0.05$, ** = $P < 0.001$.

403
404 **Figure 2: In the megaspace, place cells had multiple subfields of various sizes.** (A) Six different
405 representative place cells: top four cells recorded with robot-following, bottom two with foraging.
406 See Figure S3 for additional examples and Video S1. Place cells exhibited multiple subfields of
407 varying size in the megaspace. (B) Number of place subfields per cell for the three recording
408 epochs. (C) Mean and (D) sum area of all subfields per cell was significantly greater in the

409 megaspace although (E) only ~2% more space is covered compared to the small environment. (F)
410 Average firing rate of place cells in the megaspace, only cells with > 0.1 Hz average firing rate
411 were considered place cells. (G) Most cells with at least two subfields in the megaspace had a
412 range of subfield sizes (area of largest – smallest subfield per cell) greater than 0.6m^2 . (H) A linear
413 trend suggested that most place cells could possess subfield sizes of multiple scales, irrespective
414 of their number of subfields. (I) In the megaspace, the average subfield size decreases with the
415 number of subfields per cell, however (J) the subfield sum area of cells was not correlated with
416 the number of subfields. (K) Example of place cells with 1 – 6 subfields, which have the mean
417 sum area of fields shown in the outer dark-grey filled circle above each rate map, and the mean
418 place field area shown in the inner light-grey filled circle. Number of subfields indicated above
419 each graph, on the left. Sum area of subfields per cell is shown when (L) a cell-specific (> 1.2 SD
420 above mean) and (M) fixed (> 1 Hz) firing rate threshold are used to define place fields, 45 out of
421 383 cells did not have fields using the fixed threshold. (N) Diagram showing a representative cell
422 quantified for the number of quadrants containing subfields in each environment. The average
423 number of quadrants occupied per cell with subfield centers is shown for the megaspace (blue) and
424 small environment (red). See also Video S1, Figures S4-S6. For all panels *** = $P < 0.0001$.
425

426 **Figure 3: The population of place subfields formed a multi-scale representation of space in**
427 **the megaspace.** (A) Population of subfields from 125 well isolated place cells plotted in seven
428 color-bands based on their area in the megaspace from smallest (purple, $0.023 – 0.091\text{ m}^2$) to
429 largest (red, $1.23 – 3.46\text{ m}^2$). (B) There was a greater range of place field size in the megaspace
430 than in the small environments, (C) reflected by the greater variability in field size (D). There was
431 a greater degree of place subfield overlapping in the megaspace compared with the small
432 environment. (E) Cartoon illustrating the prediction that many more smaller place subfields (green
433 circles, $n = 40$) would be required in order to support finer-grain representations of the megaspace
434 than large subfields (red circles, $n = 16$) would be needed to support coarser-grained
435 representations. (F) The distribution of subfield sizes in the megaspace was consistent with this
436 prediction ($n = 1288$ subfields). (G) There was a different distribution of subfield sizes in the small
437 environment (Small 1 and Small 2; $n = 1152$ subfields), also see Figure S6F. (H) % of environment
438 covered per place field. (I) The difference between maximum firing rate of each pair of subfields
439 was calculated, $|F1-F2|$, $|F1-F3|$, $|F2-F3|$. (J) Distributions of differences in maximum firing rate
440 between subfield pairs from all cells are shown for the megaspace (blue, $n = 1964$ subfield pairs)
441 and small environment (red, $n = 468$ subfield pairs). These differences are typically small, which
442 suggests that subfield firing rate is not sufficient to differentiate spatial position for multiple
443 subfield place cells. Results summarized in Video S1. For all panels *** = $P < 0.0001$.
444

445 **Figure 4: A well-isolated sample had comparable place cell characteristics to the population**
446 **of cells and the distances between place cell subfields were normally distributed.** (A) Plot of
447 all place field centers in the megaspace, colors indicate fields recorded from 5 different rats (blue,
448 orange, red, green, purple). (B) Distance to the nearest wall plotted against subfield area for all
449 subfields in the megaspace. (C) Plot of all subfield centers in the small environment. (D) Distance
450 to the nearest wall plotted against subfield area for all subfields in the small environment. (E) The
451 distance in each cardinal direction from the edge of each subfield to the maze walls was calculated.
452 The red arrow shows the closest wall. Place subfields that contacted two, one, or no walls were
453 designated “Corner”, “Wall”, and “Middle” subfields, respectively. (F) The megaspace and small
454 environments had similar proportions of types of subfields. For place cells with at least 2 subfields,

455 (G) the distance from the center of each subfield to the center of every other subfields (i.e. field
456 pairs) and (H) the distance from the edge of each subfield to the edge of every other subfields were
457 calculated. The average distance between subfields per place cell for both of these measures was
458 normally distributed, whereas the distribution of distances between subfield pairs for both of these
459 measures was right skewed, meaning a larger proportion of field pairs were closer together relative
460 to the cell-averaged data. (I) An example of randomly generated place subfield positions. (J) The
461 distribution of average distance between field centers per cell for the simulated data was the same
462 shape as the experimental data, but shifted towards higher values.
463

464 **Figure 5: Place fields are more dynamic across visits in the megaspace than across visits in**
465 **the small environment.** (A) Representative examples of three place cells recorded in additional
466 sessions in which rats foraged in the megaspace before (Mega 1) and after (Mega 2) the small
467 environment. (B) Comparisons of rate map correlations, between the two megaspace visits (M1 vs
468 M2) and the two small environment visits (S1 vs S2) from the main experiment. (C) The
469 distribution of number of subfields per cell was comparable for the two megaspace visits. (D) Cell-
470 to-cell variation in number of subfields (Mega 1 – Mega 2) between megaspace visits. (E) In the
471 small environment, place cells had a similar distribution of number of subfields as in the main
472 experiment. (F) The average size of subfields per cell was comparable between Mega 1 and Mega
473 2, however, (G) the sum area of subfields per cell was larger when the megaspace was revisited
474 (Mega 2). Difference in (H) mean firing rate, and (I) maximum firing rate between megaspace
475 visits for the population of cells. Negative values along the x-axis indicate increased firing in Mega
476 2 relative to Mega 1, whereas positive values indicate decreased firing in Mega 2 relative to Mega
477 1. All units in Hz. For all panels * = $P < 0.05$, *** = $P < 0.0001$.
478

479 **Figure 6: Place subfields scale with environment size.** (A) Overhead view of three environments
480 and example place cells from additional sessions in which the size of the environment increased
481 in three stages. Between visiting the small environment and megaspace, a large environment (3.5
482 x 2.35 m) was visited that was intermediate in size. (B) The sum area of all subfields increased
483 linearly as environment size expanded, however, (C) the percentage of the environment covered
484 by subfields was comparable between the two larger environments. (D) Distribution of number of
485 subfields per cell for the three environments. Number of subfields along the x-axis are color-coded
486 to indicate which environment had the highest proportion of fields. (E) Variability of place field
487 size increased with environment size. (F) The ratio of peak to average firing rate within place fields
488 was comparable across environment sizes. (G) Distribution of sum subfield area for cells with
489 different numbers of subfields in the megaspace (blue), large (green), and small (red)
490 environments. The fraction of the environment covered by place fields was uncorrelated between
491 the (H) Small and Large, (I) Small and Mega, and (J) Large and Mega environments. (K) To-scale
492 depiction of the four environment sizes used in the current study, from smallest to largest: very
493 small (VS, orange, 0.54m^2), small (S, red, 2.16m^2), large (L, green, 8.225m^2), megaspace (M, blue,
494 18.55m^2). Place cell recordings in these environments were aggregated from all session types (VS,
495 n = 122; S, n = 1278; L, n = 130, M, n = 750). (L) As the environment size increased, the number
496 of place subfields increased linearly and (M) sum area of subfields increased exponentially across
497 the four environment sizes. For all panels * = $P < 0.05$, *** = $P < 0.0001$. See video S1.
498
499

500 **Star Methods**

501
502 **RESOURCE AVAILABILITY**
503

504 **Lead Contact.** Further information and requests should be directed to and will be fulfilled by the
505 Lead Contact, Jean-Marc Fellous (Fellous@email.arizona.edu)
506

507 **Materials Availability.** The study did not generate any new unique reagents.
508

509 **Data and code availability.** Sample datasets and data analysis code are available to download
510 from our laboratory website at <http://amygdala.psychdept.arizona.edu/lab.html> and will be
511 uploaded to the CRCNS website. Additional data, code, and materials used in the analysis can be
512 made available upon request to the corresponding author.
513

514 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
515

516 Five adult male Brown Norway Rats (aged 6-7 months and weighing 321-346 g at time of
517 surgery) on a reverse 12/12 cycle were used in this study. They were housed individually and
518 provided with *ad libitum* water. During pre-training and experimental testing, the rats were food
519 restricted to maintain their weight at 85-90 % of *ad libitum* body weight and were fed after each
520 training or recording session. However, they were provided with *ad libitum* food for 24 hours
521 before and for one week after implant surgery. All methods were approved by the University of
522 Arizona IACUC and followed NIH guidelines.
523

524 **METHOD DETAILS**
525

526 **Room and behavioural apparatus.** Rats were trained to forage and follow a small robot (Figure
527 1C) in a very large environment (530 x 350 cm). This ‘megospace’³⁶ was enclosed by black
528 wooden walls (51 cm high). Large colorful national flags (71 x 56 cm) covered the east, west,
529 and south room walls at varying heights, and irregular distances from each other. Smaller flags
530 (~ 25 x 15 cm), cut into different shapes, were placed along all four maze walls at varying
531 heights. All flags had different unique combinations of shapes and included light and dark colors.
532 The floor of the room was painted with granular water-proof paint and contained multiple ‘cues’
533 in the form of small pieces of electrical tape of varying size and shape (~ 1–4 cm). See Figure 1A
534 for a top-down view of the megospace. Flags and floor cues were chosen to provide a richly cued
535 environment and were never displaced.

536 Three smaller environments were also used, consisting of modular walls centered within
537 the megospace, and sharing the same floorspace; these were designated as the ‘large’, ‘small’, and
538 ‘very small’ environments. The large environment (350 x 235 cm) had 20 cm high wooden walls
539 consisting of 3 segments per long side, and 2 segments per shorter side. Three different colors of
540 segments were arranged so that the same color was never used for 3 adjacent segments, and that
541 no corner or wall was the same. Some of the megospace maze-wall flags, and all of the room-wall
542 flags were visible from within the large environment. The small environment (180 x 120 cm)
543 consisted of 33 cm high black wooden walls along three sides (north, east, and west) and a 51cm
544 high black wall along the south side. A single white rectangular cue-card (21.6 cm high and 28 cm
545 tall) was centered on the taller south wall. Only the larger flags positioned higher up on the room
546 walls were visible to rats inside the small environment. The very small environment (90 x 60 cm)

547 had black wooden walls 43 cm high with a white cue card (21.6cm high and 28cm tall) and an X
548 painted in white paint opposite each other on the shorter walls. Maze and room wall flags were not
549 visible from inside the very small environment.

550 The rat's movements in the megaspace and large environment were captured by an
551 overhead camera (PointGrey Flea3 at 25-30 frames per seconds) mounted on the ceiling in the
552 center of the room. A separate overhead camera (Logitech Carl Zeiss Tessar Webcam HD 1080p,
553 25-30 fps) was used to capture the rat's movement in the small and very small environments. The
554 cameras provided inputs to our tracking software ZTracker, written in house in LabVIEW
555 (National Instruments), and freely available from our website. A strip of LEDs near the cameras
556 provided about 0.5-0.6 lux of light during the experiments.

557

558 **Sphero robot.** The small robot used in the study was a Sphero 2.0 (Sphero, Boulder, CO) which
559 was always fitted within a black plastic cart (Figure 1C). A small black plastic weigh boat,
560 containing mash (4:3 rat chow:water) was glued at the back of the cart. Sphero was linked via
561 Bluetooth to custom in-house LabVIEW (National Instruments) software allowing the robot to be
562 piloted with a joystick (Microsoft Sidewinder USB Joystick) enabling fine control of speed and
563 trajectory. See ¹⁷ for more detailed information about Sphero, its control system, and integration
564 with rat behavior. All control software to pilot the robot is available for download from our
565 laboratory website. In the very small environment only, a smaller 'Sphero Mini' (Sphero, Boulder,
566 CO; 4cm diameter) housed in a homemade 3D-printed cart was deployed to enable maneuvering
567 in such restricted space (Figure S4G). The homemade cart was 9.2 cm long, 5 cm high, and 5 cm
568 at the widest point (the wheels). A small section of weigh boat was attached to the back of the cart
569 creating a small dish in which mash (wet regular food) was placed, as with the regular-sized
570 Sphero.

571

572 **Pre-Training.** After habituation to the environment in the home-cage for several days, rats were
573 trained to sit on a towel-covered raised bucket lid (34.5 cm diameter, 83 cm high) in the center of
574 the room for periods up to 1 hr. Next, as described previously¹⁷, rats were trained to follow the
575 Sphero robot while being habituated to the megaspace over several weeks. After two or three 10 –
576 15 min sessions following the robot in the megaspace and one session foraging in the small
577 environment, the rats were put back on ad-libitum food in preparation for Hyperdrive implantation.

578

579 **General task procedure.** After surgical recovery (see below), rats were re-introduced to the
580 various environments over the course of about a week. As the animals became more accustomed
581 to the additional weight of the hyper-drive, small weights (9-32g) were slowly added to the drive's
582 protective cap to simulate the weight of the wireless headstage and build up the neck muscles.
583 Elastic support, attached to the wireless headstage, was also used during training, mounted to the
584 ceiling for the small environment, and attached to a long flexible pole held by an experimenter for
585 the megaspace.

586 Each recording session began with a 10-20 min pre-rest period on the bucket, followed by
587 three behavioural segments (visits to different environments; see 'Session types'), followed by a
588 10-30 min post-rest period on the bucket. Within each session, the behavior in all three segments
589 was either classical foraging or following the robot. In Sphero-following sessions, the robot was
590 driven in front of the rat, maintaining a distance of ~ 15–25 cm, in a combination of straight and
591 curving arcs around the environment (see Video S1, and Figure S1A-C and S3, for examples of
592 the rat's overhead path). The cumulative coverage of the room was monitored in real-time by the

593 experimenter from the camera tracker. When the rat caught up with the robot it would slow or stop
594 to allow the rat to consume food, if the robot was not caught, it would slow or stop after ~ 2-4
595 mins. When the weigh boat became empty, the robot was kept moving and interacting with the rat
596 until the rat became unresponsive / disinterested or ~ 1 min had passed since the rat had fed, at
597 which time the experimenter directed the robot to the edge of the maze, and re-baited the cart. In
598 instances when the rat did not immediately follow the robot, simulated darting behavior³⁷ was
599 used, eventually resulting in the rat following the robot. In classical foraging sessions, small 20
600 mg food pellets (TestDiet; Richmond, IN, USA) were tossed into the arena, and the rat was left to
601 forage for the duration of each segment.

602 Cumulative tracking of the rat's path was used to guide the animal to areas of the
603 environment not covered sufficiently and influenced the length of each segment; longer segments
604 were recorded if more coverage was needed. During the rest periods at the start and end of each
605 session, the rat was placed on the bucket near the center of the room (center of both the small
606 environment and megaspace). Between segments, the rat was placed on the bucket for 5-7 mins
607 off to the side of the room while environments were erected / dismantled. The wireless head-stage
608 was turned off during this time to allow it to cool down, and the battery was replaced if necessary.
609 However, the headstage always remained connected for the duration of each daily session.
610

611 **Session types.** In the main experimental sessions (Small 1-Mega-Small 2: S-M-S; n = 54 sessions),
612 rats visited the small environment (8 – 10 mins), followed by the megaspace (35 – 55 mins),
613 followed by the small environment again. These sessions compared place cell firing properties in
614 the small and megaspace environments. In two of the rats, additional session-types were run. In
615 eight sessions (7 Sphero-following, and 1 foraging), rats visited the megaspace, followed by the
616 small environment, followed by the megaspace again (M-S-M). These sessions investigated the
617 stability of place cell firing in the megaspace over several visits during the same session (Figure
618 5A). In eight sessions (7 Sphero-following, and 1 foraging), rats visited the small environment,
619 followed by the large environment for 25 mins, followed by the megaspace (S-L-M). These
620 sessions investigated changes in place cell characteristics over three environments of increasing
621 scales (Figure 6A). In ten Sphero-following sessions, rats visited the small environment for all
622 three behavioral segments (S-S-S). These sessions were used as control sessions for comparison
623 with correlations performed between the small and megaspace revisits in other sessions (Figure
624 S4B). In three Sphero-following sessions, rats visited the very small environment (5 – 6 mins),
625 followed by the small environment, followed by the very small environment again (V-S-V). These
626 sessions established place cell characteristics in a constrained environment, traditionally used for
627 recording place cells (< 1m²; Figure S4F).
628

629 **Surgery and recording techniques.** After completion of pre-training, rats were anesthetized using
630 2–3% isoflurane in oxygen, placed in a stereotaxic frame, and implanted with a Hyperdrive^{17, 38}
631 aimed at the right dorsal CA1 hippocampal cell body layer (~4.75 mm posterior, 4.0 mm lateral to
632 bregma, 10° angle away from midline). The drive was anchored to the skull with seven anchor
633 screws and dental acrylic, and two of these screws were used as animal grounds. Additionally, two
634 EEG electrodes (Teflon-insulated stainless-steel wire, 0.0045 in.) were implanted in the right
635 medial prefrontal cortex (+3.00mm posterior, 1.2 mm lateral to bregma, 2.8 mm depth, 9° angle
636 towards midline). An EMG electrode was implanted in the neck muscles of the rat to help assess
637 sleep during the rest phases (data not shown). All implantation coordinates were modified
638 proportionally to the Bregma-to-Lambda distance of the animal using a brain atlas³⁹. Glycopyrrolate

639 (I.M.) was administered during the surgery to alleviate congestion, and Carprofen, an analgesic,
640 was given (I.P.) during surgery and again the day after.

641 The Hyperdrive contained 14 independently movable tetrodes, two of which were used as
642 reference. Tetrodes were constructed from four strands of insulated wire (12 μ m diameter nickel-
643 chrome wire), gold-plated to reduce wire impedance to 0.5 M Ω (at 1 kHz). Following surgery,
644 about 4-6 tetrodes at a time were slowly lowered in batches toward the hippocampal dorsal CA1
645 pyramidal cell body layer both to facilitate recordings over several months and to avoid instability.
646 Reference tetrodes were left in an electrically quiet zone in the cortex or corpus callosum. Tetrodes
647 were spaced ~50 μ m apart, and lowered at the end of each experimental session, to ensure that the
648 same cells were not recorded in multiple sessions.

649 Electrophysiological recordings were made using either a wireless Cube 64 or Cube 2
650 headstage (currently renamed ‘Freelyn’, Figure 1C shows the Cube 2 headstage mounted on the
651 hyperdrive of a moving rat). The wireless signal was picked up via a ceiling-mounted router, which
652 was connected to a Digital Lynx SX system (Neuralynx, Bozeman, MT) in the adjacent room.
653 Single-unit data was amplified, filtered (600–8000 Hz), and digitized at a rate of 30 kHz. Local
654 field potential was recorded from one channel per tetrode, filtered between 0.5 – 450 Hz, digitized
655 at 2 kHz, and used to detect the presence of sharp wave ripple oscillations, confirming that tetrodes
656 were in the dorsal CA1 cell body layer. Two LEDs (red/green) mounted on the headstage were
657 used to track the animal’s movements with the overhead cameras.

658
659 **Unit classification.** Action potentials were sorted offline using Spike2 software (CED, Cambridge
660 UK) and further analyzed using custom Matlab code. Clustering was performed manually by a
661 single experimenter in three-dimensional projections based on the principal components of the
662 waveform amplitude. Data from each session – the three behavioral segments and two rest periods
663 – were spike-sorted together. Only well isolated clusters with pyramidal waveforms, signal-to-
664 noise ratio of at least 4 on one of the 4 channels were retained. Signal was measured as the mean
665 amplitude of the action potential (peak-to-trough), and noise was measured as the mean amplitude
666 of the initial 2 points of each waveform. Clusters isolated from the same tetrode were manually
667 checked to insure each had a sufficiently different configuration of shape/amplitudes across the
668 four channels. Clusters were labelled as either putative excitatory cells or putative interneurons
669 using differences in spike width, average firing rate and complex-spike bursting.

670
671 **Detection of sharp wave ripples (SWR).** Position data, based on tracking of the LEDs on the
672 head stage, were analyzed and all stop periods were detected. Stops were designated as periods
673 when instantaneous velocity dropped below 6 cm/sec for a period of at least 0.5 sec. SWR events
674 were detected using the best two LFP channels per session which were band pass filtered between
675 100-250 Hz and SWR envelopes calculated using a Hilbert transform, smoothed with a Gaussian
676 kernel (3ms standard deviation). During behavioral segments, SWR events were detected as times
677 within stop periods when the smoothed envelope exceeded 4 standard deviations above the mean
678 for at least 20 ms. For rest segments, SWR events were smoothed envelopes exceeding 2 standard
679 deviations above the mean for at least 20 ms during stop periods only. SWR events included 10
680 ms before and after the envelope, and envelopes exceeding 11 standard deviations above the mean
681 were rejected as artifacts. All spikes occurring during sharp wave ripples were removed when
682 generating spatial-firing rate maps to avoid any SWR activity contamination⁴⁰.

683

684 **Ratemaps and place fields.** The position data for each session was sorted into bins of 12 x 12
685 camera pixels (5.5 cm² for the small and very small environments, 12 cm² bins for the megaspace
686 and large) with a velocity threshold of 10 cm /sec⁴¹. Spike-count and occupancy maps were
687 computed for each cell by counting the number of spikes occurring in each spatial bin, and the
688 time spent in each spatial bin, respectively. Spike-count bins containing only one spike and
689 occupancy bins visited for less than 0.08 secs, were considered empty. Both maps were smoothed
690 using a square Hanning kernel window and the final place field map was produced by dividing the
691 smoothed spike-count by the smoothed occupancy. The peak firing bin for each cell was used to
692 colour code the spatial-firing rate map from dark red (highest firing) to dark blue (lowest firing).

693 The spatial information content (bits/spike) of spatial-firing ratemaps was calculated ⁴².
694 The occupancy map was used to quantify the spatial coverage (% Occupied bins) quality of each
695 behavioural segment in each session by calculating the percentage of filled occupancy bins.

696 Cells were classified as ‘place cells’ only if: (i) mean firing rate was >0.1 Hz but <5 Hz,
697 (ii) spatial information content >0.5 in at least one recorded environment ^{43, 44}, (iii) they possessed
698 pyramidal waveforms, which were manually checked in all cells, with (iv) signal-to-noise >4 on
699 at least one tetrode channel.

700 Place fields were then designated as disconnected rate map regions of high activity > 200
701 cm², with firing rate threshold >1.2 standard deviations above the mean firing rate in all bins using
702 the *regionprops()* function in Matlab (Mathworks). The centroid pixel coordinates (x,y), and area
703 (cm²) of this region were used to plot an ellipsoid fitted around the edges of each field to aid with
704 visualisation of the place fields. The highest firing rate bin was designated as the maximum firing
705 rate for each subfield. For each place cell with at least 2 place subfields, the absolute difference in
706 maximum firing rate between each possible pair of subfields was determined (Figure 3I). Three
707 other cell-specific thresholds for determining place fields were applied to all cells in the S-M-S
708 sessions (firing rate threshold’s >0.6, 0.9, and 1.5 standard deviations above the mean firing rate
709 in all bins; see Figure S6). An alternative method of designating place fields was also applied to
710 the S-M-S sessions in which a fixed 1 Hz threshold was applied across all cells (see Figures 2L-
711 M and S5).

712 For the S-M-S and S-S-S sessions, only place cells with correlated firing-rate maps
713 between the two smaller environments were retained for analysis. Pearson correlations were
714 calculated between the small environment rate maps recorded before (Small 1) and after (Small 2)
715 exposure to the megaspace. This correlation was used to calculate a z-score by comparing it to
716 correlations generated from 300 shuffled versions of each rate map in which the bins were spatially
717 shuffled randomly. Eligible place cells had to have a z-score greater than 2.5, placing them above
718 the 99.5% percentile cutoff of the shuffled distribution. For the other session types (M-S-M, S-L-
719 M, V-S-V), cells that were not active (<0.1 Hz) in some of the environments but were otherwise
720 eligible as place cells, were included in the analyses.

721
722 **Distance between place fields.** Distance between pairs of fields (in the same environment) was
723 calculated both as the Euclidean distance between the centroids of each field, as well as the
724 distance between the edges of each field, by subtracting the radius of each ‘idealised’ (circular)
725 field from the first measure (Figure 4G, H). Similarly, distance of each field to the closest wall
726 was the shortest straight-line cardinal distance (x and y) from the centroid to each of the four walls,
727 with and without the addition of the field’s radius. Using these measurements, fields were
728 designated as ‘wall fields’ if the fields edge contacted the wall (distance == radius) in one direction,

729 ‘corner fields’ if contacting the wall in two directions, and ‘middle fields’ if they did not contact
730 the wall (Figure 4E).

731
732 **Rate map correlations.** Additional correlations were computed for each type of session to
733 compare rate maps in the different sized environments. In each session, tracking data from all
734 behavioral segments were re-sized to the same dimensions of data recorded in the smallest
735 environment employed during that session (Figure S4A). Resized rate maps were generated in the
736 same way as the small environment rate maps and then compared using Pearson correlations and
737 z-score comparisons against shuffled maps (300 shuffles).

738 In the main experimental sessions (S-M-S), comparisons were also made between small
739 environment rate maps and the cell activity in the larger environments restricted to the same floor
740 space only (Figure S4D). This was achieved by re-scaling the megaspace tracking data to the
741 pixel/cm scale of the small environment (0.46 cm / pixel) and generating new cropped rate maps
742 encompassing cell spiking and occupancy only in the megaspace floor space occupied by the small
743 environment (shown by yellow dotted line in Figure 1A). These were compared with Small 1 and
744 Small 2 ratemaps via Pearson correlations and z-score comparisons against shuffled maps (300
745 shuffles).

746
747 **Well-isolated place cell population.** The well-isolated population subsample of 125 place cells
748 from the main analysis included only 1 cell from each active tetrode per session (isolated cells
749 with highest signal-to-noise ratio). This was done to eliminate any potential spike-cutting error.
750 The sample population included contributions of cells from Sphero and foraging sessions, and
751 from each animal, that matched the proportion of cells contributed by each to the total population
752 of 383 cells, except for one rat that had only 2 foraging sessions with high cell yields, which
753 contributed 3 additional Sphero sessions instead of foraging sessions. This well-isolated sub-
754 population was compared to the main analysis population to ensure that findings in the megaspace
755 were not due to multiple cells being clustered together.

756 The well-isolated subsample was also used to visualize a population of place fields in the
757 three environments by plotting each place field’s center and area as semi-transparent ‘idealized’
758 circles of the same area as each place field (Figure 3A). The 532 place subfields exhibited in the
759 megaspace were split into seven even ranges based on their area, which were color-coded from
760 purple for smallest to red for largest. These color-coded size ranges were then applied to the 219
761 subfields in Small 1 and the 209 subfields in Small 2. The area ranges for the color coding was:
762 Purple $<0.092\text{m}^2$; Dark Blue: $<0.21\text{m}^2$; Light Blue $<0.366\text{m}^2$; Green $<0.54\text{m}^2$; Yellow $<0.81\text{m}^2$;
763 Orange $<1.22\text{m}^2$; Red $<3.47\text{m}^2$. When the entire population was plotted, it became graphically
764 difficult to distinguish individual fields, however the field centers from all cells are shown for the
765 megaspace (Figure 4A) and small environment (Figure 4C) color-coded by animal.

766
767 **Ensemble place field overlapping:** We plotted the well-isolated subsample population of
768 subfields from the main experiment as borderless circular fields with an alpha level of 0.05 in order
769 to quantify the amount of overlaps between place fields (Figure 3C). This provided a measure
770 similar to % of environment covered by place fields, but also took into account the density of place
771 fields at every pixel location throughout the different environments. The image was inverted and
772 pixel density was analysed using Image J (NIH). To help identify the pixel intensities relating to
773 specific number of subfield overlaps, a test figure was generated in which 60 overlapping place
774 subfields with the same alpha level, of diminishing size, were plotted at the same location. Analysis

775 of the test figure produced 60 peak intensities corresponding to the levels of overlap ranging from
776 intensity values of 13, for one overlap, to 245 for 60 overlaps, along the 255-pixel intensity scale.
777 Pixel intensity counts from the data were binned evenly around these peak values for small
778 environment and megaspace subfield plots, which included peak intensities that matched the test
779 figure. For the subsample population, the distribution of overlaps in Small 1 and Small 2 was
780 comparable ($F_{(1,197)} = 1.31$, $P = 0.72$), so were averaged and compared directly to the megaspace
781 overlaps.

782
783 **Histology and tetrode placement.** The correct position of the electrode tips were confirmed in all
784 animals by small electrolytic lesions on each of the tetrode wires (30 μ A, 8-s positive to electrode,
785 negative to ground) both the day before and just prior to the perfusion. Animals were then deeply
786 anesthetized with a Ketamine/Xylazine mixture (0.45 and 0.05 mg/kg respectively) and
787 transcardially perfused through the left ventricle with a Heparin-saline flush (200 ml) followed by
788 250 ml of cold 4% paraformaldehyde in 0.1M phosphate buffer (pH 7.4). After the brain was
789 removed, it was post-fixed in the same fixative for 1 day and then transferred to a solution of 30%
790 sucrose in PBS (phosphate buffer 0.01 M, NaCl 0.9%) with 0.02% sodium azide. At a later date,
791 brains were then blocked in the coronal plane and immediately cut with a Cryostat (Leica) set for
792 a thickness of 30-50 μ m. Every section was obtained from the region of the EEG electrode track
793 in the medial prefrontal cortex (data not shown), and the region encompassing the hyperdrive
794 bundle in the hippocampus, and stained with cresyl violet (Nissl) then mounted on slides and
795 cover-slipped³⁸.

796 Each tetrodes intersection with the hippocampal dorsal CA1 was recorded on digital
797 photomicrographs (Stereo Microscope, 10x magnification) by comparing tetrode traces and
798 electrolytic lesions on successive sections (Figure S2 shows tetrode positions in dorsal CA1 for all
799 rats). Each set of coronal photomicrographs was compared to brain atlas plates³⁹ to estimate the
800 anterior / posterior position within the dorsal hippocampus.

801
802 **QUANTIFICATION AND STATISTICAL ANALYSIS**
803

804 Analysis of place field characteristics between environments and comparison of cells recorded
805 during robot-following and foraging sessions were done using ANOVA with an alpha level of P
806 < 0.05. Tukey's post-hoc tests were used to test for group differences, where applicable.
807 Kolmogorov-Smirnov tests were used to test normality of frequency distributions. Correlation
808 coefficient (r) and coefficient of determination (r^2) were used to measure the statistical relationship
809 between variables and to determine best fits. Comparison of the degree of subfield overlap between
810 environments used an ANOVA in which each level of overlap was weighted by the fraction of
811 environment covered. Distributions of place cell ratemap correlations between environment re-
812 visits (i.e. Small 1 vs Small 2 or Mega 1 vs Mega 2) were compared using independent t-tests. All
813 statistical test were performed in SPSS.

814
815
816 **Supplemental Video S1: Title and Short Legend**
817

818 **Video S1: Place Cell Recordings in a Megaspace. Related to Figures 1, 2, 3, and 6**
819

820 Place cells are wirelessly recorded from the hippocampus in rats as they follow a small robot.
821 Between small environments, the rat is recorded in a very large ‘megospace’. Place cells in the
822 megospace cover a similar total area but are fragmented into different numbers of subfields. These
823 subfields vary in size, so that the population of place cells forms a multi-scale representation in
824 the megospace capable of supporting both coarse- and fine-grained representations of the
825 environment. Additional recordings in environments of increasing scales show that the total area
826 covered by each place cell is comparable within each environmental scale.
827
828

829 **References:**

- 831 1. Jung, M.W., Wiener, S.I., and McNaughton, B.L. (1994). Comparison of spatial firing
832 characteristics of units in dorsal and ventral hippocampus of the rat. *The Journal of
833 neuroscience : the official journal of the Society for Neuroscience* *14*, 7347-7356.
- 834 2. O'Keefe, J., and Burgess, N. (1996). Geometric determinants of the place fields of
835 hippocampal neurons. *Nature* *381*, 425-428.
- 836 3. O'Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary
837 evidence from unit activity in the freely-moving rat. *Brain research* *34*, 171-175.
- 838 4. Muller, R.U., and Kubie, J.L. (1987). The effects of changes in the environment on the
839 spatial firing of hippocampal complex-spike cells. *The Journal of neuroscience : the official
840 journal of the Society for Neuroscience* *7*, 1951-1968.
- 841 5. Kjelstrup, K.B., Solstad, T., Brun, V.H., Hafting, T., Leutgeb, S., Witter, M.P., Moser, E.I.,
842 and Moser, M.B. (2008). Finite scale of spatial representation in the hippocampus. *Science*
843 (New York, N.Y.) *321*, 140-143.
- 844 6. Jeffery, K.J. (2011). Place cells, grid cells, attractors, and remapping. *Neural Plast* *2011*,
845 182602.
- 846 7. Park, E., Dvorak, D., and Fenton, A.A. (2011). Ensemble place codes in hippocampus:
847 CA1, CA3, and dentate gyrus place cells have multiple place fields in large environments.
848 *PloS one* *6*, e22349.
- 849 8. Davidson, T.J., Kloosterman, F., and Wilson, M.A. (2009). Hippocampal replay of
850 extended experience. *Neuron* *63*, 497-507.
- 851 9. Rich, P.D., Liaw, H.P., and Lee, A.K. (2014). Place cells. Large environments reveal the
852 statistical structure governing hippocampal representations. *Science* (New York, N.Y.)
853 *345*, 814-817.
- 854 10. Eliav, T., Maimon, S.R., Las, L., and Ulanovsky, N. (2019). Representation of large-scale
855 spaces in the hippocampus of flying bats. In *Society for Neuroscience*.
- 856 11. McNaughton, B.L., Barnes, C.A., and O'Keefe, J. (1983). The contributions of position,
857 direction, and velocity to single unit activity in the hippocampus of freely-moving rats.
858 *Experimental brain research* *52*, 41-49.
- 859 12. Fenton, A.A., Kao, H.Y., Neymotin, S.A., Olypher, A., Vayntrub, Y., Lytton, W.W., and
860 Ludvig, N. (2008). Unmasking the CA1 ensemble place code by exposures to small and
861 large environments: more place cells and multiple, irregularly arranged, and expanded
862 place fields in the larger space. *The Journal of neuroscience : the official journal of the
863 Society for Neuroscience* *28*, 11250-11262.

864 13. Hedrick, K.R., and Zhang, K. (2016). Megamap: flexible representation of a large space
865 embedded with nonspatial information by a hippocampal attractor network. *Journal of*
866 *neurophysiology* *116*, 868-891.

867 14. Grilli, M.D., Wank, A.W., and Verfaellie, M. (2017). The life stories of adults with
868 amnesia: Insights into the contribution of the medial temporal lobes to the organization of
869 autobiographical memory. *Neuropsychologia*, in press.

870 15. Moscovitch, M., Cabeza, R., Winocur, G., and Nadel, L. (2016). Episodic Memory and
871 Beyond: The Hippocampus and Neocortex in Transformation. *Annual review of*
872 *psychology* *67*, 105-134.

873 16. Thomsen, D.K. (2015). Autobiographical Periods: A Review and Central Components of
874 a Theory. *Rev Gen Psychol* *19*, 294-310.

875 17. Gianelli, S., Harland, B., and Fellous, J.M. (2018). A new rat-compatible robotic
876 framework for spatial navigation behavioral experiments. *Journal of neuroscience methods*
877 *294*, 40-50.

878 18. Battaglia, F.P., Sutherland, G.R., and McNaughton, B.L. (2004). Local sensory cues and
879 place cell directionality: additional evidence of prospective coding in the hippocampus.
880 *The Journal of neuroscience : the official journal of the Society for Neuroscience* *24*, 4541-
881 4550.

882 19. Scleidorovich, P., Llofriu, M., Fellous, J.M., and Weitzenfeld, A. (2020). A computational
883 model for spatial cognition combining dorsal and ventral hippocampal place field maps:
884 multiscale navigation. *Biological cybernetics* *114*, 187-207.

885 20. Geva-Sagiv, M., Las, L., Yovel, Y., and Ulanovsky, N. (2015). Spatial cognition in bats
886 and rats: from sensory acquisition to multiscale maps and navigation. *Nature reviews.*
887 *Neuroscience* *16*, 94-108.

888 21. Harland, B., Contreras, M., and Fellous, J.M. (2017). A role for the longitudinal axis of the
889 hippocampus in multiscale representations of large and complex spatial environments and
890 mnemonic hierarchies. In *The Hippocampus – Plasticity and Functions*. (InTechOpen), pp.
891 67-104.

892 22. Fyhn, M., Molden, S., Witter, M.P., Moser, E.I., and Moser, M.B. (2004). Spatial
893 representation in the entorhinal cortex. *Science (New York, N.Y.)* *305*, 1258-1264.

894 23. Feldman, J. (2013). The neural binding problem(s). *Cognitive neurodynamics* *7*, 1-11.

895 24. Barry, C., Lever, C., Hayman, R., Hartley, T., Burton, S., O'Keefe, J., Jeffery, K., and
896 Burgess, N. (2006). The boundary vector cell model of place cell firing and spatial
897 memory. *Reviews in the neurosciences* *17*, 71-97.

898 25. Deshmukh, S.S., and Knierim, J.J. (2013). Influence of local objects on hippocampal
899 representations: Landmark vectors and memory. *Hippocampus* *23*, 253-267.

900 26. Strange, B.A., Witter, M.P., Lein, E.S., and Moser, E.I. (2014). Functional organization of
901 the hippocampal longitudinal axis. *Nature reviews. Neuroscience* *15*, 655-669.

902 27. Poucet, B., Thinus-Blanc, C., and Muller, R.U. (1994). Place cells in the ventral
903 hippocampus of rats. *Neuroreport* *5*, 2045-2048.

904 28. Baumann, O., and Mattingley, J.B. (2013). Dissociable representations of environmental
905 size and complexity in the human hippocampus. *The Journal of neuroscience : the official*
906 *journal of the Society for Neuroscience* *33*, 10526-10533.

907 29. Brunec, I.K., Bellana, B., Ozubko, J.D., Man, V., Robin, J., Liu, Z.X., Grady, C.,
908 Rosenbaum, R.S., Winocur, G., Barense, M.D., et al. (2018). Multiple Scales of

30. Representation along the Hippocampal Anteroposterior Axis in Humans. *Current biology* : CB 28, 2129-2135 e2126.

30. Evensmoen, H.R., Ladstein, J., Hansen, T.I., Moller, J.A., Witter, M.P., Nadel, L., and Haberg, A.K. (2015). From details to large scale: the representation of environmental positions follows a granularity gradient along the human hippocampal and entorhinal anterior-posterior axis. *Hippocampus* 25, 119-135.

31. Brunec, I.K., Robin, J., Patai, E.Z., Ozubko, J.D., Javadi, A.H., Barense, M.D., Spiers, H.J., and Moscovitch, M. (2019). Cognitive mapping style relates to posterior-anterior hippocampal volume ratio. *Hippocampus*.

32. Maguire, E.A., Gadian, D.G., Johnsrude, I.S., Good, C.D., Ashburner, J., Frackowiak, R.S., and Frith, C.D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. *Proceedings of the National Academy of Sciences of the United States of America* 97, 4398-4403.

33. Maguire, E.A., Woollett, K., and Spiers, H.J. (2006). London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. *Hippocampus* 16, 1091-1101.

34. Grieves, R.M., Jedidi-Ayoub, S., Mishchanchuk, K., Liu, A., Renaudineau, S., and Jeffery, K.J. (2020). The place-cell representation of volumetric space in rats. *Nature Communications* 11, 789.

35. Bellmund, J.L.S., Gärdenfors, P., Moser, E.I., and Doeller, C.F. (2018). Navigating cognition: Spatial codes for human thinking. *Science* (New York, N.Y.) 362, eaat6766.

36. Henriksen, E.J., Moser, M.-B., and Moser, E.I. (2009). Megaspace recordings from hippocampal place cells and entorhinal grid cells. In *Society for Neuroscience*.

37. Gruene, T.M., Flick, K., Stefano, A., Shea, S.D., and Shansky, R.M. (2015). Sexually divergent expression of active and passive conditioned fear responses in rats. *eLife* 4.

38. Valdes, J.L., McNaughton, B.L., and Fellous, J.M. (2015). Offline reactivation of experience-dependent neuronal firing patterns in the rat ventral tegmental area. *Journal of neurophysiology* 114, 1183-1195.

39. Paxinos, G., and Watson, C. (2007). The rat brain in stereotaxic coordinates, 6th Edition, (Amsterdam ; Boston ;: Academic Press/Elsevier).

40. Xiao, Z., Lin, K., and Fellous, J.M. (2020). Conjunctive reward-place coding properties of dorsal distal CA1 hippocampus cells. *Biological cybernetics* 114, 285-301.

41. Huxter, J., Burgess, N., and O'Keefe, J. (2003). Independent rate and temporal coding in hippocampal pyramidal cells. *Nature* 425, 828-832.

42. Markus, E.J., Barnes, C.A., McNaughton, B.L., Gladden, V.L., and Skaggs, W.E. (1994). Spatial information content and reliability of hippocampal CA1 neurons: effects of visual input. *Hippocampus* 4, 410-421.

43. Grieves, R.M., Jenkins, B.W., Harland, B.C., Wood, E.R., and Dudchenko, P.A. (2016). Place field repetition and spatial learning in a multicompartment environment. *Hippocampus* 26, 118-134.

44. Harland, B., Grieves, R.M., Bett, D., Stentiford, R., Wood, E.R., and Dudchenko, P.A. (2017). Lesions of the Head Direction Cell System Increase Hippocampal Place Field Repetition. *Current Biology* 27, 2706-2712.e2702.

Supplemental References List

955 S1. Muller, R.U., and Kubie, J.L., Ranck Jr, J.B. (1987). Spatial firing patterns of hippocampal
956 complex-spike cells in a fixed environment. *The Journal of neuroscience: the official*
957 *journal of the Society for Neuroscience* 7, 1935-1950.
958