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Abstract—To improve the reliability of the conventional 

vibration-based wind turbine drivetrain gearbox fault diagnosis 

system, this paper proposes a novel fault diagnosis method by 

fusing the information from gearbox vibration and generator 

current signals. First, the fault features contained in the gearbox 

vibration signals and the generator current signals are analyzed, 

respectively. Second, a multiclass support vector machine (SVM) 

model with probabilistic output is proposed to design two 

classifiers which output the probabilities of different gearbox fault 

types according to the input fault features extracted from the 

vibration signals and the current signals separately. Then, a 

non-trainable combiner and a trainable combiner are designed 

based on the Dempster–Shafer theory and the softmax regression 

technique, respectively, to fuse the information from the vibration 

and current SVM classifiers at decision level. The output of each 

combiner is the final diagnosis result. The proposed method is 

validated by experimental results obtained from a test gearbox 

with different types of faults. The validation results show that the 

proposed method can increase the fault diagnostic accuracy and is 

more robust than the conventional fault diagnosis systems that 

only use one type of signals. 

 
Index Terms—current signal, fault diagnosis, gearbox, 

information fusion, vibration signal, wind turbine 

I. INTRODUCTION 

PERATION and maintenance (O&M) cost constitutes 

approximately 20-25% of the levelized cost of energy 

(LCOE) of wind power assets. One effective way to reduce 

O&M cost to make wind power more competitive in the 

electricity market is to implement condition-based maintenance 

[1]. To achieve this, a condition monitoring system (CMS) is 

needed to online monitor the health conditions of wind turbine 

subassemblies and perform maintenance timely when a fault 

that causes an improper operation of the wind turbine is 

detected. Because gearbox failure causes the longest downtime 

of wind turbines among various subassembly failures and high 

maintenance costs, many modern utility-scale wind turbines are 

equipped with CMSs for drivetrain gearboxes. The majority of 

 
This work was supported in part by the U.S. National Science Foundation 

under Grant CMMI-1663562 and CAREER Award ECCS-1554497.  

Yayu Peng, Wei Qiao, and Liyan Qu are with the Power and Energy 

Systems Laboratory, Department of Electrical and Computer Engineering, 

University of Nebraska-Lincoln, Lincoln, NE 68588-0511 USA (e-mail: 

yayu.peng@huskers.unl.edu; wqiao3@unl.edu; lqu2@unl.edu). 

Fangzhou Cheng is with Amazon Web Services, East Palo Alto, CA 94303 

USA (e-mail: chengfz73@gmail.com) 

these CMSs use vibration signals. A disadvantage of vibration 

monitoring is the high costs of vibration sensors and associated 

data acquisition and processing devices [2]. Moreover, false 

and missing alarms of vibration-based wind turbine CMSs have 

been reported and some manufacturers have realized the 

limitation of using vibration signals alone. Furthermore, a 

problem commonly seen in wind turbine CMSs is sensor failure, 

which may cause false fault diagnosis results [3]. A feasible 

way to reduce missing and false alarms of the existing 

vibration-based CMSs and solve the problem of sensor failure 

in CMSs is to use additional source(s) of signal(s). For 

example, General Electric’s commercial wind turbine CMS 

Bently Nevada ADAPT.Wind integrates oil particle sensors to 

provide a confirmation of suspected damage detected by the 

ADAPT.Wind vibration monitoring system [4].  

To improve the fault diagnosis accuracy and reliability by 

effectively using the fault-related features extracted from 

multiple sensors, a variety of methods based on the information 

fusion technique have been developed. Information fusion is 

the process of integrating multiple information sources and can 

be conducted at different levels, such as signal level, feature 

level, or decision level. In the signal-level fusion, signals from 

different sensors are combined to create a new signal with a 

better signal-to-noise ratio than the original signals [5]. For 

example, [6] proposed a method to enhance the accuracy of 

sensor fault diagnosis using adaptive extended Kalman filter 

and signal-level fusion. In [7], a signal-level fusion method was 

proposed to obtain the health indices for degradation modeling. 

However, the physical meaning of the result obtained from 

fusing different types of signals is not clear and signal-level 

fusion is usually conducted for signals of the same type.  

It is more common to conduct feature- and decision-level 

fusions in fault diagnosis. For example, the work in [8] fused 

information from different vibration sensors at decision level 

and achieved higher fault diagnostic accuracy than using the 

information from individual sensors separately. However, it 

still suffers from the drawbacks/limitations of vibration 

monitoring techniques and may fail if the vibration monitoring 

system fails. In [9], a bearing fault diagnosis system that uses 

both infrared thermal imaging data and vibration data was 

proposed. The system fused the features extracted from the two 

types of data, which were then used by a random forest 

classifier for fault diagnosis. The system outperformed single 

type of signal-based systems. However, it is costly to install 

infrared camera to obtain the thermal imaging data. The work 
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[10] performed fault diagnosis by fusing vibration and acoustic 

data and achieved higher accuracy than using vibration and 

acoustic data separately. However, these methods [8]-[10] 

require installation of additional sensors and data acquisition 

equipment and, therefore, lead to extra hardware cost and 

increased wiring complexity of the CMS. 

It is reported in [11] that generator current signals contain 

health condition information of wind turbine drivetrain gearbox 

and, thus, have been used successfully for fault diagnosis of 

drivetrain gearbox. Since current signals have been used in 

generator/power converter control systems, the use of generator 

current signals for fault diagnosis of drivetrain gearbox does 

not need to install any additional sensors or data acquisition 

equipment. Therefore, fusing the information of vibration and 

current signals is a cost-effective way to improve the accuracy 

and reliability of the conventional vibration-based CMSs. 

Information fusion of vibration and current signals has been 

studied in electric machine fault diagnosis. For example, [12] 

used a convolutional neural network (CNN) for feature level 

fusion and [13] used the Dempster-Shafer theory for decision 

level fusion. However, it is more challenging to perform 

gearbox fault diagnosis because different gearbox faults 

commonly have similar features and little work on vibration 

and current information fusion for gearbox fault diagnosis has 

been reported. To the best of the authors’ knowledge, [14] and 

[15] are the two most recent works on fusing current and 

vibration signals for gearbox fault diagnosis. In [14], the 

vibration and current signals were fused at the feature level by 

concatenation of the features from the two types of signals, 

which were used as the input to a deep neural network classifier 

for fault diagnosis. In [15], vibration, acoustic, current, and 

angular speed signals were concatenated and deep CNNs were 

used for fault diagnosis.  

Regardless of what information fusion techniques are used, 

fault diagnosis is a classification problem that is commonly 

solved by using machine learning techniques. For example, 

support vector machines (SVMs) were designed in [16] for 

fault diagnosis of wind turbine drivetrain gearbox using 

features extracted from stator and rotor current signals of 

doubly-fed induction generator (DFIG). The work [17] also 

used an SVM and feature learning on a generator current signal 

for wind turbine gearbox fault diagnosis. The recent advances 

in deep learning have achieved remarkable improvements in 

speech recognition, visual object recognition, and many other 

domains [18]. The state-of-art deep learning techniques have 

also been applied in fault diagnosis. For example, deep belief 

networks and convolutional neural networks have been used for 

wind turbine gearbox fault diagnosis and achieved satisfactory 

accuracy [19], [20]. However, a large amount of training data is 

needed when using deep learning techniques [19]-[22]. Unlike 

computer vision and natural language processing tasks, the 

labeled data available for gearbox fault diagnosis is limited [23]. 

Compared to deep learning-based fault diagnosis methods 

[19]-[22], SVM is more suitable for the learning problem with a 

small dataset [24] and, thus, has been adopted for gearbox fault 

diagnosis using one type of signal(s) only [11], [25]. 

This paper proposes a wind turbine drivetrain gearbox fault 

diagnosis method based on the SVM and decision-level 

information fusion techniques. The proposed method contains a 

non-trainable combiner and a trainable combiner, which are 

designed to fuse the diagnosis results from two SVM classifiers 

that perform fault diagnosis for the gearbox separately using the 

fault features extracted from gearbox vibration signals and 

generator current signals, respectively. The features of gearbox 

faults in vibration and current signals, which are not discussed 

in recent works on deep learning-based fusion techniques [14], 

[15], are analyzed in this paper. The proposed method is 

validated by using the vibration and generator current data 

collected from the tests performed on a two-stage parallel-shaft 

gearbox test rig with different types of gear faults in 

comparison with the state-of-the-art SVM fault diagnosis 

methods that use vibration or current signal only or fuse the 

features extracted from the vibration and current signals.  

The main contributions of this paper are three-fold. Firstly, 

this paper discussed why decision-level fusion is preferrable 

over feature-level fusion for the fault diagnosis using multiple 

sources of signals. Secondly, this paper developed a 

non-trainable method and a trainable method for decision-level 

fusion of vibration and current signals to improve the accuracy 

and reliability of the conventional vibration-based wind turbine 

gearbox fault diagnosis methods. Finally, this paper 

demonstrated the advantage of the non-trainable decision-level 

fusion method over the trainable decision-level fusion method 

and feature-level fusion method for the fault diagnosis 

problems with limited data for which the deep learning-based 

methods usually do not work.  

The remainder of this paper is organized as follows. Section 

II presents the proposed decision-level vibration and current 

information fusion-based fault diagnosis method. Section III 

validates the effectiveness and superiority of the proposed 

method in comparison with the methods using current or 

vibration signal alone or fusing the features extracted from both 

vibration and current signals via experimental test results 

carried out on a gearbox test rig. Section IV concludes the paper. 

Section V discusses the recommendations for future research. 

II. PROPOSED FAULT DIAGNOSIS METHOD BASED ON 

VIBRATION AND CURRENT INFORMATION FUSION 

A. Framework of the Proposed Fault Diagnosis Method 

In the conventional vibration-based gearbox fault diagnosis 

system shown in Fig. 1(a), the vibration signals are collected 

from sensors installed on the case of the gearbox. Fault features 

are extracted from the vibration signals. An SVM classifier is 

designed to identify the gearbox fault types according to the 

input fault features extracted from the vibration signals [25]. 

One major limitation of the conventional method is that if the 

vibration data is corrupted due to failure of sensors or data 

acquisition equipment, fault diagnosis may fail. 

The accuracy, reliability, and robustness of the conventional 

fault diagnosis method could be enhanced by increasing the 

number of sensors. This, however, will increase hardware cost 

and wiring complexity of the system. The method proposed in 

this paper utilizes generator current signals, which are already 

available in the generator control system and, therefore, does 

not need installation of any additional hardware. The proposed 

method, illustrated in Fig. 1(b), consists of four functional 

modules. The first functional module is feature extraction, 

which extracts the fault features in the gearbox vibration signals 

and the generator current signals collected into the proposed 
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CMS separately. In the second functional module, two SVMs, a 

current SVM and a vibration SVM, are designed and trained to 

output the probability of each possible fault type according to 

the fault features extracted separately from the vibration signals 

and the current signals. The third functional module is 

information fusion, which uses a combiner designed to fuse the 

output information, i.e., the probabilities of possible fault types, 

from the current SVM and the vibration SVM. The last 

functional module diagnoses the fault to be the one with the 

largest probability among the output of the combiner. 

Compared with the conventional method shown in Fig. 1(a), the 

proposed method in Fig. 1(b) is expected to achieve higher fault 

diagnostic accuracy by incorporating the information from 

generator current signals. Moreover, the proposed method will 

be effective even when vibration sensor(s) or associated data 

acquisition equipment fails and, therefore, is expected to 

improve the reliability and robustness of the CMS. 

 The goal of this work is not only improving the accuracy but 

also improving the reliability of the fault diagnosis method so 

that it can still work properly when some sensor(s) fail or the 

signal(s) collected from some sensor(s) are corrupted/lost. In 

these circumstances, the fault diagnosis based on feature-level 

fusion may not work properly because the incorrect features 

extracted from the corrupted/lost signals are used for the entire 

decision, but the fault diagnosis based on decision-level fusion 

would still work properly because the incorrect features 

extracted from the corrupted/lost signals are only used in part of 

the decision by separate SVM classifiers, and the SVM 

classifier(s) using correct features can still output the correct 

fault diagnosis result. Therefore, decision-level fusion is 

adopted in this work. 

B. Gearbox Fault Feature Extraction from Vibration and 

Current Signals 

1) Fault Features in Vibration Signals 

When a fault appears in a gear, it will alter the stiffness of the 

teeth or change their geometric parameters and, therefore, lead 

to changes in the vibration signal. These changes modulate the 

vibration signal v(t), which can be expressed as [26] 

𝑣(𝑡) = ∑ 𝑉𝑚(1 + 𝑎𝑚(𝑡))cos⁡(2𝜋𝑚𝑓𝑚𝑡 + 𝜃𝑚 + 𝑏𝑚(𝑡))𝑚   (1) 

where m is the meshing harmonic number; fm is the mth tooth 

meshing harmonic frequency; Vm and 𝜃𝑚 are the amplitude and 

initial phase of the mth meshing harmonic, respectively; am(t) 

and bm(t) are the amplitude and phase modulation functions of 

the mth meshing harmonic, respectively, expressed as follows. 

𝑎𝑚(𝑡) = ∑ 𝐴𝑚𝑛cos⁡(2𝜋𝑛𝑓𝑖𝑡 + 𝛼𝑚𝑛)𝑛                  (2) 

𝑏𝑚(𝑡) = ∑ 𝐵𝑚𝑛cos⁡(2𝜋𝑛𝑓𝑖𝑡 + 𝛽𝑚𝑛)𝑛                  (3) 

where fi (i = 1, , I) is the ith shaft rotational frequency and I is 

number of shafts of the gearbox; Amn and Bmn are the amplitudes 

and 𝛼𝑚𝑛 and 𝛽𝑚𝑛 are the initial phases of the nth harmonic of 

the amplitude and phase modulation functions of the mth 

meshing harmonic, respectively.  

Gearbox fault features contained in vibration signals can be 

extracted in time or frequency domain. The commonly used 

time-domain features include kurtosis and crest factor, which 

are used in this paper. Kurtosis K is a dimensionless parameter 

defined as follows. 

𝐾 =
𝑀4

𝜎4
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

where 𝑀4  is the 4th central moment and 𝜎  is the standard 

deviation of the signal. Kurtosis characterizes the probability 

distribution of the signal. If the signal follows a normal 

distribution, its kurtosis is equal to 3 and a fault may lead to an 

increase in kurtosis [27]. 

Crest factor 𝐶  is defined as the ratio of the maximum 

absolute value to the root mean square value of the signal. 

𝐶 =
|𝑣𝑝𝑒𝑎𝑘|

𝑣𝑟𝑚𝑠
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

Crest factor tells how “peaky” the signal is. The higher the crest 

factor, the peakier the signal.  

 
(a) 

 

(b) 

Fig. 1.  Block diagram illustration of (a) the existing vibration-based fault diagnosis method and (b) the proposed fault diagnosis method based on information 

fusion of vibration and current signals for drivetrain gearboxes. 
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In addition to kurtosis and crest factor, there are many other 

time domain features, such as shape factor, clearance factor, 

etc. [28]. An unhealthy condition of a gearbox usually can be 

distinguished from healthy condition by using time domain 

features of vibration signals. However, it is usually difficult to 

diagnose the fault type of the gearbox using time domain 

features. To achieve accurate fault diagnosis, the vibration 

signals need to be analyzed in frequency domain. 

The dominant components in the frequency spectrum of a 

gearbox vibration signal are the gear meshing frequencies and 

their sidebands caused by modulation by shaft rotating 

frequencies. Typically, an increase in the number and the 

amplitudes of sidebands may indicate a fault condition [29]. 

Therefore, the energies at each gear meshing frequency fm and 

its sidebands 𝑓𝑚 ± 𝑓𝑖⁡(𝑖 = 1,⋯ , 𝐼) in the frequency spectrum 

of the vibration signal can be used as fault features. 

2) Fault Features in Current Signals 

Due to the electromechanical coupling between the gearbox 

and the generator in a wind turbine drivetrain, the generator 

current signals are modulated by gearbox vibrations. The 

relationship between gearbox vibration and generator current 

can be derived from torque and current relationships of electric 

machines, which has been discussed in detail in [30]. 

If the gearbox vibrates at a frequency fi, the generator stator 

current signal will contain the fundamental component f and its 

sidebands at the frequencies f ± fi whose amplitudes change 

when fault occurs. Therefore, the energy at f ± fi can be selected 

as fault features in the current signal. Moreover, since the 

degradation of the gearbox will excite more noise in current 

signals [31], the noise-to-signal ratio (NSR) defined in (6) can 

also be selected as a fault feature of the current signal. 

𝑁𝑆𝑅 =
𝑃𝑛𝑜𝑖𝑠𝑒

𝑃𝑠𝑖𝑔𝑛𝑎𝑙
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙  is the energy of the fundamental frequency 

component of the current signal; 𝑃𝑛𝑜𝑖𝑠𝑒 = 𝑃𝑡𝑜𝑡𝑎𝑙 − 𝑃𝑠𝑖𝑔𝑛𝑎𝑙; and 

𝑃𝑡𝑜𝑡𝑎𝑙 is the total energy of the current signal.  

3) Fault Features in Nonstationary Signals 

In practice, wind turbines are subject to random fluctuations 

of speed and load, which make the vibration and current signals 

used for fault diagnosis nonstationary. This problem can be 

solved by using an appropriate signal conditioning method 

reported in the literature [32], [33] or a simple steady-state 

check which ensures that the signal is collected in steady state. 

Thus, the proposed information fusion-based fault diagnosis 

method can be easily extended to nonstationary scenarios.  

C. Multiclass SVM Classifier with Probabilistic Output 

The SVM is a technique commonly used to solve 

classification problems with small numbers of data samples. It 

was originally proposed to solve binary classification problems 

[34]. The goal of a binary SVM classifier is to find a 

hyper-plane that separates two classes with the maximal 

margin. However, gearbox fault type identification is a 

multiclass classification problem because there are more than 

two fault types. Suppose that there are total k (k > 2) possible 

gearbox fault types and define Θ = {Fi | i = 1, 2, ···, k} the set of 

all possible fault types. Then, gearbox fault diagnosis is a 

k-class classification problem. To solve such a problem, a 

multiclass SVM is designed by using k(k−1)/2 binary SVM 

classifiers and the one-against-one method [34]. Each binary 

SVM classifier is trained to classify two fault types by using 

two classes of data that characterize the two fault types, 

respectively. Then, the outputs of the k(k−1)/2 binary SVM 

classifiers are used by the one-against-one method to generate 

the final fault classification result for the k fault types. 

The output of each binary SVM is the class label which 

represents one of two fault types. A limitation of this approach 

is that it maps the input fault features to the corresponding fault 

types deterministically but does not provide the probability of 

belonging that is needed for the probabilistic information 

fusion. Here probability is interpreted as a quantification of 

belief that a particular type of fault will occur, which is known 

as Bayesian probability [35], instead of the frequency of 

occurrence of the fault. To enable the probabilistic information 

fusion of the proposed fault diagnosis method, this paper 

proposes that each binary SVM outputs the probability of one 

of the two fault types it classifies using a sigmoid function as 

follows, instead of the deterministic class label of the fault type.  

𝜇𝑖𝑗 = 𝑃(𝑦 = 𝐹𝑖|𝑦 = 𝐹𝑖⁡or⁡𝐹𝑗 , 𝒙)                    (7) 

≈
1

1 + exp⁡(𝐺𝑓(𝒙) + 𝐻)
 

where 𝜇𝑖𝑗 denotes the probability of the fault type 𝐹𝑖 when the 

SVM classifies the fault type Fi and Fj (Fi  Θ, Fj  Θ, and Fi  

Fj); 𝒙  is the vector of input features to the SVM; 𝑓(𝒙) =
w𝑇𝜑(𝒙) + 𝑏; w and b are the parameters of the SVM; and 𝜑() 

is the kernel function of the SVM. The parameters G and H of 

(7) are obtained by minimizing the negative log likelihood of 

the training data. 

Then, the probability of the input features belonging to each 

of the 𝑘  fault types, 𝑝𝑖⁡(⁡𝑖 = 1,⋯ , 𝑘), can be determined by 

solving the optimization problem (8) based on the pairwise 

coupling principle [36]. 

𝑚𝑖𝑛
𝒑

 
1

2
∑ ∑(𝜇𝑗𝑖𝑝𝑖 − 𝜇𝑖𝑗𝑝𝑗)

2

𝑗:𝑗≠𝑖

𝑘

𝑖=1

 

𝑠. 𝑡. ⁡𝑝𝑖 ≥ 0, ∀𝑖                                             (8) 

∑𝑝𝑖 = 1

𝑘

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

where p = [p1, p2, ···, 𝑝𝑘 ]T. The solution of (8) is the 

probabilistic output of the multiclass SVM. 

The proposed multiclass SVM model is applied to design the 

current SVM and the vibration SVM, shown in Fig. 1(b), of the 

proposed method. 

D. Fusion of the SVM Outputs 

The information fusion module of the proposed method fuses 

the probabilistic outputs of the vibration SVM and the current 

SVM, which are called base multiclass classifiers, by using a 

combiner. Depending on whether training is needed, there are 

two types of combiners: non-trainable and trainable combiners. 

No training is needed for the non-trainable combiner after the 

base classifiers are trained individually [37]. This paper designs 

both types of combiners for the information fusion and provides 

insights on the combiner selection. 
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1) Non-trainable Combiner 

The non-trainable combiner uses a fixed combination rule, 

such as majority vote, to fuse the information from different 

base classifiers and usually assumes that all the base classifiers 

are equal in determining the final result. The lack of flexibility 

is the major limitation of the non-trainable combiner. However, 

it needs less training data than the trainable combiner. This 

paper uses the Dempster–Shafer theory [38] to design the 

non-trainable combiner. Let 𝑚vibration(𝐹𝑖)  and 𝑚current(𝐹𝑖) 

be the basic probability assignment (BPA) of the fault type Fi 

(Fi  Θ) obtained from the vibration SVM and the current 

SVM, respectively. In other words, 𝑚vibration(𝐹𝑖)  and 

𝑚current(𝐹𝑖) are the probabilistic outputs on the fault type 𝐹𝑖 of 

the vibration SVM and the current SVM, respectively, which 

are obtained by solving the optimization problem (8). Then, the 

BPA output on the fault type 𝐹𝑖 of the non-trainable combiner, 

𝑚(𝐹𝑖), is obtained by fusing the BPA outputs of the vibration 

and current SVMs using the Dempster’s combination rule as 

follows [39].  

𝑚(𝐹𝑖) = 𝑚vibration(𝐹𝑖)⨁𝑚current(𝐹𝑖)                (9) 

where ⨁⁡ denotes orthogonal sum. 

After fusing the probabilistic outputs of the vibration and 

current SVMs, the final BPAs of all possible fault types Θ are 

obtained. The final diagnosis result is the fault type with the 

highest BPA, i.e., max(𝑚(𝐹𝑖)), ∀⁡𝐹𝑖⁡ Θ. Sometimes the fault 

diagnosis may fail. To indicate such cases, the probability of 

false fault diagnosis 𝑃𝑈 is defined as follows. 

𝑃𝑈 = 1 − max(𝑚(𝐹𝑖)) , 𝑖 = 1, 2, . . . , 𝑘                  (10) 

If 𝑃𝑈 is greater than 0.5, it indicates that the fault diagnosis may 

fail and the diagnosis result will be set to Not Available (N/A). 

The non-trainable combiner needs less training data than the 

trainable combiner. However, the lack of flexibility is the major 

limitation of the non-trainable combiner. 

2) Trainable Combiner 

Instead of using a fixed combination rule, the outputs of the 

base classifiers can be used as input features of another learning 

algorithm, which learns an aggregation function of the outputs 

of the base classifiers based on the training data [37]. Compared 

with the information fusion using a non-trainable combiner, 

this method is capable of extracting more information from the 

training data. This paper designs a simple trainable combiner 

based on the softmax regression method instead of other 

complicated trainable combiners used in [10], [14] due to the 

limited size of the training data.  

The input of the proposed softmax regression-based trainable 

combiner is the combination of the concatenated outputs of the 

two base classifiers denoted as 𝒔𝑗 = [𝒑vibration⁡, 𝒑current⁡]𝑗 , 

where 𝒑vibration⁡  and 𝒑current⁡are the probabilistic outputs of 

the vibration and current SVMs, respectively; j denotes the jth 

data sample. Given the input 𝒔𝑗, the softmax score for each fault 

type 𝐹𝑖 (Fi  Θ) can be calculated to be 𝜽(𝑖)𝑇𝒔𝑗 (𝑖 = 1,⋯ , 𝑘), 

where 𝜽(𝑖) is the vector of parameters of the softmax regression 

combiner. Once the softmax score of every fault type is 

obtained, the probability of 𝒔𝑗 belonging to each fault type 𝐹𝑖, 

𝑞𝑖(𝒔𝑗) (𝑖 = 1,⋯ , 𝑘), can be calculated as follows [40].  

𝒒(𝒔𝑗) =

[
 
 
 
𝑞1(𝒔𝑗)

𝑞2(𝒔𝑗)
…

𝑞𝑘(𝒔𝑗)]
 
 
 
=

1

∑ exp⁡(𝜽(𝑖)𝑇𝒔𝑗)
𝑘
𝑖=1

[
 
 
 
 exp⁡(𝜽(1)𝑇𝒔𝑗)

exp⁡(𝜽(2)𝑇𝒔𝑗)
…

exp⁡(𝜽(𝑘)𝑇𝒔𝑗)]
 
 
 
 

       (11) 

The parameter matrix of the softmax regression combiner, 

𝜽 = [𝜽(1), ⋯ , 𝜽(𝑘)] , is determined by training. The goal of 

training the softmax regression combiner is to adjust the value 

of 𝜽  to minimize the difference between the output of the 

combiner and the true probability distribution of different fault 

types obtained from the training dataset. In specific, the value 

of 𝜽 is determined by training which minimizes the following 

cost function. 

𝐽(𝜽) = −[∑ ∑ 1{𝑦(𝑗) = 𝑖}log⁡(𝑞𝑖(𝒔𝑗))
𝑘
𝑖=1

𝑁
𝑗=1 ]            (12) 

where the superscript j denotes the jth training sample; N is the 

total number of training samples; k is the total number of fault 

types; and 1{𝑦(𝑗) = 𝑖} is the “indicator function,” which is equal 

to 1 when 𝑦(𝑗) = 𝑖 is true; otherwise, it is equal to 0. Since the 

minimization problem cannot be solved analytically, the 

gradient descent algorithm expressed as follows can be used to 

find the optimal value of 𝜽 that minimizes the cost function 

𝐽(𝜽) of (12). 

𝜽𝑛+1 = 𝜽𝑛 − 𝛾∇𝐽(𝜽𝑛)                             (13) 

where 𝜽𝑛  and 𝜽𝑛+1  are the values of 𝜽  in nth and (n + 1)th 

iterations; 𝛾 is the learning rate; and ∇𝐽(𝜽𝑛) is the gradient of 

𝐽(𝜽𝑛) . The training stops when the maximum number of 

iterations is reached or the gradient is smaller than a predefined 

threshold. 

In contrast to the non-trainable combiner, the parameters of 

the trainable combiner are learned from a training process 

through which the trainable combiner can learn the complicated 

relationship between the final diagnosis result and the diagnosis 

results from base classifiers. However, the training of a trainable 

combiner usually requires a large training dataset.  

III. EXPERIMENTAL VALIDATION  

A. Experiment Setup  

The gearboxes used in wind turbine drivetrains usually have 

multiple (typically three) stages and use parallel-shaft gears and 

planetary gears for different stages, respectively. For example, 

the drivetrain gearbox of the 1.6 MW wind turbines studied in 

[11] has three stages. The low-speed stage uses planetary gears 

but the intermediate-and high-speed stages uses parallel-shaft 

gears. However, the three-stage gearbox mixed with 

parallel-shaft and planetary gears is rarely available at small 

size for reduced-scale laboratory tests. Therefore, in laboratory 

tests, the three-stage wind turbine drivetrain gearbox is usually 

studied by using a one- or two-stage parallel-shaft gearbox and 

a planetary gearbox separately to validate fault diagnosis 

algorithms [17], [41]. In this paper, experimental studies were 

carried out on a two-stage parallel-shaft gearbox with three 

different fault types to validate the effectiveness of the 

proposed fault diagnosis method. Fig. 2 shows the experiment 

setup in which a 5-hp cage induction motor driven by a 

variable-frequency AC drive was used as a prime mover to 

drive a DFIG through two identical two-stage helical gearboxes 

connected back to back. One gearbox was employed to reduce 
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the induction motor’s shaft rotating speed while the other is the 

test gearbox employed to increase the shaft rotating speed. The 

stator windings of the DFIG were connected to a programmable 

three-phase AC source, which was used to emulate a power 

grid. The rotor of the DFIG was connected to the same power 

source through power electronics converters. A current signal 

and a vibration signal were acquired with a sampling frequency 

of 6 kHz for 100 seconds for each data record from the sensors 

installed on the DFIG stator and the gearbox case, respectively, 

by a National Instruments data acquisition system.  

The configuration of test gearbox is shown in Fig. 3. It 

consists of four gears with different tooth numbers Z1, Z2, Z3, 

and Z4. The input shaft rotating frequency f1, pinion shaft 

rotating frequency f2, output shaft rotating frequency f3, the 

mesh frequency fm1 are related to each other as follows. 

𝑓1 =
𝑍2

𝑍1
𝑓2 =

𝑍2

𝑍1

𝑍4

𝑍3
𝑓3, 𝑓𝑚1 = 𝑍1 ∙ 𝑓1                      (14) 

According to the parameters of the gearbox, the characteristic 

frequencies are calculated using (14) and given in Table I.  

The test gear was mounted on the input shaft of the gearbox. 

Four different gearbox health conditions were studied: 1) the 

gearbox is healthy (denoted as F1) and the test gear has 2) a 

one-tooth-missing (OTM) fault (denoted as F2), 3) a chipped 

gear fault (denoted as F3), and 4) a crack fault (denoted as F4), 

as shown in Fig. 3. 

Table II lists the features used for fault diagnosis. For the 

gearbox vibration signal, the energies at f3, 2f3, 3f3, fm1, fm1 ± f1, 

and fm1 ± f2 of its spectrum as well as the crest factor and 

kurtosis are used as fault features. For the DFIG stator current 

signal, the energies at f ± f3 and f ± f2 as well as the NSR are used 

as fault features. 

B. Experimental Results 

The test gearbox with each of the four different gear health  

conditions was tested separately. For each health condition, 40 

datasets of the gearbox vibration signal and the DFIG current 

signal were acquired, respectively. Among the 40 datasets 28 

were used for training the two multiclass SVMs and the 

trainable combiner and the remaining 12 were used for testing 

the proposed method. The inputs of the current SVM and the 

vibration SVM are the fault features extracted from the gearbox 

vibration and DFIG stator current signals, respectively. 

Fig. 4(a) shows the power spectral density (PSD) of the 

vibration signal when the gear is healthy. In this case, since the 

transmission is smooth, only the meshing frequency fm1 and 

output shaft rotating frequency f3 are dominant. Fig. 4(b) shows 

the PSD of the vibration signal when the test gear is chipped. 

There is an increase in the energy at fm1and f3. Moreover, the 

sideband fm1 + f1 and the 2nd and 3rd harmonics of f3 become 

more noticeable. Fig. 4(c) shows the result in the case of the 

cracked gear. Compared to the healthy case, the energy at fm1 is 

higher than and the sideband fm1 + f1 as well as the harmonic 2f3 

are more noticeable. For the OTM case shown in Fig. 4(d), 

besides the increase of the energy at f3 and 2f3, fm1 − f2 and some 

unknown frequency components are excited, when compared 

with the healthy case. In summary, gear faults induce additional 

vibrations or change the amplitudes of existing vibrations. 

However, the differences between different fault types do not 

show clear patterns. 

Fig. 5(a) shows the PSD of the current signal when the gear 

is healthy. The f ± f3 components are noticeable and the 

amplitude at f − f3 increases in the chipped and cracked gear 

cases, as shown in Fig. 5(b) and (c), respectively. The f − f2 

component is also excited in the cracked gear case. A frequency 

component denoted as 𝑓𝑢 is noticeable in Fig. 5(a)-(d), but is 

not related to any gearbox fault. Again, the differences between 

different gear fault types do not have clear patterns. Thus, the 

fault types cannot be identified directly from the PSD spectra of 

vibration or current signals. 

To address this challenge, the proposed method is applied for 

diagnosis of the gear faults. The proposed method uses two 

multiclass SVMs with probabilistic outputs to automatically 

calculate the likelihood of each fault type based on the features 

extracted from the gearbox vibration signal and the DFIG stator 

current signal separately, and then fuses the probabilistic 

outputs of the two multiclass SVMs to obtain the final fault 

diagnosis result. The fault diagnostic accuracy of the proposed 

information fusion methods is compared to that of the vibration 

 

Fig. 2.  Experiment setup. 

 

 

Fig. 3.  Configuration of the test gearbox connected to a DFIG with (a) an 

OTM, (b) a chipped gear, and (c) a crack fault in the test gear. 

TABLE I 

CHARACTERISTIC FREQUENCIES OF TEST GEARBOX AND DFIG 

Test Gearbox (Hz) DFIG (Hz) 

Shaft 
Gear meshing 

Current 

fundamental Input Pinion Output 

f1 f2 f3 fm1 fm2 f 

2.26 10.67 23.84 117.32 405.28 60 

 
TABLE II 

SUMMARY OF FAULT FEATURES  

Vibration Signal Current Signal 

Crest factor, Kurtosis, and energies at 

f3, 2f3, 3f3, fm1, fm1 ± f1, and fm1 ± f2 

NSR, and energies at f ± f3 

and f ± f2 
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SVM, the current SVM, and a feature-level fusion method in 

Table III. In the feature-level fusion method, the features 

extracted from the vibration and current signals listed in Table 

II are used directly by a multiclass SVM classifier to output the 

probability of each fault type. There are 12 datasets used for 

testing in each health condition. Thus, there are totally 48 

testing datasets. The fault diagnostic accuracy of the vibration 

SVM and the current SVM is 45/48 and 44/48, respectively; 

and the accuracy is increased to 47/48, 46/48, and 48/48 when 

using the feature-level fusion and the proposed trainable and 

non-trainable fusion methods, respectively. These results 

indicate that both the feature-level fusion and the proposed 

decision-level fusion-based fault diagnosis methods can 

improve the diagnostic accuracy and reduce the rate of false 

fault diagnosis compared to the methods using a single type of 

signal. The performance of the non-trainable fusion method is 

even better than that of the trainable fusion method and the 

feature-level fusion method in this experiment. The failure of 

the trainable fusion method in 2 of the 48 cases is likely due to 

insufficient training data for the softmax regression combiner.  

According to the confusion matrix of the diagnosis results 

obtained from the five methods shown in Table IV, it is 

concluded that F2, F3, and F4 are correctly diagnosed by all of 

the five methods. However, F1 is only identified by the current 

SVM and the vibration SVM from 8 and 9 of the 12 datasets, 

respectively. Specifically, the current SVM identifies one F1 

dataset to be F3, two F1 datasets to be F4, and one F1 dataset to 

be N/A. The vibration SVM identifies one F1 dataset to be F3 

and two F1 datasets to be N/A. The feature-level fusion method 

successfully identified F1 from 11 out of 12 datasets and, 

therefore, improved fault diagnosis accuracy. According to the 

results, there are four scenarios in the results of the 

decision-level fusion: 1) in 42 out of 48 cases, both the 

vibration and current signal-based fault diagnosis methods are 

correct; 2) in 2 out of 48 cases, the vibration signal-based fault 

diagnosis is wrong but the current signal-based fault diagnosis 

is correct; 3) in 3 out of 48 cases, the vibration signal-based 

fault diagnosis is correct but the current signal-based fault 

diagnosis is wrong; and 4) in 1 out of 48 cases, both the 

vibration and current signal-based fault diagnosis are wrong. 

By fusing the diagnosis results from the vibration and current 

SVMs at the decision level, the proposed method improved the 

accuracy and reliability of the fault diagnosis. 

Ten representative cases are studied to illustrate how the 

proposed method can increase the accuracy and reliability of 

 
Fig. 4. Vibration signals and their PSD spectra for the test gearbox with (a) 

healthy gears, (b) a chipped gear, (c) a cracked gear, and (d) a gear with 

one-tooth missing. 

 
Fig. 5.  DFIG current signals and their PSD spectra for the test gearbox with 

(a) healthy gears, (b) a chipped gear, (c) a cracked gear, and (d) a gear with 

one-tooth missing. 

 
TABLE III 

FAULT DIAGNOSTIC ACCURACY OF INDIVIDUAL MULTICLASS SVMS AND 

THREE INFORMATION FUSION METHODS. 

 Vibration 

SVM 

Current 

SVM 

Feature-level 

fusion 

Non-trainable 

fusion 

Trainable 

fusion 

Accuracy 45/48 44/48 47/48 48/48 46/48 
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the fault diagnosis and the results are shown in Table V. The 

diagnosis result is labelled as the fault type with the highest 

probability or N/A when the wrong classification probability PU 

is larger than 0.5. For example, in Cases 1-4, the actual fault 

types are F4, F2, F3, and F1, respectively. They are 

representative cases of Scenario 1 in which both the vibration 

and current SVMs correctly diagnosed the fault type. In this 

scenario, the results from the feature-level fusion and both the 

non-trainable and trainable fusion methods are also correct but 

with a higher probability, indicating that it is of a higher 

confidence to determine the fault type of the gearbox. 

Cases 5 and 6 are representative of Scenario 2 in which the 

vibration SVM failed to diagnose the fault type but the current 

SVM diagnosed the fault type correctly. In Case 5, the 

diagnosis result of the vibration SVM is F3 and in Case 6, the 

diagnosis result of the vibration SVM is N/A because its PU is 

greater than 0.5. However, the final diagnosis results in both 

cases are corrected by the decision-level fusion while the 

feature-level fusion only corrects the result in Case 6. This 

scenario is common when one sensor fails, and the combiner 

outputs the correct result by taking advantage of the 

information from the other signal.  

Cases 7-9 are representative of Scenario 3 in which the 

current SVM failed to diagnose the fault type but the vibration 

SVM diagnosed the fault type correctly. By taking advantage of 

the information from the vibration signal, both the feature-level 

fusion and proposed non-trainable fusion methods obtain the 

correct results in these three cases; and the trainable fusion 

method obtains correct results in Cases 7 and 8. This 

demonstrates that the fault diagnosis accuracy and reliability 

are improved by the proposed method. 

Case 10 is representative of Scenario 4 in which both the 

current and vibration SVMs failed to diagnose the fault type. 

This is the worst scenario in fault diagnosis. However, by 

taking advantage of the information from vibration and current 

signals, the feature-level fusion and non-trainable methods 

obtain the correct diagnosis result. This case demonstrates the 

effectiveness of the feature-level fusion and the robustness of 

the non-trainable method, which can provide the correct fault 

diagnosis result even when both SVMs output wrong results. 

In summary, both the feature-level fusion and proposed 

decision-level fusion methods can improve the confidence of 

fault diagnosis when both SVM classifiers output the correct 

results. Moreover, the proposed non-trainable fusion method 

can correct wrong fault diagnosis results from one or even both 

SVM classifiers in all cases 5-10; whereas the trainable 

combiner can correct wrong fault diagnosis result from one 

SVM classifier in Cases 5-8 but fails in Cases 9 and 10 and the 

feature-level fusion fails in Case 5. Therefore, if the size of 

training data is small, the non-trainable combiner would be the 

best choice. 

IV. CONCLUSION 

This paper proposed a method for wind turbine drivetrain 

gearbox fault diagnosis by fusing the information from gearbox 

vibration and generator current signals. The features of gearbox 

faults in vibration and current signals were analyzed. A 

multiclass current SVM and a multiclass vibration SVM were 

designed and trained to output the probabilities of different 

gearbox fault types by using the features extracted from 

gearbox vibration signals and generator current signals 

separately. A non-trainable combiner based on the 

Dempster-Shafer theory and a trainable combiner based on the 

softmax regression technique were designed to fuse the 

probabilistic outputs of the two multiclass SVMs to generate a 

more accurate and more robust fault diagnosis result.  

Experiments were conducted on a wind turbine drivetrain 

test rig to validate the effectiveness of the proposed gearbox 

fault diagnosis method. The experimental results validated that 

the proposed method, particularly the proposed decision-level 

non-trainable fusion method, achieved a more accurate and 

more reliable fault diagnosis result than the methods using 

individual type of signal as well as the feature-level information 

fusion method using both vibration and current signals. The 

trainable fusion method relies on the training of the combiner 

and, thus, is applicable when sufficient training data are 

available. If the size of the training dataset is small, the 

non-trainable combiner is a better option for information fusion. 

In contrast, the state-of-the-art deep-learning-based 

information fusion fault diagnosis methods [10], [14], [15] 

require much larger datasets for training and, therefore, are not 

suitable for many real-world applications with limited data of 

fault scenarios, such as the case studies in this paper, and have 

higher computational cost than the proposed method. 

Since generator current signals are already used in the 

control systems of wind turbines, the proposed fault diagnosis 

method can be applied without additional hardware cost for 

wind turbines with vibration-based CMSs. In contrast, many 

other works using information fusion for fault diagnosis require 

installation of additional sensors, such as infrared thermal 

imaging camera [9] or acoustic sensors [10], leading to extra 

hardware cost.  

V. RECOMMENDATIONS FOR FUTURE WORK 

In the future work, a sensor sensitivity analysis can be 

conducted and only the data from the sensors that are highly 

sensitive to the faults of interest will be used for information 

fusion. Moreover, different faults usually have different 

frequencies of occurrence. The data from maintenance records 

provide prior probability distribution of different faults and this 

information can be used as a prior knowledge to increase the 

accuracy of fault diagnosis. Therefore, appropriate techniques 

can be developed to utilize the information from maintenance 

records to further increase the accuracy and reliability of the 

information fusion method. Finally, the proposed method can 

also be extended to include other types of signals to further 

increase the accuracy and robustness of wind turbine fault 

diagnosis. 

TABLE IV 

CONFUSION MATRIX OF DIAGNOSIS RESULTS OBTAINED FROM CURRENT 

AND VIBRATION SVMS, FEATURE-LEVEL FUSION METHOD, AND PROPOSED 

TRAINABLE AND NON-TRAINABLE FUSION METHODS 

Current/Vibration/ 

Feature-level fusion/ 

Trainable/Non-trainable 

Diagnosed result 

F1 F2 F3 F4 N/A 

 

Actual condition 

F1 8/9/11/10/12 0 1/1/0/1/0 2/0/0/0/0 1/2/1/1/0 

F2 0 12 0 0 0 

F3 0 0 12 0 0 

F4 0 0 0 12 0 
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