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Abstract—To improve the reliability of the conventional
vibration-based wind turbine drivetrain gearbox fault diagnosis
system, this paper proposes a novel fault diagnosis method by
fusing the information from gearbox vibration and generator
current signals. First, the fault features contained in the gearbox
vibration signals and the generator current signals are analyzed,
respectively. Second, a multiclass support vector machine (SVM)
model with probabilistic output is proposed to design two
classifiers which output the probabilities of different gearbox fault
types according to the input fault features extracted from the
vibration signals and the current signals separately. Then, a
non-trainable combiner and a trainable combiner are designed
based on the Dempster—Shafer theory and the softmax regression
technique, respectively, to fuse the information from the vibration
and current SVM classifiers at decision level. The output of each
combiner is the final diagnosis result. The proposed method is
validated by experimental results obtained from a test gearbox
with different types of faults. The validation results show that the
proposed method can increase the fault diagnostic accuracy and is
more robust than the conventional fault diagnosis systems that
only use one type of signals.

Index Terms—current signal, fault diagnosis,
information fusion, vibration signal, wind turbine

gearbox,

I. INTRODUCTION

PERATION and maintenance (O&M) cost constitutes

approximately 20-25% of the levelized cost of energy
(LCOE) of wind power assets. One effective way to reduce
O&M cost to make wind power more competitive in the
electricity market is to implement condition-based maintenance
[1]. To achieve this, a condition monitoring system (CMS) is
needed to online monitor the health conditions of wind turbine
subassemblies and perform maintenance timely when a fault
that causes an improper operation of the wind turbine is
detected. Because gearbox failure causes the longest downtime
of wind turbines among various subassembly failures and high
maintenance costs, many modern utility-scale wind turbines are
equipped with CMSs for drivetrain gearboxes. The majority of
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these CMSs use vibration signals. A disadvantage of vibration
monitoring is the high costs of vibration sensors and associated
data acquisition and processing devices [2]. Moreover, false
and missing alarms of vibration-based wind turbine CMSs have
been reported and some manufacturers have realized the
limitation of using vibration signals alone. Furthermore, a
problem commonly seen in wind turbine CMSs is sensor failure,
which may cause false fault diagnosis results [3]. A feasible
way to reduce missing and false alarms of the existing
vibration-based CMSs and solve the problem of sensor failure
in CMSs is to use additional source(s) of signal(s). For
example, General Electric’s commercial wind turbine CMS
Bently Nevada ADAPT.Wind integrates oil particle sensors to
provide a confirmation of suspected damage detected by the
ADAPT.Wind vibration monitoring system [4].

To improve the fault diagnosis accuracy and reliability by
effectively using the fault-related features extracted from
multiple sensors, a variety of methods based on the information
fusion technique have been developed. Information fusion is
the process of integrating multiple information sources and can
be conducted at different levels, such as signal level, feature
level, or decision level. In the signal-level fusion, signals from
different sensors are combined to create a new signal with a
better signal-to-noise ratio than the original signals [5]. For
example, [6] proposed a method to enhance the accuracy of
sensor fault diagnosis using adaptive extended Kalman filter
and signal-level fusion. In [7], a signal-level fusion method was
proposed to obtain the health indices for degradation modeling.
However, the physical meaning of the result obtained from
fusing different types of signals is not clear and signal-level
fusion is usually conducted for signals of the same type.

It is more common to conduct feature- and decision-level
fusions in fault diagnosis. For example, the work in [8] fused
information from different vibration sensors at decision level
and achieved higher fault diagnostic accuracy than using the
information from individual sensors separately. However, it
still suffers from the drawbacks/limitations of vibration
monitoring techniques and may fail if the vibration monitoring
system fails. In [9], a bearing fault diagnosis system that uses
both infrared thermal imaging data and vibration data was
proposed. The system fused the features extracted from the two
types of data, which were then used by a random forest
classifier for fault diagnosis. The system outperformed single
type of signal-based systems. However, it is costly to install
infrared camera to obtain the thermal imaging data. The work
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[10] performed fault diagnosis by fusing vibration and acoustic
data and achieved higher accuracy than using vibration and
acoustic data separately. However, these methods [8]-[10]
require installation of additional sensors and data acquisition
equipment and, therefore, lead to extra hardware cost and
increased wiring complexity of the CMS.

It is reported in [11] that generator current signals contain
health condition information of wind turbine drivetrain gearbox
and, thus, have been used successfully for fault diagnosis of
drivetrain gearbox. Since current signals have been used in
generator/power converter control systems, the use of generator
current signals for fault diagnosis of drivetrain gearbox does
not need to install any additional sensors or data acquisition
equipment. Therefore, fusing the information of vibration and
current signals is a cost-effective way to improve the accuracy
and reliability of the conventional vibration-based CMSs.
Information fusion of vibration and current signals has been
studied in electric machine fault diagnosis. For example, [12]
used a convolutional neural network (CNN) for feature level
fusion and [13] used the Dempster-Shafer theory for decision
level fusion. However, it is more challenging to perform
gearbox fault diagnosis because different gearbox faults
commonly have similar features and little work on vibration
and current information fusion for gearbox fault diagnosis has
been reported. To the best of the authors’ knowledge, [14] and
[15] are the two most recent works on fusing current and
vibration signals for gearbox fault diagnosis. In [14], the
vibration and current signals were fused at the feature level by
concatenation of the features from the two types of signals,
which were used as the input to a deep neural network classifier
for fault diagnosis. In [15], vibration, acoustic, current, and
angular speed signals were concatenated and deep CNNs were
used for fault diagnosis.

Regardless of what information fusion techniques are used,
fault diagnosis is a classification problem that is commonly
solved by using machine learning techniques. For example,
support vector machines (SVMs) were designed in [16] for
fault diagnosis of wind turbine drivetrain gearbox using
features extracted from stator and rotor current signals of
doubly-fed induction generator (DFIG). The work [17] also
used an SVM and feature learning on a generator current signal
for wind turbine gearbox fault diagnosis. The recent advances
in deep learning have achieved remarkable improvements in
speech recognition, visual object recognition, and many other
domains [18]. The state-of-art deep learning techniques have
also been applied in fault diagnosis. For example, deep belief
networks and convolutional neural networks have been used for
wind turbine gearbox fault diagnosis and achieved satisfactory
accuracy [19], [20]. However, a large amount of training data is
needed when using deep learning techniques [19]-[22]. Unlike
computer vision and natural language processing tasks, the

labeled data available for gearbox fault diagnosis is limited [23].

Compared to deep learning-based fault diagnosis methods
[19]-[22], SVM is more suitable for the learning problem with a
small dataset [24] and, thus, has been adopted for gearbox fault
diagnosis using one type of signal(s) only [11], [25].

This paper proposes a wind turbine drivetrain gearbox fault
diagnosis method based on the SVM and decision-level
information fusion techniques. The proposed method contains a
non-trainable combiner and a trainable combiner, which are

designed to fuse the diagnosis results from two SVM classifiers
that perform fault diagnosis for the gearbox separately using the
fault features extracted from gearbox vibration signals and
generator current signals, respectively. The features of gearbox
faults in vibration and current signals, which are not discussed
in recent works on deep learning-based fusion techniques [14],
[15], are analyzed in this paper. The proposed method is
validated by using the vibration and generator current data
collected from the tests performed on a two-stage parallel-shaft
gearbox test rig with different types of gear faults in
comparison with the state-of-the-art SVM fault diagnosis
methods that use vibration or current signal only or fuse the
features extracted from the vibration and current signals.

The main contributions of this paper are three-fold. Firstly,
this paper discussed why decision-level fusion is preferrable
over feature-level fusion for the fault diagnosis using multiple
sources of signals. Secondly, this paper developed a
non-trainable method and a trainable method for decision-level
fusion of vibration and current signals to improve the accuracy
and reliability of the conventional vibration-based wind turbine
gearbox fault diagnosis methods. Finally, this paper
demonstrated the advantage of the non-trainable decision-level
fusion method over the trainable decision-level fusion method
and feature-level fusion method for the fault diagnosis
problems with limited data for which the deep learning-based
methods usually do not work.

The remainder of this paper is organized as follows. Section
IT presents the proposed decision-level vibration and current
information fusion-based fault diagnosis method. Section III
validates the effectiveness and superiority of the proposed
method in comparison with the methods using current or
vibration signal alone or fusing the features extracted from both
vibration and current signals via experimental test results
carried out on a gearbox test rig. Section IV concludes the paper.
Section V discusses the recommendations for future research.

II. PROPOSED FAULT DIAGNOSIS METHOD BASED ON
VIBRATION AND CURRENT INFORMATION FUSION

A. Framework of the Proposed Fault Diagnosis Method

In the conventional vibration-based gearbox fault diagnosis
system shown in Fig. 1(a), the vibration signals are collected
from sensors installed on the case of the gearbox. Fault features
are extracted from the vibration signals. An SVM classifier is
designed to identify the gearbox fault types according to the
input fault features extracted from the vibration signals [25].
One major limitation of the conventional method is that if the
vibration data is corrupted due to failure of sensors or data
acquisition equipment, fault diagnosis may fail.

The accuracy, reliability, and robustness of the conventional
fault diagnosis method could be enhanced by increasing the
number of sensors. This, however, will increase hardware cost
and wiring complexity of the system. The method proposed in
this paper utilizes generator current signals, which are already
available in the generator control system and, therefore, does
not need installation of any additional hardware. The proposed
method, illustrated in Fig. 1(b), consists of four functional
modules. The first functional module is feature extraction,
which extracts the fault features in the gearbox vibration signals
and the generator current signals collected into the proposed
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Fig. 1. Block diagram illustration of (a) the existing vibration-based fault diagnosis method and (b) the proposed fault diagnosis method based on information
fusion of vibration and current signals for drivetrain gearboxes.

CMS separately. In the second functional module, two SVMs, a
current SVM and a vibration SVM, are designed and trained to
output the probability of each possible fault type according to
the fault features extracted separately from the vibration signals
and the current signals. The third functional module is
information fusion, which uses a combiner designed to fuse the
output information, i.e., the probabilities of possible fault types,
from the current SVM and the vibration SVM. The last
functional module diagnoses the fault to be the one with the
largest probability among the output of the combiner.
Compared with the conventional method shown in Fig. 1(a), the
proposed method in Fig. 1(b) is expected to achieve higher fault
diagnostic accuracy by incorporating the information from
generator current signals. Moreover, the proposed method will
be effective even when vibration sensor(s) or associated data
acquisition equipment fails and, therefore, is expected to
improve the reliability and robustness of the CMS.

The goal of this work is not only improving the accuracy but
also improving the reliability of the fault diagnosis method so
that it can still work properly when some sensor(s) fail or the
signal(s) collected from some sensor(s) are corrupted/lost. In
these circumstances, the fault diagnosis based on feature-level
fusion may not work properly because the incorrect features
extracted from the corrupted/lost signals are used for the entire
decision, but the fault diagnosis based on decision-level fusion
would still work properly because the incorrect features
extracted from the corrupted/lost signals are only used in part of
the decision by separate SVM classifiers, and the SVM
classifier(s) using correct features can still output the correct
fault diagnosis result. Therefore, decision-level fusion is
adopted in this work.

B. Gearbox Fault Feature Extraction from Vibration and
Current Signals

1) Fault Features in Vibration Signals
When a fault appears in a gear, it will alter the stiffness of the
teeth or change their geometric parameters and, therefore, lead

to changes in the vibration signal. These changes modulate the
vibration signal v(¢), which can be expressed as [26]

v(t) = X Vi (1 + a, (1)) cos amf,t + 6, + by (1)) (1)

where m is the meshing harmonic number; f,, is the m™ tooth
meshing harmonic frequency; V., and 8,, are the amplitude and
initial phase of the m™ meshing harmonic, respectively; a,(?)
and b,(f) are the amplitude and phase modulation functions of
the m™ meshing harmonic, respectively, expressed as follows.

am(t) = Zn AmnCos (ZT[Tlfit + amn) (2)
by (t) = Xn Bncos 2unfit + Binn) 3)

where f; (i = 1, -+, I) is the i shaft rotational frequency and [ is
number of shafts of the gearbox; 4,,, and B,,, are the amplitudes
and @y, and By, are the initial phases of the ™ harmonic of
the amplitude and phase modulation functions of the m®
meshing harmonic, respectively.

Gearbox fault features contained in vibration signals can be
extracted in time or frequency domain. The commonly used
time-domain features include kurtosis and crest factor, which
are used in this paper. Kurtosis K is a dimensionless parameter
defined as follows.

== (4)
where M, is the 4" central moment and o is the standard
deviation of the signal. Kurtosis characterizes the probability
distribution of the signal. If the signal follows a normal
distribution, its kurtosis is equal to 3 and a fault may lead to an
increase in kurtosis [27].

Crest factor C is defined as the ratio of the maximum
absolute value to the root mean square value of the signal.

_[opead
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Crest factor tells how “peaky” the signal is. The higher the crest
factor, the peakier the signal.
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In addition to kurtosis and crest factor, there are many other
time domain features, such as shape factor, clearance factor,
etc. [28]. An unhealthy condition of a gearbox usually can be
distinguished from healthy condition by using time domain
features of vibration signals. However, it is usually difficult to
diagnose the fault type of the gearbox using time domain
features. To achieve accurate fault diagnosis, the vibration
signals need to be analyzed in frequency domain.

The dominant components in the frequency spectrum of a
gearbox vibration signal are the gear meshing frequencies and
their sidebands caused by modulation by shaft rotating
frequencies. Typically, an increase in the number and the
amplitudes of sidebands may indicate a fault condition [29].
Therefore, the energies at each gear meshing frequency f,, and
its sidebands f,,, + f; (i = 1,:-+,I) in the frequency spectrum
of the vibration signal can be used as fault features.

2) Fault Features in Current Signals

Due to the electromechanical coupling between the gearbox
and the generator in a wind turbine drivetrain, the generator
current signals are modulated by gearbox vibrations. The
relationship between gearbox vibration and generator current
can be derived from torque and current relationships of electric
machines, which has been discussed in detail in [30].

If the gearbox vibrates at a frequency f;, the generator stator
current signal will contain the fundamental component fand its
sidebands at the frequencies /' + f; whose amplitudes change
when fault occurs. Therefore, the energy at f+ f; can be selected
as fault features in the current signal. Moreover, since the
degradation of the gearbox will excite more noise in current
signals [31], the noise-to-signal ratio (NSR) defined in (6) can
also be selected as a fault feature of the current signal.
P noise

NSR = (6)

signal

where Pgignq; is the energy of the fundamental frequency
component of the current signal; Ppoise = Protar — Psignar; and
Piotar 1s the total energy of the current signal.

3) Fault Features in Nonstationary Signals

In practice, wind turbines are subject to random fluctuations
of speed and load, which make the vibration and current signals
used for fault diagnosis nonstationary. This problem can be
solved by using an appropriate signal conditioning method
reported in the literature [32], [33] or a simple steady-state
check which ensures that the signal is collected in steady state.
Thus, the proposed information fusion-based fault diagnosis
method can be easily extended to nonstationary scenarios.

C. Multiclass SVM Classifier with Probabilistic Output

The SVM is a technique commonly used to solve
classification problems with small numbers of data samples. It
was originally proposed to solve binary classification problems
[34]. The goal of a binary SVM classifier is to find a
hyper-plane that separates two classes with the maximal
margin. However, gearbox fault type identification is a
multiclass classification problem because there are more than
two fault types. Suppose that there are total k (k > 2) possible
gearbox fault types and define @ = {F;|i=1, 2, ---, k} the set of
all possible fault types. Then, gearbox fault diagnosis is a
k-class classification problem. To solve such a problem, a

multiclass SVM is designed by using k(k—1)/2 binary SVM
classifiers and the one-against-one method [34]. Each binary
SVM classifier is trained to classify two fault types by using
two classes of data that characterize the two fault types,
respectively. Then, the outputs of the k(k—1)/2 binary SVM
classifiers are used by the one-against-one method to generate
the final fault classification result for the & fault types.

The output of each binary SVM is the class label which
represents one of two fault types. A limitation of this approach
is that it maps the input fault features to the corresponding fault
types deterministically but does not provide the probability of
belonging that is needed for the probabilistic information
fusion. Here probability is interpreted as a quantification of
belief that a particular type of fault will occur, which is known
as Bayesian probability [35], instead of the frequency of
occurrence of the fault. To enable the probabilistic information
fusion of the proposed fault diagnosis method, this paper
proposes that each binary SVM outputs the probability of one
of the two fault types it classifies using a sigmoid function as
follows, instead of the deterministic class label of the fault type.

wi; = P(y = Fi|y = F; or Fj, x) (7)

- 1

T 1+exp (Gf(x) + H)
where p; ] denotes the probability of the fault type F; when the
SVM classifies the fault type F; and F; (F; € O, F; € ©,and F; #
F)); x is the vector of input features to the SVM; f(x) =
wT @ (x) + b; w and b are the parameters of the SVM; and ¢ ()
is the kernel function of the SVM. The parameters G and H of
(7) are obtained by minimizing the negative log likelihood of
the training data.

Then, the probability of the input features belonging to each
of the k fault types, p; (i = 1,--,k), can be determined by
solving the optimization problem (8) based on the pairwise
coupling principle [36]

k
1 2
min Ez Z (Wjipi — ijpy)
p emd lomed.
=1 j:j#i
s.t. p;=20,Vi ()
k

pi=1
i=1
where p = [p1, p2, -, v |T. The solution of (8) is the
probabilistic output of the multiclass SVM.

The proposed multiclass SVM model is applied to design the
current SVM and the vibration SVM, shown in Fig. 1(b), of the

proposed method.

D. Fusion of the SVM Outputs

The information fusion module of the proposed method fuses
the probabilistic outputs of the vibration SVM and the current
SVM, which are called base multiclass classifiers, by using a
combiner. Depending on whether training is needed, there are
two types of combiners: non-trainable and trainable combiners.
No training is needed for the non-trainable combiner after the
base classifiers are trained individually [37]. This paper designs
both types of combiners for the information fusion and provides
insights on the combiner selection.
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1) Non-trainable Combiner

The non-trainable combiner uses a fixed combination rule,
such as majority vote, to fuse the information from different
base classifiers and usually assumes that all the base classifiers
are equal in determining the final result. The lack of flexibility
is the major limitation of the non-trainable combiner. However,
it needs less training data than the trainable combiner. This
paper uses the Dempster—Shafer theory [38] to design the
non-trainable combiner. Let Myjpration (F;) and Meyrrent (Fi)
be the basic probability assignment (BPA) of the fault type F;
(Fi € O) obtained from the vibration SVM and the current
SVM, respectively. In other words, Myipration(F;) and
Meyurrent (F;) are the probabilistic outputs on the fault type F; of
the vibration SVM and the current SVM, respectively, which
are obtained by solving the optimization problem (8). Then, the
BPA output on the fault type F; of the non-trainable combiner,
m(F;), is obtained by fusing the BPA outputs of the vibration
and current SVMs using the Dempster’s combination rule as
follows [39].

m(Fi) = Myibration (Fi)eamcurrent(Fi) (9)
where @ denotes orthogonal sum.

After fusing the probabilistic outputs of the vibration and
current SVMs, the final BPAs of all possible fault types © are
obtained. The final diagnosis result is the fault type with the
highest BPA, i.e., max(m(Fl-)), V F; 0. Sometimes the fault
diagnosis may fail. To indicate such cases, the probability of
false fault diagnosis Py is defined as follows.

Py =1-max(m(F)),i=12,....k (10)

If Py is greater than 0.5, it indicates that the fault diagnosis may
fail and the diagnosis result will be set to Not Available (N/A).

The non-trainable combiner needs less training data than the
trainable combiner. However, the lack of flexibility is the major
limitation of the non-trainable combiner.

2) Trainable Combiner

Instead of using a fixed combination rule, the outputs of the
base classifiers can be used as input features of another learning
algorithm, which learns an aggregation function of the outputs
of the base classifiers based on the training data [37]. Compared
with the information fusion using a non-trainable combiner,
this method is capable of extracting more information from the
training data. This paper designs a simple trainable combiner
based on the softmax regression method instead of other
complicated trainable combiners used in [10], [14] due to the
limited size of the training data.

The input of the proposed softmax regression-based trainable
combiner is the combination of the concatenated outputs of the
two base classifiers denoted as S; = [Pyibration» Pcurrent ] »
where Pyipbration ad Peurrent are the probabilistic outputs of
the vibration and current SVMs, respectively; j denotes the ;™
data sample. Given the input s;, the softmax score for each fault
type F; (F; € ©) can be calculated to be G(i)Ts]- (i=1,-k),
where 8@ is the vector of parameters of the softmax regression
combiner. Once the softmax score of every fault type is
obtained, the probability of s; belonging to each fault type F;,
qi(sj) (i = 1,-+, k), can be calculated as follows [40].

[ql(S, ] exp (0M's))

B _ 1 lexp (8@,

q(s;) = | = S o 00T . p(... ) (11)
lqk( ])J exp (O(k)Ts]-)

The parameter matrix of the softmax regression combiner,
0 =[00,...,00], is determined by training. The goal of
training the softmax regression combiner is to adjust the value
of 8 to minimize the difference between the output of the
combiner and the true probability distribution of different fault
types obtained from the training dataset. In specific, the value
of 0 is determined by training which minimizes the following
cost function.

J(8) = =[¥]Li 2l 1{yY) = Blog (4:(s;))] (12)
where the superscript j denotes the j training sample; N is the
total number of training samples; & is the total number of fault
types; and 1{y ) = i} is the “indicator function,” which is equal
to 1 when yU) = i is true; otherwise, it is equal to 0. Since the
minimization problem cannot be solved analytically, the
gradient descent algorithm expressed as follows can be used to
find the optimal value of 8 that minimizes the cost function
J(8) of (12).

0ni1 =0, —yV](6,) (13)
where 0,, and 8,,,; are the values of @ in n™ and (n + 1)®
iterations; y is the learning rate; and VJ(0,,) is the gradient of
J(6,). The training stops when the maximum number of
iterations is reached or the gradient is smaller than a predefined
threshold.

In contrast to the non-trainable combiner, the parameters of
the trainable combiner are learned from a training process
through which the trainable combiner can learn the complicated
relationship between the final diagnosis result and the diagnosis
results from base classifiers. However, the training of a trainable
combiner usually requires a large training dataset.

III. EXPERIMENTAL VALIDATION

A. Experiment Setup

The gearboxes used in wind turbine drivetrains usually have
multiple (typically three) stages and use parallel-shaft gears and
planetary gears for different stages, respectively. For example,
the drivetrain gearbox of the 1.6 MW wind turbines studied in
[11] has three stages. The low-speed stage uses planetary gears
but the intermediate-and high-speed stages uses parallel-shaft
gears. However, the three-stage gearbox mixed with
parallel-shaft and planetary gears is rarely available at small
size for reduced-scale laboratory tests. Therefore, in laboratory
tests, the three-stage wind turbine drivetrain gearbox is usually
studied by using a one- or two-stage parallel-shaft gearbox and
a planetary gearbox separately to validate fault diagnosis
algorithms [17], [41]. In this paper, experimental studies were
carried out on a two-stage parallel-shaft gearbox with three
different fault types to validate the effectiveness of the
proposed fault diagnosis method. Fig. 2 shows the experiment
setup in which a 5-hp cage induction motor driven by a
variable-frequency AC drive was used as a prime mover to
drive a DFIG through two identical two-stage helical gearboxes
connected back to back. One gearbox was employed to reduce
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OTM, (b) a chipped gear, and (c) a crack fault in the test gear.

the induction motor’s shaft rotating speed while the other is the
test gearbox employed to increase the shaft rotating speed. The
stator windings of the DFIG were connected to a programmable
three-phase AC source, which was used to emulate a power
grid. The rotor of the DFIG was connected to the same power
source through power electronics converters. A current signal
and a vibration signal were acquired with a sampling frequency
of 6 kHz for 100 seconds for each data record from the sensors
installed on the DFIG stator and the gearbox case, respectively,
by a National Instruments data acquisition system.

The configuration of test gearbox is shown in Fig. 3. It
consists of four gears with different tooth numbers Z, Z,, Z3,
and Z;. The input shaft rotating frequency fi, pinion shaft
rotating frequency f, output shaft rotating frequency f;, the
mesh frequency f, are related to each other as follows.

fi= ? =2 Z4f3afm1 =Z1"f (14)

According to the parameters of the gearbox, the characteristic
frequencies are calculated using (14) and given in Table I.

The test gear was mounted on the input shaft of the gearbox.
Four different gearbox health conditions were studied: 1) the
gearbox is healthy (denoted as F) and the test gear has 2) a
one-tooth-missing (OTM) fault (denoted as F»), 3) a chipped
gear fault (denoted as F3), and 4) a crack fault (denoted as Fj),
as shown in Fig. 3.

Table II lists the features used for fault diagnosis. For the
gearbox vibration signal, the energies at f3, 2f3, 3f3, ful, fu1 £ f1,
and f,1 = f>» of its spectrum as well as the crest factor and
kurtosis are used as fault features. For the DFIG stator current
signal, the energies at f+ f; and f+ > as well as the NSR are used
as fault features.

TABLEI
CHARACTERISTIC FREQUENCIES OF TEST GEARBOX AND DFIG
Test Gearbox (Hz) DFIG (Hz)
Shaft Gear meshin, Current
Input | Pinion | Output £ | fundamental
S L S S S S
2.26 10.67 23.84 | 117.32 | 405.28 60
TABLE II

SUMMARY OF FAULT FEATURES

Vibration Signal
Crest factor, Kurtosis, and energies at

.ﬁ’ 2ﬁ’ 3f-:5’.ﬂﬂlaf;ﬂl ifla and_ﬁnl iﬁ

Current Signal
NSR, and energies at f£ f3
and f+ /3

B. Experimental Results

The test gearbox with each of the four different gear health
conditions was tested separately. For each health condition, 40
datasets of the gearbox vibration signal and the DFIG current
signal were acquired, respectively. Among the 40 datasets 28
were used for training the two multiclass SVMs and the
trainable combiner and the remaining 12 were used for testing
the proposed method. The inputs of the current SVM and the
vibration SVM are the fault features extracted from the gearbox
vibration and DFIG stator current signals, respectively.

Fig. 4(a) shows the power spectral density (PSD) of the
vibration signal when the gear is healthy. In this case, since the
transmission is smooth, only the meshing frequency f, and
output shaft rotating frequency f; are dominant. Fig. 4(b) shows
the PSD of the vibration signal when the test gear is chipped.
There is an increase in the energy at f,iand f3. Moreover, the
sideband f,1 + fi and the 2" and 3™ harmonics of f; become
more noticeable. Fig. 4(c) shows the result in the case of the
cracked gear. Compared to the healthy case, the energy at £, is
higher than and the sideband f,,1 + fi as well as the harmonic 2f;
are more noticeable. For the OTM case shown in Fig. 4(d),
besides the increase of the energy at f3 and 2f3, f,1 —f> and some
unknown frequency components are excited, when compared
with the healthy case. In summary, gear faults induce additional
vibrations or change the amplitudes of existing vibrations.
However, the differences between different fault types do not
show clear patterns.

Fig. 5(a) shows the PSD of the current signal when the gear
is healthy. The f + f; components are noticeable and the
amplitude at ' — f3 increases in the chipped and cracked gear
cases, as shown in Fig. 5(b) and (c), respectively. The f' — f>
component is also excited in the cracked gear case. A frequency
component denoted as f;, is noticeable in Fig. 5(a)-(d), but is
not related to any gearbox fault. Again, the differences between
different gear fault types do not have clear patterns. Thus, the
fault types cannot be identified directly from the PSD spectra of
vibration or current signals.

To address this challenge, the proposed method is applied for
diagnosis of the gear faults. The proposed method uses two
multiclass SVMs with probabilistic outputs to automatically
calculate the likelihood of each fault type based on the features
extracted from the gearbox vibration signal and the DFIG stator
current signal separately, and then fuses the probabilistic
outputs of the two multiclass SVMs to obtain the final fault
diagnosis result. The fault diagnostic accuracy of the proposed
information fusion methods is compared to that of the vibration
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Fig. 4. Vibration signals and their PSD spectra for the test gearbox with (a)
healthy gears, (b) a chipped gear, (c) a cracked gear, and (d) a gear with

one-tooth missing.

SVM, the current SVM, and a feature-level fusion method in
Table III. In the feature-level fusion method, the features
extracted from the vibration and current signals listed in Table
IT are used directly by a multiclass SVM classifier to output the
probability of each fault type. There are 12 datasets used for
testing in each health condition. Thus, there are totally 48
testing datasets. The fault diagnostic accuracy of the vibration
SVM and the current SVM is 45/48 and 44/48, respectively;
and the accuracy is increased to 47/48, 46/48, and 48/48 when
using the feature-level fusion and the proposed trainable and
non-trainable fusion methods, respectively. These results
indicate that both the feature-level fusion and the proposed
decision-level fusion-based fault diagnosis methods can
improve the diagnostic accuracy and reduce the rate of false
fault diagnosis compared to the methods using a single type of
signal. The performance of the non-trainable fusion method is
even better than that of the trainable fusion method and the
feature-level fusion method in this experiment. The failure of
the trainable fusion method in 2 of the 48 cases is likely due to
insufficient training data for the softmax regression combiner.
According to the confusion matrix of the diagnosis results
obtained from the five methods shown in Table IV, it is
concluded that F», F3, and F are correctly diagnosed by all of
the five methods. However, F is only identified by the current
SVM and the vibration SVM from 8 and 9 of the 12 datasets,
respectively. Specifically, the current SVM identifies one F
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Fig. 5. DFIG current signals and their PSD spectra for the test gearbox with
(a) healthy gears, (b) a chipped gear, (c) a cracked gear, and (d) a gear with
one-tooth missing.

TABLE IIT
FAULT DIAGNOSTIC ACCURACY OF INDIVIDUAL MULTICLASS SVMS AND
THREE INFORMATION FUSION METHODS.

Vibration | Current | Feature-level | Non-trainable | Trainable
SVM SVM fusion fusion fusion
Accuracy | 45/48 44/48 47/48 48/48 46/48

dataset to be F3, two F datasets to be F4, and one F dataset to
be N/A. The vibration SVM identifies one F; dataset to be F3
and two F'; datasets to be N/A. The feature-level fusion method
successfully identified F; from 11 out of 12 datasets and,
therefore, improved fault diagnosis accuracy. According to the
results, there are four scenarios in the results of the
decision-level fusion: 1) in 42 out of 48 cases, both the
vibration and current signal-based fault diagnosis methods are
correct; 2) in 2 out of 48 cases, the vibration signal-based fault
diagnosis is wrong but the current signal-based fault diagnosis
is correct; 3) in 3 out of 48 cases, the vibration signal-based
fault diagnosis is correct but the current signal-based fault
diagnosis is wrong; and 4) in 1 out of 48 cases, both the
vibration and current signal-based fault diagnosis are wrong.
By fusing the diagnosis results from the vibration and current
SVMs at the decision level, the proposed method improved the
accuracy and reliability of the fault diagnosis.

Ten representative cases are studied to illustrate how the
proposed method can increase the accuracy and reliability of
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TABLE IV
CONFUSION MATRIX OF DIAGNOSIS RESULTS OBTAINED FROM CURRENT
AND VIBRATION SVMS, FEATURE-LEVEL FUSION METHOD, AND PROPOSED
TRAINABLE AND NON-TRAINABLE FUSION METHODS

Current/Vibration/ Diagnosed result
Feature-level fusion/ F F, F; F, N/A
Trainable/Non-trainable
F, |8/9/11/10/12| 0 | 1/1/0/1/0 |2/0/0/0/0| 1/2/1/1/0
Actual condition | F, 0 12 0 0 0
F; 0 0 12 0 0
Fy 0 0 0 12 0

the fault diagnosis and the results are shown in Table V. The
diagnosis result is labelled as the fault type with the highest
probability or N/A when the wrong classification probability Py
is larger than 0.5. For example, in Cases 1-4, the actual fault
types are F4, F>, F3 and Fj, respectively. They are
representative cases of Scenario 1 in which both the vibration
and current SVMs correctly diagnosed the fault type. In this
scenario, the results from the feature-level fusion and both the
non-trainable and trainable fusion methods are also correct but
with a higher probability, indicating that it is of a higher
confidence to determine the fault type of the gearbox.

Cases 5 and 6 are representative of Scenario 2 in which the
vibration SVM failed to diagnose the fault type but the current
SVM diagnosed the fault type correctly. In Case 5, the
diagnosis result of the vibration SVM is F3 and in Case 6, the
diagnosis result of the vibration SVM is N/A because its Py is
greater than 0.5. However, the final diagnosis results in both
cases are corrected by the decision-level fusion while the
feature-level fusion only corrects the result in Case 6. This
scenario is common when one sensor fails, and the combiner
outputs the correct result by taking advantage of the
information from the other signal.

Cases 7-9 are representative of Scenario 3 in which the
current SVM failed to diagnose the fault type but the vibration
SVM diagnosed the fault type correctly. By taking advantage of
the information from the vibration signal, both the feature-level
fusion and proposed non-trainable fusion methods obtain the
correct results in these three cases; and the trainable fusion
method obtains correct results in Cases 7 and 8. This
demonstrates that the fault diagnosis accuracy and reliability
are improved by the proposed method.

Case 10 is representative of Scenario 4 in which both the
current and vibration SVMs failed to diagnose the fault type.
This is the worst scenario in fault diagnosis. However, by
taking advantage of the information from vibration and current
signals, the feature-level fusion and non-trainable methods
obtain the correct diagnosis result. This case demonstrates the
effectiveness of the feature-level fusion and the robustness of
the non-trainable method, which can provide the correct fault
diagnosis result even when both SVMs output wrong results.

In summary, both the feature-level fusion and proposed
decision-level fusion methods can improve the confidence of
fault diagnosis when both SVM classifiers output the correct
results. Moreover, the proposed non-trainable fusion method
can correct wrong fault diagnosis results from one or even both
SVM classifiers in all cases 5-10; whereas the trainable
combiner can correct wrong fault diagnosis result from one
SVM classifier in Cases 5-8 but fails in Cases 9 and 10 and the
feature-level fusion fails in Case 5. Therefore, if the size of

training data is small, the non-trainable combiner would be the
best choice.

IV. CONCLUSION

This paper proposed a method for wind turbine drivetrain
gearbox fault diagnosis by fusing the information from gearbox
vibration and generator current signals. The features of gearbox
faults in vibration and current signals were analyzed. A
multiclass current SVM and a multiclass vibration SVM were
designed and trained to output the probabilities of different
gearbox fault types by using the features extracted from
gearbox vibration signals and generator current signals
separately. A non-trainable combiner based on the
Dempster-Shafer theory and a trainable combiner based on the
softmax regression technique were designed to fuse the
probabilistic outputs of the two multiclass SVMs to generate a
more accurate and more robust fault diagnosis result.

Experiments were conducted on a wind turbine drivetrain
test rig to validate the effectiveness of the proposed gearbox
fault diagnosis method. The experimental results validated that
the proposed method, particularly the proposed decision-level
non-trainable fusion method, achieved a more accurate and
more reliable fault diagnosis result than the methods using
individual type of signal as well as the feature-level information
fusion method using both vibration and current signals. The
trainable fusion method relies on the training of the combiner
and, thus, is applicable when sufficient training data are
available. If the size of the training dataset is small, the
non-trainable combiner is a better option for information fusion.
In contrast, the state-of-the-art deep-learning-based
information fusion fault diagnosis methods [10], [14], [15]
require much larger datasets for training and, therefore, are not
suitable for many real-world applications with limited data of
fault scenarios, such as the case studies in this paper, and have
higher computational cost than the proposed method.

Since generator current signals are already used in the
control systems of wind turbines, the proposed fault diagnosis
method can be applied without additional hardware cost for
wind turbines with vibration-based CMSs. In contrast, many
other works using information fusion for fault diagnosis require
installation of additional sensors, such as infrared thermal
imaging camera [9] or acoustic sensors [10], leading to extra
hardware cost.

V. RECOMMENDATIONS FOR FUTURE WORK

In the future work, a sensor sensitivity analysis can be
conducted and only the data from the sensors that are highly
sensitive to the faults of interest will be used for information
fusion. Moreover, different faults usually have different
frequencies of occurrence. The data from maintenance records
provide prior probability distribution of different faults and this
information can be used as a prior knowledge to increase the
accuracy of fault diagnosis. Therefore, appropriate techniques
can be developed to utilize the information from maintenance
records to further increase the accuracy and reliability of the
information fusion method. Finally, the proposed method can
also be extended to include other types of signals to further
increase the accuracy and robustness of wind turbine fault
diagnosis.
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TABLE V
DIAGNOSIS RESULTS OBTAINED FROM INDIVIDUAL MULTICLASS SVMS, FEATURE-LEVEL FUSION, AND PROPOSED TRAINABLE AND NON-TRAINABLE FUSION
METHODS.
Probabilistic output of SVM and information fusion Fault type
Case and approach Fi F, F; F, Py Diagnosed result Actual condition
Vibration SVM 0.0309 0.0207 | 0.0526 0.8958 0.1042 Fy
Current SVM 0.0680 0.0452 | 0.0202 0.8665 0.1335 F,
Case 1 Feature-level fusion 0.0344 0.0189 0.0541 0.8926 0.1074 F, £
Non-trainable fusion 0.0027 0.0012 | 0.0014 0.9947 | 0.0053 Fy
Trainable fusion 6.77e-5 | 1.05e-4 | 6.30e-5 | 0.9998 0.0002 Fy
Vibration SVM 0.0173 0.9654 | 0.0131 0.0043 0.0346 F,
Current SVM 0.0263 0.9509 | 0.0179 0.0049 0.0494 F,
Case 2 Feature-level fusion 0.0325 0.9549 | 0.0092 0.0034 0.0451 F, £
Non-trainable fusion 494e-4 | 09992 | 2.55e-4 | 2.26e-5 0.0008 F,
Trainable fusion 3.39¢-6 0.9999 | 4.63e-6 | 5.30e-6 | 0.0001 F
Vibration SVM 0.0552 0.0262 | 0.8947 0.0239 0.1053 F;
Current SVM 0.0584 0.0303 0.8824 0.0289 0.1176 F;
Case 3 Feature-level fusion 0.0808 0.0121 0.8780 0.0290 0.1220 F; L
Non-trainable fusion 0.0041 9.97¢-4 0.9925 6.77¢e-5 0.0075 F;
Trainable fusion 1.16e-4 | 9.27¢-5 0.9997 4.78e-5 0.0003 F;
Vibration SVM 0.8660 0.0309 | 0.1012 0.0019 0.1340 F
Current SVM 0.8028 0.1144 | 0.0520 0.0308 0.1972 F
Case 4 Feature-level fusion 0.9892 0.0030 0.0036 0.0042 0.0108 Fi Fi
Non-trainable fusion 0.9874 0.0050 0.0075 | 8.33e-5 | 0.0126 F
Trainable fusion 0.9997 | 1.47e-4 | 7.34e-5 5.1e-5 0.0003 F
Vibration SVM 0.1513 0.1602 | 0.6659 0.0226 0.3341 F;
Current SVM 0.9673 0.0031 0.0248 0.0048 0.0327 F
Case 5 Feature-level fusion 0.2390 0.0483 0.6805 0.0322 0.3195 F; F,
Non-trainable fusion 0.8951 0.0030 0.1012 0.0006 0.1049 F
Trainable fusion 0.9976 | 7.82¢-4 | 0.0015 1.68e-4 | 0.0024 F
Vibration SVM 0.3400 0.0892 | 0.3632 0.2076 0.6368 N/A
Current SVM 0.9398 0.0025 0.0565 0.0012 0.0602 F
Case 6 Feature-level fusion 0.6269 0.0230 | 0.3039 0.0463 0.3731 F F
Non-trainable fusion 0.9384 | 6.62¢-4 | 0.0602 | 7.23e-4 | 0.0616 F
Trainable fusion 0.9989 3.0d4e-4 | 4.26e-4 | 4.05¢-4 0.0011 Fi
Vibration SVM 0.9850 0.0018 | 0.0015 0.0017 0.0150 F
Current SVM 0.3851 0.0946 | 0.0370 0.4833 0.5167 N/A
Case 7 Feature-level fusion 0.9696 0.0071 0.0197 0.0036 0.0304 F F
Non-trainable fusion 0.9963 | 4.45¢-4 | 0.0011 0.0021 0.0037 Fi
Trainable fusion 0.9874 0.0021 0.0012 0.0093 0.0126 Fi
Vibration SVM 0.9743 0.0081 0.0152 0.0024 0.0257 F
Current SVM 0.1644 0.0412 | 0.0135 0.7809 0.2191 F,
Case 8 Feature-level fusion 0.9860 0.0015 0.0100 0.0025 0.0140 F F,
Non-trainable fusion 0.9850 0.0020 0.0013 0.0117 0.0150 Fi
Trainable fusion 0.7822 0.0084 | 0.0058 0.2036 0.2172 F
Vibration SVM 0.9936 0.0014 | 0.0037 0.0013 0.0064 F
Current SVM 0.0177 0.0637 | 0.9171 0.0015 0.0829 F;
Case 9 Feature-level fusion 0.7383 0.0201 0.1368 0.1047 0.2617 F, F
Non-trainable fusion 0.8360 0.0043 0.1595 | 9.61e-5 | 0.1640 Fi
Trainable fusion 0.0472 0.0014 | 0.9505 | 9.42¢-4 | 0.0495 F;
Vibration SVM 0.2635 0.2646 | 0.4602 0.0117 0.5398 N/A
Current SVM 0.2793 0.0545 0.0015 0.6646 0.3354 F,
Case 10 Feature-level fusion 0.9346 0.0103 0.04383 0.0069 0.0654 F F,
Non-trainable fusion 0.7624 0.1494 | 0.0073 0.0809 0.2376 F
Trainable fusion 0.3958 0.1747 0.07 0.3595 0.6042 N/A
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