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Abstract—Compared with traditional onsite wind turbine
condition monitoring systems, the remote condition
monitoring systems can use better computational
resources to process data with more advanced algorithms
and, thus, can provide more advanced condition
monitoring capabilities, but may suffer from a data loss
problem, especially when wireless data transmission is
used. To solve this problem, this paper proposes a
compressive sensing-based missing-data-tolerant fault
detection method for remote condition monitoring of wind
turbines. First, the condition monitoring signals collected
from wind turbines are conditioned to increase their
sparsity. Then, a compressive-sensing-based sampling
algorithm is designed to sample the conditioned signals.
The resulting data samples, called measurements of the
conditioned signals are transmitted wirelessly during
which some data samples are possibly lost. At the data
receiving end, the conditioned signals are reconstructed
from the received data samples, which might be
incomplete, via a compressive-sensing-based signal
reconstruction algorithm. Finally, spectrum analysis is
performed on the reconstructed signals for wind turbine
fault detection via fault characteristic frequency
identification. The proposed method is validated for
bearing fault detection of a Skystream 3.7 wind turbine and
an Air Breeze wind turbine by using the data of a generator
current signal collected from each wind turbine remotely
while considering different data loss rates.

Index Terms—Compressive sensing, data loss, fault
detection, fault tolerance, remote condition monitoring,
wind turbine, wireless sensor network.

[. INTRODUCTION

T has been reported that premature component failure and

unscheduled maintenance are key challenges facing the wind
power industry [1]. In order to compete with conventional
fossil fuel power plants, the reliability of wind turbines needs to
be improved. It was pointed out in [2] that, with the help of a
condition monitoring system (CMS), a fault in a wind turbine
could be detected in the incipient stage so that preventive
maintenance could be scheduled before a catastrophic failure
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occurs. This can significantly improve wind turbine availability
and reliability, prolong wind turbine lifetime, and reduce the
financial loss caused by unplanned shutdown.

Condition monitoring for wind turbines can be performed
onsite, remotely, or both. The advantage of an onsite CMS is
that by using the data processing and computing equipment
installed onsite in the wind turbine being monitored, condition
monitoring and fault diagnosis can be performed timely with
little data communication cost or delay. However, due to the
use of limited local data and limited computational resource,
the condition monitoring capability of an onsite CMS is
limited. On the contrary, the remote CMSs can use data
collected from different wind turbines that contains more
information of their health conditions and better computational
resources to process the date using more advanced algorithms
[3]-[5]. Thus, compared to the onsite CMSs, the remote CMSs
are usually more capable and more reliable for wind turbine
condition monitoring but require more expensive
communication equipment for data transmission.

In a remote CMS, the condition monitoring data can be
transmitted through a wired or wireless communication system.
Compared to the wired communication systems, the wireless
communication systems, such as those based on wireless sensor
networks (WSNs), have the advantages of rapid deployment,
easier installation, and lower costs [6]. These merits make
WSNs promising for remote condition monitoring of highly
distributed wind turbines, particularly offshore wind turbines.
However, WSNs usually suffer a data loss problem due to radio
interference, poor installation, poor antenna orientation, bad
weather, or large transmission distance [7]. Fig. 1 illustrates the
data loss problem of a signal collected for wind turbine
condition monitoring in which the data samples in the two time
windows are lost during wireless transmission. The locations of
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Fig. 1. Data loss problem in a wind turbine condition monitoring signal.
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the lost data samples in the transmitted signals can be random
and their durations can be uncertain. Compared with single- or
multiple-point random data loss, it is more challenging to
recover the random data loss over a long period shown in Fig. 1.
This problem will make the subsequent signal processing and
condition monitoring difficult and may even lead to failure of
condition monitoring. To improve the reliability of the remote
wind turbine CMSs, it is urgent to solve the data loss problem.

The data loss problem has been addressed via three different
approaches. The first approach is improving the reliability of
the WSN communication hardware. For example, a multiple-
antenna transmission is more reliable than a single-antenna
transmission [8]. This, however, will increase hardware cost.
The second approach is adopting an advanced communication
protocol, such as the data loss notification protocol [9] to
improve the communication reliability. However, this approach
may increase system latency and power consumption.
Moreover, the data loss problem can only be alleviated rather
than completely avoided by these two approaches.

Instead of trying to avoid data loss during wireless
communication, the third approach solves the data loss problem
in WSNs by using a missing data recovery technique. The
existing missing data recovery techniques can be grouped into
statistical methods, artificial intelligence-based methods, and
filter-based methods. For a statistical method, a mathematical
model needs to be constructed from the historical data, and the
performance of the missing data recovery is greatly influenced
by the accuracy of the model constructed [10], [11]. Artificial
intelligence techniques, such as artificial neural networks
(ANNSs) have been widely used to solve missing data recovery
problems [12]. For example, an autoassociative neural network
[13] and a radial basis function neural network [14] have been
used for missing data recovery. The problem of data loss in
wind turbine condition monitoring also has been addressed by
using ANNSs. For example, an ANN-based statistical learning
framework was proposed in [15] for intelligent imputation of
missing SCADA data for offshore wind farms. An ANN was
also used in [16] for missing data imputation in structural health
monitoring of offshore wind turbines. However, there are two
limitations of the ANN-based methods. First, training ANNs
requires sufficient historical data, which is not available in
some real-world applications. Second, missing data recovery
relies on the use of different types of data that have strong
correlations and, thus, do not work for wind turbine CMSs with
the sensor data that usually have weak correlations. In [17], a
Kalman filter was designed to impute missing solar irradiance
data. A fuzzy filter was also proven to be effective to estimate
system states with missing measurements [18]. However, since
the filter-based methods predict lost data recursively, they may
not work for long-period data loss due to the accumulation of
the prediction error over the lost data samples.

This paper proposes a novel compressive sensing (CS)-based
missing-data-tolerant fault detection method to address the data
loss problem in remote condition monitoring of wind turbines.
The CS is an emerging sensing technique that can reconstruct
sparse signals from measurements that are far fewer than those
required in the traditional Nyquist sampling method [19]. The

CS technique has been adopted in various applications, such as
camera, medical imaging, and compressive sensor networks
[20]-[22]. The proposed method consists of four modules: a
signal conditioning module, a CS-based signal sampling
module, a signal reconstruction module, and a fault detection
module. The signal conditioning module converts the measured
signals into the signals that are sparse in the frequency domain.
The conditioned signals that are sparse in the frequency domain
are then compressively sensed by the CS-based signal sampling
module to generate the measurements of the conditioned
signals. The measurements are transmitted wirelessly to the
data receiving end, during which some data may be lost. Then,
the signal reconstruction module reconstructs the original
conditioned signals from their measurements received at the
receiving end. The process is tolerant to data loss because the
original conditioned signals can be reconstructed from their
own measurements even when the measurements have high
data loss rates during the wireless transmission. Moreover, the
process does not need any historical data of the signals that is
needed in existing missing data recovery methods. Finally, the
reconstructed signals are used for wind turbine fault detection.
To the best of the authors’ knowledge, this is the first work of
using the CS technique to solve the data loss problem in remote
condition monitoring of wind turbines and the first method that
is capable of missing-data-tolerant fault detection for wind
turbines without the need for extra correlated signal(s) because
each condition monitoring signal can be reconstructed from its
own data even when the data has a high loss rate.

The remainder of this paper is organized as follows. Section
II presents the proposed CS-based missing-data-tolerant fault
detection method for remote condition monitoring of wind
turbines. Section III presents the pseudocode of the proposed
method. Section IV validates the proposed method for remote
condition monitoring of two direct-drive wind turbines.
Concluding remarks are presented in Section V.

Il. PROPOSED CS-BASED MISSING-DATA-TOLERANT FAULT
DETECTION METHOD

The framework of the proposed CS-based missing-data-
tolerant fault detection method for remote condition monitoring
of wind turbines is shown in Fig. 2. It consists of four functional
modules: signal conditioning, CS-based signal sampling, signal
reconstruction, and fault detection. The condition monitoring
signals, such as vibration, generator current and voltage, etc.,
are collected by the wireless sensor node installed in the wind
turbine. Due to the time-varying shaft rotating speed caused by
the variable wind condition, some of the measured signals, such
as vibration and current signals are nonstationary, i.e., having
time-varying frequencies. Moreover, the measured signals
usually contain noise due to the harsh operating environment of
the wind turbine. Both issues lead to low sparsity of the original
signals in the time and frequency domains, where the sparsity
of a signal can be measured by the ratio of the number of
zero-valued data samples to the total number of data samples of
the signal. In practice, due to the existence of noise (e.g.,
measurement noise and quantization noise), zero-valued data
samples may not be exactly zero. To address this issue, a small
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Fig. 2. Framework of the proposed CS-based missing-data-tolerant fault detection method for remote condition monitoring of wind turbines.

threshold can be established and the data samples whose values
are lower than the threshold will be treated as zero-valued data
samples for measuring the sparsity of the signal [23].

Since the CS method is only applicable to highly sparse
signals, appropriate signal conditioning algorithms are firstly
designed to increase the sparsity of the original signals. For
generator current signals used in this paper and vibration
signals, the signal conditioning module includes a synchronous
resampling algorithm to convert the time-varying frequencies
contained in the original signal x to be constant frequencies, an
optional low-pass filter to alleviate the influence of the
environment noise and the possible harmonics caused by the
power electronic converter, and a demodulation algorithm to
extract the envelope x. of the resampled signal. The extracted
envelope signal x. contains possible fault characteristic
frequency components, which modulate the fundamental
frequency component in the original signal. Then, the CS-based
signal sampling is performed on x. by linearly projecting x. on a
selected measurement matrix. The resulting signal is denoted
by y, which preserves the information in x, and is called the
measurements of x.. The signal y is transmitted to the receiving
end (gateway) through wireless communication. The signal
received at the receiving end is denoted by y in which some
data samples are possibly lost during the transmission. Then,
the signal reconstruction is performed to recover the envelope
signal x. from the received signal ¥ according to the CS
technique. The reconstructed signal is denoted by X,. Finally,
spectrum analysis is performed on the reconstructed signal X,.
If one or more wind turbine fault characteristic frequencies are
identified in the spectrum of X, , it indicates that the
corresponding fault(s) occur in the wind turbine.

Compared with the traditional WSN-based CMSs [24], [25],
the proposed method first conditions the collected signals and

nonzero samples of the signal. The sparsity can be quantified by
s. The smaller the value of s, the sparser the signal. In the wind
turbine health condition monitoring, it is common to convert
the signals, such as vibration and electrical signals, from time to
frequency domain in order to identify the fault characteristic
frequencies. However, many frequencies, including fault
characteristic frequencies of the measured signals are
proportional to the shaft rotational frequency (SRF) of the wind
turbine [26]. Due to the time-varying SRF, the frequencies of
the signals are time-varying, which causes a spectrum smearing
problem because different time-varying frequencies will
overlap with each other in the frequency spectrum of the signal
x(?), which is denoted as X(f). As a consequence, the spectrum
signal X(f) has many nonzeros, meaning that the measured
signal x(#) has a low sparsity in the frequency domain.

To increase the sparsity of the measured signals in frequency
domain, a synchronous resampling algorithm is firstly designed
to convert the frequencies of the signals that vary with the SRF
to be constant values. The algorithm consists of two steps: SRF
estimation and angular resampling. The SRF can be estimated
from the time-frequency distribution (TFD), defined as follows
[27], of a measured stator current signal of a permanent-magnet
synchronous generator (PMSG) or a rotor current signal of a
doubly-fed inductor generator (DFIG), denoted as c(f).

TFD[c(t)] = ISTFT[c(®)] (¢, ) (M

where STFT stands for short-time Fourier transform defined by

STFT[c(D](t, ) = [ c(@h(x — )e /2 Tdr  (2)
where h(f) is

a window function. The instantaneous
fundamental frequency of the current signal, f:(), is estimated
by searching for the global maxima over the whole frequency
range of the TFD along the time axis, as expressed by

then transmits the measurements of the conditioned signals fo(©) = arg m}gi X{TFD[e(D](E f)}- )
obtained from the CS rather than the collected original signals. ~ Then, the SRF f,(f) of a PMSG is obtained by

Since tl}e conditioned signals are sparse in freguency domain, .it £ = £.(6)/p 4)
is possible to reconstruct the conditioned signals from their The SRF £;(¢) of a DFIG is obtained b

measurements according to the CS technique even though some 4 y

of the measurements are lost during the wireless signal fr@©) = [fsa £ O]/ (5)

transmission. This makes the WSN-based CMS robust to data
loss. The theoretical details of the proposed method are
described as follows.

A. Signal Conditioning

Compressive sensing requires the signal to be sparse.
Mathematically, a signal x(¥) is s-sparse when it has at most s
nonzeros, i.e., [|x(t)|l, < s, where |||, denotes the number of

where p is the number of pole pairs of the generator; f;; is the
fundamental frequency of the DFIG stator circuit; and + or — is
used in (5) when the DFIG operates above or below the
synchronous speed, respectively.

The angular resampling aims to resample an original
equal-time-interval signal x(#) at the time points relative to the
equal-phase-increment shaft rotation. Define the initial shaft
phase position of x(f) to be 8(t,) = 0. Then, the relationship of



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

shaft phase position 8(t) versus time of x(f) (t€T) is
established according the estimated SRF as follows.

0(t) =2n Y f(OAL, i=1,2,,P—1  (6)

t=toy
where T = [tg, ty,t, ..., tp_1] is the vector of the sampling
time points of x(f) with a constant sampling time interval At;
and P is the number of data samples of x().
The shaft phase-time relationship of the resampled signal of
x(#) (t € T) with a constant phase increment A@, denoted as
xA?) (t € T'), can be expressed as

Q(Ti):i'AQ,TiET’ (7)
where T' = [Ty, T1, Ty, .., Ty_1] 1S the vector of the resampling

time points with varying intervals in general; N is the number
of data samples of the resampled signal; and A8 is determined

by

_ 0(tp-1)
Af = ==+ (®

The value of N is selected according to the desired sampling
frequency of the resampled signal, e.g., twice the highest fault
characteristic frequency of interest, and can be different from P.
If N < P, then the original signal x(¢) will be resampled with a
lower sampling frequency, leading to a downsampling
operation. This can reduce the computing burden and memory
usage of the proposed fault detection method.

Then, the resampling time points contained in the vector T’
are obtained by the cubic spline interpolation method according
to the phase-time relationships expressed by (6) and (7). Using
a cubic piecewise polynomial @ (t) to represent the phase-time
relationship (6), the element 7; of T' can be obtained by solving
the following equation.

0() =0@) 7, €T’ ©)

The data samples of the resampled signal x,(¢) (V t € T') in
the angle domain, x,[6(t;)] (V T; € T') are also obtained by the
cubic spline interpolation method. Using another cubic
piecewise polynomial E(t) to represent the original signal x(¢)
(t € T), the new data sample x,[6(7;)] can be obtained by
solving the following equation.

% [6(r)] = E(z) (10)

The resampled signal is an order-tracked signal x,.[6(t)]
sampled in the angle domain with an equal phase increment A
and a time-domain signal x,.(t) sampled with varying intervals
for V t € T'. Here the “order” O(¢) is defined to be a frequency
of the signal normalized by the SRF f,.(t) as follows.

0]
00 =75 (h

where f(t) is each time-varying frequency contained in the
original signal x(). Since the characteristic frequencies used for
fault detection are proportional to f,.(t), the corresponding
orders are constant. After the resampling, the time-varying SRF
f(t) becomes a constant frequency f,/, which is called the
time-invariant SRF. Thus, according to (11), each time-varying
frequency f(t) contained in the original signal x(¢) is converted
to a constant frequency in the resampled signal x,(t) .
Therefore, the spectrum smearing problem of the original
signal x(7) is solved by the resampled signal x,.(t).

The resampled signal x,.(t) contains the components at the
constant fundamental frequency f = pf,/, some constant odd
harmonics of f/, fault-induced constant-frequency sidebands
around f; and its harmonics, and some noise. Thus, compared
to the frequency spectrum X(f) of the original signal x(z), the
frequency spectrum X(f) of the resampled signal x,.(t) has
much less nonzeros, meaning that the resampled signal has a
much higher level of sparsity than the original signal in the
frequency domain.

To further improve the sparsity level of the resampled signal
x,-(t), it is filtered using a low-pass filter and the resulting
signal is denoted as x¢(t). The bandwidth of the low-pass filter
should be selected higher than the highest frequency of interest,
such as the highest fault characteristic frequency.

Then, demodulation is performed on x;(t) to extract its
envelope x,(t) using Hilbert transform, denoted as H[-] [27].

%@=ﬁﬁ@+wm@mz (12)

The envelope signal x,(t) only contains modulation frequency
components of x,.(t) in the low frequency range, including the
possible fault characteristic frequency components of the wind
turbine, but does not contain the fault-irrelevant fundamental
component of x(t). Thus, x.(t) has a higher sparsity level

than x¢(t) in frequency domain.

B. CS-Based Signal Sampling

The CS theory is based on the fact that a relatively small
number of random projections of a sparse signal can contain
most of its salient information [28]. The CS-based signal
sampling of the N-point envelope signal x, obtained in Section
II.A is implemented via the following linear projection.

y=dx. (13)
where ¢ € RM*N(M < N) is called measurement matrix
and y € RM is the vector of linear measurements of x,. If M <
N, eg., when some data in y is lost, the problem of
reconstructing x, from the measurements y using (13) is
underdetermined and, therefore, cannot be solved to obtain the
exact solution of x,. An approximate solution of x, can be
obtained by the least squares method. However, if M is much
smaller than N, e.g., there is significant data loss in y, the
approximation error could be very large. To solve this
underdetermined problem, compressive sensing adds a
constraint of sparsity on the signal x,. The constraint requires
that the signal x, must be sparse or can be transformed into
another sparse signal so that it can be reconstructed from its
measurements y by solving an optimization problem even if
M <« N due to data loss or signal compression.

Besides the sparsity constraint on x,, it is important to design
the measurement matrix ¢ to ensure that y preserves the salient
information of the signal x, so that x, can be reconstructed
from y. This requires that ¢ satisfies the restricted isometry
property (RIP) according to the CS theory. A matrix ¢ satisfies
the RIP of order s if there exists a §5 € (0,1) such that

(1= 69)llxell? < llpxell3 < (1 + ) lIxe I3 (14)
holds for the s-sparse vectors x,. When the RIP holds, the
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matrix ¢ approximately preserves the Euclidean length of the
signal x,, i.e., the length of ¢x, is bounded by (1£6;,)x, . This
implies that the pairwise distance between X, and any other
same-length sparse signal x, that is different from x, is
preserved in the measurement space. In other words, the
approximation  [ly = ¥'ll3 = l¢(xe — x)lI3 » llxce — xc 113
holds, where y' is the measurement vector of x, obtained from
(13). The RIP property of ¢ ensures that if the sparse signal x,
is identifiable from any other same-length sparse signal x/, the
measurements y of X, is also identifiable from the
measurements y’ of x, because the distance between x, and x,
is preserved in the measurement space. Then, according to [28],
X, can be uniquely reconstructed from y. On the contrary, if the
RIP property of ¢ does not hold, the distance between y and y’
may be much smaller than the distance between x, and x; or
even close to zero. In this case, y is no longer identifiable from
v’ and, therefore, cannot be used to reconstruct x, because the
reconstructed signal may be x,,.

If ¢ satisfies the RIP, a variety of algorithms can be applied
to recover a sparse signal x, from its measurements y [29]. It
has been shown that a random matrix would satisfy the RIP
with a high probability if its entries are chosen according to a
Gaussian, Bernoulli, or more generally any sub-Gaussian
distribution [29]. There are two benefits of using a random
matrix to construct ¢. First, the measurements are democratic,
making it possible to recover x, using any sufficiently large
subset of the measurements. Thus, the loss or corruption of a
fraction of the measurements would not influence the signal
recovery. Second, if x, is not sparse in time domain but is
sparse in another domain spanned by some basis 1, then x, can
be transformed into another domain by

X, = Ya (15)
where 1 € RV*V is the basis matrix and @ € R¥*? is the sparse
coefficient vector with s nonzero values, which usually satisfies
s & N. It is proved that if ¢ is a random matrix, ¢y satisfies
the RIP with a high probability [30].

Since the envelope signal x, is not sparse in time domain but
is sparse in frequency domain, ¥ is selected to be the Fourier
matrix defined in (16) so that (15) transforms x, from time
domain into frequency domain.

1 1 1 1
2 n-1
I (16
1 w'ly2n-1) w@D?
where w = ez%. As a result, the vector of measurements y of
the envelope signal x, is obtained by

y=¢x, = ¢ppa = Aa a7
where A € RM*N is called sensing matrix, which satisfies the
RIP as stated in the last paragraph. The measurements y are
then sent wirelessly to the receiving node.

C. Signal Reconstruction

The M-length measurement vector y is subject to data loss
during wireless transmission. The data loss could be random
point data loss or random data loss over an uncertain period as

Mx1 Nx1

Fig. 3. lllustration of the CS-based signal sampling for the received
measurement vector with data lost during wireless transmission.

illustrated in Fig. 3 in which the lost data in the received
measurement vector ¥ is masked by a white rectangle of the
length N;. The received signal § is an M-length vector that can
be expressed as a linear projection of x, below, where M =
M — N; and N, is the number of the lost data points in J.
y = ¢x, = ppa = Aa (18)

where ¢ € R™*N is a new measurement matrix, which is a
copy of ¢ but with the N; rows corresponding to the positions
of the lost data in y removed, as shown in Fig. 3. Since ¢ is a
random matrix, the M x N matrix ¢ is still a random matrix.
So is the matrix A € R™*N which satisfies the RIP. According
to the CS theory, the received signal y can also be regarded as
the measurements of x,. It is pointed out in [31] that if any 2s
columns of the M X N measurement matrix ¢ are linearly
independent, then the s-sparse signal a can be reconstructed
uniquely from its measurements . The data loss can happen
randomly at any positions of the received data and the signal
reconstruction is insensitive to this randomness.

To recovered x, from y, the sparse coefficient vector a is
firstly recovered as @ by solving the following /;-norm
minimization problem.

@& = argmin||all, s.t. ¥ = Aa (19)
where [|a||, denotes the number of nonzero elements in .

However, the problem (19) is a non-deterministic
polynomial-time hard (NP-hard) problem, which is difficult to
solve. An approximate solution of (19) can be obtained by
using the orthogonal matching pursuit (OMP) algorithm, which
is presented in Table I, where @ is an empty set and supp(z)
denotes the support of the vector z. The OMP algorithm begins
by finding the column of A that is most correlated with the
measurements y via the “initialize,” “match,” and “identify”
steps with / = 0 in Table I. Then, the “match” and “identify”
steps are repeated to correlate the columns in A with the
residual of the signal 9, denoted as r'**, which is obtained in
the “update” step by subtracting a partial estimate of the signal
7, denoted as Aa'*?, from the original signal §. The stopping
criterion is that either the predefined maximum number of
iterations is reached or § ~ Aa is satisfied [32].

Once & is obtained, the envelope signal x, can be
reconstructed as X, by

X =ya (20
The reconstruction error & between the reconstructed signal X,
and the original envelop signal x, is defined as

— ”fe_xe”2 (21)

llxell2
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TABLE |
ALGORITHM OF ORTHOGONAL MATCHING PURSUIT [32]

Inputs: matrix A, measurement vector ¥, stopping criterion
Initialize: =9, a’=0,A°=0,/=0
While not converged do
Match: h'=ATr!
Identify: A" = Al U {arg max, |h'(k)|}
Update: a'*! = arg minz:supp(z)gAm”f/ - Az”2
rltl +1

=9y — Aa
I=1+1
End while

Output: @ = a'

D. Fault Detection

This paper does not aim at proposing a new fault detection
algorithm for wind turbines. The fault detection module of the
proposed method can be implemented by using the existing
methods reported in the literature or used in industry, such as
frequency or order spectrum analysis [3], [25], [26], anomaly
detection [5], or machine learning-based classification [24],
[27]. In this paper, the traditional frequency spectrum analysis
method [3], [26] is adopted for the fault detection based on the
identification of the fault characteristic frequencies in the
amplitude spectrum of the reconstructed signal X,. In practice,
fault characteristic frequencies of wind turbine drivetrain
components, such as the shaft bearing fault characteristic
frequencies given in Section IV.A, can be determined
according to the geometries and rotating frequencies of the
components [26], [27]. If a fault occurs, the corresponding
characteristic frequency will appear as an impulse in the
amplitude spectrum of X,. The impulses can be extracted by
using an impulse detection method [26]. If an impulse is
detected at a fault characteristic frequency, it indicates that the
corresponding fault may occur. The final fault detection result
can be obtained by comparing the amplitude of the impulse
against a threshold, which can be determined from the
historical failure cases. If the amplitude is lower than the
threshold, it indicates that the fault has occurred but is not
mature yet. Otherwise, if the amplitude exceeds the threshold, it
indicates that the fault has become mature so that an alarm
should be triggered and maintenance is needed.

Since no parameter tuning is needed in the CS-based signal
sampling and reconstruction processes, the proposed method
has a merit of parameter tuning free. Thus, the proposed
method has no parameter that will affect fault detection efficacy,
which is mainly affected by the data loss rate itself.

I1l. PSEUDOCODE OF THE PROPOSED METHOD

The pseudocode of the proposed method is shown in Table
II. The signal conditioning and CS-based signal sampling are
conducted at the sending end, and the signal reconstruction and
fault detection are conducted at the receiving end of the remote
condition monitoring system. The purpose of signal
conditioning is to increase the sparsity of the signal. The
compressive measurements of the conditioned signal are
transmitted. The received measurements may be incomplete
due to data loss. Signal reconstruction is conducted using the

received measurements. Fault detection is carried out using the
frequency spectrum of the reconstructed data. The output
includes a Boolean indicating whether a fault is detected and if

a fault is detected, fault type will also be identified.
TABLE Il
PSEUDOCODE OF THE PROPOSED METHOD

Initialize: fault alarm = false

While fault alarm == false do

% % % % Operations at Sending End % % % %

Input: condition monitoring signal x.

Signal Conditioning (SC) to increase signal sparsity:
SRF estimation (SRFE): f,. « SRFE(x).
Angular resampling (AR): x, « AR(x, f;).
Low-pass filtering (LPF): x; < LPF(x;.).

Demodulation: x, « ’{xf + {H[x7]}}2.

CS-based Signal Sampling:
Measurement matrix generation: use Gaussian distribution
to generate entries of the MxN matrix ¢.
Compressive measurements generation: y = ¢x,.
Send: compressive measurements y
% % % % Data Transmission % % % %
%% % % Operations at Receiving End % % % %
Receive: compressive measurements y
Signal Reconstruction by OMP:
Measurement matrix generation: generate ¢ from ¢
according to locations of lost data in J.
Generation of M X N matrix A: A = ¢ip.
Signal reconstruction: & « OMP(¥, 4).
Fault Detection:
If: @ contains fault characteristic frequencies
Then: fault alarm = true and fault type identification
according to the characteristic frequency.
Output: fault alarm and detected fault type.

IV. APPLICATION OF THE PROPOSED METHOD TO REMOTE
CONDITION MONITORING OF DIRECT-DRIVE WIND TURBINES

A. Experiment Setup

The proposed method is applied to commercial direct-drive
wind turbines in the field, where each wind turbine is equipped
with a PMSG and a WSN-based remote CMS, as shown in Fig.
4. The WSN consists of a wireless sensor node (Model:
V-Link® -LXRS®) installed on the nacelle of the wind turbine
and a gateway (Model: WSDA®-1500-LXRS®). The sensor
node collects the data of one-phase PMSG stator current signal
once per hour with a sampling frequency of 1000 Hz. The
length of each data record is 15 seconds. Thus, each data record
contains a total of 15000 data samples. The collected current
signal is processed by the proposed signal conditioning
algorithm to obtain its envelope signal, which is then processed
by CS-based signal sampling algorithm to obtain the
measurement signal. The data of the measurement signal is
transmitted wirelessly from the sensor node to the gateway. The
gateway receives the data and uploads the data to a web server
SensorCloud™ on which the data is stored. A lab computer is
connected to the SensorCloud™ server through the Internet to
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Fig. 4. A commercial direct-drive wind turbine equipped with the
proposed WSN-based remote CMS in the field.

access the data of the measurement signal, which is then used
by the CS-based signal reconstruction program running on the
computer to recover the envelope of the current signal. Finally,
the recovered current envelope signal is used for remote fault
detection of the wind turbine.

The data collected from a Skystream 3.7 wind turbine and an
Air Breeze wind turbine were used to validate the proposed
method. The Skystream 3.7 wind turbine has a cage fault in a
shaft bearing and the corresponding characteristic frequencies
can be computed as follows [33].

! d
frrro = %(1 - BCOSY) (22)

frre = ff’(l + %COSV)

where frrro and frrp; are characteristic frequencies of bearing
cage fault when the damaged cage touches the outer and inner
rings, respectively, d is the diameter of the rolling elements, D
is the bearing pitch diameter, and y is the contact angle. The
Air Breeze wind turbine has a shaft bearing outer race fault
whose characteristic frequency fgpro can be computed as:

fr d
fepro =7 Np(1 — 7 cosy)
where N, is the number of bearing rolling elements.

(23)

24

B. Experimental Results of a Bearing Cage Fault

For the Skystream 3.7 wind turbine, the geometry parameters
of the shaft bearing are D = 65 mm, d = 12.7 mm, and y = 0.
The time-invariant SRF is f,, = 2 Hz in this experiment.
According to (22) and (23), the bearing cage fault characteristic
frequencies are calculated as fprrg = 0.8 Hz and frre; = 1.2 Hz.

Fig. 5 shows the amplitude spectrum around the fundamental
frequency of the generator stator current signal measured on
February 4, 2016. Due to the time-varying shaft rotating speed
of the wind turbine, the fundamental frequency distributes over
a range from 42 Hz to 46 Hz and cannot be distinguished from
its sidebands that contain the bearing fault characteristic
frequencies, which causes a spectrum smearing problem and
many impulses in the amplitude spectrum in Fig. 5. Thus, the
sparsity of the current signal in frequency domain is low. To
measure the sparsity of this amplitude spectrum while taking
noise into consideration, a threshold with the amplitude to be
10% of the peak value of the spectrum is chosen, as shown in
Fig. 5. The amplitude spectrum exceeds the threshold when the
frequency is between 42-46 Hz. The sparsity of the amplitude

(9% =

ra

Amplitude

Threshold

0 - i
35 40 45 50
Frequency/Hz

Fig. 5. Amplitude spectrum of the generator stator current signal
measured on February 4, 2016 around its fundamental frequency.
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Fig. 6. Amplitude spectrum of the resampled current signal around its
fundamental frequency.

spectrum is measured to be 0.7.

The synchronous resampling algorithm is used to solve the
spectrum smearing problem. The amplitude spectrum of the
resampled current signal with the sampling frequency the same
as that of the original current signal is shown in Fig. 6 in which
the frequency components are converted to single impulses by
the synchronous resampling. Two sidebands around the
fundamental frequency f = 42.4 Hz are clearly identified at
41.2 Hz and 43.6 Hz in Fig. 6, meaning that the fundamental
frequency f; is modulated by a frequency of 1.2 Hz, which is
close to one of the bearing cage fault characteristic frequencies
ferer = 1.206 Hz, indicating that the cage of the shaft bearing
damaged. By using a threshold established in the same way in
Fig. 5, the sparsity of the amplitude spectrum in Fig. 6 is
increased to 0.94 because there are fewer values exceeding the
threshold. Thus, the resampled current signal has a higher
sparsity than the original current signal in frequency domain.

Since the bearing characteristic frequencies are much lower
than the 1000 Hz sampling frequency of the original current
signal, the number of data samples of the resampled current
signal is reduced to 1500, which is only 10% of the 15000 data
samples of the original current signal, namely, the resampled
current signal is downsampled to 100 Hz. This reduces the
computational time for the CS-based signal sampling and
reconstruction, and save the memory space of the WSN. To
further increase the sparsity level and reduce the noise of the
current signal, a filter is applied to the resampled current signal
to remove its high-frequency noise. Then, the envelope of the
filtered resampled current signal is obtained via the Hilbert
transform. The obtained current envelope signal mainly
contains the fault-induced characteristic frequency and does not
contain the fundamental frequency of the current signal. The
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Fig. 7. Resampled current envelope signal: (a) time-domain samples
and (b) amplitude spectrum.

waveform and amplitude spectrum of the resampled current
envelope signal are shown in Fig. 7. The bearing cage fault
characteristic frequency fprp; is the dominant in the amplitude
spectrum. By using a threshold established in the same way in
Figs. 5 and 6, the sparsity of the amplitude spectrum in Fig. 7 is
increased further to 0.96 because only the 1.2Hz component
exceeds the threshold. Thus, the resampled current envelope
signal has a much higher sparsity than the original current
signal shown in Fig. 5 and also a higher sparsity than the
resampled current signal shown in Fig. 6 in frequency domain.

Then, the CS-based signal sampling is performed on the
resampled current envelope signal and the resulting
measurement signal is shown in Fig. 8(a). Assuming that 95%
samples of the measurement signal are lost during the wireless
transmission; and the beginning and end positions of the lost
data are randomly selected, as displayed in Fig. 8(b), where the
lost data points are filled by zero values. By applying the
proposed data reconstruction method, the resampled current
envelope signal is reconstructed from the incomplete
measurements, as shown in Fig. 9 in comparison with the
original resampled current envelope signal. The reconstruction
error is 0.304 according to (21). Fig. 10 shows the amplitude
spectrum of the reconstructed resampled current envelope
signal, where the bearing cage fault characteristic frequency
shown in Fig. 7(b) is also identified and the fault characteristic
frequency components in Fig. 10 and 7(b) have the same
amplitude. These results indicate that the bearing health
information is recovered in the reconstructed resampled current
envelope signal. Therefore, the proposed method is effective
for remote condition monitoring of the wind turbine even when
the condition monitoring signal has significant data loss.

Fig. 11 shows the curve of reconstruction error versus data
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Fig. 8. Measurements of the resampled current envelope signal: (a)
complete data samples and (b) incomplete data samples with a 95%
data loss rate.
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Fig. 9. Comparison of the reconstructed and original resampled current
envelope signals.

loss rate of the received measurements of the resampled current
envelope signal in this experiment. The reconstruction error is
less than 0.3 even when the data loss rate is less than 95%, but
increases dramatically when the data loss rate exceeds 95%.
The result indicates that the proposed method has strong
tolerance to missing data with the loss rate up to 95%.

Fig. 12 shows the case when the resampled current envelope
signal shown in Fig. 7(a) instead of the measurements of the
resampled current envelope signal shown in Fig. 8(a) is
transmitted wirelessly and 95% data samples of the received
resampled current envelope signal happen to be lost, as
illustrated in Fig. 12(a). The spectrum of the received
resampled current envelope signal is shown in Fig. 12(b), in
which the fault characteristic frequency contained in the
original envelope signal shown in Fig. 7(b) cannot be
identified. The results in Figs. 7, 9, 10 and 12 demonstrate that
in order to achieve missing-data tolerance in the remote
condition monitoring of the wind turbine, it is necessary and
effective to use the proposed CS-based fault detection method.
Therefore, the proposed method can improve the reliability and
robustness of the remote wind turbine CMS.
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Fig. 12. Resampled current envelope signal with a 95% data loss rate:
(a) time-domain samples and (b) amplitude spectrum.

C. Experimental Results of a Bearing Outer Race Fault

For the Air Breeze wind turbine, the geometry parameters of
the shaft bearing are D = 33 mm, d = 8 mm, N,= 8, and y = 0.
The time-invariant SRF is f,' = 10 Hz in this test. According to
(24), the bearing outer race fault characteristic frequency is
fepro ® 30 Hz. The amplitude spectrum of the resampled
current envelope signal is shown in Fig. 13(a), where the 30Hz
fault characteristic frequency is clearly identified. The sparsity
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Fig. 13. Amplitude spectra of (a) resampled current envelope signal and
(b) reconstructed current envelope signal when the measurement signal
has 90% data loss rate during wireless transmission.

of the amplitude spectrum is measured to be 0.93. By using the
proposed method, the bearing outer race fault can be detected as
long as the data loss rate of the received measurement signal
does not exceed 90%. Fig. 13(b) shows the amplitude spectrum
of the reconstructed resampled current envelope signal when
the measurement signal has a 90% data loss rate during wireless
transmission, where the 30Hz fault characteristic frequency is
also clearly identified. The result again validates the proposed
method for missing-data-tolerant fault detection.

V. CONCLUSION

A compressive sensing-based missing-data-tolerant fault
detection method for remote condition monitoring of wind
turbines was proposed. The compressive sensing technique
requires the signal to be sparse. To satisfy this requirement,
signal conditioning was performed on the condition monitoring
signals. The conditioned signals are sparser than the original
signals in frequency domain. Then, measurements of the
conditioned signals were obtained by using the compressive
sensing-based sampling algorithm, transmitted wirelessly to a
gateway of the wireless sensor network, and further transmitted
to and saved on a data sever of the remote condition monitoring
system. Due to the interference in wireless communication, the
measurements might be partially lost during the data
transmission. The conditioned signals were then reconstructed
from their measurements received using the proposed method
for the wind turbine fault detection.

The effectiveness of the proposed method was verified by
using the data of a one-phase generator stator current signal
collected from the remote condition monitoring systems of two
direct-drive wind turbines in the field with a shaft bearing cage
fault and a shaft bearing outer race fault, respectively. Field test
results showed that the original current signal could not be used
directly for the wind turbine fault detection via frequency
spectrum analysis; the resampled current envelope signal
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obtained from the signal conditioning module of the proposed
method was effective for the wind turbine fault detection via
frequency spectrum analysis; the resampled current envelope
signal reconstructed from its measurements by the proposed
method was also effective for the wind turbine fault detection,
even when 95% or 90% of the measurements were lost during
the wireless data transmission. Compared to the existing
methods that use and transmit the collected original signals for
remote condition monitoring, the proposed method is more
reliable and more robust to high levels of data loss. Moreover,
compared to the existing methods that require other signals and
training to recover the lost data of a signal for wind turbine fault
detection, the proposed method does not need any other signals
or training for reconstructing the condition monitoring signal
from its own measurements with lost data.

If the data loss rate is extremely high, such as over 95% or
90% in this work, the proposed method may not work properly.
In this circumstance, the use of more advanced (i.e., more
expensive) wireless sensor network hardware or other
correlated signals would be needed to solve the data loss
problem. In this paper, the fault detection was carried out by
using the reconstructed signal. Future work can be carried out
to develop fault detection algorithms using the received
measurement signal directly without the signal reconstruction
step, which can save computational resources. Moreover, this
paper focused on solving the data loss problem instead of
developing a new fault detection/diagnosis algorithm. In the
future work, advanced fault diagnosis algorithms, such as those
based on machine learning techniques, can be developed for
identification of fault types, locations, severity, etc. using the
received measurement signals or reconstructed signals.

REFERENCES

[11 R. Wiser and M. Bolinger, “2012 wind technologies market report,”
Lawrence Berkeley Nat. Lab., Tech. Report, Aug. 2015.

[2] W. Qiao and D. Lu, “A survey on wind turbine condition monitoring and
fault diagnosis-Part I: Components and subsystems,” /EEE Trans. Ind.
Electron., vol. 62, no. 10, pp. 6536-6545, Oct. 2015.

[3] E. Artigao, A. Honrubia-Escribano, and E. Gomez-Lazaro, “In-service
wind turbine DFIG diagnosis using current signature analysis,” /IEEE
Trans. Ind. Electron., vol. 67, no. 3, pp. 2262-2271, Mar. 2020.

[4] J.Liu, F. Qu, X. Hong, and H. Zhang, “A small-sample wind turbine fault
detection method with synthetic fault data using generative adversarial
nets,” IEEE Trans. Ind. Informat., vol. 15, no. 7, pp. 3877-3888, Jul. 2019.

[5] X. Jin, Z. Xu, and W. Qiao, “Condition monitoring of wind turbine
generators using SCADA data analysis,” IEEE Trans. Sustain. Energy,
vol. 12, no. 1, pp. 202-210, Jan. 2021.

[6] V.C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges of
wireless sensor networks in smart grid,” IEEE Trans. Ind. Electron., vol.
57, no. 10, pp. 3557-3564, Oct. 2010.

[7] Y. Bao, H. Li, X. Sun, Y. Yu, and J. Ou, “Compressive sampling based
data loss recovery for wireless sensor networks used in civil structural
health monitoring,” Struct. Health Monitor., vol. 12, no. 1, pp. 78-95,
2013.

[8] J. Mietzner, R. Schober, L. Lampe, W. H. Gerstacker, and P. A. Hoeher,
“Multiple-antenna  techniques for  wireless communications-a
comprehensive literature survey,” IEEE Comm. Surveys & Tutorials, vol.
11, no. 2, pp. 87-105, Jun. 2009.

[9] S. Saravanan and E. Karthikeyan, “A protocol to improve the data
communication over wireless network,” International Journal of Wireless
& Mobile Networks, vol. 3, no. 5, pp. 95-112, Oct. 2011.

[10] X. Huang and Q. Zhu, “A pseudo-nearest-neighbor approach for missing
data recovery on Gaussian random data sets,” Pattern Recognition
Letters, vol. 23, no. 13, pp. 1613-1622, Nov. 2002.

[11] R.J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data,
New Jersey, USA: John Wiley & Sons, 2014.

[12] T. Marwala, Computational Intelligence for Missing Data Imputation,
Estimation, and Management: Knowledge Optimization Techniques, New
York, USA: IGI Global Publications, Information Science Reference
Imprint, 2009.

[13] W. Qiao, R. G. Harley, and G. K. Venayagamoorthy, “Fault-tolerant
indirect adaptive neurocontrol for static synchronous series compensator
in a power network with missing sensor measurements,” [EEE Trans.
Neural Networks, vol. 19, no. 7, pp. 1179-1195, Jul. 2008.

[14] B. Hong and C. H. Chen, “Radial basis function neural network-based
nonparametric estimation approach for missing data reconstruction of
non-stationary series,” in Proc. International Conference on Neural
Networks and Signal Processing, Dec. 2003, pp. 75-78.

[15] X.Liu, Z. Zheng, Z. Zhang, and Z. Cao, “A statistical learning framework
for the intelligent imputation of offshore wind farm missing SCADA
data,” in Proc 8th Renewable Power Generation Conference, Oct. 2019,
pp. 1-4.

[16] M. Martinez-Luengo, M. Shafiee, and A. Kolios, “Data management for
structural integrity assessment of offshore wind turbine support structures:
Data cleansing and missing data imputation,” Ocean Engineering, vol.
173, pp. 867-883, Feb. 2019.

[17] H. Demirhan and Z. Renwick, “Missing value imputation for short to
mid-term horizontal solar irradiance data,” Applied Energy, vol. 225, pp.
998-1012, Sep. 2018.

[18] G. Koo, J. Park, and Y. Joo, “Sampled-data H,, fuzzy filtering for
nonlinear systems with missing measurements,” Fuzzy Sets and Systems,
vol. 316, pp. 82-98, Jun. 2017.

[19] D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52,
no. 4, pp. 1289-1306, Apr. 2006.

[20] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F.
Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 83-91,
Mar. 2008.

[21] X.Zhu, Z. Zhao, J. Wang, J. Song, and Q. H. Liu, “Micro-induced thermal
acoustic tomography for breast tumor based on compressive sensing,”
IEEFE Trans. Biomed. Eng., vol. 60, no. 5, pp. 1298-1307, May 2013.

[22] Y. Tang, B. Zhang, T. Jing, D. Wu, and X. Cheng, “Robust compressive
data gathering in wireless sensor networks,” [EEE Trans. Wireless
Commun., vol. 12, no. 6, pp. 2754-2761, Jun. 2013.

[23] N. Hurley and S. Rickard, “Comparing measures of sparsity,” IEEE
Trans. Inf. Theory, vol. 55, no. 10, pp. 4723-4741, Oct. 2009.

[24] L. Lu, Y. He, T. Wang, T. Shi, and Y. Ruan, “Wind turbine planetary
gearbox fault diagnosis based on self-powered wireless sensor and deep
learning approach,” IEEE Access, vol. 7, pp. 119430-119442, Aug. 2019.

[25] J. Wang, Y. Peng, W. Qiao, and J. L. Hudgins, “Bearing fault diagnosis of
direct-drive wind turbines using multiscale filtering spectrum,” IEEE
Trans. Ind. Appl., vol. 53, no. 3, pp. 3029-3038, May-Jun. 2017.

[26] X. Gong and W. Qiao, “Current-based mechanical fault detection for
direct-drive wind turbines via synchronous sampling and impulse
detection,” [EEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1693-1702, Mar.
2015.

[27] F. Cheng, J. Wang, L. Qu, and W. Qiao, “Rotor-current-based fault
diagnosis for DFIG wind turbine drivetrain gearboxes using frequency
analysis and a deep classifier,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp
1062-1071, Mar.-Apr. 2018.

[28] J. Romberg. A survey of compressive sensing and applications [Online].
Available:
https://cpb-us-w2.wpmucdn.com/sites.gatech.edu/dist/2/436/files/2016/1
0/05-csoverview.pdf.

[29] M. Davenport, M. Duarte, Y. Eldar, and G. Kutyniok, “Introduction to
compressed sensing,” in Compressed Sensing: Theory and Applications.
Cambridge, U.K. Cambridge University Press, 2011.

[30] E. J. Cadens and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21-30,

March 2008.

[31] T. Tao. Compressed sensing [Online]. Available:
http://www.math.hkbu.edu.hk/~ttang/UsefulCollections/compressed-sens
ingl.pdf.

[32] M. A. Davenport and M. B. Wakin, “Analysis of orthogonal matching
pursuit using the restricted isometry property,” IEEE Trans. Inf. Theory,
vol. 56, no. 9, pp. 4395-4401, Sep. 2010.

[33] S.J. Lacey, “An overview of bearing vibration analysis,” Maintenance
Asset Manage., vol. 23, no. 6, pp. 32-42, Nov./Dec. 2008.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Yayu Peng (S’13) received the B.Eng. degree in
electrical  engineering  from  Chongging
University, Chongqing, China, in 2013. He is
currently working toward the Ph.D. degree in the
Department of Electrical and Computer
Engineering, University of Nebraska—Lincoln,
Lincoln, NE, USA.

He was a research and development intern at
the Global Energy Interconnection Research
Institute North America (GEIRINA) in 2018 and
the New York Power Authority (NYPA) in 2020. His research interests
include renewable energy systems, condition-based maintenance, and
intelligent fault diagnosis and prognosis.

Wei Qiao (S’'05-M'08-SM’12—F’20) received the
B.Eng. and M.Eng. degrees in electrical
engineering from Zhejiang University, Hangzhou,
China, in 1997 and 2002, respectively, the M.S.
degree in high-performance computation for
engineered systems from Singapore-MIT
Alliance, Singapore, in 2003, and the Ph.D.
degree in electrical engineering from the Georgia
Institute of Technology, Atlanta, GA, USA, in
2008.

Since August 2008, he has been with the University of Nebraska—
Lincoln, Lincoln, NE, USA, where he is currently a Professor with the
Department of Electrical and Computer Engineering. His research
interests include renewable energy systems, smart grids, condition
monitoring, power electronics, electric motor drives, energy storage
systems, and emerging electrical energy conversion devices. He is the
author or coauthor of more than 260 papers in refereed journals and
conference proceedings and holds 11 U.S. patents issued. Dr. Qiao was
a recipient of the 2010 U.S. National Science Foundation CAREER
Award and the recipient of the 2010 IEEE Industry Applications Society
Andrew W. Smith Outstanding Young Member Award.

Liyan Qu (S'05-M’08-SM’'17) received the
B.Eng. (with the highest distinction) and M.Eng.
degrees in electrical engineering from Zhejiang
University, Hangzhou, China, in 1999 and 2002,
respectively, and the Ph.D. degree in electrical
engineering from the University of lllinois at
Urbana—-Champaign, Champaign, IL, USA, in
2007.

From 2007 to 2009, she was an Application
Engineer with Ansoft Corporation, Irvine, CA,
USA. Since January 2010, she has been with the Umversnty of
Nebraska-Lincoln, Lincoln, NE, USA, where she is currently an
Associate Professor with the Department of Electrical and Computer
Engineering. Her research interests include energy efficiency,
renewable energy, numerical analysis and computer aided design of
electric machinery and power electronic devices, dynamics and control
of electric machinery, and magnetic devices. Dr. Qu was a recipient of
the 2016 U.S. National Science Foundation CAREER Award.




