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Abstract—Compared with traditional onsite wind turbine 

condition monitoring systems, the remote condition 
monitoring systems can use better computational 
resources to process data with more advanced algorithms 
and, thus, can provide more advanced condition 
monitoring capabilities, but may suffer from a data loss 
problem, especially when wireless data transmission is 
used. To solve this problem, this paper proposes a 
compressive sensing-based missing-data-tolerant fault 
detection method for remote condition monitoring of wind 
turbines. First, the condition monitoring signals collected 
from wind turbines are conditioned to increase their 
sparsity. Then, a compressive-sensing-based sampling 
algorithm is designed to sample the conditioned signals. 
The resulting data samples, called measurements of the 
conditioned signals are transmitted wirelessly during 
which some data samples are possibly lost. At the data 
receiving end, the conditioned signals are reconstructed 
from the received data samples, which might be 
incomplete, via a compressive-sensing-based signal 
reconstruction algorithm. Finally, spectrum analysis is 
performed on the reconstructed signals for wind turbine 
fault detection via fault characteristic frequency 
identification. The proposed method is validated for 
bearing fault detection of a Skystream 3.7 wind turbine and 
an Air Breeze wind turbine by using the data of a generator 
current signal collected from each wind turbine remotely 
while considering different data loss rates. 1 

 
Index Terms—Compressive sensing, data loss, fault 

detection, fault tolerance, remote condition monitoring, 
wind turbine, wireless sensor network.  

I. INTRODUCTION 

T has been reported that premature component failure and 

unscheduled maintenance are key challenges facing the wind 

power industry [1]. In order to compete with conventional 

fossil fuel power plants, the reliability of wind turbines needs to 

be improved. It was pointed out in [2] that, with the help of a 

condition monitoring system (CMS), a fault in a wind turbine 

could be detected in the incipient stage so that preventive 

maintenance could be scheduled before a catastrophic failure 
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occurs. This can significantly improve wind turbine availability 

and reliability, prolong wind turbine lifetime, and reduce the 

financial loss caused by unplanned shutdown.  

Condition monitoring for wind turbines can be performed 

onsite, remotely, or both. The advantage of an onsite CMS is 

that by using the data processing and computing equipment 

installed onsite in the wind turbine being monitored, condition 

monitoring and fault diagnosis can be performed timely with 

little data communication cost or delay. However, due to the 

use of limited local data and limited computational resource, 

the condition monitoring capability of an onsite CMS is 

limited. On the contrary, the remote CMSs can use data 

collected from different wind turbines that contains more 

information of their health conditions and better computational 

resources to process the date using more advanced algorithms 

[3]-[5]. Thus, compared to the onsite CMSs, the remote CMSs 

are usually more capable and more reliable for wind turbine 

condition monitoring but require more expensive 

communication equipment for data transmission.  

In a remote CMS, the condition monitoring data can be 

transmitted through a wired or wireless communication system. 

Compared to the wired communication systems, the wireless 

communication systems, such as those based on wireless sensor 

networks (WSNs), have the advantages of rapid deployment, 

easier installation, and lower costs [6]. These merits make 

WSNs promising for remote condition monitoring of highly 

distributed wind turbines, particularly offshore wind turbines. 

However, WSNs usually suffer a data loss problem due to radio 

interference, poor installation, poor antenna orientation, bad 

weather, or large transmission distance [7]. Fig. 1 illustrates the 

data loss problem of a signal collected for wind turbine 

condition monitoring in which the data samples in the two time 

windows are lost during wireless transmission. The locations of 
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Fig. 1.  Data loss problem in a wind turbine condition monitoring signal. 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

the lost data samples in the transmitted signals can be random 

and their durations can be uncertain. Compared with single- or 

multiple-point random data loss, it is more challenging to 

recover the random data loss over a long period shown in Fig. 1. 

This problem will make the subsequent signal processing and 

condition monitoring difficult and may even lead to failure of 

condition monitoring. To improve the reliability of the remote 

wind turbine CMSs, it is urgent to solve the data loss problem.  

The data loss problem has been addressed via three different 

approaches. The first approach is improving the reliability of 

the WSN communication hardware. For example, a multiple- 

antenna transmission is more reliable than a single-antenna 

transmission [8]. This, however, will increase hardware cost. 

The second approach is adopting an advanced communication 

protocol, such as the data loss notification protocol [9] to 

improve the communication reliability. However, this approach 

may increase system latency and power consumption. 

Moreover, the data loss problem can only be alleviated rather 

than completely avoided by these two approaches.  

Instead of trying to avoid data loss during wireless 

communication, the third approach solves the data loss problem 

in WSNs by using a missing data recovery technique. The 

existing missing data recovery techniques can be grouped into 

statistical methods, artificial intelligence-based methods, and 

filter-based methods. For a statistical method, a mathematical 

model needs to be constructed from the historical data, and the 

performance of the missing data recovery is greatly influenced 

by the accuracy of the model constructed [10], [11]. Artificial 

intelligence techniques, such as artificial neural networks 

(ANNs) have been widely used to solve missing data recovery 

problems [12]. For example, an autoassociative neural network 

[13] and a radial basis function neural network [14] have been 

used for missing data recovery. The problem of data loss in 

wind turbine condition monitoring also has been addressed by 

using ANNs. For example, an ANN-based statistical learning 

framework was proposed in [15] for intelligent imputation of 

missing SCADA data for offshore wind farms. An ANN was 

also used in [16] for missing data imputation in structural health 

monitoring of offshore wind turbines. However, there are two 

limitations of the ANN-based methods. First, training ANNs 

requires sufficient historical data, which is not available in 

some real-world applications. Second, missing data recovery 

relies on the use of different types of data that have strong 

correlations and, thus, do not work for wind turbine CMSs with 

the sensor data that usually have weak correlations. In [17], a 

Kalman filter was designed to impute missing solar irradiance 

data. A fuzzy filter was also proven to be effective to estimate 

system states with missing measurements [18]. However, since 

the filter-based methods predict lost data recursively, they may 

not work for long-period data loss due to the accumulation of 

the prediction error over the lost data samples. 

This paper proposes a novel compressive sensing (CS)-based 

missing-data-tolerant fault detection method to address the data 

loss problem in remote condition monitoring of wind turbines. 

The CS is an emerging sensing technique that can reconstruct 

sparse signals from measurements that are far fewer than those 

required in the traditional Nyquist sampling method [19]. The 

CS technique has been adopted in various applications, such as 

camera, medical imaging, and compressive sensor networks 

[20]-[22]. The proposed method consists of four modules: a 

signal conditioning module, a CS-based signal sampling 

module, a signal reconstruction module, and a fault detection 

module. The signal conditioning module converts the measured 

signals into the signals that are sparse in the frequency domain. 

The conditioned signals that are sparse in the frequency domain 

are then compressively sensed by the CS-based signal sampling 

module to generate the measurements of the conditioned 

signals. The measurements are transmitted wirelessly to the 

data receiving end, during which some data may be lost. Then, 

the signal reconstruction module reconstructs the original 

conditioned signals from their measurements received at the 

receiving end. The process is tolerant to data loss because the 

original conditioned signals can be reconstructed from their 

own measurements even when the measurements have high 

data loss rates during the wireless transmission. Moreover, the 

process does not need any historical data of the signals that is 

needed in existing missing data recovery methods. Finally, the 

reconstructed signals are used for wind turbine fault detection. 

To the best of the authors’ knowledge, this is the first work of 

using the CS technique to solve the data loss problem in remote 

condition monitoring of wind turbines and the first method that 

is capable of missing-data-tolerant fault detection for wind 

turbines without the need for extra correlated signal(s) because 

each condition monitoring signal can be reconstructed from its 

own data even when the data has a high loss rate. 

The remainder of this paper is organized as follows. Section 

II presents the proposed CS-based missing-data-tolerant fault 

detection method for remote condition monitoring of wind 

turbines. Section III presents the pseudocode of the proposed 

method. Section IV validates the proposed method for remote 

condition monitoring of two direct-drive wind turbines. 

Concluding remarks are presented in Section V. 

II. PROPOSED CS-BASED MISSING-DATA-TOLERANT FAULT 

DETECTION METHOD 

The framework of the proposed CS-based missing-data- 

tolerant fault detection method for remote condition monitoring 

of wind turbines is shown in Fig. 2. It consists of four functional 

modules: signal conditioning, CS-based signal sampling, signal 

reconstruction, and fault detection. The condition monitoring 

signals, such as vibration, generator current and voltage, etc., 

are collected by the wireless sensor node installed in the wind 

turbine. Due to the time-varying shaft rotating speed caused by 

the variable wind condition, some of the measured signals, such 

as vibration and current signals are nonstationary, i.e., having 

time-varying frequencies. Moreover, the measured signals 

usually contain noise due to the harsh operating environment of 

the wind turbine. Both issues lead to low sparsity of the original 

signals in the time and frequency domains, where the sparsity 

of a signal can be measured by the ratio of the number of 

zero-valued data samples to the total number of data samples of 

the signal. In practice, due to the existence of noise (e.g., 

measurement noise and quantization noise), zero-valued data 

samples may not be exactly zero. To address this issue, a small 
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threshold can be established and the data samples whose values 

are lower than the threshold will be treated as zero-valued data 

samples for measuring the sparsity of the signal [23]. 

Since the CS method is only applicable to highly sparse 

signals, appropriate signal conditioning algorithms are firstly 

designed to increase the sparsity of the original signals. For 

generator current signals used in this paper and vibration 

signals, the signal conditioning module includes a synchronous 

resampling algorithm to convert the time-varying frequencies 

contained in the original signal x to be constant frequencies, an 

optional low-pass filter to alleviate the influence of the 

environment noise and the possible harmonics caused by the 

power electronic converter, and a demodulation algorithm to 

extract the envelope xe of the resampled signal. The extracted 

envelope signal xe contains possible fault characteristic 

frequency components, which modulate the fundamental 

frequency component in the original signal. Then, the CS-based 

signal sampling is performed on xe by linearly projecting xe on a 

selected measurement matrix. The resulting signal is denoted 

by y, which preserves the information in xe and is called the 

measurements of xe. The signal y is transmitted to the receiving 

end (gateway) through wireless communication. The signal 

received at the receiving end is denoted by 𝑦̂ in which some 

data samples are possibly lost during the transmission. Then, 

the signal reconstruction is performed to recover the envelope 

signal xe from the received signal 𝑦̂  according to the CS 

technique. The reconstructed signal is denoted by 𝑥̂𝑒. Finally, 

spectrum analysis is performed on the reconstructed signal 𝑥̂𝑒. 

If one or more wind turbine fault characteristic frequencies are 

identified in the spectrum of 𝑥̂𝑒 , it indicates that the 

corresponding fault(s) occur in the wind turbine. 

Compared with the traditional WSN-based CMSs [24], [25], 

the proposed method first conditions the collected signals and 

then transmits the measurements of the conditioned signals 

obtained from the CS rather than the collected original signals. 

Since the conditioned signals are sparse in frequency domain, it 

is possible to reconstruct the conditioned signals from their 

measurements according to the CS technique even though some 

of the measurements are lost during the wireless signal 

transmission. This makes the WSN-based CMS robust to data 

loss. The theoretical details of the proposed method are 

described as follows. 

A. Signal Conditioning 

Compressive sensing requires the signal to be sparse. 

Mathematically, a signal x(t) is s-sparse when it has at most s 

nonzeros, i.e., ‖𝑥(𝑡)‖0 ≤ 𝑠, where ‖∙‖0 denotes the number of 

nonzero samples of the signal. The sparsity can be quantified by 

s. The smaller the value of s, the sparser the signal. In the wind 

turbine health condition monitoring, it is common to convert 

the signals, such as vibration and electrical signals, from time to 

frequency domain in order to identify the fault characteristic 

frequencies. However, many frequencies, including fault 

characteristic frequencies of the measured signals are 

proportional to the shaft rotational frequency (SRF) of the wind 

turbine [26]. Due to the time-varying SRF, the frequencies of 

the signals are time-varying, which causes a spectrum smearing 

problem because different time-varying frequencies will 

overlap with each other in the frequency spectrum of the signal 

x(t), which is denoted as X(f). As a consequence, the spectrum 

signal X(f) has many nonzeros, meaning that the measured 

signal x(t) has a low sparsity in the frequency domain.  

To increase the sparsity of the measured signals in frequency 

domain, a synchronous resampling algorithm is firstly designed 

to convert the frequencies of the signals that vary with the SRF 

to be constant values. The algorithm consists of two steps: SRF 

estimation and angular resampling. The SRF can be estimated 

from the time-frequency distribution (TFD), defined as follows 

[27], of a measured stator current signal of a permanent-magnet 

synchronous generator (PMSG) or a rotor current signal of a 

doubly-fed inductor generator (DFIG), denoted as c(t). 

 TFD[𝑐(𝑡)] = |STFT[𝑐(𝑡)](𝑡, 𝑓)| (1) 

where STFT stands for short-time Fourier transform defined by 

 STFT[𝑐(𝑡)](𝑡, 𝑓) = ∫ 𝑐(𝜏)ℎ(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
+∞

−∞
  (2) 

where h(t) is a window function. The instantaneous 

fundamental frequency of the current signal, fc(t), is estimated 

by searching for the global maxima over the whole frequency 

range of the TFD along the time axis, as expressed by 

 𝑓𝑐(𝑡) = arg max
𝑓

{TFD[𝑐(𝑡)](𝑡, 𝑓)}. (3) 

Then, the SRF fr(t) of a PMSG is obtained by 

 𝑓𝑟(𝑡) = 𝑓𝑐(𝑡)/𝑝  (4) 

The SRF fr(t) of a DFIG is obtained by 

 𝑓𝑟(𝑡) = [𝑓𝑠1 ± 𝑓𝑐(𝑡)]/𝑝  (5) 

where p is the number of pole pairs of the generator; 𝑓𝑠1 is the 

fundamental frequency of the DFIG stator circuit; and + or − is 

used in (5) when the DFIG operates above or below the 

synchronous speed, respectively.  

The angular resampling aims to resample an original 

equal-time-interval signal x(t) at the time points relative to the 

equal-phase-increment shaft rotation. Define the initial shaft 

phase position of x(t) to be 𝜃(𝑡0) = 0. Then, the relationship of 

 

Fig. 2.  Framework of the proposed CS-based missing-data-tolerant fault detection method for remote condition monitoring of wind turbines. 
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shaft phase position 𝜃(𝑡)  versus time of x(t) ( 𝑡 ∈ 𝑇 ) is 

established according the estimated SRF as follows. 

 𝜃(𝑡𝑖) = 2𝜋 ∑ 𝑓𝑟(𝑡)∆𝑡,   𝑖 = 1, 2, ⋯ , 𝑃
𝑡=𝑡𝑖
𝑡=𝑡0

− 1 (6) 

where 𝑇 = [𝑡0, 𝑡1, 𝑡2, … , 𝑡𝑃−1]  is the vector of the sampling 

time points of x(t) with a constant sampling time interval ∆𝑡; 

and P is the number of data samples of x(t).  

The shaft phase-time relationship of the resampled signal of 

x(t) (𝑡 ∈ 𝑇) with a constant phase increment ∆𝜃, denoted as 

xr(t) (𝑡 ∈ 𝑇′), can be expressed as  

 𝜃(𝜏𝑖) = 𝑖 ∙ ∆𝜃, 𝜏𝑖 ∈ 𝑇′  (7) 

where 𝑇′ = [𝜏0, 𝜏1, 𝜏2, … , 𝜏𝑁−1] is the vector of the resampling 

time points with varying intervals in general; 𝑁 is the number 

of data samples of the resampled signal; and ∆𝜃 is determined 

by 

∆𝜃 =
𝜃(𝑡𝑃−1)

𝑁
                                        (8) 

The value of 𝑁 is selected according to the desired sampling 

frequency of the resampled signal, e.g., twice the highest fault 

characteristic frequency of interest, and can be different from P. 

If 𝑁 < 𝑃, then the original signal x(t) will be resampled with a 

lower sampling frequency, leading to a downsampling 

operation. This can reduce the computing burden and memory 

usage of the proposed fault detection method. 

Then, the resampling time points contained in the vector 𝑇′ 

are obtained by the cubic spline interpolation method according 

to the phase-time relationships expressed by (6) and (7). Using 

a cubic piecewise polynomial 𝛩(𝑡) to represent the phase-time 

relationship (6), the element 𝜏𝑖 of 𝑇′ can be obtained by solving 

the following equation. 

 𝛩(𝜏𝑖) = 𝜃(𝜏𝑖), 𝜏𝑖 ∈ 𝑇′ (9) 

The data samples of the resampled signal xr(t) (∀ 𝑡 ∈ 𝑇′) in 

the angle domain, xr[𝜃(𝜏𝑖)] (∀ 𝜏𝑖 ∈ 𝑇′) are also obtained by the 

cubic spline interpolation method. Using another cubic 

piecewise polynomial 𝐸(𝑡) to represent the original signal x(t) 

(𝑡 ∈ 𝑇), the new data sample 𝑥𝑟[𝜃(𝜏𝑖)] can be obtained by 

solving the following equation. 

 𝑥𝑟[𝜃(𝜏𝑖)] = 𝐸(𝜏𝑖)  (10) 

The resampled signal is an order-tracked signal 𝑥𝑟[𝜃(𝑡)] 
sampled in the angle domain with an equal phase increment ∆𝜃 

and a time-domain signal 𝑥𝑟(𝑡) sampled with varying intervals 

for ∀ 𝑡 ∈ 𝑇′. Here the “order” O(t) is defined to be a frequency 

of the signal normalized by the SRF 𝑓𝑟(𝑡) as follows. 

𝑂(𝑡) =
𝑓(𝑡)

𝑓𝑟(𝑡)
                                      (11) 

where 𝑓(𝑡) is each time-varying frequency contained in the 

original signal x(t). Since the characteristic frequencies used for 

fault detection are proportional to 𝑓𝑟(𝑡) , the corresponding 

orders are constant. After the resampling, the time-varying SRF 

𝑓𝑟(𝑡) becomes a constant frequency 𝑓𝑟
′ , which is called the 

time-invariant SRF. Thus, according to (11), each time-varying 

frequency 𝑓(𝑡) contained in the original signal x(t) is converted 

to a constant frequency in the resampled signal 𝑥𝑟(𝑡) . 

Therefore, the spectrum smearing problem of the original 

signal x(t) is solved by the resampled signal 𝑥𝑟(𝑡).  

The resampled signal 𝑥𝑟(𝑡) contains the components at the 

constant fundamental frequency 𝑓𝑐
′ = 𝑝𝑓𝑟

′, some constant odd 

harmonics of 𝑓𝑐
′ , fault-induced constant-frequency sidebands 

around 𝑓𝑐
′ and its harmonics, and some noise. Thus, compared 

to the frequency spectrum X(f) of the original signal x(t), the 

frequency spectrum Xr(f) of the resampled signal 𝑥𝑟(𝑡)  has 

much less nonzeros, meaning that the resampled signal has a 

much higher level of sparsity than the original signal in the 

frequency domain.  

To further improve the sparsity level of the resampled signal 

𝑥𝑟(𝑡), it is filtered using a low-pass filter and the resulting 

signal is denoted as 𝑥𝑓(𝑡). The bandwidth of the low-pass filter 

should be selected higher than the highest frequency of interest, 

such as the highest fault characteristic frequency.  

Then, demodulation is performed on 𝑥𝑓(𝑡)  to extract its 

envelope 𝑥𝑒(𝑡) using Hilbert transform, denoted as H[∙] [27]. 

 𝑥𝑒(𝑡) = √{𝑥𝑓
2(𝑡) + {𝐻[𝑥𝑓(𝑡)]}}2                       (12) 

The envelope signal 𝑥𝑒(𝑡) only contains modulation frequency 

components of 𝑥𝑟(𝑡) in the low frequency range, including the 

possible fault characteristic frequency components of the wind 

turbine, but does not contain the fault-irrelevant fundamental 

component of 𝑥𝑓(𝑡). Thus, 𝑥𝑒(𝑡) has a higher sparsity level 

than 𝑥𝑓(𝑡) in frequency domain.  

B. CS-Based Signal Sampling 

The CS theory is based on the fact that a relatively small 

number of random projections of a sparse signal can contain 

most of its salient information [28]. The CS-based signal 

sampling of the N-point envelope signal 𝑥𝑒 obtained in Section 

II.A is implemented via the following linear projection. 

 𝑦 = 𝜙𝑥𝑒                                          (13) 

where 𝜙 ∈ 𝑅𝑀×𝑁(𝑀 ≤ 𝑁)  is called measurement matrix 

and 𝑦 ∈ 𝑅𝑀 is the vector of linear measurements of 𝑥𝑒. If 𝑀 <
𝑁 , e.g., when some data in 𝑦  is lost, the problem of 

reconstructing 𝑥𝑒  from the measurements 𝑦  using (13) is 

underdetermined and, therefore, cannot be solved to obtain the 

exact solution of 𝑥𝑒 . An approximate solution of 𝑥𝑒  can be 

obtained by the least squares method. However, if M is much 

smaller than N, e.g., there is significant data loss in 𝑦 , the 

approximation error could be very large. To solve this 

underdetermined problem, compressive sensing adds a 

constraint of sparsity on the signal 𝑥𝑒. The constraint requires 

that the signal 𝑥𝑒 must be sparse or can be transformed into 

another sparse signal so that it can be reconstructed from its 

measurements 𝑦 by solving an optimization problem even if 

𝑀 ≪ 𝑁 due to data loss or signal compression.  

Besides the sparsity constraint on 𝑥𝑒, it is important to design 

the measurement matrix 𝜙 to ensure that y preserves the salient 

information of the signal 𝑥𝑒  so that 𝑥𝑒  can be reconstructed 

from y. This requires that 𝜙 satisfies the restricted isometry 

property (RIP) according to the CS theory. A matrix 𝜙 satisfies 

the RIP of order s if there exists a 𝛿𝑠 ∈ (0,1) such that 

 (1 − 𝛿𝑠)‖𝑥𝑒‖2
2 ≤ ‖𝜙𝑥𝑒‖2

2 ≤ (1 + 𝛿𝑠)‖𝑥𝑒‖2
2            (14) 

holds for the s-sparse vectors 𝑥𝑒 . When the RIP holds, the 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

matrix 𝜙 approximately preserves the Euclidean length of the 

signal 𝑥𝑒, i.e., the length of 𝜙𝑥𝑒 is bounded by (1±𝛿𝑠)𝑥𝑒 . This 

implies that the pairwise distance between 𝑥𝑒  and any other 

same-length sparse signal 𝑥𝑒
′  that is different from 𝑥𝑒  is 

preserved in the measurement space. In other words, the 

approximation ‖𝑦 − 𝑦′‖2
2 = ‖𝜙(𝑥𝑒 − 𝑥𝑒

′ )‖2
2 ≈ ‖𝑥𝑒 − 𝑥𝑒

′ ‖2
2 

holds, where 𝑦′ is the measurement vector of 𝑥𝑒
′  obtained from 

(13). The RIP property of 𝜙 ensures that if the sparse signal 𝑥𝑒 

is identifiable from any other same-length sparse signal 𝑥𝑒
′ , the 

measurements 𝑦  of 𝑥𝑒  is also identifiable from the 

measurements 𝑦′ of 𝑥𝑒
′  because the distance between 𝑥𝑒 and 𝑥𝑒

′  

is preserved in the measurement space. Then, according to [28], 

𝑥𝑒 can be uniquely reconstructed from 𝑦. On the contrary, if the 

RIP property of 𝜙 does not hold, the distance between 𝑦 and 𝑦′ 
may be much smaller than the distance between 𝑥𝑒 and 𝑥𝑒

′  or 

even close to zero. In this case, 𝑦 is no longer identifiable from 

𝑦′ and, therefore, cannot be used to reconstruct 𝑥𝑒 because the 

reconstructed signal may be 𝑥𝑒
′ .  

If 𝜙 satisfies the RIP, a variety of algorithms can be applied 

to recover a sparse signal 𝑥𝑒 from its measurements y [29]. It 

has been shown that a random matrix would satisfy the RIP 

with a high probability if its entries are chosen according to a 

Gaussian, Bernoulli, or more generally any sub-Gaussian 

distribution [29]. There are two benefits of using a random 

matrix to construct 𝜙. First, the measurements are democratic, 

making it possible to recover 𝑥𝑒  using any sufficiently large 

subset of the measurements. Thus, the loss or corruption of a 

fraction of the measurements would not influence the signal 

recovery. Second, if 𝑥𝑒  is not sparse in time domain but is 

sparse in another domain spanned by some basis 𝜓, then 𝑥𝑒 can 

be transformed into another domain by 

 𝑥𝑒 = 𝜓𝛼                                            (15) 

where 𝜓 ∈ 𝑅𝑁×𝑁 is the basis matrix and 𝛼 ∈ 𝑅𝑁×1 is the sparse 

coefficient vector with s nonzero values, which usually satisfies 

𝑠 ≪ 𝑁. It is proved that if 𝜙 is a random matrix, 𝜙𝜓 satisfies 

the RIP with a high probability [30]. 

Since the envelope signal 𝑥𝑒 is not sparse in time domain but 

is sparse in frequency domain, 𝜓 is selected to be the Fourier 

matrix defined in (16) so that (15) transforms 𝑥𝑒  from time 

domain into frequency domain.  

𝜓 = [

1        1        1                     1       
1 𝜔
⋮ ⋮
1 𝜔𝑛−1

𝜔2 ⋯ 𝜔𝑛−1

⋮ ⋱ ⋮

𝜔2(𝑛−1) ⋯ 𝜔(𝑛−1)2

]                (16) 

where 𝜔 = 𝑒
2𝜋𝑗

𝑁 . As a result, the vector of measurements y of 

the envelope signal 𝑥𝑒 is obtained by 

 𝑦 = 𝜙𝑥𝑒 =  𝜙𝜓𝛼 = 𝐴𝛼  (17) 

where 𝐴 ∈ 𝑅𝑀×𝑁 is called sensing matrix, which satisfies the 

RIP as stated in the last paragraph. The measurements y are 

then sent wirelessly to the receiving node. 

C. Signal Reconstruction 

The M-length measurement vector y is subject to data loss 

during wireless transmission. The data loss could be random 

point data loss or random data loss over an uncertain period as 

illustrated in Fig. 3 in which the lost data in the received 

measurement vector 𝑦̂ is masked by a white rectangle of the 

length 𝑁𝑙. The received signal 𝑦̂ is an 𝑀̂-length vector that can 

be expressed as a linear projection of 𝑥𝑒  below, where 𝑀̂ =
𝑀 − 𝑁𝑙 and 𝑁𝑙 is the number of the lost data points in 𝑦̂.  

 𝑦̂ = 𝜙̂𝑥𝑒 = 𝜙̂𝜓𝛼 = 𝐴̂𝛼     (18) 

where 𝜙̂ ∈ 𝑅𝑀̂×𝑁  is a new measurement matrix, which is a 

copy of 𝜙 but with the 𝑁𝑙 rows corresponding to the positions 

of the lost data in y removed, as shown in Fig. 3. Since 𝜙 is a 

random matrix, the 𝑀̂ × 𝑁 matrix 𝜙̂  is still a random matrix. 

So is the matrix 𝐴̂ ∈ 𝑅𝑀̂×𝑁, which satisfies the RIP. According 

to the CS theory, the received signal 𝑦̂ can also be regarded as 

the measurements of 𝑥𝑒. It is pointed out in [31] that if any 2s 

columns of the 𝑀̂ × 𝑁  measurement matrix 𝜙̂  are linearly 

independent, then the s-sparse signal 𝛼 can be reconstructed 

uniquely from its measurements 𝑦̂. The data loss can happen 

randomly at any positions of the received data and the signal 

reconstruction is insensitive to this randomness. 

To recovered 𝑥𝑒  from 𝑦̂, the sparse coefficient vector 𝛼 is 

firstly recovered as 𝛼̂  by solving the following l0-norm 

minimization problem. 

 𝛼̂ = arg min‖𝛼‖0    s. t.  𝑦̂  = 𝐴̂𝛼 (19) 

where ‖𝛼‖0 denotes the number of nonzero elements in 𝛼.  

However, the problem (19) is a non-deterministic 

polynomial-time hard (NP-hard) problem, which is difficult to 

solve. An approximate solution of (19) can be obtained by 

using the orthogonal matching pursuit (OMP) algorithm, which 

is presented in Table I, where ∅ is an empty set and supp(z) 

denotes the support of the vector z. The OMP algorithm begins 

by finding the column of 𝐴̂ that is most correlated with the 

measurements 𝑦̂ via the “initialize,” “match,” and “identify” 

steps with l = 0 in Table I. Then, the “match” and “identify” 

steps are repeated to correlate the columns in  𝐴̂  with the 

residual of the signal  𝑦̂, denoted as 𝑟𝑙+1, which is obtained in 

the “update” step by subtracting a partial estimate of the signal 

𝑦̂, denoted as 𝐴̂𝛼𝑙+1, from the original signal 𝑦̂. The stopping 

criterion is that either the predefined maximum number of 

iterations is reached or 𝑦̂  ≈ 𝐴̂𝛼̂ is satisfied [32].  

Once 𝛼̂  is obtained, the envelope signal 𝑥𝑒  can be 

reconstructed as 𝑥̂𝑒 by 

 𝑥̂𝑒 = 𝜓𝛼̂  (20) 

The reconstruction error 𝜉 between the reconstructed signal 𝑥̂𝑒 

and the original envelop signal 𝑥𝑒 is defined as  

𝜉 =
‖𝑥̂𝑒−𝑥𝑒‖2

‖𝑥𝑒‖2
                                 (21) 

 

Fig. 3.  Illustration of the CS-based signal sampling for the received 
measurement vector with data lost during wireless transmission. 
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TABLE I 
ALGORITHM OF ORTHOGONAL MATCHING PURSUIT [32] 

Inputs:  matrix 𝐴̂, measurement vector 𝑦̂, stopping criterion 

Initialize:  r0 = 𝑦̂, 𝛼0 = 0, Λ0 = ∅, l = 0 

While not converged do 

Match:  hl= 𝐴̂𝑇𝑟𝑙 

Identify:  Λ𝑙+1 = Λ𝑙 ∪ {arg max𝑘|ℎ𝑙(𝑘)|} 

Update:  𝛼𝑙+1 = arg min𝑧:supp(𝑧)⊆Λ𝑙+1‖𝑦̂  − 𝐴̂𝑧‖
2
 

                 𝑟𝑙+1 = 𝑦̂  − 𝐴̂𝛼𝑙+1 

                 l = l + 1 

End while 

Output:  𝛼̂ = 𝛼𝑙 

D. Fault Detection 

This paper does not aim at proposing a new fault detection 

algorithm for wind turbines. The fault detection module of the 

proposed method can be implemented by using the existing 

methods reported in the literature or used in industry, such as 

frequency or order spectrum analysis [3], [25], [26], anomaly 

detection [5], or machine learning-based classification [24], 

[27]. In this paper, the traditional frequency spectrum analysis 

method [3], [26] is adopted for the fault detection based on the 

identification of the fault characteristic frequencies in the 

amplitude spectrum of the reconstructed signal 𝑥̂𝑒. In practice, 

fault characteristic frequencies of wind turbine drivetrain 

components, such as the shaft bearing fault characteristic 

frequencies given in Section IV.A, can be determined 

according to the geometries and rotating frequencies of the 

components [26], [27]. If a fault occurs, the corresponding 

characteristic frequency will appear as an impulse in the 

amplitude spectrum of 𝑥̂𝑒. The impulses can be extracted by 

using an impulse detection method [26]. If an impulse is 

detected at a fault characteristic frequency, it indicates that the 

corresponding fault may occur. The final fault detection result 

can be obtained by comparing the amplitude of the impulse 

against a threshold, which can be determined from the 

historical failure cases. If the amplitude is lower than the 

threshold, it indicates that the fault has occurred but is not 

mature yet. Otherwise, if the amplitude exceeds the threshold, it 

indicates that the fault has become mature so that an alarm 

should be triggered and maintenance is needed. 

Since no parameter tuning is needed in the CS-based signal 

sampling and reconstruction processes, the proposed method 

has a merit of parameter tuning free. Thus, the proposed 

method has no parameter that will affect fault detection efficacy, 

which is mainly affected by the data loss rate itself.  

III. PSEUDOCODE OF THE PROPOSED METHOD 

The pseudocode of the proposed method is shown in Table 

II. The signal conditioning and CS-based signal sampling are 

conducted at the sending end, and the signal reconstruction and 

fault detection are conducted at the receiving end of the remote 

condition monitoring system. The purpose of signal 

conditioning is to increase the sparsity of the signal. The 

compressive measurements of the conditioned signal are 

transmitted. The received measurements may be incomplete 

due to data loss. Signal reconstruction is conducted using the 

received measurements. Fault detection is carried out using the 

frequency spectrum of the reconstructed data. The output 

includes a Boolean indicating whether a fault is detected and if 

a fault is detected, fault type will also be identified. 
TABLE II 

PSEUDOCODE OF THE PROPOSED METHOD 

Initialize:  fault alarm = false 

While fault alarm == false do 

%%%% Operations at Sending End %%%% 

Input:  condition monitoring signal x. 

Signal Conditioning (SC) to increase signal sparsity:  

SRF estimation (SRFE):  𝑓𝑟 ← SRFE(𝑥). 

Angular resampling (AR):  𝑥𝑟 ← AR(𝑥, 𝑓𝑟). 

Low-pass filtering (LPF):  𝑥𝑓 ← LPF(𝑥𝑟). 

Demodulation:  𝑥𝑒 ← √{𝑥𝑓
2 + {𝐻[𝑥𝑓]}}2. 

CS-based Signal Sampling: 

Measurement matrix generation:  use Gaussian distribution 

to generate entries of the 𝑀𝑁 matrix 𝜙. 

Compressive measurements generation:  𝑦 = 𝜙𝑥𝑒. 

Send:  compressive measurements 𝑦 

%%%% Data Transmission %%%% 

%%%% Operations at Receiving End %%%% 

Receive:  compressive measurements 𝑦̂ 

Signal Reconstruction by OMP: 

Measurement matrix generation:  generate 𝜙̂  from 𝜙 

according to locations of lost data in 𝑦̂. 

Generation of 𝑀̂ × 𝑁 matrix 𝐴̂:  𝐴̂ = 𝜙̂𝜓. 

Signal reconstruction:  𝛼̂ ← OMP(𝑦̂, 𝐴̂). 

Fault Detection:   

If: 𝛼̂ contains fault characteristic frequencies 

Then:  fault alarm = true and fault type identification 

according to the characteristic frequency. 

Output:  fault alarm and detected fault type. 

IV. APPLICATION OF THE PROPOSED METHOD TO REMOTE 

CONDITION MONITORING OF DIRECT-DRIVE WIND TURBINES 

A. Experiment Setup  

The proposed method is applied to commercial direct-drive 

wind turbines in the field, where each wind turbine is equipped 

with a PMSG and a WSN-based remote CMS, as shown in Fig. 

4. The WSN consists of a wireless sensor node (Model: 

V-Link® -LXRS®) installed on the nacelle of the wind turbine 

and a gateway (Model: WSDA®-1500-LXRS®). The sensor 

node collects the data of one-phase PMSG stator current signal 

once per hour with a sampling frequency of 1000 Hz. The 

length of each data record is 15 seconds. Thus, each data record 

contains a total of 15000 data samples. The collected current 

signal is processed by the proposed signal conditioning 

algorithm to obtain its envelope signal, which is then processed 

by CS-based signal sampling algorithm to obtain the 

measurement signal. The data of the measurement signal is 

transmitted wirelessly from the sensor node to the gateway. The 

gateway receives the data and uploads the data to a web server 

SensorCloudTM on which the data is stored. A lab computer is 

connected to the SensorCloudTM server through the Internet to 
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access the data of the measurement signal, which is then used 

by the CS-based signal reconstruction program running on the 

computer to recover the envelope of the current signal. Finally, 

the recovered current envelope signal is used for remote fault 

detection of the wind turbine.  

The data collected from a Skystream 3.7 wind turbine and an 

Air Breeze wind turbine were used to validate the proposed 

method. The Skystream 3.7 wind turbine has a cage fault in a 

shaft bearing and the corresponding characteristic frequencies 

can be computed as follows [33].  

 𝑓FTFO =
𝑓𝑟

′

2
(1 −

𝑑

𝐷
cos𝛾)  (22) 

 𝑓FTFI =
𝑓𝑟

′

2
(1 +

𝑑

𝐷
cos𝛾)  (23) 

where 𝑓FTFO and 𝑓FTFI are characteristic frequencies of bearing 

cage fault when the damaged cage touches the outer and inner 

rings, respectively, d is the diameter of the rolling elements, D 

is the bearing pitch diameter, and 𝛾 is the contact angle. The 

Air Breeze wind turbine has a shaft bearing outer race fault 

whose characteristic frequency 𝑓BPFO can be computed as: 

𝑓BPFO =
𝑓𝑟

′

2
𝑁𝑏(1 −

𝑑

𝐷
cos𝛾)                         (24) 

where 𝑁𝑏 is the number of bearing rolling elements. 

B. Experimental Results of a Bearing Cage Fault 

For the Skystream 3.7 wind turbine, the geometry parameters 

of the shaft bearing are D = 65 mm, d = 12.7 mm, and 𝛾 = 0. 

The time-invariant SRF is 𝑓𝑟
′ = 2 Hz in this experiment. 

According to (22) and (23), the bearing cage fault characteristic 

frequencies are calculated as 𝑓FTFO = 0.8 Hz and 𝑓FTFI = 1.2 Hz.  

Fig. 5 shows the amplitude spectrum around the fundamental 

frequency of the generator stator current signal measured on 

February 4, 2016. Due to the time-varying shaft rotating speed 

of the wind turbine, the fundamental frequency distributes over 

a range from 42 Hz to 46 Hz and cannot be distinguished from 

its sidebands that contain the bearing fault characteristic 

frequencies, which causes a spectrum smearing problem and 

many impulses in the amplitude spectrum in Fig. 5. Thus, the 

sparsity of the current signal in frequency domain is low. To 

measure the sparsity of this amplitude spectrum while taking 

noise into consideration, a threshold with the amplitude to be 

10% of the peak value of the spectrum is chosen, as shown in 

Fig. 5. The amplitude spectrum exceeds the threshold when the 

frequency is between 42-46 Hz. The sparsity of the amplitude 

spectrum is measured to be 0.7.  

The synchronous resampling algorithm is used to solve the 

spectrum smearing problem. The amplitude spectrum of the 

resampled current signal with the sampling frequency the same 

as that of the original current signal is shown in Fig. 6 in which 

the frequency components are converted to single impulses by 

the synchronous resampling. Two sidebands around the 

fundamental frequency 𝑓𝑐
′ = 42.4 Hz are clearly identified at 

41.2 Hz and 43.6 Hz in Fig. 6, meaning that the fundamental 

frequency 𝑓𝑐
′ is modulated by a frequency of 1.2 Hz, which is 

close to one of the bearing cage fault characteristic frequencies 

𝑓FTFI = 1.206 Hz, indicating that the cage of the shaft bearing 

damaged. By using a threshold established in the same way in 

Fig. 5, the sparsity of the amplitude spectrum in Fig. 6 is 

increased to 0.94 because there are fewer values exceeding the 

threshold. Thus, the resampled current signal has a higher 

sparsity than the original current signal in frequency domain. 

Since the bearing characteristic frequencies are much lower 

than the 1000 Hz sampling frequency of the original current 

signal, the number of data samples of the resampled current 

signal is reduced to 1500, which is only 10% of the 15000 data 

samples of the original current signal, namely, the resampled 

current signal is downsampled to 100 Hz. This reduces the 

computational time for the CS-based signal sampling and 

reconstruction, and save the memory space of the WSN. To 

further increase the sparsity level and reduce the noise of the 

current signal, a filter is applied to the resampled current signal 

to remove its high-frequency noise. Then, the envelope of the 

filtered resampled current signal is obtained via the Hilbert 

transform. The obtained current envelope signal mainly 

contains the fault-induced characteristic frequency and does not 

contain the fundamental frequency of the current signal. The 

 

Fig. 4.  A commercial direct-drive wind turbine equipped with the 
proposed WSN-based remote CMS in the field. 

 

Fig. 5.  Amplitude spectrum of the generator stator current signal 
measured on February 4, 2016 around its fundamental frequency. 

 

 

Fig. 6.  Amplitude spectrum of the resampled current signal around its 
fundamental frequency. 
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waveform and amplitude spectrum of the resampled current 

envelope signal are shown in Fig. 7. The bearing cage fault 

characteristic frequency 𝑓FTFI is the dominant in the amplitude 

spectrum. By using a threshold established in the same way in 

Figs. 5 and 6, the sparsity of the amplitude spectrum in Fig. 7 is 

increased further to 0.96 because only the 1.2Hz component 

exceeds the threshold. Thus, the resampled current envelope 

signal has a much higher sparsity than the original current 

signal shown in Fig. 5 and also a higher sparsity than the 

resampled current signal shown in Fig. 6 in frequency domain.   

Then, the CS-based signal sampling is performed on the 

resampled current envelope signal and the resulting 

measurement signal is shown in Fig. 8(a). Assuming that 95% 

samples of the measurement signal are lost during the wireless 

transmission; and the beginning and end positions of the lost 

data are randomly selected, as displayed in Fig. 8(b), where the 

lost data points are filled by zero values. By applying the 

proposed data reconstruction method, the resampled current 

envelope signal is reconstructed from the incomplete 

measurements, as shown in Fig. 9 in comparison with the 

original resampled current envelope signal. The reconstruction 

error is 0.304 according to (21). Fig. 10 shows the amplitude 

spectrum of the reconstructed resampled current envelope 

signal, where the bearing cage fault characteristic frequency 

shown in Fig. 7(b) is also identified and the fault characteristic 

frequency components in Fig. 10 and 7(b) have the same 

amplitude. These results indicate that the bearing health 

information is recovered in the reconstructed resampled current 

envelope signal. Therefore, the proposed method is effective 

for remote condition monitoring of the wind turbine even when 

the condition monitoring signal has significant data loss.  

Fig. 11 shows the curve of reconstruction error versus data 

loss rate of the received measurements of the resampled current 

envelope signal in this experiment. The reconstruction error is 

less than 0.3 even when the data loss rate is less than 95%, but 

increases dramatically when the data loss rate exceeds 95%. 

The result indicates that the proposed method has strong 

tolerance to missing data with the loss rate up to 95%. 

Fig. 12 shows the case when the resampled current envelope 

signal shown in Fig. 7(a) instead of the measurements of the 

resampled current envelope signal shown in Fig. 8(a) is 

transmitted wirelessly and 95% data samples of the received 

resampled current envelope signal happen to be lost, as 

illustrated in Fig. 12(a). The spectrum of the received 

resampled current envelope signal is shown in Fig. 12(b), in 

which the fault characteristic frequency contained in the 

original envelope signal shown in Fig. 7(b) cannot be 

identified. The results in Figs. 7, 9, 10 and 12 demonstrate that 

in order to achieve missing-data tolerance in the remote 

condition monitoring of the wind turbine, it is necessary and 

effective to use the proposed CS-based fault detection method. 

Therefore, the proposed method can improve the reliability and 

robustness of the remote wind turbine CMS.  

 
(a) 

 

 
(b) 

Fig. 8.  Measurements of the resampled current envelope signal: (a) 
complete data samples and (b) incomplete data samples with a 95% 
data loss rate. 

 

 

Fig. 9.  Comparison of the reconstructed and original resampled current 
envelope signals. 

 
(a) 

 

 
(b) 

Fig. 7.  Resampled current envelope signal: (a) time-domain samples 
and (b) amplitude spectrum. 
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C. Experimental Results of a Bearing Outer Race Fault 

For the Air Breeze wind turbine, the geometry parameters of 

the shaft bearing are D = 33 mm, d = 8 mm, 𝑁𝑏= 8, and γ = 0. 

The time-invariant SRF is  𝑓𝑟
′ = 10 Hz in this test. According to 

(24), the bearing outer race fault characteristic frequency is 

𝑓BPFO ≈  30  Hz. The amplitude spectrum of the resampled 

current envelope signal is shown in Fig. 13(a), where the 30Hz 

fault characteristic frequency is clearly identified. The sparsity 

of the amplitude spectrum is measured to be 0.93. By using the 

proposed method, the bearing outer race fault can be detected as 

long as the data loss rate of the received measurement signal 

does not exceed 90%. Fig. 13(b) shows the amplitude spectrum 

of the reconstructed resampled current envelope signal when 

the measurement signal has a 90% data loss rate during wireless 

transmission, where the 30Hz fault characteristic frequency is 

also clearly identified. The result again validates the proposed 

method for missing-data-tolerant fault detection.  

V. CONCLUSION 

A compressive sensing-based missing-data-tolerant fault 

detection method for remote condition monitoring of wind 

turbines was proposed. The compressive sensing technique 

requires the signal to be sparse. To satisfy this requirement, 

signal conditioning was performed on the condition monitoring 

signals. The conditioned signals are sparser than the original 

signals in frequency domain. Then, measurements of the 

conditioned signals were obtained by using the compressive 

sensing-based sampling algorithm, transmitted wirelessly to a 

gateway of the wireless sensor network, and further transmitted 

to and saved on a data sever of the remote condition monitoring 

system. Due to the interference in wireless communication, the 

measurements might be partially lost during the data 

transmission. The conditioned signals were then reconstructed 

from their measurements received using the proposed method 

for the wind turbine fault detection.  

The effectiveness of the proposed method was verified by 

using the data of a one-phase generator stator current signal 

collected from the remote condition monitoring systems of two 

direct-drive wind turbines in the field with a shaft bearing cage 

fault and a shaft bearing outer race fault, respectively. Field test 

results showed that the original current signal could not be used 

directly for the wind turbine fault detection via frequency 

spectrum analysis; the resampled current envelope signal 

 
(a) 

 
(b) 

Fig. 13.  Amplitude spectra of (a) resampled current envelope signal and 
(b) reconstructed current envelope signal when the measurement signal 
has 90% data loss rate during wireless transmission. 

 

Fig. 10. Amplitude spectrum of the reconstructed current envelope 
signal.  

 

 

Fig. 11.  Curve of reconstruction error versus data loss rate. 

 

 
(a) 

 
(b) 

Fig. 12.  Resampled current envelope signal with a 95% data loss rate: 
(a) time-domain samples and (b) amplitude spectrum. 
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obtained from the signal conditioning module of the proposed 

method was effective for the wind turbine fault detection via 

frequency spectrum analysis; the resampled current envelope 

signal reconstructed from its measurements by the proposed 

method was also effective for the wind turbine fault detection, 

even when 95% or 90% of the measurements were lost during 

the wireless data transmission. Compared to the existing 

methods that use and transmit the collected original signals for 

remote condition monitoring, the proposed method is more 

reliable and more robust to high levels of data loss. Moreover, 

compared to the existing methods that require other signals and 

training to recover the lost data of a signal for wind turbine fault 

detection, the proposed method does not need any other signals 

or training for reconstructing the condition monitoring signal 

from its own measurements with lost data.  

If the data loss rate is extremely high, such as over 95% or 

90% in this work, the proposed method may not work properly. 

In this circumstance, the use of more advanced (i.e., more 

expensive) wireless sensor network hardware or other 

correlated signals would be needed to solve the data loss 

problem. In this paper, the fault detection was carried out by 

using the reconstructed signal. Future work can be carried out 

to develop fault detection algorithms using the received 

measurement signal directly without the signal reconstruction 

step, which can save computational resources. Moreover, this 

paper focused on solving the data loss problem instead of 

developing a new fault detection/diagnosis algorithm. In the 

future work, advanced fault diagnosis algorithms, such as those 

based on machine learning techniques, can be developed for 

identification of fault types, locations, severity, etc. using the 

received measurement signals or reconstructed signals. 
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