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Abstract

We solve the Cauchy problem for the full non-linear homogeneous Boltzmann
system of equations describing multi-component monatomic gas mixtures for bi-
nary interactions in three dimensions. More precisely, we show the existence and
uniqueness of the vector value solution by means of an existence theorem for ODE
systems in Banach spaces under the transition probability rates assumption cor-
responding to hard potentials rates in the interval (0, 1], with an angular section
modeled by an integrable function of the angular transition rates modeling binary
scattering effects. The initial data for the vector valued solutions needs to be a
vector of non-negative measures with finite total number density, momentum and
strictly positive energy, as well as to have a finite L,](* (IR3)-integrability property
corresponding to a sum across each species of k.-polynomial weighted norms de-
pending on the corresponding mass fraction parameter for each species as much as
on the intermolecular potential rates, referred as to the scalar polynomial moment
of order k.. The rigorous existence and uniqueness results rely on a new angular
averaging lemma adjusted to vector values solution that yield a Povzner estimate
with constants that decay with the order of the corresponding dimensionless scalar
polynomial moment. In addition, such initial data yields global generation of such
scalar polynomial moments at any order as well as their summability of moments
to obtain estimates for corresponding scalar exponentially decaying high energy
tails, referred as to scalar exponential moments associated to the system solution.
Such scalar polynomial and exponential moments propagate as well.
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1. Introduction

We consider a mixture of / monatomic gases, labeled with Ay, ..., A;. In the
kinetic theory framework, each species of the mixture A4; is statistically described
with its own distribution function f; := f;(¢, x, v) that, in general, depends on
time ¢ > 0, space position x € R? and velocity of molecules v € R3 (in this
manuscript we restrict ourselves to the spatially homogeneous case, that is, we
drop dependence on space position x). The distribution function f; changes due to
binary interactions (or collisions) with other particles. In the mixture setting, these
particles can belong to other species \A;, j # i. Therefore, the evolution of each f;
involves not only the particle-particle interaction of specie .4;, but also interactions
between A; and A;, j #i.

In the mixture framework, the evolution of each distribution function f; de-
scribing the mixture component A; is governed by the Boltzmann-like equation,
which traditionally introduces a collision operator as a measure of its change. Now,
one has multi-species collision operators and their transition probabilities, or cross
sections, between the different distribution functions describing each component
of the mixture [21]. Since all species are considered simultaneously in a system
of species with binary interactions, one is led to introduce a vector valued set of
distribution functions F = [ f;] 1<i<ri> whose evolution is governed by a vector of
collision operators and whose i-th component (that describes precisely evolution
of f;) is [Q)]; Z i1 Q,J (fi» fj)- In this formula, operator Q;;(f;, fj) de-
scribes the influence of species A for the distribution function f; on species A;
with the distribution function f;. Note that summation over all j = 1,..., [ isin
the spirit of taking into account the influence of all species A;, j = 1,..., 1, on
the considered species A;.

From a mathematical viewpoint, the challenging situation occurs when masses
of species molecules are not equal (i.e. m; # m;). In such a situation, underly-
ing binary collisions between molecules lose some symmetry properties, which
can dramatically change their mathematical treatment; for instance, in order to
study diffusion asymptotics when one needs to show the compactness of a part of



On Existence and Uniqueness to Homogeneous Boltzmann Flows 725

linearized Boltzmann operator [9]. In the mixture framework, a linear system of
linearized Boltzmann equations has been recently studied in [11], corresponding
to the perturbative setting of our model when the non-linear system is linearized
near Maxwellian states corresponding to each species. In this case authors showed
the existence, uniqueness, positivity and exponential trend to equilibrium.

In this work, we give the first existence and uniqueness result for the non-linear
system of spatially homogeneous Boltzmann equations for multi-species mixtures
with binary interactions in a suitable Banach space. We also emphasize that our
approach for solving the Cauchy problem for the Boltzmann equation with variable
hard potentials relies on some specific conditions on the initial moments, without
requesting entropy boundedness. The hard potentials assumption correspond to
collision cross sections related to the species .A; and A; proportional to the local
relative speed with a power exponent y;; € (0, 1], and L'-integrable angular part
bij, as function of the scattering direction.

In addition, the existence and uniqueness of a vector value solution F (¢, v) needs
to assume that initially its scalar zero and second moment (i.e. the scalar number
density and energy of the mixture) are strictly positive and finite, and additionally
that this function has at least an upper bounded k,-polynomial moments, where
ki := max{k,2 + 2y}, for k = max;<; 1<1{k* }and Y = max,<; ;j<; ¥ij, is
sufficiently large to ensure the prevail of the polynomial moments of loss term with
respect to those same moments of the gain term. Each k) depends on the angular
transition rate b;; as well as on the two-body mass fraction r;; := m;/(m; +m )
associated to each component on the vector solution. All these parameters are
defined in the next Sect. 2 dedicated to notation, preliminaries and main results.

The result is obtained following the general ODE theory that studies differential
equations in suitable Banach spaces [17]. In the context of the (single) Boltzmann
equation, this theory was proposed as a main tool in [10] for solving the Cauchy
problem with hard spheres in three dimensions and constant angular transition
probability kernel. However, the notes [10] do not completely verify all conditions
of general ODE theory for the Boltzmann equation. This was the motivation for
[3] to revise the application of ODE theory from [17] in the case of the Boltzmann
equation with more general hard potentials and an integrable angular cross section,
and in particular, to provide a complete proof of the sub-tangent condition.

One very interesting new aspect from this approach is that the ODE flow in a
suitable Banach space without imposing initial bounded entropy condition yields
an alternative approach that allows for a rather general theory for gathering es-
timates where one can apply a rather general result in order to find solutions to
the Cauchy problem for Boltzmann type flows where there is no classical entropy
that is dissipated, or even some conservation laws that may not be satisfied. Such
problems have already been solved for polymer kinetic problems [1], the quantum
Boltzmann equation for bosons in very low temperature [5], and more recently in
the study of weak wave turbulence models for stratified flows [15].

After proving the existence and uniqueness of the vector value solution F to
the Boltzmann system, we turn to the study of generation and propagation of scalar
polynomial and exponential moments of its solution F.
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The techniques we use in this manuscript are adaptations or extensions of results
that have been developed for scalar Boltzmann type equations models.

In the case of the classical Boltzmann equation for the single elastic monatomic
gas model, polynomial moments have been exclusively considered, for instance,
in [12,23] for hard potentials where propagation and generation of such moments
was proved. At about the same time, Bobylev introduced in [6] the concept of ex-
ponential moment as a measure of the distribution solution tail, referred as to tail
temperature, by showing that solutions to the Boltzmann equation for monatomic
gases, modeled by elastic hard spheres (i.e. power exponent y = 1) in three di-
mensions with a constant angular dependent cross-section as a function of the
scattering direction, have inverse Maxwellian weighted moments, globally in time,
whose tail decay rate depend on moments of the initial data. His proof consists
in showing that infinite sums of renormalized polynomial moments are summable
whose limit is proportional to a L!-Gaussian weighted norm for the unique proba-
bility density function solving the initial value problem associated to the Boltzmann
equation, whose rate depends on the initial data that must also be integrable with
a Gaussian weight. These techniques of understanding moments summability in
order to obtain high energy tail behavior for the solution of the Boltzmann equation
were extended to inelastic interactions with stochastic heating sources, shear flows
or self-similarity scalings to obtain non-equilibrium statistical stationary (NESS)
states [8] where the exponential rates did not necessarily correspond to Gaussian
weighted moments.

This concept in the elastic case was further extended by [14] to collision kernels
for hard potentials (i.e. y € (0, 1]) for any angular section with L' -integrability.
Further, generation of exponential moments of order y /2 with bounded angular
section were shown in [18].

By this point it had became clear that the study of general forms of exponential
moments resulted as a by-product of the analysis of polynomial moments (or tails),
and so a spur of work arose for the improvement of conditions and results that will
allow to estimate, globally in time. These results were extended to collision kernels
for hard potentials with y € (0, 2] for any angular section with just L' -integrability
by a new approach using partial sums summability techniques, rather than using
summability studies by power series associated to renormalized moments as pro-
posed in [6,8,14,18]. The generation results were improved to obtain exponential
moments of order y, while Gaussian moments were propagated for any initial data
that would have that property, independent of y. All these results were extended to
the angular non-cutoff regime (lack of angular integrability) in [16,22] still for hard
potentials with y € (0, 2], and in [7,19] for pseudo-Maxwellian and Maxwellian
case (y = 0). In the later referenced work, these non-Gaussian tailed moments are
called Mittag-Leffler moments as in fact the summability of partial sums is shown
to converge to an L'-Mittag-Leffler function weighted norm for the unique proba-
bility density function solving the initial value problem associated to the Boltzmann
equation, whose order and rate depend on the initial data as much as on the order
of singularity in the angular section.

A very important tool for the success of summability properties for polynomial
moments relies on the fact that such moments are both created and propagated
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depending on how moments of the collision operator can be estimated: the positive
part of the (gain) collision operator must have a decay rate with respect to the
moment order while the negative part of such moments prevails in the dynamics,
when sufficiently many moments are taken into account.

This is indeed a key step, arising as a consequence of an angular averaged
Povzner lemma. In the case of single gas components, these estimates are based on
integration of the collision operator against polynomial test functions on the pre-
collisional velocities in the sphere. While these objects were originally introduced
by Povzner [20] in the 1960s, a sharper form that uses the conservation of energy
and angular averaging was introduced in [6] for the case of hard spheres in three di-
mensions with a constant angular cross section, where the polynomial test functions
are proportional to even powers of the velocity magnitude. Later this technique was
extended in [8] for the inelastic collision with heating sources, in [14] to the elastic
case with hard potentials with L!* integrable angular cross section, as well as in
[2] for the case with just L' integrable angular cross section. Further, the approach
was enlarged to hard spheres with non-integrable angular cross section in [16,22]
for hard potentials. All of these estimates were developed for the mono-component
model.

Hence, the angular averaged Povzner lemma is our starting point in the case
of mixtures as well. However, it requires a subtle modification of the polynomial
weight that define the scalar moment for the mixture, to be defined in (2.1) next
section, that renormalizes the polynomial test function from just even powers of the
magnitude of the velocity vector to a dimensionless bracket form independent of
mass density units, as the mono-component treatment to obtain moment estimates
from [6] for the elastic case, or from [14] for inelastic hard sphere interactions, can
not be directly extended to the mixture case, when masses are possibly different.

These facts enticed us to introduce a new approach that relies on a way of
rewriting collisional rules and scalar polynomial moments in such a dimensionless,
independent of mass density units form that it is very convenient to obtain a convex
combination form between the conserved local quantities for a binary interaction,
namely, local center of mass and energy. As a consequence, we conclude that
averaging over the S2-sphere yields decay properties as the a function of the moment
order for as long as the angular kernel is L'-integrable on S2. In particular, these
decay properties will be significantly influenced by the disparateness of the species
masses. It will be shown that as much as renormalized species masses deviate from
each other, the decay rate will do so even more slowly.

The paper is organized as follows: in Sect. 2 we introduce notation and prelim-
inaries, and state the main results, namely the Existence and Uniqueness Theorem
for the vector value solution of the homogeneous Boltzmann system, and then gen-
eration and propagation of both scalar polynomial and exponential moments. Then
in Sect. 3 we describe in details kinetic model that we use. Section 4 contains two
preliminary Lemmas that we need for further work, including the Povzner lemma.
Sections 5, 6 and 7 are devoted to proofs of our main results. A final Appendix
contains some auxiliary calculations relevant to our estimates.
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2. Notation, Preliminaries and Main Results

2.1. Notation and Preliminaries

In this paper, we consider a mixture of / gases, and we label its components with
Ai, ..., Ar. Each component of the mixture A;,i = 1, ..., I, is described with its
own distribution function, denoted with f; := f;(¢, v) = 0, that, in this manuscript,
dependsontime? > 0and velocity v € R3.Fixing somei € {1, ..., I},distribution
function f; satisfy Boltzmann like equation, which now, in the mixture context, has
to take into account influence of all other components of the mixture on species .4;.
In the kinetic theory style, this is achieved by defining collision operator Q;; for
each j = 1, ..., I that measures interaction between species .4; that we fixed and
all the others A;, j = 1, ..., I, including itself .A;. If the species A are described
with distribution functions f;, then the evolution of f; is described via

1
B fit.v) =Y Qij(fi [t v), i=1....1I 2.1)

j=1

The form of Q;;, for distribution functions f and g and any i, j = 1,...1,1is
given by the non-local bilinear form

1
0ij(g, h(v) = /1@3 /52 <? g(vl{j)h(v;,»j) - g(v)h(v*)> Bij(v, vy, 0) do duy,
2.2)

where pre-collisional quantities v; g and v}, i depend on post-collisional ones v, v,
and parameter o, as much as on the masses m; and m ; mass of colliding particles
of species A; and A;, respectively, in the following manner:

o _miv—}—mjv*_l_ m; v — |0
17 * )
Y m,-—i—mj m,-—}—mj
m;v —+ m;vy m;
v;ij = I [v — vy o (2.3)
mi—{—mj mi+mj

The collisional rules (2.3) can be written in scattering direction coordinates (or in a
center of mass reference framework) by introducing the velocity of center of mass
V;; and relative velocity u of the two colliding particles
m;v+m;v
Vij = l—]*, U=V — Uy, 2.4)
m; +m;
as follows:
O = Vit — L ulo, vy = Vi fulo:  (25)
J m; +m; J m; +m;j
equivalently, introducing the two-body mass fraction parameter r;; = #
iTm;j
(0, 1), associated to one of the particles, say m;, without loss of generality, we get

vij = Vij + (A =rij)lulo, v =Vij—rijlulo. (2.6)

/
*ij
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Remark 1. For simplicity of notation, from now on, we will eliminate subindices
i, j from vlfj, v;ij, Vij and ry;.

The transition probability rates or collision cross section terms 3;; are positive
functions supposed to satisfy the following micro-reversibility assumptions

Bij(v’ Uy, U) = Bij(v/’ v:p U/) = Bji(v*7 v, _U)a (27)

where 0 = u’/ |u/| and ¥’ = v — v}, (note that then o/ = u/ |ul).

The factor in the positive non-local binary term J = |det Jo' w0 /(v,v*,0)| is
the absolute value of determinant of the Jacobian associated to the exchange of ve-
locity variables transformation (2.3) from pre to post for the given binary interaction.
The Jacobian of this transformation can be easily computed by passing to the scatter-
ing direction coordinates i.e by considering the following mappings: (v, v}, o’) >
W, Vo) > (W], 7. V', o) > (ul, 15, V. 0) > @, V,0) = (0, vs,0),
with the notation (2.4) and using Remark 1. The first mapping is of unit Jacobian
from definition of u and V, the second one is passage from Cartesian to spherical
coordinates for #’. Since from the collisional rules of (2.3) it follows that |u’ | = |u|
and V’ = V, the passage from primes to non-primes described in the third mapping
is of unit Jacobian. Then we pass from spherical to Cartesian coordinates for  and
finally go back to the original variables (v, vy, o). Thus, the Jacobian is computed
as the decomposition of the mentioned mappings,

1 2
T=1-—5-1-Ju? 1=1,
|u/|

since \u/ | = |u|. Therefore, each Q;; from (2.2) simply becomes

Qij(g, h)(v) = /R3 /S2 (gWHRW,) — g(Wh(.)) Bij(v, vs, 0) do dvy. (2.8)

Since we consider a mixture as a whole, it will be convenient to introduce the
following vector notation: we put all distribution functions f;,i = 1,..., [ into
vector of distribution functions

F=1[fili<i<s- (2.9)
Moreover, a vector value collision operator is defined as
I
QE) = | > Qij(fi. f)) : (2.10)
j=1 1<i<1
Then the system of Boltzmann equations (2.1) can be written in a vector form

3F(t, v) = QF)(t, v). @2.11)
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Definition 2.1. (Bracket forms for the mixture’s dimensionless polynomial moments
independent of mass density units) Let I = [ f;];<;<; be a suitable vector value
distribution function. Let the mixture’s bracket forms be denoted by

(Wi = [T+ —— %, veR (2.12)
j=1Mj

Scalar polynomial moments independent of mass density units of order ¢ = 0
for I is defined with

1
my [F1(t) = Z/M fit,v) ()7 dv. (2.13)
i=l1 .

In particular, we define a scalar polynomial moment of zero order for each species

A; as
mo,i[F](f)=/ fit,vydv, i=1,...,1,
R3

having in mind that 3/_, mq ;[F] = mo[F].
Scalar exponential moment, or exponential weighted L' —forms, for I of a rate

o := (a1,...,a7),a; > 0,and an order s := (s1,...,s57) > 0,0 <5, < 2,1is
defined by
I .
E[Fl(e, 1) = Z/ fi(t, v)e® i do. 2.14)
; R3
i=1

The case s; = 2, Vi, is referred to as an inverse Maxwellian (or Gaussian) moment,
otherwise these are super exponential moments (some authors referred as stretched
exponentials though this concept usually refers to exponential times).

Remark 2. It can be noticed that both dimensionless polynomial and exponential
moments for the mixture are defined as a sum of the resulting moments corre-
sponding to each species independent of mass density units. In particular, when
F solves the Boltzmann system of equations (2.11), then mg ;[[F] is interpreted as
number density of the species 4;, for any i = 1, ..., I, while the zeroth scalar
moment mg[IF] is the total number density of the mixture. Moreover, the second
scalar moment m[IF] represents total energy of the mixture.

Remark 3. If, for given exponential moments individually for each species A;, we
seek for the maximum value of both their rate and order, i.e.

Q@ = max o;, §= max s;, (2.15)
1<i<t 1<i<t

then
I ~ ~
ElFle, ) £ ) / fi(t,0) &V dv =: E[F1@. 0).
i=1 /R

Therefore, finiteness of the exponential moment E[F](e, t) is a consequence of
the finiteness of &[F](&, ), with @ and § as in (2.15), for any time ¢ = 0.
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2.1.1. Functional Space We work in L' space weighted polynomially in velocity
v and summed over all species, that is,

I
L,i = {IF = [ fil<;<; measurable : Z/ | fi ()| (v)f dv <o0, k2 0} ,
o o VR

(2.16)

1/2
where the polynomial weight was defined in (2.12) by (v); = (1 + Z,’"i |v|2> ;
j=1mj

its associated norm is
I
_ : k
Il = Zl /R i) (W)f dv. 2.17)
1=

Note that if F = 0, then its norm in L,l< is precisely its polynomial moment of order
k,i.e. ”F”L,i = my[[F].

Sometimes we will consider species separately, i.e., fix some component of the
mixture .4;. We define a space together with its norm as

L,li = {g measurable : / lg(v)] (v)f»‘ dv <00,k 2 0} ,
, B3

lgllzy, = /R 1) @) av.

Note that the norm of F in L ,1( is related to the norm of its components f; in the

space Ly ; via |l = Yo/ il -
Finally, since we use bracket forms (-) defined in (2.12), the monotonicity
property holds, i.e.

1illyy Wil and IFllgy < IFl,; . whenever 0 < ki < k. (218)

2.2. Main Results

We study the Cauchy problem for the system of spatially homogeneous Boltz-
mann equations for the mixture of gases Ay, ..., A;s:

_ 3
{ F(t,v) =QWE)(t,v), t>0, veR, (2.19)

F(0, v) = Fo(v),
where I is a vector of distribution functions IF = [ f;],<;<;, f; being a distribution
function of the component A;, i = 1,..., 1, as defined in (2.9), and Q(F) =
[25:1 Qi (fi, fj)]1<‘<l is a collision operator introduced in (2.8, 2.10).
>0 >

We consider the particular case when the transition probability terms 5; jals ] =
1,..., I are assumed to take the form

Bij (v, vs, o) = |u”i bij(o - i), yij € (0,11, and b (o - ) € L' (S?; do),
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(2.20)

where u := v — vy, & := u/ |u|. This form of cross-section corresponds to variable
hard potentials with an integrable angular part. In the mixture setting, both potential
vij and angular kernel b;; may depend on species A; and A;. In order to satisfy
micro-reversibility assumptions (2.7), it is supposed that

vij = vji. and bij(o i) = bji(o - i)
for any choice i, j = 1,..., 1. Moreover, let ¥ denote the maximum value of
potentials y;;, i.e.

Y = max Yy;j. 2.21
Y 1<) Yij )

2.2.1. Povzner Lemma by Angular Averaging The essential ingredient of this
manuscript is the Povzner lemma obtained by averaging in the scattering angle
representation of the collision kernel, originally introduced in [6, 8], for the case of
elastic and inelastic collisions; it estimates the positive contribution of the collision
operator after integration against o € S2, that is crucial for all further proofs.

Lemma 2.2. (Povzner lemma by angular averaging for the mixing model) Let the
angular part b;j(o - i) of the cross-section be integrable in o variable (that is
bjj € LY(82; do)), it being the normalized relative velocity u = v — v. Let v/
and v, be functions of v, vy, o as in (2.3), with m;, mj > 0. Then the following
estimate holds for any fixed i, j:

[SlEy

/Sz ((wxf +<U;)’;) bij(o - i) do < céf ((u>,.2 + (u*ﬁ) , (2.22)

i
where constant C| tends to zero as k grows, and moreover,
2

cl — |bij |iigy <0 foranyk = ki1 <i i<, (2.23)
2

where each kij depends on b;j and r;;.

The proof of Lemma 2.2 genuinely reflects a difference between single and
multicomponent gas, with an emphasis on writing collisional rules in a convex
combination form for mixtures, in contrast to symmetric or “half-half” writing
for the single component gas. It turns out that the single component case-due to
symmetry-has a lot of room for estimates and further simplification, as presented
in [8] as for example. For mixtures, this is not the case any longer, and writing
should be exact as much as possible; we use Taylor expansion of second order with
a remainder in the integral form, and estimates are done only in the remainder.

A very important consequence of the Povzner lemma is the ability to estimate
moments of the collision operator. In particular, averaging over the sphere yields
decay properties of the gain term polynomial moment with respect to its order.
This decay allows polynomial moments of loss term to prevail in dynamics, when



On Existence and Uniqueness to Homogeneous Boltzmann Flows 733

sufficiently many moments are taken into account. In a single component gas, it
suffices to take 24 order of polynomial moment, that is, slightly more than the
energy, to obtain this property [8]. Mixtures bring great novelty in this aspect, too:
decay properties of the constant issuing from the Povzner lemma strongly depend
on the two-body mass fraction parameter r;;. We study this issue in detail in the

case b;j € L™ (8?; do) when it is possible to explicitly calculate the constant C;;j./z
from (2.23). It will be shown that when r;; = 1/2 (Wthh corresponds tom; = m;),

we recover the same decay properties of the constant C;/ iJ k2 A8 in the case of single
gas component. However, when mixtures are con51dered we observe that as much
as r;; deviates from 1/2, the larger kY that ensures (2.23) is, or larger and larger
order of moment that guarantees prevail of loss term moment is.

2.2.2. Existence and Uniqueness Theory In this manuscript, we discuss exis-
tence and uniqueness for the vector value solution I to the initial value problem
(2.19) of space homogeneous Boltzmann equations for monatomic gas mixtures,
with transition probabilities (or collision kernels) associated to species A; and A},
i, j € {1, ..., I} having hard potential growth of order |u|"%/ for y;; € (0, 1] and an
integrable angular part b;;, with an initial total mixture number density and energy
bounded below (i.e. the initial data can not be singular measure), and have at least
a k, (scalar) polynomial moments

ky = k,2+2y} for k= k7Y and 7 = (224
« = max{k,2 + 2y} for 1<ma;x<{ '} and 7 = 13%:%”( )

chosen to ensure the inequality (2.23) holds forany i, j =1,...,1

Such a study fits into an abstract framework of ODE theory in Banach spaces,
which can be found in [17]. For the Boltzmann equation, the application of this
theory was clarified in [3], after being recognized in [10]. The formulation of
theorem that we apply in this manuscript is given in Appendix A. As for the choice
of Banach space, itis known that the natural Banach space for solving the Boltzmann
equation is L' polynomially weighted, or in mixture setting space, L ,i defined in
(2.16). More precisely, here we take k = 2, because the norm in that space is related
to energy whose conservation is exploited.

In order to apply Theorem A.1, we need to find an invariant region Q C Lé
in which collision operator Q : Q@ — L% will satisty (i) Holder continuity, (ii)
Sub-tangent and (iii) one-sided Lipschitz conditions.

To that end, we first study the map Ly, : [0, 00) — R, defined with

Ly (x) = —Ax'"*E 4 Bx,

where A and B are positive constants, ¥ € (0, 1] and k, defined in (2.24). This
map has only one root, denoted with xy k,» at which L k, changes from positive
to negative. Thus, for any x = 0, we may write

y (X)) S < <m<ax y ke (X) = LV kst

0sxs x7k
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Define

Ch, 1= x5 + L5y (2.25)

*

Now, we are in position to define the bounded, convex and closed subset 2 C
L 1.
2t

1

Q= {IF(t, yeLy:F=0inv,) / miv fi(t, v)dv =0,
N R3
i=1

Jcg, Co, c2,, Ca, Coye > 0,and Cy < ¢, such that V¢ = 0,
co = mo[F1(r) = Co, 2 = my[F1(r) < Co,
Mo+ [F1(#) £ Coye, for & > 0,

me [F1(r) < Cy., with Cx. from (2.25) }

where
I
mo [FIO) = IFlly =) /R i )l ) dv
=1

for any ¢ > 0, which can be arbitrarily small.

Then, the existence and uniqueness theory of a vector value F solution to the
Cauchy problem (2.19) fits into the study of ODE in a Banach space (L;, -1l Ll )
and its bounded, convex and closed subset €2. The collision operator Q is viewed
asamapQ: Q — L%. We will show that it satisfies Holder continuity, sub-tangent
and one-sided Lipschitz conditions, which will enable us to prove the following
Theorem:

Theorem 2.3. (Existence and Uniqueness) Assume that F(0,v) = Fo(v) € Q.
Then the Boltzmann system (2.19) for the cross section (2.20) has the unique solution
in C ([0, 00), ) NC! ((0,00), LY).

Remark 4. Let us point out that for the existence and uniqueness result no condi-
tions on initial entropy are necessary. However, if the initial data has finite entropy,
then the entropy inequality implies that it will remain bounded for all times. Let us
give a sketch of the proof. The definition of the entropy and entropy inequality is
taken from [13], Proposition 1.

Definition 2.4. (Mixture entropy and entropy production) Let F be a vector value
distribution function as in (2.9). The (mixture) entropy is defined as

1
() = Z/R3 filog fi dv, (2.26)
i=1

while the (mixture) entropy production is given with

1
pE =Y /R Q@) log f; dv. 2.27)
i=l1 :
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Then the following Proposition holds:

Proposition 1. (Entropy inequality or the first part of the H-theorem, [ 13]) Let us as-
sume that the cross section terms Bjj, 1 < i, j < I, are positive almost everywhere
and that F = 0 is such that both collision operator Q(F) and entropy production
are well defined. Then the entropy production is non-positive, i.e. D(F) < 0.

As an immediate consequence, we get from the Boltzmann equation that 9, < 0;
in other words, n(r) < n(0) for any r = 0. Therefore, we conclude that the entropy
inequality implies that mixture entropy remains bounded at any time if initially so.

2.2.3. Generation and Propagation of Polynomial Moments The second part
of the manuscript is devoted to the study of generation and propagation of scalar
polynomial moments associated to the solution of the Boltzmann system (2.19) for
the cross section (2.20), that initially belongs to €2.

First, in the following Lemma, we derive from the Boltzmann system (2.19) an
ordinary differential inequality for polynomial moment of order k, my[F](¢), for
large enough k, that relies on the Povzner estimate from Lemma 2.2, uniformly in
each pair i, j:

Lemma 2.5. (Ordinary differential inequality for polynomial moments) Let F =
[fili=1,...1 be a solution of the Boltzmann system (2.19) with the cross section
(2.20)~(2.21). Then the polynomial moment (2.13) satisfies the following Ordinary
Differential Inequality:

I

d 7
IO = 3 1QE); (v)f dv < — A el FI0)'F + Bemy[FI(),

i=1

(2.28)
for large enough k to ensure (2.24), and some positive constants Ay and By.

The proof of this Lemma follows from comparison principles for ODE’s, which
yields the generation and propagation estimates stated in the following Theorem,
which is proved in Sect. 6:

Theorem 2.6. (Generation and propagation of polynomial moments) Let [ be a
solution of the Boltzmann system (2.19) with a cross section (2.20)—(2.21) and an
initial data (0, v) = Fo(v) € Q. Then,

1. (Generation) There is a constant €™ such that for any k > k. defined in (2.24),

<=

m[Fl() < €™ (1 - eji"’)_ CVis0, (2.29)

where constants €™ depend on A, By from (2.28) andy.
2. (Propagation) Moreover; if mi[IF](0) < oo, then

i [F1(t) < max{€™, m[F1(0)}, (2.30)
forallt = 0.
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Finally, we show that, under the assumed conditions on the collision kernel form
(2.20), the renormalized series of moments is summable depending on the moments
of the initial data, yielding the following result on generation and propagation of
exponential, or Mittag-Leffler moments:

2.2.4. Generation and Propagation of Exponential Moments With bounds on
polynomial moment at hand, one can deal with exponential moments. We prove
the following Theorem:

Theorem 2.7. (Generation and propagation of exponential moments) Let F be a
solution of the Boltzmann system (2.19) with a cross section (2.20)—(2.21) and an
initial data (0, v) = Fo(v) € Q. Then,

(a) (Generation) There exist constants o« > 0 and BE > 0 such that
EAF)(@min {z, 1}, 1) < BE, v > 0.

(b) (Propagation) Let 0 < s < 2. Suppose that there exists a constant o > 0, such
that

E[Fl(e0, 0) = Mo < oo. (2.31)
Then there exist constants 0 < o < «ag and @€ > 0 such that

EI[Fl(e, 1) €&, vi=>o0. (2.32)

3. Kinetic Model

3.1. Study of Collision Process

In our setting molecules are assumed to interact via elastic collisions. Let us fix
two colliding molecules; one of the species .A; having mass m; and pre-collisional
velocity v" and the another one belonging to the species A; with mass m; and
pre-collisional velocity v/, (note that we here immediately adopted the simplicity
of notation pointed out in Remark 1). If the post-collisional velocities are denoted
with v and vy, respectively, then the momentum and kinetic energy during the
collision are conserved:

miv' +m v, = mijv—+mjuvs,
2 2
mi V|7 +m; |v}] =m; [v* +m; |v.l?. (3.1)

As usual, we parametrize these equations with a parameter o € S2, in order to
express pre-collisional velocities in terms of post-collisional ones:

m;v—+m;v m;
v = — x4 I v —v,o,
mi+mj mi+mj
m;v + m vy m;
v, = — v — vy o (3.2)

m; +m;j m; +m;
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v+,
2

M v+ j Uy
mi+m;j
v — vy, u' := v’ — v),. The displacement of the center of mass with respect to a single
mj—m;

T 1,)
Solid lines denote vectors after collision, or given data. Dash-dotted vectors represent primed
(pre-collisional) quantities that can be calculated from the given data, and compared to the
casem; = m j,represented by dotted vectors. The dashed vector direction is the displacement
along the direction of the relative velocity u proportional to the half difference of relative
masses, (which clearly vanishes for m; = m ;, reducing the model to a classical collision).
Note that the scattering direction o is preserved as the pre-collisional relative velocity u’
keeps the same magnitude as the post-collisional u, u’ is parallel the reference elastic pre-
collisional relative velocity |u|o

Fig. 1. Illustration of the collision transformation, with notation V;; :=

component elastic binary interaction is given by (r;; — %)u = u,if m; > mj.

Note that if m; = m, then the collisional rules simplify and take the usual single
component gas form

1 1
v/=%+§|v—v*|o, v;=”zv*—§|u—v*|a. 3.3)

Figure 1 illustrates the collision transformation (3.2) and aims at explaining its
difference with respect to the collision transformation (3.3) when masses are equal.
Namely, for given v, vy, o and m;, m ;, we calculate center of mass V = %’Z{jv*,
and velocities v” and v, according to (3.2). One can notice that the magnitude of the
relative velocity does not change during the collision, i.e. |[v — vy| = |v/ — v, as
it is when masses are the same. Difference comes with the vector of center of mass:
the vector of center of mass for equal masses ”*2# displaces by adding a quantity
that is proportional to the difference of masses m; — m; and thus is peculiar to the
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mixture case. More precisely,

U+ Vg mj —m;j
+ u,
2 2(m; +mj)

V =
with u ;= v — v,.

3.2. Collision Operators

Collision operators Q;, as defined in (2.8), describe binary interactions between
molecules of species A; and A;, i, j = 1,..., 1. Fix the species A; for any
i =1,...,1,andletits distribution function be g. On the other hand, let distribution
function £ describe species A;.

Note that each Q;; for a fix (i, j)-pair has its corresponding counterpart, Q j;,
that describes interaction of molecules of species .4; with molecules of species

A;:
Qji(h, g)(v) = /1‘%3 /52 (h(w")g W) — h(v)g(vy)) Bji (v, vy, 0) do duy,
(3.4)

where pre-collisional velocities w’ and w/, now differ from the previous ones given
in (3.2) by an exchange of mass m; <> m, i.e.

miv -+ m;v m;
/ J 1Y% 1
w' = + v — vyl o,
m,-—i—mj m,-—i—mj
m;v -+ m;vy m;
w, = 2 — I v — w0 (3.5)
mi—l—mj mi—{—mj

When m; = m , although primed velocities are the same, Q;; and Q j; still defer,
because of the cross section.

3.3. Weak Form of Collision Operator

Testing the collision operator against some suitable test functions 1 (v) and
¢ (v) yields

f 01(g. DY) dv
R3
= /// gh(ve) (Y () = ¥ () Bij(v, vy, 0) do dus dv,
R3 <R3 x §2
and
/R3 Qji(h, g)(w)¢(v)dv

= ff/ h(v)g () (¢ (V) — ¢ (vs)) Bij (v, vy, o) do dvy dv,
R3xR3x §2
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where now v” and v, are denoting the post-collisional velocities as defined by (3.2).
Therefore, looking at these two integrals pairwise, meaning that each time when
Qi; is considered we add his pair Q j;, we have

fR3 (Qij(g, WY () + Qji(h, ) (W)p(v)) du

= /// gWh(y) (V) + o) — ¥ (v) — ¢ (vy))
R3 xR3 x §2
B;j(v, vy, 0) do dvy dv, (3.6)
with v and v/, are now given by the post-collisional velocities as defined by (3.2).

Some choice of test function leads to annihilation of the weak form. Namely,
from the conservation laws during collision process, we see

/R3 Qij(g, H(v)dv =0, 3.7

as well as

/ (Qz,(g,h)(v)( v |2> + Qji(h, g)(v)( |v|2)) dv=0. (3.8)

Therefore, if we consider distribution function FF = [ fi];<;</, then the weak
form (3.6) yields

1 1
ZZ/ Qi (fi, )W) i(v)dv
T //

ZZ fi) fi(vs)

R3xR3x §2
X (Wi () + 9 (W)) — i (v) — ¥ (vs)) Bij (v, v4, 0) do dvsdv. (3.9)
3.4. Conservation Laws

Weak forms of collision operator imply some its conservative properties. More
precisely, for any suitable I, (3.7) implies

/ [Q(F)]; dv =0, foranyi=1,...,1, (3.10)
R3

and moreover, from (3.9), choosing V¢ (x) = my |x|? and Ve(x) = myx, x € R3,
one has

1
> Q)] mi [v]* dv =0 (3.11)

i=1
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and

1
> IQE)]; mivdv =0

i=1

for any time ¢t = 0.

If IF is a solution to the Boltzmann system (2.19), then these properties imply
conservation laws for the number density of each species A;,i = 1, ..., I, and the
total energy of the mixture. Indeed,

omo ;i [F1(t) =0, Vi=1,...,1, 9my[F]() =0. (3.12)

4. Proof of Povzner Lemma 2.2

The proof of Povzner lemma 2.2 by angular averaging for the mixing model
leads us to obtain estimates for the quantity <v’>f + <v,’k)]; integrated over the sphere
$2, which represents the gain part of (3.9) for v¥; (x) = (x)i.‘. The usual techniques
used in [2], for example, cannot be directly adapted when m; # m ;. This becomes
clear when one writes local kinetic energies of each colliding molecule pair. When
m; # m, these energies can be written as a certain convex combination, while the
single component case (or in the same fashion when m; = m ;) corresponds to the
“middle” of this convex combination, or to the “halfs” (see Remark 5 below). The
single component situation (or when m; = m ) is therefore “symmetric”, in a sense,
and the techniques for proof of a sharper Povzner lemma by angular averaging, as
done by [6] or [14], cannot be extended to the mixture case in a straight forward
form.

Indeed, in the mixture setting when m; # mj, the proof of the Povzner
lemma 2.2 in the cases of a non-linear gas mixture system uses a non-trivial modifi-
cation of a powerful energy identity in scattering angle coordinates. This identity is
needed in order to compute moment estimates that clearly show positive moments
from the gain collision operator part are dominated by the moments of the corre-
sponding loss part, which yields a very sharp estimate sufficient to obtain not only
moments propagation and generation, but also their scaled summability that prove
propagation and generation of exponential moment estimates as well. An energy
identity in scattering angle coordinates was first developed in [6,8] for the elastic
and inelastic case for scalar Boltzmann binary models. While such an identity is
rather easy in the elastic single species setting, where local energies are just the
sum of the collision invariant |v|2 and just its interacting counterpart |v, |2, in the
mixing case under consideration the problem becomes highly non-trivial and the
local energies to be estimated now depend on binary sums of (v)i2 and (v*)§ and
their corresponding post collisional sum of (v’ >12 and (v;)f
Lemma 4.1. (Energy identity in scattering direction coordinates for the (i, j)—pair
of colliding particles.) Consider any (i, j)-pair of interacting velocities v and v,
corresponding to particles masses m; and m j, respectively, with i, j fixed. Let their
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2

local micro energy be E;j = (v)7 + (v*)i, with (v)i2 and (v*)? defined according to

(2.12), and recall the two-body mass fraction parameter r; = m,mT[mJ introduced
in (2.5).

Then, there exists a couple of functions p;j = p;j(v, Vs, m;, m;) and q;j =
qij (v, ve, mi, mj) such that p;j + qij = E;j and the following representation
holds:

(Ul{j)izzpij+)»ij0'{/ij» (U;iﬂ?:q:'j—)\ijo’"}ija 4.1)

where A;j := 2\/}",‘]'(1 —rij)sEij — D(( — si)) Eij — D withsi; = sij (v, vg, m;,
m ) € [0, 1]. In particular, this representation preserves the local energy identity

WAT+ W) = pijtay = Ej = )]+ ()3 (4.2)

Moreover, the following inequalities hold:
pij +Xij = Eij, qij +Aij = Eyj, (4.3)
for any velocities v, v, € R? and any masses m;, mj > 0.

As we mentioned earlier in Remark 1, we eliminate subindex ij from E;;, p;j, qij,

Aij, sij as we did in Remark 1 for v}, v, Vi; and rij.

/ .
*1j°
Proof of Lemma 4.1. As anticipated, we represent the exchange of coordinates
at the interaction using the center of mass and relative velocity reference frame
(2.3) [with its symmetric form (3.5)] where the angular integration is performed
in the scattering direction corresponding to the post-collisional relative velocity
o= u. Thus, let’s denote with V the vector of center-of-mass and with u the
relative velocity as in (2.4):

m;iv + m vy
= ———, U=V — V4.
m; +m;

Then, taking the squares of the magnitudes of the post-collisional velocities given
in (3.2), one obtains

2

m= 2m ~
WP = VR + —— P+ —— | V]o -V,
(m; +mj)? mi +m;
2
m: 2m; ~
ol|” = v+ PP = — Ve -V
(m; +m;)? m; +m;
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where V denotes the unit vector of V. Passing to (-) bracket forms from (2.12)
implies

2
W) = 1 VP e P
D=1 Mo (mi +mj)> 3 _yme
Zmimj ~
+ ST Ve V.
m; +m;j =11
4.4
72 m; 2 m/miz 2 9
(v*>j:1+l—|V| + ST Ju
(=1M¢ (m; +mj) Zezl ny
Zm[mj A
— lul|V|o - V.

(mi +mj) Y, me

Let us introduce the total energy E of two colliding particles in (-) bracket forms,
which is conserved during collision process by (3.1):

E = (v)? + (v*ﬁ = <U/>i2 + <v;)3 )

Using the above Eq. (4.4), the energy E can be written in u — V notation as well:

m; +m;
VI + 7
D o=1Mme (mi +mj) 3 oy me

E:2+ m,-mj

lul*. 4.5)

The aim is to represent the squares of the post-collisional velocities (v’ >12 and

(v;)j as a scalar convex combination of different “parts” of the energy E. This is
achieved by introducing two quantities:

(i) the parameter r € (0, 1), that distributes masses in the following convex pair:

r = M and 1 —r = L ; (4.6)
m; +m; m; +m;j

(ii) the function s € [0, 1] that convexly partitions the energy E into two compo-
nents, one related to |u |2 and another to |V|2, using the above identity (4.5) as

follows:
mim j |u|2 and (1—S)E=1+M

7 VI
(mi +mj) 3,y me e=17¢

sE =1+

“.7)

. . . 2 2 o
Finally, each of the post-collisional quantities, (v’ )l. and (v;)j, as written in the
representation as in (4.4), can be recast through the energy E and the dot product
between the center of mass vector V and the scattering direction o as follows:

(1/).2 =r(1—9)E+ (1 —r)sE + 2\/r(1 —rnNGEE-1D)((A—-s)E—-1)o - v,

(v;ﬁ =rsE4+(1—-r)(1=$E—-2J/r(0—=rGE—-1)((1—-s)E—1o-V,
(4.8)
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which yields the important relation that expresses the post-collisional local micro
energy E as a rotation of factors of E and V - o, while preserving the local energy
itself. Indeed, denoting

p=r(l—s)E+ ({1 —r)sE,
gq=E—-—p=rsE+ {1 —-r)(1—-3)E,
A= 2\/r(1 —r)(sE — 1)((1 —SE -1

_z,/r(l—r V L qul v,

e 1Me

p+¢g = E and the representation (4.1) clearly follows, while preserving the binary
micro energy relation (4.2):

This completes the proof of the energy identities (4.1) and (4.2).
Moreover, it follows that

%(erk) < (VO + V) =1,

since

max (\/r(l —5)+ \/(1 — r)s) =

0<A<1

Similarly,

2
%(q+x)§(dﬁ+ I-n-9) =1

uniformly in any (7, j)-pair, which concludes the proof of Lemma. O

Remark 5. Letus elaborate on the difference between writing kinetic energies (4.4)
when m; # m versus m; = m ;. In order to be more precise, we will put a bar on
a quantity when assuming the same masses. For instance, the total energy of the
two colliding particles of the same masses m; is

2m; m;
I—’ VI> + I—’
Zj:l m; 221':1’"/'

When m; = mj, we have the parameter r = 1/2, and consequently, for p :=
p(v, vy, mj, m;), q = q(v, vx, mj, m;) and A give us

E=+w)}=2+ |ul? .

P=q=
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which gives the squares of the magnitudes of the post-collisional velocities when

mi =m;j:
_ (1 ; \%4 ~
<v/).2=E _+1m—l|u|l |(T-V ,
l 2 Zj:]mj E

_{1 , 1% N
g (Lo me VI pY
' 2 25':1’"1' E

Now, the difference between (4.8) as a convex combination writing in the mixture
setting and (4.9) as its special “middle point”, or “half” case in single component
case (or mixture for m; = m;), is clear.

Another important aspect to be pointed out is the comparison of inequalities
(4.3) in the case m; # m  versus m; = m ;. Whenm; = m j, by simply performing
Young’s inequality we get

(4.9)

I
)=

(4.10)

D‘jll >

which yields
1 - 1 -
-= D )\, - = q )\. S 1
7P+ ==+ =

This inequality is an analogue of (4.3) for m; = m ;. Note that when masses are
the same we can make use of the Young inequality, while in the case of different
masses, we have to be more precise, since both % (p+ ) and % (g + X) attain 1
as a maximal value for some values of their arguments, and therefore there is no
room for any inequality. In particular, this inequality will be of decisive importance
for the success of the Povzner lemma that will guarantee decay of the gain term
with respect to the number of moments.

Proof of Povzner lemma 2.2. In order to compute the angular average estimate
(2.22) we use the representation (4.1) and (4.2) from the energy identity Lemma 4.1
raised to power k/2. Then, the left hand side integral of (2.22) becomes

fsz (1) + (o)) s - i) dor

- /2 ((p+xa : \7)5 + <q — o v)g)b,-j(a Cd)do.  (4.11)
S

Now we use polar coordinates for o and V with zenith 7. N amely, denoting with 6
the angle between o and i, we decompose o as

o =cosfiu+sinfw, withit - w =0 and
w = (cos @, sing), 0 € [0,m), ¢ € [0, 2m). (4.12)

In the same fashion we decompose v, by denoting with « € [0, w) the angle
between V and u:

N

V =cosaii +sina ®, where ® € S! withii - ® = 0.
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Then the scalar product o - V becomes

A~

o-V =cosfcosa+ P -wsinb sina.

Defining T := cos # and expressing sin = /1 — 72, since sin& = 0 on the range
of 0, this scalar product reads as

o-V=rtcosa+® ovl—12sinag = pu=pnrod . 413)

In the integral (4.11), we first express o in its polar coordinates (4.12) and then
change variables 6 — t = cos 6, which yields

[gz ((P-Fka."})]; +<q—)»a.\7)§>bij(g.ﬁ)da

k
2

2 T . A ‘
=/ / ((p+)\g.v) +(q—)»a.V)2>bij(0039) sin6 d6 dg
0 0
2 1 . .
:/(; /1((P+ML)7+(q—ku)§>bij(r)drd(p_

For k 2 4, Taylor expansion of (p + A W)/ and (g—A w)*/? around 1 = 0 up to
second order yields:

k k k_ ! k_
(P+rw?z=p2+Lp2 1m+§(§—1)x2,ﬁf (1 —2)(p+ Auz)? 2 dz,
0

1
k k k_ k_
(g =2m?=q7 = 5q° 1w+§(%—1)k2/t2/ (1-2)(q — ua)t 2 dz.
0

For 2 < k < 4, we stop at the first order and proceed similarly.
Now, let us analyze the integrands. By the Young inequality, for A, the following
estimates hold:

+A2<g—-1<qg, and £2<p—-1<p. (4.14)
We recall definition of p and ¢, and get
p=0l=-9+U=-rHE g=0s+A-r)A-s)E

forr € (0,1) and s € [0, 1]. Considering r as parameter, for both coefficients,
the maximum with respect to variable s is achieved on the boundary, i.e. for either
s = 0 or s = 1, and moreover the following estimate holds for both coefficients:

r(l—s)+ {1 —r)s Smax{r, (1 —r)}, rs+ (1 —r)(1—s) < max{r, (1 —r)}.
Denoting

7 =max{r, 1 —r}, 4.15)
we conclude on the upper bound for both p and g:

pSrE, q<TE.
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Moreover, for p and g it holds that
p=r(l—s)E+(1—r)sE 2rE and q 2 rE,
where we have denoted
r =min{r, 1 —r}. (4.16)
Taking into account the inequalities above, one has
p+iuz S p+quz=E—q(l—pz) = E(Q—r(l—|ul2)),
and similarly,
g —iuz < E(1—r(l —|ul2)).

Therefore,

k k

(P+rmw)?+(qg—rp)?
K Eoop I3 K
Sprtg’ +§M<P2 +q2>

1 -
+k(§—1)72M2E%/ (1 —2)(1 = r(1 — |ul2)? 2dz
0
Then
2 % %
/0 /1 ((p+)\u)7 + (g —)\M)f) bij(r)drdy < Py + P, + P3,
with

P1:

Il
/

« « 2 1
pirat) [ by
0 -1

k 2 1

cﬂ/ /Mbij(f)drdcp,
Pyi=k(5-1) /2”/

3= 2

x (/ (1 =21 = r(l = |pl2)s 2 dz) bij(v) d dg.
0

F
Il
STk
~
<
[k

+

Term Py. Introducing constant C,, we have
C,=7", 0<F<l, 4.17)

which clearly decays in n, so we get

k
E2

k k ~
Pr= 13l gy (P2 %) = 153l 1 a0 2C B
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Term P,. Taking into account definition of i from (4.13), the parity arguments

yield
‘ 2
P2:§< 24 qz / / Tcosa bjj(t)dr de,

after bounding cos o

< 1. Using the estimate above for P; and the factthatt cos o <
1, we finally obtain

Py < (b1 ] 1 gy K CL EZ.

k
2

Since the constant C has power decay in k, the constant k C also decreases in k
2
Term P3. We can compute explicitly the integral with respect to z as

1
/ (1—21—a(l —Az)" 2dz
0
! ! ((1+a(A—1))"—(1—a)”—aA(l—a)”_1n>
2A2nn—1)

forany0 <a < 1 and A > 0. If A = 0, then we easily obtain
! 1
/ (1-2)(1—a)"?dz==(1—a)" 2
0 2

In our case, a = r and A = |u|, u being a function of variables of integration t
and ¢ defined in (4.13) that satisfies || < 1, and thus P3 becomes

7 k 2 k
Py =25k / / (1+r<m|—1))2

— (1= —rlul(1 =074 ) by () dr dg
=: P3; + P3, + P35,

k(b - -
< 2 (& Dl (6 64)).
where we have denoted
2 k
=2 Ef / L+ r(l = 1) byy(0) de dg,
72 L & [T
P, = —2—2(1 —L)fEif / bij(r)dr de,
r 0 —1

72 X k 2 1
Py, = ——k(l—z)f—lEff / |l bij () d dg.
r 0 —1

Term P3,. We rewrite term P3, as

=

vblu
P = C'E
2
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. . )4 b,‘ j
by introducing the constant C,,"” :

2
¢hi _2—/ / (14 r(ul — 1) bij(r) de dg. (4.18)

In order to study its properties, we first note that 1 +r (|| — 1) < 1, since |u| < 1,

and the equality holds only when || = 1 (oro = {:l:\7}). Therefore, the sequence
of functions

Ap(x) = (1+r(x—1)"

decreases monotonically in n and tends to 0 as n — oo forevery x € (0, 1) upto a
set of measure zero. Finally, we conclude by monotone convergence Theorem that

b” \O as k — oo.
When bij € L™(S 2. do’), we can obtain the explicit decay rate of the constant
C Zij , since in this case the integral (4.18) significantly simplifies. The rate will be
cazlculated in the Remark 6 below.
Term P3,. For the term P3, we immediately obtain

k

P, = |[b;j ”Ll(da) C% Ez,

with the constant

=2

— r

Cn = —2—2(1 —E)n.
r

Term P3,. We first estimate the term P3, using |u| < 1 to get

72 X X 2 1
P, < 7k(l —£)7_1E§/0 flbij(r)drdgo.

k

= ”bij ”Ll(do) C% E2,
and the constant is defined with
A 72
Ch=2—n(l-rL (4.19)
r

Gathering estimates for Py, P> and P3 completes the proof of (2.22) with
. N _ . < bii
Cil = b1l gy (@1 +2C0 + Co 4+ C1) + C o > 2,
and Cﬁlj = ”bij HLl(da) 26‘,,, if 1 < n < 2. Thus, the constant CZ issuing from the
s 2 .. ..
Povzner lemma satisfies Clk] — 0ask — oo, and so there exists ki) = ki (r; i bij)

for which Cl,%] < ||b,-j “Ll(do)’ fork > k. O
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Remark 6. (The case b;; € L>®(S2: do)) When the angular kernel is assumed to
be bounded, some calculations are simpler. Pulling out the L norm of b; i, We
have

2 1
/(; /lbij(f)df dg < 4x |bij HLOO(do)’

and so terms Py and P3, become

CiES, Py, =47 |b

Py < 87 b HLOO(dU) :

=k
ij ||L<><>(do) C§E2'

Moreover, when b;; is assumed to be bounded, the starting integral (4.11) does
not depend on o - & anymore, so we may take V instead of i as a zenith of polar
coordinates in (4.12), which amounts to taking @ = 0 in (4.13), which implies that

w = 7. In this case, thanks to the parity arguments, term P, vanishes, and term Ps,
can be explicitly calculated without using any estimate, so we get

72 & k 2]T 1
Ps, ——k(l—z)TlEff / 7| bij(t) dr dg
r 0o J-1

Ak
CrE?2,

—2n Hbij”LOO(da) 4

with the constant C k from (4.19).

Finally, let us compute explicitly the constant Cv’s 7 from (4.18) when b; i(o-n) €
L°(S?; do). Namely, pulling out the > norm of b; j from the integral and using
m =1, we get

b 72 2l ;
&l =2 ||b"f”m°<do>/0 /_1(1+5(|r|—1)) dr dg

) 1 (1 -
=SJTK_3|’bij|‘LOO(da)(n+l_ n+1 )’

which shows its decay rate.
To summarize, the constant from the Povzner lemma in the case of bounded
angular part reads as

il =4 i | e gy CX ), (4.20)

where we have denoted

e PN S A O S s
Cf;°(r)=2cn+c,,—-cn+2—(n+l— o

7 3 ) , n>2,421)
r

and C;°(r) = 2C, if 1 < n < 2, recalling (4.16) and (4.15). Moreover, it satis-
ij
fies C% < 4r ”bl’j ||L°°(do)’

depending on 7;; and b;;.

or, equivalently, C;°(r) < 1 for sufficiently large kij
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4.1. Study of the Povzner Constant for b;; (o - i) € L>®(52: do)

In this section we study in detail the constant (4.20) from the Povzner lemma
2.2 in the case of bounded angular part. More precisely, we study its normalized
part (4.21)

- -2 -2 n+l1
0 A r r . r 1 1-r
(4.22)

forn > 2and C;°(r) = 27" if | < n < 2, with7 = max{r,1 —r}and r =
min {r, 1 — r}, and elaborate more on its decay rate in n depending on r.

First, taking r = % we expect to recover the same properties as for the single gas
when decay rate of the Povzner constant [3] was -2 that monotonically decreases

n+1°
and tends to zero in n > 1. In our case,

2

4 1\" 2 .
Cw<1>:iﬂi—b) n k) ifn > 2,

_ +
! 2()"if1<n <2,

which keeps the same properties as for the single gas, as is illustrated in Fig. 2.

For general » € (0, 1), decay properties of the constant issuing from the Povzner
lemma (4.21) strongly depend on r or the degree to which species masses m;,
i = 1,..., I are disparate. It is clear that, since 0 < r < 1, the constant C°(r)
will tend to zero as n goes to infinity. Here we are interested in a more subtle
question: determine 7, such that it holds that C;°(r) < 1 for n 2 n, and any fixed
0 < r < 1. Converging C:°(r) in n towards zero for any 0 < r < 1 ensures the
existence of such n,. It can be observed that n,. grows as much as r is deviated from
%, since the constants in C;°(r) with a power decay rate will decay more slowly
as r deviates from % This behavior is illustrated in Fig. 3. We can reformulate the
problem as follows: for some fixed value of n determine the interval of r for which
it holds that C;°(r) < 1, as is illustrated in Fig. 4.

5. Proof of Existence and Uniqueness Theorem 2.3

Before proving Theorem 2.3, we first study a property of the collision operator
that is a consequence of the Povzner Lemmas 2.23 and B.1.

LemmaS.1. Let F = [fi];—), . ; € Q and ki as defined in (2.24). Then, the
following estimate holds:

1 _
> /R Q@) ) dv < — 4, mg, [F10) 4 + By, me, [F10).  (5.1)
i=1
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0.8

0.6

0.4

0.2

Fig. 2. Comparison of the Povzner constant for r = % in the mixture setting and the single
component gas forn > 1

2.5 T
—cx (3)

)| ez |
G (14 )
Seer )

Lo cr(3+3) |

Fig. 3. Constant C°(r) from Povzner Lemma 2.2 for some fixed value of r =: ry. This
figure illustrates the non-monotonic behavior in n variable, and the growth of n needed to
ensure that C°(ry) < 1 caused by a deviation of r with respect to %

with positive constants

Ap = min (||b,.,. Lo — cfkf;) R
1<i, <1 @) % ) max <;<;mi
Zl Yij Lt (52)
=1 Mi ij ks
Br, =2Cy max =l (¢ < ) ,
1<i,j<1 mim kT* Z ¢
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1
0.8 - |
—C(r)
061 1|
""" CToo(r)
0.4 a == Cloo(7)
CTo000(7)
0.2 |
00 1

Fig. 4. Constant C5°(r) from Povzner Lemma 2.2 for some fixed value of n =: ny. This
figure illustrates the interval of » for which it holds C;’lf(r) <1

where Co and Cy are from the characterization of the set 2, cyp is from the lower

bound (B.4), and Clk]* is a constant from the Povzner Lemma 2.2 with k, > k,
2

as defined in (2.24), ensuring the property (2.23) for any pair (i, j) that yields

positivity of the constant Ay, .

Remark 7. It is important to notice that the strict positivity of the constant Ay, can
be viewed as a coercive condition that secures global in time solutions, without
the need to require boundedness of entropy.

Proof. We start with the weak form (3.9). Taking test function v; (x) = (v )k* and
cross section (2.20), we have

1
> /R Q) 0 av 53)
1 1
ZZ/ ) Qi (fin fj)dv

i=1j=1
| o
E;;/‘/\A‘Q3XR3XSQ|U_U*|V/fl(v)fl(v*)

x (( o+l — ) - (v*)’;*) bij(o - i) do dv,dv,  (5.4)

where this collisional rules are (3.2). The primed quantities integrated over sphere
$? are estimated via Povzner lemma. Indeed, by Lemma 2.2 , (5.3) becomes
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1 1
Z/ [QE)]; (v)i* d §%ZZ// Ji@) fj @ o = v
. (c'z; (2 + 03) -

where Ciki is a constant from Povzner lemma 2.2 with k, > k = maxj<; j< l{kij }

“sz ||L1(d0) (( )k* + <U>;<> )) dU* dl} (5 5)

2
chosen large enough to ensure (2.23) uniformly in i, j-pairs. On the one hand, we
use polynomial inequalities from Lemmas C.1 and C.2 to get

with £, = Lk*; ! ], and therefore

1 P
by [ 1@ ! a3 )3 [ i@ st =
X {_ <”blj ||L1(d<7) - Clkj;) ((v)f‘* + <U*>];*)

Lieye
+ci Z(’;) (@) ™ + @ W) § dvedv. 5.6)

2 \e=1

On the other hand we use upper and lower bound of the non-angular cross section
|v — v4|¥ . For the upper bound, from (B.2) it follows that

ij izt i " Vij Vij >y mi Y v v
v=val? §<m—m]) (@ +wa))=( S22 ) (0F+0a])

for y = max;<; j<;yij € (0, 1]. For the lower bound, we use Lemma B.1, but
we first check that all assumptions are satisfied from the fact that F € . Indeed,
bounds on mg imply

I
co min mi§2/ m; f; dv < Cyp max m;.
1<i<1 P 1<i<I
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From the other side, bounds on m, yield

1 1 1
(c2—Co) Y m; éZ/Rgmilvlzfidvé (Cr—co) Y mj.
j=1 i=1% j=1

Therefore, for constants ¢ and C, from the assumptions of Lemma B.1, we can
choose

I
c:=min{cyp min m; (Cz—Co)Zm' ,
i<t )
I
C :=max { Cop max m; (Cz—co)Zm~
1<i<r = !

Note that positivity of ¢ is guaranteed by the definition of the set €2. Finally, since
it can be estimated that
1+5

I I
_£
Z mi |07 fidv < mpye Zm/ max m; °,
‘ R3 X ’ 1<i<T
i=1 j=1 ==
we can choose
I
_£
— . 2
B = Cyys Zm., max m; -.
j=l1
Then (B.4) implies

1

: 1 7
Z/ fi) o = vl dv = ——————app, (v.)]
izl R3 maxléiglmi

and

1
- 1

> /3 Fi v = v dv 2 ——————cp ()] .

— JR

j=1

maXléjél m]

With these estimates, (5.6) becomes

1
Z /W [QM)]; (U)f* dv £ — D,y 4y + Ex, (Migy my, 1 + Mg, — 14y my),

i=1

where Dy, and Ej, are positive constants

. ij Clp
D, — . -cY ) —-—
ky = N ||b,j ”Ll(do) Ci. B
1Sijs1 2/ Maxy<; <y mi

I ) Yij 3 Lieye
Er, = max —Zi:l i Clkj* Z <k*) .
1501 i j T )= \¢
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In particular, Dy, is positive since, by assumptlon k. > k defined in (2.24) large
enough ensuring (2.23) for the constant C;, ] from Povzner lemma (2.22).

Arriving at moment notation, we can use the monotonicity of moments (2.18),
together with an estimate on m, from the characterization of set €2, to get the
following estimate:

1
3 /R Q) W) dv S ~Dy, mp, 4+ 265, o,

It remains to use a control from below derived in (C.3) for the highest order moment
my, +7, taking k = ki, A =¥ and Cm,, = Cj there, to get
_7 I+£
m, 4y = (I1Co) & my ™,
which yields the final estimate (5.1). O

We turn to the proof of the Existence and Uniqueness Theorem 2.3. Our proof
follows the one given in [3] for the single Boltzmann equation. In particular, our
aim is to apply Theorem A.1 from a general ODE theory in Banach spaces. In order
to do this, we first show that the collision operator is a mapping Q : Q — L%.
Indeed, take any ' € Q. Then,

1
@iy =3 fR QN )] )] dv

vy f 0ij (fi- | v (5.7)

i=1 j=I

The absolute value | Qii(fi. f j)(v)| is written with the help of a sign function and
the shorter notation

|0ij (fis [HW)| = Qij(fi, [ sij(v), sij(v) == sign (Qij(fi, [ (V).

Then s;; (v) (v)i2 in (5.7) are viewed as test functions, so the weak form (3.9) implies

I 1
LICTRES z::z;///wxwxszfi(v)fj(v*)Bij(v,v*,a)

x (510 ()] s W) (0L = 51 0) )F = s 0 (v)3)
xdo dv, dv.

Since the sign function is upper bounded by 1, we obtain

1 1 1
Q) < EZZU/&M}” [ ) f(0) Bij (v, vy, 0)
i=1 j=1

+ ()2 + <v*>§) do du, dv.
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Using the conservation of energy (3.1), together with the form of the cross section
(2.20), implies

1 1
|@@m4§Z§ZMAMM]A3Wﬁwnwgw—mm
i=1 j=1 XIS

x (1007 + ()2) dv.do.

Finally, using upper bound (B.3), we obtain the estimate in terms of norms:

Yiimi Y
1=
10y = max {12l | T

1 1
X Z Z//IR3><R3 fl(v)f](v*) (v)z/ (U*VJ/ ((v)lz + (v*)g) dv, dv

i=1 j=I

> mi\"
-2 b Zi=1Mi (IF F )
R Ll v ey, W0

Since F € €2, the right hand side is bounded, and therefore Q(F) € L%.

The next task is to show that the mapping F +— Q(F), when restricted to €2,
satisfies (i) Holder continuity, (ii) the sub-tangent and (iii) the one-sided Lipschitz
conditions. Indeed, the proof is divided into proofs of these three properties.

Assume that F, G € Q and cross section B;; are given in (2.20). Then, the
following three properties hold:

(i) Holder continuity condition

1
1QE) - QG = Cu IF -G}

(i1) Sub-tangent condition

(5.8)

15
2

. dist (F 4+ hQ(F), 2)
lim =

Oa
h—0+ h

where
dist (H, €2) = ;‘;E IH = ol 15
(iii) One-sided Lipschitz condition
[QE) —QG),F -Gl = CLIF -Gl ,
where, by Remark 9,
[QEF) — QG), F - G]
(I1F = ) + 1 QE) = QG ~ IF - Gl )
= lim

h—0— h

I
< Z ([Q)]; (v) — [QG)]; (v)) sign (fi (v) — g (V) (v)7 dv.
i VR
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Constants Cy and Cp, depend on Hbi i || L1(do)’ the number of species I and their
masses m;, i = 1, ..., I, and constants from characterization of the set Q2.

Proof of (i) Holder continuity condition. LetF = [fi];<;<;andG = [gi];<;<;
belong to 2. We need to estimate the following expression

1 1
In = 1QE) - Q@) = fR (@i 1)~ Qitar )| W7 dv.
i=1 j=1

(5.9)

Using the binary structure of collision operator (2.1), it follows that

1
Qij(fi»fj)—Qij(gi»gj)ZE(Qij(fz gi, [i+8)+Qij(fi+gi. i —g&))-
(5.10)

Therefore, using properties of absolute value, (5.9) becomes

H/\

1 1
EZZ/R} (105 — &1, £+ | +|QisGi+ai, £~ 89)]) 07

(5.11)

The absolute value of collision operator will be written with the help of a sign
function, using |-| = - sign(-). Since, at the end, all sign functions will be bounded
by 1, we will not go deeply into details of its structure. Thus, let us for the moment
denote

sign(Qij (fi — &i, fi+8)) =s;; " sign(Qij(fi + i, f; —8)) =577~
Then, (5.11) becomes

é%ZZ/ Qij(fi = &is £+ )" )

i=1 j=I
+0ij(fi + gis fj — g5 (0)7) dv. (5.12)

Now we use the weak form (3.6), and in order to do thus, we have to match pairs.
Indeed, we notice that the pair for i j-th element of the first sum is the ji-th element
of the second sum. That is, (3.6) implies, after dropping the sign function,

/ . (Q,-j(fi — &, fj —I—gj)si;+ W)+ Qji(f; + g, fi —gi)s;* (vﬁ) dv

R3IxR3x$2

x ((U/>12 + <v;)i + (v) + (U*)i) Bij (v, vy, 0) do dvy dv

- 2/// | fi(v) — &i (W (£ (vs) + g (vs))
R3IxR3x §2
X ((U>,2 + <U*>§> Bij(v, Vs, 0) do dvy dv;
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the last equality is due to the conservation law at the microscopic level (3.1).
Therefore, (5.12) becomes

I 1
In < ZZ///R3 o i) = GO 00) + 8 (0)
i=1 j=1 XX
x ()7 + (©0)2) By (v, v, ) do v, dv.

Now we use the form of cross section (2.20). Inequality (B.2) yields the fol-
lowing upper bound of the previous expression:

Z'Izl mi Y
Iy S max (||b,-,- 210y <—;nimj

1 1

ZZ/[M 0 =500+ 800)

i=1 j=1

x (@77 + @F a7 + @03 0 + @777 do.du

J J J

Z[ m Vij

< . Loi=1"T71 _

1§3§I<|\b,,}|Ll(dg)<W) )(IIJF Glyy, IF+Glpy
+ IF =Gl IF + Gl 1 + IF = Gl IF + Gl

+IF = Gl IF + Gn%) :

Monotonicity of the norm (2.18) yields

<2 ma (ol (Zi=me)”
=25 Pt ae i

X IF =Gl (IF+Gly +IF+Glyy, ).

By the interpolation inequality (C.2), it follows that

tn <21 max (1, (Z2220)
=g T e

172
Ly

172

|
L)y

X IE—GI/ZIE—-GIE (IF+Gly+IF+Gly ). (13

Then we can bound term by term to get

1 1 7
Lyoy Ly 7 22y

1/2 1/2 1/2 1/2
IF-GI? SIFIE  +IGI 220y
v 242

and in the same fashion,

IF+Glp =26, IF+ Gl < 2Co4y,
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since both IF and G belong to 2. Therefore, (5.13) becomes
Vij
Z-I_l mi 172 1/2
Iy <8 bij == C) o (Cr 4+ Couy) IF -G ,
H= lgi’él (” ij “L'(da) < N 22y (C2+ Coyy) | ”Li
which concludes the proof of Holder continuity. O

Proof of (ii) sub-tangent condition. In order to prove the sub-tangent condition,
we first observe that, since we are in cut-off case, it is possible to split collision
operator Q(F) into a gain and a loss term. Namely,

[QME)]; = [QT O], — fi(v) v@)]; ,

where Q7 is a positive operator, and collision frequency v (IF), for any component
1 £i £1,reads as

i
@] = Z//R3 . fi)Bij(v, vy, o) do du, 2 0.
j=1 *

In our case, v(IF) is finite whenever ' € €2. Indeed, for the cross section (2.20)-
(2.21), and since v — v4|" < v — vi|” for [v — vy 2 Tand [v — vi|” = [0]” +
|v*|y’

1
0= @] @) = <1§ml.f}"§1 |5 “Ll(da)> ;/R} Fis) [ — v " d,

1
< (e, ol ) (S, 000

1

UD3Y RS T
j=1 |U*U*|§1

S m, 7/2
5( max Ub,»,»||L1(dd>> Co+|v|VC0+<#) Il 1

156,51 min <;<;m;

IA

A

K(1+|v|7),

E ~1_1 n;
K=| m b;; 2C —== 1 C]. 5.14
<1§if}§1 “ Y ”Ll(dg)> ( o+ (minlgjgl m; 2 ( )

where

Proposition 2. Fix F € Q. Then, for any ¢ > 0, there exists hy > 0 such that
B(F + hQ(F), he) N Q2 #£ O forany 0 < h < hy.
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Proof. Set xz(v) as the characteristic function of the ball of radius R > 0 and
introduce the truncated function Fg (¢, v) = xg(v)F(z, v). Let

Wg =F+ hQFg). (5.15)

The idea of the proof is to find R such that on the one hand, Wg € €2, and on the
other hand, Wr € B(F 4+ hQ(F), he), with h explicitly calculated.

Step 1. We first show that it is possible to find an % such that Wx remains non-
negative for as long 0 < h < hj. Indeed, for any F € €, its truncation is Fg € Q
as well. Since Q7 is a positive operator, we have

(Wil = i+ [QFFw)], ~ A el WEDL = /i (1-h K (14 87)) 20

forany 0 < h < m, and 1 <i £ I, with K from (5.14).

Step 2. Since Fp € 2, we use conservative properties of the collision operator
detailed in (3.10) and (3.11) to obtain

~

i=1

1
;/11%3 [Q(FR)]; dv =0, Z [Q(Fr)); <v)i2 dv = 0.
From (5.15), we get

mo[Wgr] = mpo[F], ma[Wgr] = my[IF],

independently of R, which yields all needed lower and upper bounds on these
quantities.
Step 3. Finally, we need to show that L ,Lk norm of Wy is bounded.

Let the map Ly x, : [0, 00) — R be defined with Ly ¢, (x) = —Ak*xH% +
By, x,wherey € (0, 1] and k is as defined in (2.24) such that it yields the positivity

of constants Ay, and By, ; it has only one root, denoted with x; k,» at which Ly,

changes from positive to negative. Thus, for any x = 0, we may write

Ly (x) S max Ly, (x) = E;,k*.
nggx%k*

Now, Lemma 5.1 implies

1
2 /Rg [QE)); ()" dv < Lpp, (M [F) < L5,
i=1 i

Define
i ok *
57,](* = .X7’k* + EV’k*.
For any F € © we have two possibilities: either my, [F] < x;y k, OF Mg, [F] > x*

Yok
For the former, it follows that

1
mg,, [Wgr] é xi,k* +h (Z /R3 [Q(FR)L' (Uﬁ* dv) § x;’k* +h ﬁ;,k* é ‘57,k*,
i=1
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where we have assumed, without loss of generality, that z < 1. For the latter, we
choose R = R(IF) sufficiently large such that my, [Fg] > x;’ ko and therefore,

Ly k, (i, [Fr]) 0.
AS a COnSequenCe,

my [Wel = x5 = &pk,.

Therefore, we constructed a constant Cy, from a characterization of the set €2, that

iS, 3;'7,](*.
The conclusion is that Wg € Q for any 0 < h < h,, where

h, = min 1,;, )
{ K(l—i—R(IF)V)}

and K is from (5.14).
Now, Holder estimate (5.8) implies that

1
h~' |IF + hQ(F) — Wkl 1 = 1QE) — QFR)I ) < Cr IF _FR”zé Se

for R := R(e) sufficiently large. Then, for this choice of R, Wr € B(F +

hQ(F), he).
Finally, choosing R = max{R (), R(¢)} and h as

. 1
]’l] Zmln{l,m}, (516)

with ¢ given in (5.14), one concludes that Wr € B(F + hQ(F), he) N Q2. O
Once the Proposition 2 is proved, it immediately follows that

hldist (F + hQ(F), Q) <&, VYO0 <h < hy,
with & from (5.16), which concludes the proof of the tangency condition. 0O

Proof of (iii) one-sided Lipschitz condition. From definition and representation
(5.10), we have

I :=[QWF) - QG), F-G]

1 1
<Yy /R (Qui(fir 1) — Qui(gi» &) sign(fi () — gi () (0)? dv

i=1 j=1

1 1 1
= 522/}; (Qij(fi — gis fj + ) + Qij(fi + &is [ — g)))

i=1 j=1
sign(f (v) — g (v)) (v)? dv.
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Changing i <> j in the second integral, we precisely obtain the binary structure of
the weak form (3.6) that yields

1
- ;2/}1% (01 —gir £ + 8 sign( ) — &) @)
+Qif + &), fi — &) sign(f;(v) — g () (v)3) dv

—ZZ / f fR o B0 0) (i) = ) (£500) + 8(0)

i=1 j=I
x (sign(fi @) — g @) (V)] +sign(f; ) — g )) (vL)
—sign(f; (v) — g (v)) (V)7 — sign(fj(vs) — g (V) (ve) )da dv, dv.

Using the upper bound of the sign function, one has

11
1
RPN |/ R

II/\

< (1) = g (£ + g5wn) (0] + L))
) = 8] (f5(00) + 8;) ()2
F 1) — g (/@) + 85(00) (02)3) do dv. dv.

Then, conservation of energy implies

20/ BT

i=1 j=1
x| fi(W) = g ()] (fj (o) + 8 (ve) ()7 do do, dv.

Now, specifying the collision cross section (2.20) and using (B.3), we get

I Vij I Vij

. m; . . - m; = =

v — v, < (Z——l) (W) ()7 < (Z——1> (W] (v,

m,'mj m,'mj

and we obtain

Yiimi "
I < bij &=l L F-Gl IF+G
LS max 12| 11 o i I I IF+ Gl

Thanks to the monotonicity of norms (2.18),
IF— GIIL;, SIF—-Glg,

and we finally obtain

Z'I 1M "
I <2 bij == Coy IF -Gl ,
L = lgmi,?‘xgl || tj HL](d(T) W 2+y l ”L%

which completes the proof of one-sided Lipschitz condition. O
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6. Proof of Theorem 2.6 (Generation and Propagation of Polynomial
Moments)

The proof consists of several steps. First, once the existence and uniqueness of
vector value solution [F to the Boltzmann system (2.19) is proven, we can derive from
the Boltzmann system an ordinary differential inequality for the scalar polynomial
moment mg[F](¢). Then, the comparison principle for ODEs will yield estimates
that guarantee both generation and propagation of these polynomial moments.
Step 1. (Ordinary Differential Inequality for the Polynomial Moment.)

Lemma 6.1. Let F = [fi],_; ; be a solution of the Boltzmann system (2.19).
Then the polynomial moment (2.13) satisfies the following Ordinary Differential
Inequality:

d 7
amk[F](l) < — A i [F1(0)'"™F + B me[F](0), (6.1

for k > ky as defined in (2.24), with positive constants Ay and By as defined in
Lemma 5.1, Eq. (5.2), after replacing k, by k > k.

Proof. Consider the i-th equation of the Boltzmann system (2.19):

1
O fi(t,v) =Y Qij(fi. [t v), i=1.. 1

j=1

Integration with respect to velocity v with weight (v)f‘, k = 0, and summation over
all speciesi =1, ..., I yields

d 1 1
U CEDINS fR 0 Qi (s (1, v)dv, (6.2)

i=1 j=I

after recalling definition (2.13) of polynomial moment. Using results from Lemma
5.1 for k > k, as defined in (2.24), we conclude the estimate (6.1). 0O

Step 2. (Comparison Principle.) The starting point is the inequality (6.1). We asso-
ciate to it an ODE of Bernoulli type as follows:

V(1) = —ay®)'" +by@), (6.3)

whose solution will be an upper bound for my [F](¢). Indeed, the solution to (6.3)
reads as

y(1) = (% (1 _ e—‘f’”) + y(O)_Ce_”bt)ig . (6.4)

Step 3. (Generation of Polynomial Moments.) Dropping initial data in (6.4) yields

Y1) < (;—’ (1 - e_Cbt)>_% V0.



764 IRENE M. GAMBA & MILANA Pavié-CoLié

Setting y(t) := m[F1(¢), a := Ak, b := By and ¢ := Yy /k implies the generation
estimate (2.29) with

<=

AN
em — <B—k> , foranyk > k..
13

Remark 8. For later purposes, we also derive the following inequality by approx-
imating the last result: for t < 1, we may write

_1
(1 —e*f”’) C—(chn)t (1 + gt—i-o(t))

1 b 1 1 b
S(cb)y cerlt7c < (ch) ce2t e,

ol=

On the other hand, for t = 1, it follows that

(=)

Sl=
174N
S
—_
|
Q
4
S
—
o

Therefore,

an-t [(ch)yter e, 1 <1
—) { ’ (6.5)

< 1
o= (b (I—e?)" ¢, 121

In other words, plugging in y(t) := mi[F](¢), a := Ay, b := By and ¢ := y/k
yields

me[F1() < B™ max{l, 7}, V>0, (6.6)

where the constant is

k k
— Nt , g \-k
%mzﬁmmax{<ﬁ> yezk,<1—e Bz") y}, for any k > k.
k

Step 4. (Propagation of Polynomial Moments.) For the propagation result, when
v(0) is assumed to be finite, we first notice that y(z) is a monotone function of
t, which approaches y(0) as + — 0 on the one hand, and converges to (a Jb)y~1/e
when ¢t — o0 on the other hand. Therefore,

y(t) < max{y(0), (a/b)~"/}

for all + 2 0. Again, taking y(t) := mg[F](¢), a := A, b := By and ¢ := y /k for
any k > k, implies the propagation estimate (7.1).
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7. Generation and Propagation of Exponential Moments

Let IF be a solution of the Boltzmann system (2.19). In this section we prove
both generation and propagation of an exponential moment (2.14) related to IF. The
proof strongly relies on the generation and propagation of polynomial moments
stated in Theorem 2.29. Moreover, it uses polynomial moment ODI, but written in
a slightly different manner than in Sect. 6.1, which we make precise in the following
Lemma:

Lemma 7.1. Let F be a solution of the Boltzmann system (2.19). Then there exist

positive constants K1 and K> such that the following two polynomial moments ODI
hold:

e ODI needed for propagation of exponential moments:

d
Emsk[ﬂ?](t) S —Kimgy[F1(@)

Lk
ij k
+Ka <1§§’;, csjk) Z (g) (Mse47[F1(0) Mgy [F1(2)

=1
+ Myt —se4+7[F1(1) mge[F1(2)) . (7.1)

e ODI needed for generation of exponential moments:

d
q; [F1() £ —Kimyiq5[F1(1)

L
k
e (1<H,l T Cz> ; (z) (mpe-7 [F10) my—ye[F10)
+ My e47[F1(0) mye[F1(0)) . (7.2)

Proof. We briefly point out that the main steps in the proofs are an adaption of the
proof given in [22]. Let us consider the polynomial moment

msg [F1(1) =t msy, 0<8=2, ¢q=20, withdg > ks,

wit_h ks as defined in (2.24), and derive an ODI for it starting from (5.5)_ S0 that
Cl{q < ”bij ”L‘(da) holds uniformly for any pairi, j = 1,..., I, with c/ being
2

the constant from Povzner lemma 2.2. Once we derive it, (7.1) will follow, setting
6 :=s, and (7.2) will follow with § := y. Indeed, from (5.5) we get that

mj, = Z / [QE)]; () dv ZZ /f O = vl

1111

.. 3q
x (cf (@2 +@3) T = b 1 gy (77 + <v*>§-‘1)> dv, dv.
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Before applying Lemma C.1, we first estimate, since (§/2) < 1,

((v)f + (v*)i)q :

3

(w2 +@)®

and then apply it, which gives us

A

(0 + wa3)" < @+ wale

+3° (g) (23 a3+ @ o),

with £, = L%J. The bound from above and below of the non-angular part of the
cross-section, |[v — v,|", is used as in Sect. 6.1. This implies a polynomial moment
ODI:
K‘Z
mj, (1) £ —Kimsg4y + C, Ko Z <Z) (Mse4yMsg—se + Msg—se+7Mse) ,
S =l

where K| and K> are positive constants, since g > k., with k, as defined in (2.24),
to get

. ij Cip
_ . ~_cY y__—_—_—_-*
Ky = min ”bt./ “Ll(da) Cs, E
156,j<1 2/ Max <<y mi

I Vij
1 _m;
Ky, = - max —Z’_] : ,
2 \1<i < mim

which completes the proof. O

8. Proof of Theorem 2.7 (b) (Propagation of Exponential Moments)

Using the Taylor series of an exponential function, one can represent the expo-

nential moment as
(0.¢] ak
ElFIe, 1) =Y < mulFI0).
k=0

We will show that the exponential rate is « = «(ky), that is, if depends on the k.
parameter defined in (2.24).

We consider its partial sum as shifted by y one, namely,

n n
k Olk

ENFle 1) =Y Ok‘—, mulF10),  Ei[Flle, ) =) - muzFl©. G.1)
k=0 k=0

In order to have lighter writing, we will drop from moment notation dependence
on ¢t and «, and the relation to IF, and we will instead write

ENF e, 1) =2 &7, ELSIFN o 1) i= EL5, Moz [F10) =: mgyy.
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When it will be important to highlight dependence on ¢ and «, we will also, for
example, write &' («, t) instead of &'

The idea of the proof is to show that the partial sum £ is bounded uniformly
in time ¢ and n. To this end, we first derive ordinary differential inequality (ODI)
for it.

ODI for £. Taking derivative with respect to time ¢ of (8.1), we get

ko—1

_Zk| k+Z M

kk()

where ko is an index that will be determined later on. We use a polynomial moment
ODE (7.1) for the second term, which yields

d ko—1 Oék n (xk
T S TS SL e
s = | sk | sk+y
dr = k! s k!
ok G k
K Mk oM
+ K> Z 1<H112;X<I ,7 o ;( )(msZermsk se Mgk s€+yms()
=: 8y — K151+K252. (8.2)

We estimate each sum Sp, S; and S separately.

Term Sp. Propagation of polynomial moment (2.30) ensures a bound on mg; uni-
formly in time, which implies from (6.1) a bound on its derivative, i.e. there exists
a constant cy, such that

mg, mly, < ¢, forallk € {0, 1,..., ko). (8.3)
For Sy, this yields
ko—1 O{k
SoScry Y 7 S e <20k (8.4)
k=0

for o small enough to satisfy
e <2 (8.5)

Term S1. We complete first the term Sy to introduce a shifted partial sum & 7 b
means of

n k ko—1 k

o o
J— n
S| = E o — Dimyyy = 5 E o Dy myiqy.
k=ko k=0

From the bound (8.3) we can estimate mg 43 as well:
msk+7§ck0’ k=07"'5k0_17
which together with considerations for the term Sy yields

St 2 & — ek, (8.6)
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Term S;. Term S can be separated into two terms, namely

n - O(k Ly i
SH=Y" ( max Ci’k) o ; < g> (Mo yMgk—se + Mok—ge47Mse) =2 52, + 52,
o \'= =

Their treatment is the same, so as let perform an estimate on S, . Rearranging, we
can write

n b e k—¢
ij o Moy o Mgk —s¢ ij
Sy, = max C" < max CY )& &
1 Z sk Z 1 k=20 = 1<i, <1 Ago sy s

<i, i< k0
k=ko Isij=l 2 =1

the last inequality is due to the decreasing property of C;{j in k > k., uniformly for
any i, j, with k, defined in (2.24). Therefore, we can estimate

S <2 <1<mz;x< ) c{{? ) &l & (8.7)

Finally, the desired ODI for £ is obtained from (8.2) by gathering all estimates:
(8.4), (8.6) and (8.7). Namely,

d .
GE S —KiEly 4+ 20, (1+ K1) + 2K <1§r?a})<§lc?,;)> EnEr (8.8

Bound on £'. For each n € N we define
T, :=sup{t 2 0:E (o, T) < 4Mp, VT € [0, t]},

where M is a bound on initial data in (2.31). We will show that £ (¢) is uniformly
bounded in ¢ and n by proving that 7,, = oo for all n € N.

The sequence 7}, is well-defined and positive. Indeed, since « < «g, at time
t = 0 we have that

n k n k
o (07

ENe, 0) =) ~msk(0) = > jk—?msk(O) < & (ap, 0) < 4My
k=0 k=0

uniformly in n, by assumption (2.31). Since each term my(f) is a continuous
function of ¢, so is £ («, t). Therefore, £ («, 1) < 4Mp on some time interval
[0, t,), t, > 0. Thus T,, is well-defined and positive for every n € N.

For t € [0, T, ] it follows that £ («, 1) < 4 My, which, from (8.8), implies that

d ..
—&n L& | K -8K c’ |\ m
dr * = ”( : 2(&%1 o | 0

+2¢,, (1 + K1) . (8.9
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Since C';’ko, for any i, j, converges to zero as % > ky goes to infinity, we can
2
choose ko > 2’% such that
. K
K| —8K> max C;CJ My > —,
1Sijsr ™ 2

or, equivalently,

Ky < 16K2< max c;'j')Mo, (8.10)
15,51

with K depending on k. as defined in (2.24). Hence, (8.9) becomes

d K
P —71537+2ck* (1+Ky). @8.11)

The next step consists in finding a lower bound for £( in terms of £¢. Indeed, we
can estimate
n Otk n ak 1 .
_ o . sk+y
527 = Z Emsk-&-y 2 Z F Z/{\(U) fl(t, v) <U>i dv
k=0 "7 i=1

2a-12)

n k1
= o
zaV”(&f—E FE/
k=0 o1 W

—-7/2 n . ak(li%) -v/2 n al”
Za Ve -3 (0 ) 2« E" —mp(0)e

k=0

j<a12)

fi(t, v) (v)sk dv)

(S

)

Plugging this result into (8.11) yields

d K - K - 1-5
55;’ < —71 afy/zé’s" + 710171//2111()(0)60( +2ck, (1+ K1)

By the maximum principle for ODEgs, it follows that

S

-3 4, 1+ K
£"(a, 1) < max {eg’w, 0), mo(0) ¢* * + M}

Kia=7/?

1
< My + mg(0) e*
S My +mp0)e X

(8.12)

for any ¢ € [0, T,,]. On the other hand, since s < 2, the following limit property
holds:

-3 +(x7/2 4ery (1 + K1) N
K

and mp(0) < &£/ (ap, 0) for any «, and therefore, by (2.31), mp(0) < M. Thus,
we can choose a sufficiently small « = o such that

4er, (1 + Ky)
—_— <
K

1
mg(0) e* mp(0), asa — 0,

RS

mo(0) e 3M, (8.13)
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forany s < 2 and K| = K| (k) from (8.10). In this case, inequality (8.12) implies
the following strict inequality:

ElNa, t) < 4My, (8.14)

forany ¢ € [0, T,] and 0 < a(ks) < o, with @ depending on k, defined in (2.24).
Conclusion L. If & is chosen such that (8.11) holds, and the choice of « is such
that 0 < o £ ap and (8.5), (8.13) are satisfied, which amounts to taking o =
min {ag, In2, o1}, then we have strict inequality (8.14), £ («, t) < 4My, which
holds on the closed interval [0, 7,,] uniformly in n. Because of the continuity of
EM(a, t) with respect to time ¢, this strict inequality actually holds on a slightly
larger time interval [0, 7, + ¢), ¢ > 0. This contradicts the maximality of 7},,
unless 7, = +oo. Therefore, £ (o, t) < 4Mo for all + = 0 and n € N. Thus,
letting n — oo, we conclude that

ElF)(a, 1) = lim EL[F](a, 1) < 4Mo, Vi 20,

i.e. the solution IF to a system of Boltzmann equations with finite initial exponential
moment of order s and rate op will propagate exponential moments of the same
order s and a rate « that satisfies « = min {«g, In2, 1 }. It is also very interesting
to note that the rate o depends on the k, parameter from (2.24), which depends on
uniformity in the i, j pairs, upper bounds for the intermolecular potentials y;; and

for controls of the kij as defined in (2.23) in the Povzner Lemma 2.2.
9. Proof of Theorem 2.7 (a) (Generation of Exponential Moments)

We consider an exponential moment of order ¥ and rate af, where o depends
on k, from (2.24) for the solution F of the Boltzmann system, namely

I _ 0 k
7 (at)
EFlet, ) =) /R it eV do = ) = mpFI0).

i=1 k=0

Consider its partial sum, and a shifted one at that, to get
n k n k
(at) (at)

EF(at, 1) = kE . Tka[F](t), &7 Fllat, 1) = kE . Tmﬂ—s—?m‘](fl

As usual, we will most of the time lighten notation by omitting explicit dependence
on time ¢ and the relation to [F, and write

5;[F](at, 1) =: EL, 5;;7[]F‘](at, 1) = 6;;7.

Fix o and y and define

T, 1= sup {t €0,1]: EX[Fl(at, 1) < 4M0} .



On Existence and Uniqueness to Homogeneous Boltzmann Flows 771

T, is well defined. Indeed, taking Mo := Y"1_, fi(t, v) (v)? dv = Y"1_, £:(0, v)
(v )2 dv fort = 0, we get E"(O 0) = &(0,0) =mgy(0) < 4Mjy. By the continuity
of partial sum 8” with respect to ¢, 5” (at,t) < 4Mj on a slightly larger time

interval ¢ € [0, tn), t, > 0, and thus T > 0.
ODI for Eg. Taking the time derivative of 5; yields

d " (@) ol )k " ()t
—& =q E myx + E ms, + ——ml,.

y _ v vk vk
dr £ (k= 1)! il &k

For the first term we simply re-index the sum and use the definition of a shifted
partial sum, and for the last one we use polynomial moment ODI (7.2), which,
taken together, implies

ko—1 k
d (at) (Olt)
57 =&y Z e — K Z o kY
k=kg
. ek
+K cY
2,(2,; (1<i,/<1 5 Z:
0 =1

k
X < g) (Myerpmyk—pe + Myk—peiymye)
= 015;;7-{-50—[{151 + K> (Sz1 +522). 9.1

Term Sp. From polynomial moment generation estimate (6.6) we can bound a
polynomial moment of any order, as well as its derivative, by means of (6.1). In
particular,

My < B™ max{l,: %}, m Byk% max{l 1Ky,

t>0 yk =
Denote

Chky = max BM B BT
ko ke{O,...kofl}{ B

For Sy, taking r < 1, we have m’ﬂ < Ekot_k , and therefore

ko—1 k ko—1 k
ot _ o _
So 1= (k_')m/?k < ko 0 < Crpe® = 20k,
k=0 : k=0
for o such that
e* < 2. 9.2)

Term . Using the boundedness of my3, we can write

ko—1
2 1

n k k

(at) (at) _

Sy = E o kT = &5 E o kY = e cho;
k=ko k=0 ’
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for @ chosen as in (9.2).
Term S,. Terms S, and Sy, are treated in the same fashion. We will detail the
calculation for S,. We first reorganize the terms in sum and get

" (an) 0\ o [k
Sy= - <1%nL%)%IC%) > (Z) My 47 Mk

k=kg =1
n Ly _
-y ( max C ) 3 (@) 'myesy (@)*‘myp_z
- <<t & ! - 0!
k=ko 1si,js1 72 =1 14 (k Z)

< max CY_|er_en
= 7k )
<1<i,j<1 o)y

since constant C . decays with respect to k for any i, j and large enough ko > 2
2

with k, from (2.24) to ensure (2.23), and therefore cY T < cY k- Gathering all
estimates together, (9.1) becomes ’
1
5" < gﬁ——i—ZCko Ky 5 ZCkO + K> | max C 5" ol
1<i,j<1 vy Ty
9.3)

for o satisfying (9.2). B B B
Bound on E;. Consider t € [0, T,]. On this interval, 5;(ott, 1) S 4My,and T, £ 1

yields +=' > 1, which implies, for (9.3), the following estimate:

- 2¢k
5’1< &Ey|—a+Ki—K max C; |4Mo )+ ———.
dr V= ( “ ! 2<]<l]<1 > O) (1+K1)[
Since % 7o converges to zero as ko > 2— uniformly i, j, choosing such a large kg
and a small enough o such that

- K
—ua+ K1 — Ky max C 4M()>—1,
1Sigsr 2

with K1 = K (ky), yields

dene Kiow K5

dr’v= Ty ¢

for K3(ky) = 2ck, (1 + Ky (ky)). Finally, the shifted moment can be bounded as
follows:

3

' @)fmp () k1 Z (@ mpe(e)  Eglat,n) = Mo

&g _ ot,t - > =
V’V( )= ]; k! at = at = k! = at
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which yields

d K1 — 20
Zen<ZUen—py— ks ).
v = 2m<y T K& 3)

Now we choose « small enough so that

K (ki) Mo

_ 200 _
M — K3 < 2My, or, equivalentl =ak ,
o+ X, 0 q y a=oalks) < KAtk

which implies
d._, Ky _
_g&n < ___ (g _
i O <5y(at,t) 2M0)‘

K
As in [22], integrating this differential inequality with an integrating factor 1%
yields

EXat, 1) < max {5;(0, 0). 2M0} <2My, Viel0, Tl 9.4)

since E7(0, 0) = mp(0) < 2Mp.
Conclusion II. From (9.4), the following bound on Eg(at, t) holds:

El(at, 1) < 2Mo < 4Mo, Vi € [0, T,].

Exploring the continuity of the partial sum Eg(at, t), this inequality holds on a

slightly larger interval, which contradicts the maximality of T,, unless T, = 1.
Therefore, we can conclude that 7,, = 1 for all n € N, or, in other words, that

Ex(at, 1) < 4My, Vi €[0,1], VneN.
Letting n — 00, we conclude that
Enat, 1) < 4Mo, Vi €0, 1]. 9.5)

In particular, for time ¢ = 1, (9.5) can be seen as an initial condition for propagation
(2.31), and thus the exponential moment of the order 7 and arate 0 < & < ar(ky)
stays uniformly bounded for all ¢ > 1 for k, as in (2.24).
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Appendix A. Existence and Uniqueness Theory for ODE in Banach Spaces

Theorem A.1. Let E := (E, ||-||) be a Banach space, S be a bounded, convex
and closed subset of E, and Q : S — E be an operator satisfying the following
properties:

(a) The Holder continuity condition
1Q[u] — QMvlll £ C llu — v, B €(0,1), Yu,v € S;
(b) The Sub-tangent condition

dist(u + hQ[ul, S)
im
h—0+ h

=0, Vues;

(¢) The One-sided Lipschitz condition
[Qlu] — Qlv],u —v] = Cllu—v|, Yu,v €S,

where [, $] = lim;_o- h=' (¢ + heoll — 1.

Then the equation
o,u = Qul, fort € (0, 00), with initial data u(0) = ug in S,
has a unique solution in C ([0, 0c0), S) N C((0, 00), E).

The proof of this Theorem on ODE flows on Banach spaces can be found in the
unpublished notes [10] or in [3].

Remark 9. In Sect. 5, we will concentrate on E := Lé. Therefore, for the one-sided
Lipschitz condition, we will use the following inequality:

1
[p. 61 <> /R @i (V) sign(@i (v)) (v)7 dv,
i=1 :

for ¢ = [‘pi]1§i§1 and ¢ = [¢,~]1§i§[, as pointed out in [3].

Appendix B. Upper and Lower Bound of the Cross Section

In this section, we derive an upper and lower estimate for the non-angular part of
the cross section, [v — v,|"/, y;; € (0, 1], with 1 < i, j, < I. First, for the upper
estimate, by triangle inequality, we have

m; m; . m; m;
; ; |v—v*|§mm{ —— = }|v—v*
dimimi\ oy mi Yicimi \ Doy mi
§mln{ — = }(Ivl—i-lv*l)
Zi:lmi Zi:lmi
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m; m;
< [t =
Dim1 Mi Zi:lmi

m; m;
S N+ WP+ 1+
Do mi Dicimi

(B.1)
Therefore,
I A\ Vi
v — v, < (an—ln;") (@7 +wa) (B2)
im;j
fory;; € (0,1],and any i, j € {1, ..., I}.
From (B.1) it also follows that
[V — vy
Z 1M Z —1Mi
- vl + [V
Zz 1M Zz 1M
1/2
/mint;
(Zz — [vl? + S . |v*|2+2z,—’-’|v||v*|>
i=1"Mi i=1"Mi i=1Mi
< (V) vy
Therefore,
I \ Vi
|U _ v*|Vij g (M) <U>;/l_/ <U*>?'/ (B3)
m,-mj

fory;j € (0, 1]and 1 =i, j = 1.

Then, for the lower estimate, we use the ideas of Lemma 2.1 in [4] to prove the next
Lemma. Note that here functions F do not need to be solutions of the Boltzmann
problem. Moreover, this lower bound may not hold for F being a singular measure,
since the estimate degenerates as ¢ goes to zero.

Lemma B.1. Let y;; € [0,2], for any i, j € {1,...,1}, and assume that 0 <
[FO =1f()... f;(t)]T}@O C L} satisfies

I I
C§Z/l;3mifi(t,v)dv§C, C§Z/H;3fi(t,v)mi|v|2dv§C,
i=1 i=1

I
Z/ fit,v)ymjvdv =0
i1 /R
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for some positive constants ¢ and C. Assume also the boundedness of the moment

1

§ / fi(t,vymi [v]*¥ dv < B, &>0.
: R3

i=1

Then, there exists a constant cjp characterized in (B.11) such that

I
S [ ity o=l dw = e )] (B.4)
£ R3
i=1
forany j e {l,..., I}, withy = max;<; i<y Vij-
Proof. Case y;; = 0 is trivial, so take y;; € (0,2] forany i, j,=1,..., 1. Letus

denote the open ball centered at the origin and of radius r > 0 with B(0, ) C R3.
We consider separately cases when v € B(0,r) and v € B(0, r)¢, with r to be
chosen later on depending on constants ¢, C, and y;;.

For v € B(0, r)¢ we first consider the whole domain R3, and write, by the Young
inequality, for any v € R3 and vij € (0,2],

1 1
Zmif filt, wy v —w" dw = Zmi/ file,w) (&l — [w]") dw,
i=1 R? i=1 R?

where ¢ = min; <; ;<; (min{1, 2!~7/}). Since

1
Somi [ e qw
X R3
i=1
1
= Zm,/
i=1 B

we obtain that, for any v € R3,

0.1)

1
fit. w)dw+Zm5/ fi(t, w) w|* dw < 2C,
i=1 B(

0,1)¢

I
Zm,-/ fit,w) v —w|" dw
i=1 R

I

>c E [v|" m; fi(t, w)dw — 2C. (B.5)
— R3
=

Since, forany i, j=1,...,l andv € R3, we have the following lower bound:

[v|Yii = |v|Yi (]1|U‘<1(v) + 1|v@1(1})> > |v|7+ 1,

where
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Therefore, (B.5) becomes

1

§ mi/ filt,w) v —w|" dw = &c |v|” +éc—2C
) R3

i=l1

I\
o
o
VY
g}
e
3
=
~——
<
+
o
o
|
\)
@)

forevery j € {1, ..., I}. Since here v € B(0, )¢, we choose r in a such a way as
to ensure that

V2 - Y
m; m;

dol =i} +éc—202 S [l
Doy i 2 iz mi

which amounts to choosing
2C
Fi=ry = <~—) , (B.6)
cc

since C = ¢ by assumption, and ¢ < 1. Therefore, for v € B(0, r*)¢, we have

<=

1 ~ Y
Zmi/ filtw) v —wli dw = < ( T |v|> (B.7)
i=1 R3 2 Zi:lmi

forany j € {1,...,1I}.
On the other hand, let us study the case v € B(0, r*). First note that for any R > 0,

1
Zmi/ fi(t, w) v —w|? dw
o J-wigr
1 1
=Zmi/ filt, w) v — wl]? dw—Zmi/ fi(t, w) v —w]? dw
i=1 R? im lv—w|ZR
1
gc|u|2+c—zmi/ fit,w) v — wl? dw
i=1 |U*w|§R

1
1
zc(l—i—lvlz)—FZmi/ fi(t, w) v — w|**¢ dw. (B.8)
i=1 |V_w|§R

Next, we have

1
Zm,-/ £t w) v — w|*te dw < 27 max{C, B} (1 + |v|2+8>
i=1 lv—w|ZR

2+e 2+e

< 21%¢ max{C, B} (1 + |v|2)T < 21+ max(C, B} (1 + r,’f) 2
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Choosing R := R(r«, c, C, B) > 0 sufficiently large such that

2+e

1 Poa -
22 max(C. B (1 + rf) 2 <

> (22+s (max{CC, B}> (1 +r§)

or R

1
) , (B.9)

c

5’

24
2

from (B.8) we have

1 ) c
> m fitt,w)lv—w> dw = = Vv € B0, ry).
el IS 2

Moreover, for this choice of R, for any y;; € (0, 2] we have

1 1
S [ pw - w dwzYom [ fewl -l du
i=1 R i=1 l—w|SR

i
EZRV"/'_Zm,'/ fi(t, w) v — w|? dw.
i=1 |U_w|§R

Since R > 1, we can bound RYii—2 > RMM=i <1072 which yields the estimate

I

c
2: . (¢, —wlYi dw 2 ———————— Vv € B(0, ry).
2 m; ~/1R3ﬁ( w) v — w| w > T I v 0, ry)

(B.10)

Finally, summarizing (B.7) and (B.10),

1
Zmi/ filt, w) lv — w|”i dw
i=1 R}

C

v

S RE iz vy LB W)

L& T ) o (v)
. -7 B(0,ry)¢
2 Zilzl m;

cc

- 2R2—minl§w§, Yij

mj v
1,r) (V) + Zl— ) 1p©,r)c )

Then there exists a constant ¢;; such that

Y
o
IlB(o,r*)(v)vL( ,—]Iv|> L, (V) | 2 e (v)]

cc

2R2—min1§i,j§1 Yij
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for any j € {1, ..., I}. In fact, one may even construct c;; in order to ensure the
last inequality. For example, ¢, can take the value
—2dming ;i< Vi
T e
i

N e (maX{C, B}) (1 (2c>
C ccC

) 2
-7/2
max <, <ym; /2C
x<1+ B <~—)> : (B.11)
Dim1 M ce
by taking into account (B.6) and (B.9). O

Appendix C. Some Technical Results

Lemma C.1. (Polynomial inequality I, Lemma 2 from [8].) Assume p > 1, and
letn, = LPT'HJ. Then, for all x, y > 0, the following inequality holds:

p
CEBILERIESLESY <Z> (x"yP=" 4 xPTY)

n=1
< pTH. Then, for any

Lemma C.2. (Polynomial inequality II.) Let b + 1 < a
x,y 20,
xayp—a +xp—aya § xbyp—b _I_xp—byh'

Proof. This Lemma is a modified version of Lemma A.1 from [22]. Indeed, the
proof is the same; one just needs to observe thata —b = 0and p —a —b = 0, and

therefore that
<ya—b —x —b) xhyb <yp—a—b _ xp—a—b) z 0

forany x,y 2 0. O
Lemma C.3. (Interpolation inequality.) Let k = ak; + (1 — a)ks, @ € (0, 1),

0 < ki £k < ky. Then, forany g € L}m
gl (C.1)

kp.i

< o
leliy, = IIgIILiw

We can extend this interpolation inequality for vector functions G = [g;]1<;<;-
(C2)

Namel Y, under the same assumptions,
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Lemma C.4. (Jensen’s inequality.) Let f (x) be positive and integrable in R? and
G a convex function. Then

G<ff( ) dx /f(X)g(x)dx> ff( )dx /f(X)G(g(x))dx

for any positive function g.

We apply this lemma specifying that g(x) = (x)f and G(x) = x”%, A e (0,1]
and k > 1. This implies

—2 1+%
/ £ () (o) d@(/ ﬁ(v)dv> (/ i) () dv) .
R3 R3 R3

If, additionally, we have an upper bound on the zero order scalar polynomial mo-
ment, that is, if it holds that

/112{3 fi()dv = mg;[F] < mp[F] £ Crn,,

142
f fi) ()it dv = C&% (/ fiw) (v}t dv> .
R3 R3

Summing overi = 1, ..., I, after some manipulation we get a control from below
for the moment my 4, [F]. Indeed, we get that

then

>

i1 [F] 2 (1Cmg) ~ my[F]IHE. (C3)
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