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ABSTRACT	
The	study	of	protein	adsorption	at	 the	single	molecule	 level	has	recently	re-
vealed	that	the	adsorption	is	reversible,	but	with	a	long-tailed	residence	time	
distribution	which	can	be	approximated	with	a	sum	of	exponential	functions	
putatively	 related	 to	 distinct	 adsorption	 sites.	 Here	 it	 is	 proposed	 that	 the	
shape	of	 the	residence	time	distribution	 results	 from	an	adsorption	process	
with	sequential	and	reversible	steps	that	contribute	to	overall	binding	strength	
resembling	 “zippering”.	 In	 this	model,	 the	 survival	 function	of	 the	 residence	
time	distribution	of	single	proteins	varies	from	an	exponential	distribution	for	
a	single	adsorption	step	to	a	power	 law	distribution	with	exponent	-½	for	a	
large	number	of	adsorption	steps.	The	adsorption	of	fluorescently	labeled	fi-
brinogen	to	glass	surfaces	is	experimentally	studied	with	single	molecule	im-
aging.	The	experimental	residence	time	distribution	can	be	readily	 fit	by	the	
proposed	model.	This	demonstrates	that	the	observed	long	residence	times	can	
arise	from	stepwise	adsorption	rather	than	rare	but	strong	binding	sites	and	
provides	guidance	for	the	control	of	protein	adsorption	to	biomaterials.			
	

INTRODUCTION	
The	interactions	of	proteins	with	surfaces	have	implications	in	
biocompatibility	 of	 a	 surface,1–4	 protein	 separation,5–9	 and	
pharmaceutical	 nanoparticle	 development.10	Protein	 adsorp-
tion	affects	the	ability	of	both	the	protein	and	the	surface	to	ful-
fill	 their	 intended	 purpose	 in	 these	 capacities.11	 Protein	 ad-
sorption	 can	 be	 quantitatively	 studied	 by	 a	 variety	 of	 tech-
niques12–18	 and	 the	 data	 are	 typically	 interpreted	 as	 having	
Langmuir-type	adsorption	kinetics	composed	of	a	constant	sig-
nal	 from	an	irreversibly	adsorbed	protein	fraction	and	expo-
nential	 desorption	 kinetics	 from	 a	 reversibly	 bound	 protein	
fraction.11,19–24		

	Recent	advances	in	single	molecule	microscopy	have	enabled	
the	 observation	 of	 individual	 protein-surface	 interaction	
events.25–27	Protein	adsorption	studies	at	the	single	molecule	
level	have	shown	that	the	amount	of	time	proteins	of	a	given	
type	are	bound	to	the	surface	is	broadly	distributed	and	well-
approximated	by	the	sum	of	several	exponential	functions.8,28	
The	determined	desorption	rate	constants	are	thought	to	re-
flect	distinct	surface	sites,29	distinct	subpopulations	of	adsorb-
ing	proteins,28	or	transitions	between	different	binding	states	
(stepwise	 denaturation).30	 However,	 an	 assignment	 of	 each	
rate	to	a	specific	type	of	event	is	usually	not	attempted.28,31	

In	the	field	of	economics,	Benoit	Mandelbrot	has	sharply	criti-
cized	the	fitting	of	various	data	with	sums	of	exponentials	on	
the	grounds	that	the	data	can	often	be	concisely	fit	with	power	

laws	to	which	the	sum	of	exponentials	often	provide	only	awk-
ward	 approximations	 relying	 on	 many	 additional	 parame-
ters.32	However,	it	is	often	practical	from	a	computational	per-
spective	to	approximate	a	power	law	distribution	with	a	sum	
of	exponentials,	and	an	approach	to	find	the	optimal	number	of	
exponentials	is	defined	in	the	literature.33		

This	raises	the	question	if	the	same	arguments	apply	to	the	in-
terpretation	of	single	molecule	data.	The	“sum	of	exponentials	
vs.	power	laws”	debate	however	is	not	simply	about	the	search	
for	the	model	which	best	satisfies	an	information	criterion,34,35	
but	about	which	mechanistic	 interpretation	is	appropriate.	A	
number	of	physical	mechanisms	giving	rise	to	power	laws	have	
been	reviewed	by	Newman.36		

Here,	we	propose	that	the	observed	protein	desorption	kinet-
ics	originates	from	the	sequential	and	reversible	establishment	
of	protein-surface	contacts,	where	each	contact	 adds	a	 small	
contribution	to	the	overall	binding	energy	(Fig.	1).	After	mak-
ing	 the	 initial	 contact,	 the	protein	performs	a	 slightly	biased	
random	walk	over	a	large	number	of	small	energy	barriers	un-
til	it	makes	a	maximum	number	of	contacts.	This	mechanism	
corresponds	to	the	“statistical	zippering”	observed	by	Penna	et	
al.	in	molecular	simulations	of	peptide	adsorption.37	In	contrast	
to	the	desorption	kinetics	arising	from	the	passage	over	a	sin-
gle,	dominant	energy	barrier	(exponentially	distributed	 resi-
dence	 times),	 the	 unbiased	 one-dimensional	 random	 walk	
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along	the	reaction	coordinate	results	in	a	power	law	with	expo-
nent	-1/2	for	the	cumulative	residence	time	distribution	for	an	
infinite	number	of	barriers	(Fig.	2a).		

We	first	describe	the	theoretical	model	and	how	it	is	fit	to	ex-
perimental	data,	and	then	present	measurements	of	 the	resi-
dence	 time	 distributions	 of	 fluorescently	 labeled	 fibrinogen	
(Fg)	on	glass	surfaces.	The	experimental	data	are	comparable	
to	previously	published	data	of	fibrinogen	adsorption	to	fused	
silica	 and	 other	 surfaces	 by	 the	 Schwartz	 and	 Landes	
groups8,28,38–41.	We	interpret	the	data	using	the	statistical	zip-
pering	model	and	discuss	the	implications.		

 
Figure	 1.	 The	 protein	 adsorption	 process	 as	 sequential	
transitions	from	one	energy	conformation	to	another.	The	
separate	reaction	coordinates	of	the	individual	transitions	en-
sure	sequential	transitions	as	the	protein	binds	to	and	unbinds	
from	a	surface.	

THEORY	
It	is	well	known	that	proteins	undergo	conformational	changes	
as	they	interact	and	adhere	to	surfaces.42	Here	we	assume	that	
these	 conformational	 changes	 occur	 in	a	 sequential	manner,	
where	each	particular	conformational	change	can	only	occur	if	
a	previous	conformational	change	has	been	achieved.	Each	of	
these	changes	are	reversible,	but	the	reversal	is	only	possible	
to	the	immediately	preceding	conformation	of	the	protein	on	
the	surface.	This	process	can	be	seen	schematically	in	Figure	1.	
In	other	words,	during	adsorption	the	protein	traverses	a	mul-
tidimensional	binding	energy	 surface	along	a	preferred	path	
featuring	distinct	binding	states	connected	via	low	barriers.				

We	also	assume	that	 there	 is	a	 certain	maximum	number	of	
states	in	this	reversible	adsorption	process,	beyond	which	it	is	
impossible	to	further	change	the	structure	of	the	protein	with-
out	irreversibly	denaturing	it.	The	process	of	protein	adsorp-
tion	 to	a	 surface	can	then	be	approximated	by	a	1D	random	
walk	along	the	various	conformations	with	a	reflecting	barrier	
at	the	end.	A	protein	interacting	with	the	surface	starts	at	the	
first	conformation	with	a	single	attachment	and	follows	a	se-
quence	of	conformational	changes	along	this	path.	The	protein	
can	desorb	from	the	surface	when	it	returns	back	to	the	initial	
conformation.	The	residence	time	of	a	protein	on	a	surface	is	

then	given	by	the	time	it	takes	for	the	protein	starting	in	the	
initial	attached	position	to	leave	the	surface.	If	there	is	an	infi-
nite	number	of	distinct	binding	states	(no	reflecting	boundary),	
the	residence	time	distribution	is	given	by	the	inverse	Gaussian	
distribution.43	If	the	random	walk	along	the	chain	of	conforma-
tional	changes	is	unbiased,	this	becomes	the	Levy	distribution	
which	has	a	power	law	tail	with	an	exponent	of	-0.5.	However,	
the	presence	of	a	reflective	barrier	makes	it	difficult	to	obtain	a	
closed	form	expression	for	the	residence	time	distributions	and	
instead	we	simulate	the	process	with	the	following	algorithm	
that	follows	the	Gillespie	formulation44:			

i. The	simulation	initiates	with	a	protein	attached	to	the	sur-
face	in	an	initial	conformation	(Conformational	State	1).		

ii. In	accordance	with	the	Gillespie	algorithm,	the	time	step,	t	
is	drawn	from	an	exponential	distribution	whose	average	
is	the	timescale	τ	of	transitions	between	protein	states44	
(eq.	24a	in	44).		

iii. The	protein	undergoes	a	change	to	the	previous	attached	
conformation	at	the	next	timestep	with	probability	p	or	a	
new	conformation	with	the	probability	1-p44	(eq.	24b	in	
44).	

iv. Repeat	 (ii)	 and	 (iii)	until	 the	 protein	 leaves	 the	 surface	
(the	 state	 prior	 to	 the	 initial	 bound	 configuration)	 or	
reaches	 the	maximum	 conformationally	 changed	 bound	
state	(N),	at	which	point	it	can	only	go	to	the	previous	con-
formation	(p=1).		

Using	this	simple	simulation	process,	we	can	generate	the	res-
idence	time	distributions	for	proteins	 interacting	with	a	sur-
face.	We	can	also	 fit	 the	 results	of	 this	 simulation	 to	experi-
mental	data	with	the	 following	three	 fit	parameters	–	1)	the	
timescale	 (τ),	 2)	 p	 or	 1-p	 (for	 each	 of	 the	 conformational	
states),	and	3)	the	maximum	number	of	conformational	states	
possible	(N).	The	timescale	reflects	the	kinetics	of	the	process	
–	how	slow	or	fast	the	transitions	are.	The	transition	probabil-
ities	reflect	the	height	difference	in	the	energy	barriers	to	the	
next	 or	 the	 previous	 neighboring	 conformations.	 The	maxi-
mum	number	of	conformational	changes	allowed	provides	the	
time	to	most	strongly	adhered	state.		

The	model	 parameters	 p,	 1-p,	 and	 τ	 can	be	 related	 to	 other	
chemical	reaction	kinetics	determining	parameters.	For	exam-
ple,	!

"
= 𝑘%	is	the	backward	reaction	rate,	

&%!
"
= 𝑘'	is	the	for-

ward	 reaction	 rate	 (first	 order	 approximation	 in	 τ),	 and	
𝑘(𝑇 𝑙𝑛,(1− 𝑝)/𝑝3 = Δ𝐸	is	the	difference	in	the	energy	barrier	
heights	for	forward	and	backwards	transitions.	However,	here	
we	stick	to	the	use	of	p	and	τ	as	the	model	parameters	because	
the	discussion	seems	more	 linear	 in	terms	of	adsorption/de-
sorption	bias	and	process	time	scales.		

For	a	protein	with	a	footprint	of	about	50	nm2,	such	as	BSA,45		
hundreds	of	distinct	contacts	between	the	atoms	on	the	surface	
and	the	atoms	and	functional	groups	of	the	protein	could	be	es-
tablished.	However,	the	pathway	to	complete	binding	could	be	
dominated	 by	 the	 activation	 energies	 between	 a	 relatively	
small	number	of	large	conformational	rearrangements	which	
permit	new	contacts	between	groups	of	atoms	on	the	surface	
and	on	the	protein.	Each	contact	may	contribute	significantly	
less	than	one	kBT	to	the	overall	binding	energy	as	a	net	result	
of	multiple	weak	intermolecular	interactions.	However,	the	ac-
tivation	energies	for	transition	between	states	require	the	es-
tablishment	of	new	surface	contacts	as	well	as	 internal	rear-
rangements	of	the	protein	conformation	and	can	be	on	the	or-
der	of	20-30	kBT.	With	a	frequency	factor	on	the	order	of	1010	
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s-1,	this	would	imply	timescales	for	the	transitions	on	the	order	
of	milliseconds	to	seconds.		

The	 probability	 p	 (and	 consequently	 1-p)	 can	 vary	 between	
conformational	states,	however	we	find	that	if	the	forward	and	
backward	transition	probabilities	across	all	states	are	similar,	
the	process	can	be	approximated	by	a	single	average	forward	
and	backward	transition	probability	(Figure	S1).	p=0.5	implies	
no	bias	between	transitioning	to	the	next	bound	conformation	
vs	 the	previous	 conformation,	while	p>0.5	 implies	a	bias	 to-
wards	previous	more	lightly	bound	conformations	and	the	un-
bound	state.	On	the	other	hand,	p<0.5	implies	a	bias	towards	
the	more	strongly	bound	and	maximally	bound	conformations.	
Similarly,	a	protein	may	traverse	a	different	reaction	pathway	
where	the	sequence	of	accessed	states	is	altered	(e.g.	if	the	pro-
teins	 first	binds	 in	a	different	 state).	 If	 the	energy	 levels	be-
tween	the	states	are	similar,	this	again	can	be	approximated	by	
a	single	average	forward	and	backward	transition	probability.		

The	effect	of	these	three	parameters	on	simulated	protein	res-
idence	times	can	be	seen	in	Figure	2a-c.	As	mentioned	above,	
an	unrestricted	random	walk	(with	infinite	sequential	confor-
mations)	results	in	a	power	law	distribution	at	no	or	slight	bias.	
However,	if	the	bias	towards	the	unbound	state	is	higher,	then	
even	for	an	unrestricted	random	walk,	the	power	phase	quickly	
merges	with	an	exponential	tail.	In	scenarios	where	the	protein	
has	 a	 limited	 number	 of	 conformational	 changes,	 the	 power	
law	residence	time	distribution	for	short	residence	times	has	
again	an	exponential	 tail	 for	 long	 residence	 times.	A	 smaller	
maximum	number	of	conformational	changes	or	a	faster	tran-
sition	to	the	strongly	bound	states,	reduces	the	 length	of	 the	
power	 law	 portion	 of	 the	 residence	 time	 distribution	 and	
merges	 it	more	quickly	 into	an	exponential	distribution.	The	
bias	of	the	random	walk	also	alters	the	exponent	of	the	power	
law	portion	of	the	residence	time	distribution.	The	time	scale	
of	 the	 transitions	 between	 the	 conformational	 changes	 does	
not	alter	the	exponent	of	the	power	law	regime	but	speeds	up	
the	transition	to	the	exponential	regime	and	the	decay	rate	of	
the	exponential	regime.			

	
Figure	2.	Simulated	residence	time	distribution	of	proteins	
on	surfaces.	The	effect	of	the	three	model	parameters	is	shown	
in	 (a)	 for	N,	maximum	number	 of	 conformational	 states	 the	
protein	can	achieve;	in	(b)	for	p,	the	likelihood	of	transitioning	
to	the	previous	conformational	state	(indicates	bias	in	the	ad-
sorption/desorption	 process);	 and	 in	 (c)	 for	 τ,	 the	 average	
timescale	 for	 transitions	 between	 two	 neighboring	 confor-
mation	states.	
	
EXPERIMENTAL	SECTION	
Single	Molecule	 Imaging.	 Fibrinogen	 (Fg)	 conjugated	 with	
AlexaFluor	 488	 from	 Thermo	 Fisher	 Scientific	 (F13191,	 Lot	
1904433,	labeling	ratio:	9)	was	reconstituted	in	10	mM	phos-
phate	buffered	saline	(PBS)	at	1	mg/mL,	stored	at	4ºC	and	used	
without	further	purification.		

Flow	cells	were	constructed	from	cleaned	glass	coverslips	(#1	
thickness,	VWR	Inc.),	cleaned	by	sonicating	in	ultrapure	water	
(≥	18	MΩ-cm),	acetone,	and	1M	potassium	hydroxide	 for	20	
minutes	each	and	rinsing	three	times	after	each	step	with	ul-
trapure	 water.	 After	 drying	 at	 40ºC,	 the	 coverslips	 were	
plasma-cleaned	in	a	UV-ozone	cleaner	before	a	final	20-minute	
sonication	in	ultrapure	water.	Coverslips	were	then	dried	again	
at	40ºC	and	stored	in	sealed	glass	jars	for	less	than	24	hours	
before	use.	Flow	cells	were	assembled	by	taping	a	22x22	mm	
coverslip	to	a	24x60	mm	coverslip	with	two	strips	of	double-
sided	tape	in	order	to	create	a	5-10	mm	wide	channel	between	
the	strips	of	tape.		
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Fg	(45	pM)	solutions	were	prepared	from	the	stock	solution	for	
each	experiment	by	 serial	dilutions	 in	10	mM	PBS	at	pH	7.4	
with	100	mM	DL-dithiothreitol	(Sigma-Aldrich	D0632;	to	 re-
duce	photobleaching)	and	filled	into	the	flow	cells	by	capillary	
action.	The	cells	were	sealed	with	vacuum	grease	to	prevent	
evaporation.	

Images	 were	 acquired	 with	 an	 epi-fluorescence	microscope	
(Ti-Eclipse,	Nikon	Inc.)	with	a	TIRF	module	using	a	100x	1.45	
NA	oil	objective	and	a	back-illuminated	EMCCD	camera	(Andor	
iXon).	Samples	were	illuminated	during	the	exposure	time	only	
with	 a	 488	 nm	 diode	 laser	 (LuxX,	 Omicron	 Laserprodukte	
GmbH)	with	12	mW	laser	power.	Images	were	acquired	in	100	
ms	exposures	with	1	s	between	the	start	of	each	frame	for	30	
minutes.	The	time	between	exposures	minimizes	the	appear-
ance	of	photoblinking	as	it	allows	the	fluorophore	to	recover	
out	of	the	dark	triplet	state.	The	electron	multiplier	gain	was	
set	to	150.	The	pixel	noise	level	(S.D.	of	the	dimmest	95%	of	all	
pixels	in	the	flattened	images)	was	4	counts.	The	photobleach-
ing	rate	is	(1500	s)-1	as	determined	from	the	intensity	changes	
of	spots	present	throughout	the	observation	window.	At	a	la-
beling	ratio	of	9,	this	means	that	for	a	fibrinogen	molecule	with	
the	average	9	 labels	 the	probability	 that	at	 least	one	 fluoro-
phore	remains	active	after	1000	s	(the	largest	observed	resi-
dence	time)	is	larger	than	99.8%.	Even	a	fibrinogen	molecule	
with	only	3	labels	initially	has	an	almost	90%	chance	of	retain-
ing	an	active	fluorophore	after	1000	s.					

Single	Molecule	Identification	and	Tracking.	Videos	of	pro-
tein	solutions	were	analyzed	using	ImageJ	by	visually	identify-
ing	 bright	 spots	 in	 each	 frame.	 For	each	 spot,	 the	 frames	 at	
which	the	spot	appears	and	disappears	was	recorded	to	calcu-
late	the	residence	time.	Also	recorded	are	spots	present	in	the	
first	frame	and	spots	present	in	the	last	frame.	Intensities	val-
ues	for	each	particle	are	calculated	by	summing	the	intensity	of	
a	5	pixel-wide	diamond	after	subtracting	the	median	intensity	
of	the	3	pixel	corners	of	a	5	pixel-wide	square	from	each	pixel.	
Large	 spots	 and	 spots	with	 close	 neighbors	 can	 be	assigned	
negative	intensities.	The	camera	noise	of	4	counts	in	each	pixel	
gives	rise	to	an	intensity	noise	of	15	counts	in	each	analyzed	
spot.		

Survival	Analysis.	The	probability	that	a	protein	has	a	surface	
lifetime	of	t	or	longer	was	determined	by	estimating	the	sur-
vival	function,	S(t).	The	measured	residence	times	were	used	
to	construct	an	empirical	cumulative	distribution	function	and	
the	complementary	survival	 function	using	the	Kaplan-Meier	
method	as	described	in	detail	elsewhere46	Briefly,	the	number	
of	 proteins	 with	 each	 given	 lifetime	 was	 normalized	 by	 the	
number	of	proteins	with	that	lifetime	or	longer.	The	normali-
zation	includes	proteins	who	are	still	present	in	the	last	frame.	
The	normalized	count	of	proteins	with	each	lifetime	were	ag-
gregated	into	a	cumulative	distribution.	

RESULTS	AND	DISCUSSION	
The	 experimental	 results	 for	 Fibrinogen	 (Fn)	 adsorption	 to	
glass	and	their	analysis	are	shown	in	Figure	3.	At	the	chosen	
concentration	of	 fibrinogen	(45	pM),	 the	bright	spots	arising	
from	 adsorbed	 fibrinogen	are	well	 separated	 on	 the	 surface	
(Fig.	3a).	While	automated	tracking	software	identified	up	to	
40,000	objects	in	the	stack	of	images,	we	were	unable	to	find	a	
suitable	compromise	threshold	value	for	object	identification	
which	did	not	return	unacceptably	large	numbers	of	false	pos-
itives	or	negatives.	We	thus	visually	identified	bright	spots	and	

manually	recorded	their	appearance	and	disappearance,	yield-
ing	only	187	new	binding	events	during	the	1,800	s	observation	
window	in	addition	to	1147	spots	present	initially	(Fig.	3b).	Un-
censored	 (182	appear	and	 disappear)	 and	 right-censored	 (5	
appear	and	remain	to	the	end)	events	were	used	to	construct	
the	survival	function	(also	referred	to	as	the	cumulative	resi-
dence	time	distribution)	using	the	Kaplan-Meier	method	(Fig.	
3c).			

The	cumulative	residence	time	distribution,	S(t),	has	the	multi-
exponential	appearance	in	a		log-linear	plot	described	by	Kas-
tantin	et	al.28	and	a	maximum	entropy	fit47	yields	four	exponen-
tial	 components	 (𝑆(𝑡) 	= 	∑ 𝐴;𝑒%=/>?@

;A& ,	 where	 n	 =	 4,	 A	 =	
[0.6497,	 0.3401,	 0.5202,	 0.08673]	 and	 θ	 =	 [0.7752,	 15.26,	
159.3,	1029]).	The	single-barrier	model	of	protein	adsorption	
predicts	that	the	cumulative	residence	time	distribution	is	fit	
by	 a	 single	 exponential	 (appearing	 as	 a	 line	 in	 a	 log-linear	
plot).48	Kastantin	et	al.	proposed	that	the	multi-exponential	ap-
pearance	arises	from	multiple	aggregation	states	in	the	fibrin-
ogen	population	that	bind	to	the	surface	with	distinct	strength.	
The	 size	 of	 the	 fibrinogen	 aggregate	 is	 correlated	 with	 its	
brightness	which	enabled	Kastantin	et	al.	to	identify	the	sub-
populations	with	different	residence	times	(varying	from	0.6	s	
to	70	s)	with	the	subpopulations	with	different	brightness	(var-
ying	ten-fold	in	intensity).	Our	attempts	at	automated	tracking	
reproduced	 this	 behavior,	 including	 the	 shift	 of	 longer-lived	
objects	towards	higher	intensities.	However,	our	manual	track-
ing	procedure	identified	in	average	less	bright	objects	with	a	
narrower	intensity	distribution,	which	does	not	shift	towards	
longer	residence	times	if	objects	residing	less	than	100	s	on	the	
surface	(70%	of	 the	 sample)	are	excluded	(Figure	3c,	 Figure	
S2).	This	suggests	that	the	sample	is	composed	of	identical	ob-
jects,	likely	fibrinogen	monomers.	This	is	further	supported	by	
the	finding	that	subdividing	our	sample	in	four	fractions	of	dif-
ferent	intensities	yields	similar	cumulative	residence	time	dis-
tributions	(Fig.	3c).	The	similarity	of	the	residence	time	distri-
bution	for	the	four	fractions	of	different	initial	intensities	also	
lends	support	to	the	claim	that	the	residence	time	distributions	
are	not	affected	by	photobleaching,	since	otherwise	the	initially	
dimmer	 fractions	 would	 disappear	 faster.	 Our	 central	 point	
here	is	that	even	a	single	population	with	respect	to	intensity	
delivered	 an	 apparently	 multi-exponential	 cumulative	 resi-
dence	time	distribution.		

Fitting	the	sequential	unbinding	model	described	above	yields	
an	excellent	 fit	 to	the	cumulative	residence	time	distribution	
with	parameters	p	=	0.367,	N	=	4,	τ	=	6	s	(Figure	3d,	Figures	S3,	
S4)	lending	support	to	the	concept	that	the	observed	residence	
time	distribution	arises	from	the	protein	traversing	a	potential	
energy	surface	with	sequential	minima.		

The	experimental	results	obtained	here	match	the	big	picture	
painted	by	the	group	of	D.	Schwartz9,28–31,38,39,41:	The	cumula-
tive	 residence	 time	 distributions	 appear	 multi-exponential	
with	time	constants	from	sub-seconds	to	minutes.	The	adsorp-
tion	events	 are	not	uniformly	distributed	across	 the	 surface,	
but	reveal	a	certain	“patchiness”	likely	related	to	inhomogene-
ities	in	the	surface.	Differences	in	the	specific	values	can	be	at-
tributed	to	differences	in	the	utilized	surfaces	and	the	analysis,	
but	are	not	our	focus	here.	Our	focus	is	to	answer	the	question	
if	 the	 multi-exponential	 appearance	 of	 the	 cumulative	 resi-
dence	time	distributions	can	be	explained	by	the	above	intro-
duced	sequential	desorption	model. 
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Figure	3.	Adsorption	of	single	fibrinogen	molecules	to	a	glass	surface.	(a)	Representative	fluorescence	microscopy	image.	(b)	
Distribution	of	manually	tracked	spots	(circles:	initially	present;	crosses:		appeared	during	the	observation	window).	(c)	Intensity	distri-
bution	of	all	objects	(187	with	τ	>	1	s)	and	long-lived	objects	(54	with	τ	>	100	s),	inset:	Survival	fractions	for	populations	separated	by	
initial	intensity.	(d)	Fit	of	the	sequential	unbinding	model	to	the	cumulative	residence	time	distribution	calculated	from	187	binding	
events.	

 

The	sequential	desorption	model	fits	the	observed	cumulative	
residence	time	distribution	well	with	only	three	parameters:	
the	lifetime	of	the	binding	states	τ,	the	probability	to	transition	
from	one	state	towards	the	less	strongly	bound	state	p,	and	the	
number	of	distinct	binding	states	N.		

The	fitted	lifetime	of	the	binding	states	of	6	s	implies	an	activa-
tion	energy	on	the	order	of	25	kBT	if	we	assume	a	 frequency	
pre-factor	of	1010	s-1.	The	energy	barrier	from	solution	to	the	
first	adsorption	state	can	be	calculated	by	comparing	the	colli-
sion	 rate	 of	 fibrinogen	 with	 the	 surface	 given	 by	 𝐽 =
𝐶[𝑘(𝑇/(2𝜋𝑚)]&/I = 5 × 10&M𝑚%I𝑠%&	 according	 to	 Jung	 and	
Campbell49	with	the	observed	rate	of	adsorption	of	187	mole-
cules	 per	 field-of-view	 in	 the	 1,800	 s	 observation	 window,	
which	yields	a	sticking	probability	of	3 × 10%&P	and	an	activa-
tion	energy	of	22	kBT.	The	large	number	of	initially	present	ad-
sorbed	fibrinogens	relative	to	the	number	of	later	adsorbing	fi-
brinogens	(Fig.	3b)	indicates	that	the	solution	is	likely	signifi-
cantly	depleted	of	fibrinogen,	which	would	lower	the	collision	
rate	and	increase	the	activation	energy	by	a	few	kBT.	The	rough	

correspondence	between	the	activation	energies	for	the	transi-
tion	from	the	solution	to	the	first	binding	state	and	the	transi-
tions	between	subsequent	binding	states	is	reassuring.			

The	 fitted	 probability	 to	 transition	 to	 a	 less	 strongly	 bound	
state	is	0.367,	which	corresponds	to	a	difference	in	free	ener-
gies	between	the	states	of	Δ𝐸 = 𝑘(𝑇 𝑙𝑛,(1− 𝑝)/𝑝3 = 0.5𝑘(𝑇.	
This	small	energy	difference	between	adjacent	energy	barriers	
is	critical	for	the	reversibility	of	the	adsorption	process,	and	is	
reasonable	in	the	context	of	the	exquisite	balance	between	the	
various	enthalpic	and	entropic	contributions	responsible	for	a	
conformational	state	of	a	protein.		

The	fit	selects	a	number	of	4	distinct	binding	states.	It	may	be	a	
stretch	to	relate	these	states	to	the	adsorption	of	the	four	large	
peripheral	domains	of	fibrinogen	(PDB:	3GHG),	but	the	states	
likely	represent	binding	of	larger	domains	and	not	the	binding	
of	 individual	 amino	 acids,	 of	 which	 we	 expect	 hundreds	 to	
make	contact	with	the	surface.				
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Overall,	the	fit	parameters	are	reasonable	given	the	energy	and	
time	scales	of	protein	adsorption.	At	the	same	time,	the	three-
parameter	model	presents	a	stylized	version	of	highly	varied	
events	reduced	to	their	very	essence.	Of	course,	each	protein	
traverses	a	slightly	different	potential	energy	surface	on	a	path	
crossing	energy	barriers	in	different	sequences	(e.g.	due	to	ran-
dom	starting	points	on	the	potential	energy	surface).	The	com-
bination	of	these	individual	protein	fates	gives	the	appearance	
that	fibrinogen	molecules	travel	on	a	timescale	of	seconds	be-
tween	four	sequential	binding	states	with	a	slight	bias	towards	
stronger	binding.	Further	experiments	with	different	proteins	
are	needed	to	correlate	protein	properties	with	the	model	pa-
rameters.	However,	 from	our	perspective,	 the	 sequential	 ad-
sorption	mechanism	as	an	explanation	for	the	multi-exponen-
tial	appearance	of	the	cumulative	lifetime	distribution	of	a	sin-
gle	species	has	the	advantage	that	it	does	not	require	the	iden-
tification	of	multiple	adsorption	sites	whose	binding	strengths	
line	up	just	as	needed	to	approximate	a	power	law.		

From	a	broader	perspective,	the	appearance	of	power	law	be-
havior	–	with	its	attendant	emphasis	on	long	tails	and	absence	
of	averages50	–	in	chemical	systems	is	both	disconcerting	and	
tantalizing.	Power	law	behavior	related	to	the	blinking	of	quan-
tum	dots	has	been	extensively	studied,	and	it	has	been	demon-
strated	 that	 power	 law	 behavior	 of	 individual	 objects	 and	
events	 can	 give	 rise	 to	 intriguing	 phenomena	 in	 ensembles,	
such	as	sub-diffusion,	statistical	aging	and	non-ergodicity.51,52	
The	 connection	between	 single	molecule	adsorption	and	 the	
ensemble	adsorption	measurement12	has	not	yet	been	studied	
in	similar	detail.		

From	the	perspective	of	the	research	community	studying	pro-
tein	adsorption,	 the	present	work	can	be	 considered	 to	be	a	
conceptual	extension	of	earlier	two	state	models.53,54	Advances	
in	the	mechanistic	understanding	of	protein	adsorption	and	the	
properties	of	protein	and	surface	governing	it	will	require	fur-
ther	experimental	studies	of	different	combinations	of	protein,	
surface,	and	solution	properties.55,56	The	present	approach	is	
focused	on	isolated	proteins,	which	can	 limit	 its	relevance	to	
many	practical	situations.57	It	also	requires	fluorescent	label-
ing	of	the	proteins,	altering	their	surface	properties	by	intro-
ducing	hydrophobic	fluorophores	in	addition	to	the	native	hy-
drophobic	 patches.58,59	 While	 fluorescently	 labeled	 proteins	
are	a	classic	tool	to	study	protein	adsorption,60–62	recent	work	
highlights	the	potential	of	the	fluorophores	to	alter	the	adsorp-
tion	kinetics.63,64	Understanding	protein	adsorption	remains	a	
multifaceted	challenge,65–67	and	the	contribution	of	the	current	
work	 –	 similar	 to	 our	 earlier	 random	 sequential	 adsorption	
model	of	protein	binding	to	non-fouling	surfaces68	–	is	to	refo-
cus	the	spotlight	from	the	surface	back	onto	the	protein.					

CONCLUSIONS	
The	multi-exponential	appearance	of	the	cumulative	residence	
time	distribution	in	single	protein	adsorption	measurements	is	
consistent	with	a	sequential	desorption	model,	where	the	pro-
tein	reversibly	transitions	between	distinct	adsorption	states	
in	a	biased	random	walk.	In	the	case	of	fibrinogen	adsorption	
experimentally	 studied	 here,	 the	 cumulative	 residence	 time	
distribution	is	best	fit	with	4	states,	a	transition	time	between	
states	 of	 6	 s,	 and	 a	 significant	 bias	 for	 transitions	 towards	
stronger	binding.	This	mechanistic	model	of	protein	adsorp-
tion	has	potentially	 interesting	 consequences	 for	bulk	meas-
urements.	
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