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ABSTRACT

The study of protein adsorption at the single molecule level has recently re-
vealed that the adsorption is reversible, but with a long-tailed residence time
distribution which can be approximated with a sum of exponential functions
putatively related to distinct adsorption sites. Here it is proposed that the
shape of the residence time distribution results from an adsorption process
with sequential and reversible steps that contribute to overall binding strength
resembling “zippering”. In this model, the survival function of the residence
time distribution of single proteins varies from an exponential distribution for
a single adsorption step to a power law distribution with exponent -% for a
large number of adsorption steps. The adsorption of fluorescently labeled fi-
brinogen to glass surfaces is experimentally studied with single molecule im-
aging. The experimental residence time distribution can be readily fit by the
proposed model. This demonstrates that the observed long residence times can
arise from stepwise adsorption rather than rare but strong binding sites and

provides guidance for the control of protein adsorption to biomaterials.

INTRODUCTION

The interactions of proteins with surfaces have implications in
biocompatibility of a surface,l-4 protein separation,5- and
pharmaceutical nanoparticle development.10 Protein adsorp-
tion affects the ability of both the protein and the surface to ful-
fill their intended purpose in these capacities.!! Protein ad-
sorption can be quantitatively studied by a variety of tech-
niques!2-18 and the data are typically interpreted as having
Langmuir-type adsorption kinetics composed of a constant sig-
nal from an irreversibly adsorbed protein fraction and expo-
nential desorption kinetics from a reversibly bound protein
fraction.11.19-24

Recent advances in single molecule microscopy have enabled
the observation of individual protein-surface interaction
events.25-27 Protein adsorption studies at the single molecule
level have shown that the amount of time proteins of a given
type are bound to the surface is broadly distributed and well-
approximated by the sum of several exponential functions.828
The determined desorption rate constants are thought to re-
flect distinct surface sites,?? distinct subpopulations of adsorb-
ing proteins,?8 or transitions between different binding states
(stepwise denaturation).3° However, an assignment of each
rate to a specific type of event is usually not attempted.2831

In the field of economics, Benoit Mandelbrot has sharply criti-
cized the fitting of various data with sums of exponentials on
the grounds that the data can often be concisely fit with power

laws to which the sum of exponentials often provide only awk-
ward approximations relying on many additional parame-
ters.32 However, it is often practical from a computational per-
spective to approximate a power law distribution with a sum
of exponentials, and an approach to find the optimal number of
exponentials is defined in the literature.33

This raises the question if the same arguments apply to the in-
terpretation of single molecule data. The “sum of exponentials
vs. power laws” debate however is not simply about the search
for the model which best satisfies an information criterion,3435
but about which mechanistic interpretation is appropriate. A
number of physical mechanisms giving rise to power laws have
been reviewed by Newman.36

Here, we propose that the observed protein desorption kinet-
ics originates from the sequential and reversible establishment
of protein-surface contacts, where each contact adds a small
contribution to the overall binding energy (Fig. 1). After mak-
ing the initial contact, the protein performs a slightly biased
random walk over a large number of small energy barriers un-
til it makes a maximum number of contacts. This mechanism
corresponds to the “statistical zippering” observed by Penna et
al. in molecular simulations of peptide adsorption.37 In contrast
to the desorption kinetics arising from the passage over a sin-
gle, dominant energy barrier (exponentially distributed resi-
dence times), the unbiased one-dimensional random walk



along the reaction coordinate results in a power law with expo-
nent-1/2 for the cumulative residence time distribution for an
infinite number of barriers (Fig. 2a).

We first describe the theoretical model and how it is fit to ex-
perimental data, and then present measurements of the resi-
dence time distributions of fluorescently labeled fibrinogen
(Fg) on glass surfaces. The experimental data are comparable
to previously published data of fibrinogen adsorption to fused
silica and other surfaces by the Schwartz and Landes
groups82838-41, We interpret the data using the statistical zip-
pering model and discuss the implications.

Reaction Energy

Ta form a new bond, the
bond next to it on the inside
has to be formed first

To break an inside bond, the bond
next 1o it on the outside must be
broken first

Figure 1. The protein adsorption process as sequential
transitions from one energy conformation to another. The
separate reaction coordinates of the individual transitions en-
sure sequential transitions as the protein binds to and unbinds
from a surface.

THEORY

Itis well known that proteins undergo conformational changes
as they interact and adhere to surfaces.42 Here we assume that
these conformational changes occur in a sequential manner,
where each particular conformational change can only occur if
a previous conformational change has been achieved. Each of
these changes are reversible, but the reversal is only possible
to the immediately preceding conformation of the protein on
the surface. This process can be seen schematically in Figure 1.
In other words, during adsorption the protein traverses a mul-
tidimensional binding energy surface along a preferred path
featuring distinct binding states connected via low barriers.

We also assume that there is a certain maximum number of
states in this reversible adsorption process, beyond which it is
impossible to further change the structure of the protein with-
out irreversibly denaturing it. The process of protein adsorp-
tion to a surface can then be approximated by a 1D random
walk along the various conformations with a reflecting barrier
at the end. A protein interacting with the surface starts at the
first conformation with a single attachment and follows a se-
quence of conformational changes along this path. The protein
can desorb from the surface when it returns back to the initial
conformation. The residence time of a protein on a surface is

ii.

iv.

then given by the time it takes for the protein starting in the
initial attached position to leave the surface. If there is an infi-
nite number of distinct binding states (no reflecting boundary),
the residence time distribution is given by the inverse Gaussian
distribution.#3 If the random walk along the chain of conforma-
tional changes is unbiased, this becomes the Levy distribution
which has a power law tail with an exponent of -0.5. However,
the presence of a reflective barrier makes it difficult to obtaina
closed form expression for the residence time distributions and
instead we simulate the process with the following algorithm
that follows the Gillespie formulation44:

The simulation initiates with a protein attached to the sur-
face in an initial conformation (Conformational State 1).

In accordance with the Gillespie algorithm, the time step, t
is drawn from an exponential distribution whose average
is the timescale T of transitions between protein states44
(eq. 24a in 44).

The protein undergoes a change to the previous attached
conformation at the next timestep with probability p or a

new conformation with the probability 1-p# (eq. 24b in
44),

Repeat (ii) and (iii) until the protein leaves the surface
(the state prior to the initial bound configuration) or
reaches the maximum conformationally changed bound
state (N), at which point it can only go to the previous con-
formation (p=1).

Using this simple simulation process, we can generate the res-
idence time distributions for proteins interacting with a sur-
face. We can also fit the results of this simulation to experi-
mental data with the following three fit parameters - 1) the
timescale (t), 2) p or 1-p (for each of the conformational
states), and 3) the maximum number of conformational states
possible (N). The timescale reflects the kinetics of the process
- how slow or fast the transitions are. The transition probabil-
ities reflect the height difference in the energy barriers to the
next or the previous neighboring conformations. The maxi-
mum number of conformational changes allowed provides the
time to most strongly adhered state.

The model parameters p, 1-p, and T can be related to other
chemical reaction kinetics determining parameters. For exam-

. . 1- ,
ple, g = k_ is the backward reaction rate, Tp =k, is the for-

ward reaction rate (first order approximation in t), and
kgT ln((l - p)/p) = AE is the difference in the energy barrier
heights for forward and backwards transitions. However, here
we stick to the use of p and t as the model parameters because
the discussion seems more linear in terms of adsorption/de-
sorption bias and process time scales.

For a protein with a footprint of about 50 nm2, such as BSA,45
hundreds of distinct contacts between the atoms on the surface
and the atoms and functional groups of the protein could be es-
tablished. However, the pathway to complete binding could be
dominated by the activation energies between a relatively
small number of large conformational rearrangements which
permit new contacts between groups of atoms on the surface
and on the protein. Each contact may contribute significantly
less than one ksT to the overall binding energy as a net result
of multiple weak intermolecular interactions. However, the ac-
tivation energies for transition between states require the es-
tablishment of new surface contacts as well as internal rear-
rangements of the protein conformation and can be on the or-
der of 20-30 ksT. With a frequency factor on the order of 1010
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s-1, this would imply timescales for the transitions on the order
of milliseconds to seconds.

The probability p (and consequently 1-p) can vary between
conformational states, however we find that if the forward and
backward transition probabilities across all states are similar,
the process can be approximated by a single average forward
and backward transition probability (Figure S1). p=0.5 implies
no bias between transitioning to the next bound conformation
vs the previous conformation, while p>0.5 implies a bias to-
wards previous more lightly bound conformations and the un-
bound state. On the other hand, p<0.5 implies a bias towards
the more strongly bound and maximally bound conformations.
Similarly, a protein may traverse a different reaction pathway
where the sequence of accessed states is altered (e.g. if the pro-
teins first binds in a different state). If the energy levels be-
tween the states are similar, this again can be approximated by
a single average forward and backward transition probability.

The effect of these three parameters on simulated protein res-
idence times can be seen in Figure 2a-c. As mentioned above,
an unrestricted random walk (with infinite sequential confor-
mations) results in a power law distribution at no or slight bias.
However, if the bias towards the unbound state is higher, then
even for an unrestricted random walk, the power phase quickly
merges with an exponential tail. In scenarios where the protein
has a limited number of conformational changes, the power
law residence time distribution for short residence times has
again an exponential tail for long residence times. A smaller
maximum number of conformational changes or a faster tran-
sition to the strongly bound states, reduces the length of the
power law portion of the residence time distribution and
merges it more quickly into an exponential distribution. The
bias of the random walk also alters the exponent of the power
law portion of the residence time distribution. The time scale
of the transitions between the conformational changes does
not alter the exponent of the power law regime but speeds up
the transition to the exponential regime and the decay rate of
the exponential regime.
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Figure 2. Simulated residence time distribution of proteins
on surfaces. The effect of the three model parameters is shown
in (a) for N, maximum number of conformational states the
protein can achieve; in (b) for p, the likelihood of transitioning
to the previous conformational state (indicates bias in the ad-
sorption/desorption process); and in (c) for T, the average
timescale for transitions between two neighboring confor-
mation states.

EXPERIMENTAL SECTION

Single Molecule Imaging. Fibrinogen (Fg) conjugated with
AlexaFluor 488 from Thermo Fisher Scientific (F13191, Lot
1904433, labeling ratio: 9) was reconstituted in 10 mM phos-
phate buffered saline (PBS) at 1 mg/mL, stored at 4°C and used
without further purification.

Flow cells were constructed from cleaned glass coverslips (#1
thickness, VWR Inc.), cleaned by sonicating in ultrapure water
(= 18 MQ-cm), acetone, and 1M potassium hydroxide for 20
minutes each and rinsing three times after each step with ul-
trapure water. After drying at 40°C, the coverslips were
plasma-cleaned in a UV-ozone cleaner before a final 20-minute
sonication in ultrapure water. Coverslips were then dried again
at 40°C and stored in sealed glass jars for less than 24 hours
before use. Flow cells were assembled by taping a 22x22 mm
coverslip to a 24x60 mm coverslip with two strips of double-
sided tape in order to create a 5-10 mm wide channel between
the strips of tape.



Fg (45 pM) solutions were prepared from the stock solution for
each experiment by serial dilutions in 10 mM PBS at pH 7.4
with 100 mM DL-dithiothreitol (Sigma-Aldrich D0632; to re-
duce photobleaching) and filled into the flow cells by capillary
action. The cells were sealed with vacuum grease to prevent
evaporation.

Images were acquired with an epi-fluorescence microscope
(Ti-Eclipse, Nikon Inc.) with a TIRF module using a 100x 1.45
NA oil objective and a back-illuminated EMCCD camera (Andor
iXon). Samples were illuminated during the exposure time only
with a 488 nm diode laser (LuxX, Omicron Laserprodukte
GmbH) with 12 mW laser power. Images were acquired in 100
ms exposures with 1 s between the start of each frame for 30
minutes. The time between exposures minimizes the appear-
ance of photoblinking as it allows the fluorophore to recover
out of the dark triplet state. The electron multiplier gain was
set to 150. The pixel noise level (S.D. of the dimmest 95% of all
pixels in the flattened images) was 4 counts. The photobleach-
ing rate is (1500 s)-! as determined from the intensity changes
of spots present throughout the observation window. At a la-
beling ratio of 9, this means that for a fibrinogen molecule with
the average 9 labels the probability that at least one fluoro-
phore remains active after 1000 s (the largest observed resi-
dence time) is larger than 99.8%. Even a fibrinogen molecule
with only 3 labels initially has an almost 90% chance of retain-
ing an active fluorophore after 1000 s.

Single Molecule Identification and Tracking. Videos of pro-
tein solutions were analyzed using Image] by visually identify-
ing bright spots in each frame. For each spot, the frames at
which the spot appears and disappears was recorded to calcu-
late the residence time. Also recorded are spots present in the
first frame and spots present in the last frame. Intensities val-
ues for each particle are calculated by summing the intensity of
a 5 pixel-wide diamond after subtracting the median intensity
of the 3 pixel corners of a 5 pixel-wide square from each pixel.
Large spots and spots with close neighbors can be assigned
negative intensities. The camera noise of 4 counts in each pixel
gives rise to an intensity noise of 15 counts in each analyzed
spot.

Survival Analysis. The probability that a protein has a surface
lifetime of t or longer was determined by estimating the sur-
vival function, S(t). The measured residence times were used
to construct an empirical cumulative distribution function and
the complementary survival function using the Kaplan-Meier
method as described in detail elsewhere46 Briefly, the number
of proteins with each given lifetime was normalized by the
number of proteins with that lifetime or longer. The normali-
zation includes proteins who are still present in the last frame.
The normalized count of proteins with each lifetime were ag-
gregated into a cumulative distribution.

RESULTS AND DISCUSSION

The experimental results for Fibrinogen (Fn) adsorption to
glass and their analysis are shown in Figure 3. At the chosen
concentration of fibrinogen (45 pM), the bright spots arising
from adsorbed fibrinogen are well separated on the surface
(Fig. 3a). While automated tracking software identified up to
40,000 objects in the stack of images, we were unable to find a
suitable compromise threshold value for object identification
which did not return unacceptably large numbers of false pos-
itives or negatives. We thus visually identified bright spots and

manually recorded their appearance and disappearance, yield-
ing only 187 new binding events during the 1,800 s observation
window in addition to 1147 spots presentinitially (Fig. 3b). Un-
censored (182 appear and disappear) and right-censored (5
appear and remain to the end) events were used to construct
the survival function (also referred to as the cumulative resi-
dence time distribution) using the Kaplan-Meier method (Fig.
3c).

The cumulative residence time distribution, S(t), has the multi-
exponential appearance in a log-linear plot described by Kas-
tantin et al.28 and a maximum entropy fit4 yields four exponen-
tial components (S(t) = Y%, 4;e/%, where n = 4, A =
[0.6497, 0.3401, 0.5202, 0.08673] and 6 = [0.7752, 15.26,
159.3, 1029]). The single-barrier model of protein adsorption
predicts that the cumulative residence time distribution is fit
by a single exponential (appearing as a line in a log-linear
plot).48 Kastantin et al. proposed that the multi-exponential ap-
pearance arises from multiple aggregation states in the fibrin-
ogen population that bind to the surface with distinct strength.
The size of the fibrinogen aggregate is correlated with its
brightness which enabled Kastantin et al. to identify the sub-
populations with different residence times (varying from 0.6 s
to 70 s) with the subpopulations with different brightness (var-
ying ten-fold in intensity). Our attempts at automated tracking
reproduced this behavior, including the shift of longer-lived
objects towards higher intensities. However, our manual track-
ing procedure identified in average less bright objects with a
narrower intensity distribution, which does not shift towards
longer residence times if objects residing less than 100 s on the
surface (70% of the sample) are excluded (Figure 3c, Figure
S2). This suggests that the sample is composed of identical ob-
jects, likely fibrinogen monomers. This is further supported by
the finding that subdividing our sample in four fractions of dif-
ferent intensities yields similar cumulative residence time dis-
tributions (Fig. 3c). The similarity of the residence time distri-
bution for the four fractions of different initial intensities also
lends support to the claim that the residence time distributions
are not affected by photobleaching, since otherwise the initially
dimmer fractions would disappear faster. Our central point
here is that even a single population with respect to intensity
delivered an apparently multi-exponential cumulative resi-
dence time distribution.

Fitting the sequential unbinding model described above yields
an excellent fit to the cumulative residence time distribution
with parameters p = 0.367, N =4, t = 6 s (Figure 3d, Figures S3,
S4) lending support to the concept that the observed residence
time distribution arises from the protein traversing a potential
energy surface with sequential minima.

The experimental results obtained here match the big picture
painted by the group of D. Schwartz9.28-31,383941: The cumula-
tive residence time distributions appear multi-exponential
with time constants from sub-seconds to minutes. The adsorp-
tion events are not uniformly distributed across the surface,
but reveal a certain “patchiness” likely related to inhomogene-
ities in the surface. Differences in the specific values can be at-
tributed to differences in the utilized surfaces and the analysis,
but are not our focus here. Our focus is to answer the question
if the multi-exponential appearance of the cumulative resi-
dence time distributions can be explained by the above intro-
duced sequential desorption model.
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Figure 3. Adsorption of single fibrinogen molecules to a glass surface. (a) Representative fluorescence microscopy image. (b)
Distribution of manually tracked spots (circles: initially present; crosses: appeared during the observation window). (c) Intensity distri-
bution of all objects (187 with t > 1 s) and long-lived objects (54 with T > 100 s), inset: Survival fractions for populations separated by
initial intensity. (d) Fit of the sequential unbinding model to the cumulative residence time distribution calculated from 187 binding

events.

The sequential desorption model fits the observed cumulative
residence time distribution well with only three parameters:
the lifetime of the binding states T, the probability to transition
from one state towards the less strongly bound state p, and the
number of distinct binding states N.

The fitted lifetime of the binding states of 6 s implies an activa-
tion energy on the order of 25 ksT if we assume a frequency
pre-factor of 1010 s-1. The energy barrier from solution to the
first adsorption state can be calculated by comparing the colli-
sion rate of fibrinogen with the surface given by ] =
ClkzT/(2rm)]Y? = 5 x 10'®m ™25~ according to Jung and
Campbell4® with the observed rate of adsorption of 187 mole-
cules per field-of-view in the 1,800 s observation window,
which yields a sticking probability of 3 x 1071 and an activa-
tion energy of 22 kgT. The large number of initially present ad-
sorbed fibrinogens relative to the number of later adsorbing fi-
brinogens (Fig. 3b) indicates that the solution is likely signifi-
cantly depleted of fibrinogen, which would lower the collision
rate and increase the activation energy by a few ksT. The rough

correspondence between the activation energies for the transi-
tion from the solution to the first binding state and the transi-
tions between subsequent binding states is reassuring.

The fitted probability to transition to a less strongly bound
state is 0.367, which corresponds to a difference in free ener-
gies between the states of AE = kzT ln((l - p)/p) = 0.5kgT.
This small energy difference between adjacent energy barriers
is critical for the reversibility of the adsorption process, and is
reasonable in the context of the exquisite balance between the
various enthalpic and entropic contributions responsible for a
conformational state of a protein.

The fit selects a number of 4 distinct binding states. [t may be a
stretch to relate these states to the adsorption of the four large
peripheral domains of fibrinogen (PDB: 3GHG), but the states
likely represent binding of larger domains and not the binding
of individual amino acids, of which we expect hundreds to
make contact with the surface.



Overall, the fit parameters are reasonable given the energy and
time scales of protein adsorption. At the same time, the three-
parameter model presents a stylized version of highly varied
events reduced to their very essence. Of course, each protein
traverses a slightly different potential energy surface on a path
crossing energy barriers in different sequences (e.g. due to ran-
dom starting points on the potential energy surface). The com-
bination of these individual protein fates gives the appearance
that fibrinogen molecules travel on a timescale of seconds be-
tween four sequential binding states with a slight bias towards
stronger binding. Further experiments with different proteins
are needed to correlate protein properties with the model pa-
rameters. However, from our perspective, the sequential ad-
sorption mechanism as an explanation for the multi-exponen-
tial appearance of the cumulative lifetime distribution of a sin-
gle species has the advantage that it does not require the iden-
tification of multiple adsorption sites whose binding strengths
line up just as needed to approximate a power law.

From a broader perspective, the appearance of power law be-
havior - with its attendant emphasis on long tails and absence
of averages5? - in chemical systems is both disconcerting and
tantalizing. Power law behavior related to the blinking of quan-
tum dots has been extensively studied, and it has been demon-
strated that power law behavior of individual objects and
events can give rise to intriguing phenomena in ensembles,
such as sub-diffusion, statistical aging and non-ergodicity.51.52
The connection between single molecule adsorption and the
ensemble adsorption measurement!2 has not yet been studied
in similar detail.

From the perspective of the research community studying pro-
tein adsorption, the present work can be considered to be a
conceptual extension of earlier two state models.5354 Advances
in the mechanistic understanding of protein adsorption and the
properties of protein and surface governing it will require fur-
ther experimental studies of different combinations of protein,
surface, and solution properties.5556 The present approach is
focused on isolated proteins, which can limit its relevance to
many practical situations.57 It also requires fluorescent label-
ing of the proteins, altering their surface properties by intro-
ducing hydrophobic fluorophores in addition to the native hy-
drophobic patches.5859 While fluorescently labeled proteins
are a classic tool to study protein adsorption,60-62 recent work
highlights the potential of the fluorophores to alter the adsorp-
tion kinetics.6364 Understanding protein adsorption remains a
multifaceted challenge,65-67 and the contribution of the current
work - similar to our earlier random sequential adsorption
model of protein binding to non-fouling surfacesé8 - is to refo-
cus the spotlight from the surface back onto the protein.

CONCLUSIONS

The multi-exponential appearance of the cumulative residence
time distribution in single protein adsorption measurements is
consistent with a sequential desorption model, where the pro-
tein reversibly transitions between distinct adsorption states
in a biased random walk. In the case of fibrinogen adsorption
experimentally studied here, the cumulative residence time
distribution is best fit with 4 states, a transition time between
states of 6 s, and a significant bias for transitions towards
stronger binding. This mechanistic model of protein adsorp-
tion has potentially interesting consequences for bulk meas-
urements.

ASSOCIATED CONTENT

Supporting Information

Survival functions for a 10-barrier landscape with small vari-
ations in transition probability. Inset of Figure 3c. Survival
functions for a 4-barrier landscape with 6 s transition time and
small variations in backward transition probability p around
0.367. Effect of changing the fit parameters near the optimal fit.
The MATLAB simulation codes used to model and fit protein
residence times based on the sequential adsorption process
can be found at https://github.com/compact-
matterlab/seq protein adsorption.
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