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Communicated by P.-L. Lions

Abstract

We solve the Cauchy problem for the full non-linear homogeneous Boltzmann
system of equations describing multi-component monatomic gas mixtures for bi-
nary interactions in three dimensions. More precisely, we show the existence and
uniqueness of the vector value solution by means of an existence theorem for ODE
systems in Banach spaces under the transition probability rates assumption cor-
responding to hard potentials rates in the interval (0, 1], with an angular section
modeled by an integrable function of the angular transition rates modeling binary
scattering effects. The initial data for the vector valued solutions needs to be a
vector of non-negative measures with finite total number density, momentum and
strictly positive energy, as well as to have a finite L1

k∗(R
3)-integrability property

corresponding to a sum across each species of k∗-polynomial weighted norms de-
pending on the corresponding mass fraction parameter for each species as much as
on the intermolecular potential rates, referred as to the scalar polynomial moment
of order k∗. The rigorous existence and uniqueness results rely on a new angular
averaging lemma adjusted to vector values solution that yield a Povzner estimate
with constants that decay with the order of the corresponding dimensionless scalar
polynomial moment. In addition, such initial data yields global generation of such
scalar polynomial moments at any order as well as their summability of moments
to obtain estimates for corresponding scalar exponentially decaying high energy
tails, referred as to scalar exponential moments associated to the system solution.
Such scalar polynomial and exponential moments propagate as well.
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1. Introduction

We consider a mixture of I monatomic gases, labeled with A1, . . . ,AI . In the
kinetic theory framework, each species of the mixture Ai is statistically described
with its own distribution function fi := fi (t, x, v) that, in general, depends on
time t � 0, space position x ∈ R

3 and velocity of molecules v ∈ R
3 (in this

manuscript we restrict ourselves to the spatially homogeneous case, that is, we
drop dependence on space position x). The distribution function fi changes due to
binary interactions (or collisions) with other particles. In the mixture setting, these
particles can belong to other speciesA j , j �= i . Therefore, the evolution of each fi

involves not only the particle-particle interaction of specieAi , but also interactions
between Ai and A j , j �= i .

In the mixture framework, the evolution of each distribution function fi de-
scribing the mixture component Ai is governed by the Boltzmann-like equation,
which traditionally introduces a collision operator as a measure of its change. Now,
one has multi-species collision operators and their transition probabilities, or cross
sections, between the different distribution functions describing each component
of the mixture [21]. Since all species are considered simultaneously in a system
of species with binary interactions, one is led to introduce a vector valued set of
distribution functions F = [ fi ]1�i�I , whose evolution is governed by a vector of
collision operators and whose i-th component (that describes precisely evolution
of fi ) is [Q(F)]i = ∑I

j=1 Qi j ( fi , f j ). In this formula, operator Qi j ( fi , f j ) de-
scribes the influence of species A j for the distribution function f j on species Ai

with the distribution function fi . Note that summation over all j = 1, . . . , I is in
the spirit of taking into account the influence of all species A j , j = 1, . . . , I , on
the considered species Ai .

From a mathematical viewpoint, the challenging situation occurs when masses
of species molecules are not equal (i.e. mi �= m j ). In such a situation, underly-
ing binary collisions between molecules lose some symmetry properties, which
can dramatically change their mathematical treatment; for instance, in order to
study diffusion asymptotics when one needs to show the compactness of a part of
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linearized Boltzmann operator [9]. In the mixture framework, a linear system of
linearized Boltzmann equations has been recently studied in [11], corresponding
to the perturbative setting of our model when the non-linear system is linearized
near Maxwellian states corresponding to each species. In this case authors showed
the existence, uniqueness, positivity and exponential trend to equilibrium.

In this work, we give the first existence and uniqueness result for the non-linear
system of spatially homogeneous Boltzmann equations for multi-species mixtures
with binary interactions in a suitable Banach space. We also emphasize that our
approach for solving the Cauchy problem for the Boltzmann equation with variable
hard potentials relies on some specific conditions on the initial moments, without
requesting entropy boundedness. The hard potentials assumption correspond to
collision cross sections related to the species Ai and A j proportional to the local
relative speed with a power exponent γi j ∈ (0, 1], and L1-integrable angular part
bi j , as function of the scattering direction.

In addition, the existence and uniqueness of a vector value solutionF(t, v) needs
to assume that initially its scalar zero and second moment (i.e. the scalar number
density and energy of the mixture) are strictly positive and finite, and additionally
that this function has at least an upper bounded k∗-polynomial moments, where
k∗ := max{k, 2 + 2γ }, for k = max1�i, j�I {ki j∗ } and γ = max1�i, j�I γi j , is
sufficiently large to ensure the prevail of the polynomial moments of loss term with
respect to those same moments of the gain term. Each ki j∗ depends on the angular
transition rate bi j as well as on the two-body mass fraction ri j := mi/(mi + m j )

associated to each component on the vector solution. All these parameters are
defined in the next Sect. 2 dedicated to notation, preliminaries and main results.

The result is obtained following the general ODE theory that studies differential
equations in suitable Banach spaces [17]. In the context of the (single) Boltzmann
equation, this theory was proposed as a main tool in [10] for solving the Cauchy
problem with hard spheres in three dimensions and constant angular transition
probability kernel. However, the notes [10] do not completely verify all conditions
of general ODE theory for the Boltzmann equation. This was the motivation for
[3] to revise the application of ODE theory from [17] in the case of the Boltzmann
equation with more general hard potentials and an integrable angular cross section,
and in particular, to provide a complete proof of the sub-tangent condition.

One very interesting new aspect from this approach is that the ODE flow in a
suitable Banach space without imposing initial bounded entropy condition yields
an alternative approach that allows for a rather general theory for gathering es-
timates where one can apply a rather general result in order to find solutions to
the Cauchy problem for Boltzmann type flows where there is no classical entropy
that is dissipated, or even some conservation laws that may not be satisfied. Such
problems have already been solved for polymer kinetic problems [1], the quantum
Boltzmann equation for bosons in very low temperature [5], and more recently in
the study of weak wave turbulence models for stratified flows [15].

After proving the existence and uniqueness of the vector value solution F to
the Boltzmann system, we turn to the study of generation and propagation of scalar
polynomial and exponential moments of its solution F.
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The techniqueswe use in thismanuscript are adaptations or extensions of results
that have been developed for scalar Boltzmann type equations models.

In the case of the classical Boltzmann equation for the single elastic monatomic
gas model, polynomial moments have been exclusively considered, for instance,
in [12,23] for hard potentials where propagation and generation of such moments
was proved. At about the same time, Bobylev introduced in [6] the concept of ex-
ponential moment as a measure of the distribution solution tail, referred as to tail
temperature, by showing that solutions to the Boltzmann equation for monatomic
gases, modeled by elastic hard spheres (i.e. power exponent γ = 1) in three di-
mensions with a constant angular dependent cross-section as a function of the
scattering direction, have inverse Maxwellian weighted moments, globally in time,
whose tail decay rate depend on moments of the initial data. His proof consists
in showing that infinite sums of renormalized polynomial moments are summable
whose limit is proportional to a L1-Gaussian weighted norm for the unique proba-
bility density function solving the initial value problem associated to the Boltzmann
equation, whose rate depends on the initial data that must also be integrable with
a Gaussian weight. These techniques of understanding moments summability in
order to obtain high energy tail behavior for the solution of the Boltzmann equation
were extended to inelastic interactions with stochastic heating sources, shear flows
or self-similarity scalings to obtain non-equilibrium statistical stationary (NESS)
states [8] where the exponential rates did not necessarily correspond to Gaussian
weighted moments.

This concept in the elastic case was further extended by [14] to collision kernels
for hard potentials (i.e. γ ∈ (0, 1]) for any angular section with L1+-integrability.
Further, generation of exponential moments of order γ /2 with bounded angular
section were shown in [18].

By this point it had became clear that the study of general forms of exponential
moments resulted as a by-product of the analysis of polynomial moments (or tails),
and so a spur of work arose for the improvement of conditions and results that will
allow to estimate, globally in time. These results were extended to collision kernels
for hard potentials with γ ∈ (0, 2] for any angular section with just L1-integrability
by a new approach using partial sums summability techniques, rather than using
summability studies by power series associated to renormalized moments as pro-
posed in [6,8,14,18]. The generation results were improved to obtain exponential
moments of order γ , while Gaussian moments were propagated for any initial data
that would have that property, independent of γ . All these results were extended to
the angular non-cutoff regime (lack of angular integrability) in [16,22] still for hard
potentials with γ ∈ (0, 2], and in [7,19] for pseudo-Maxwellian and Maxwellian
case (γ = 0). In the later referenced work, these non-Gaussian tailed moments are
called Mittag-Leffler moments as in fact the summability of partial sums is shown
to converge to an L1-Mittag-Leffler function weighted norm for the unique proba-
bility density function solving the initial value problem associated to the Boltzmann
equation, whose order and rate depend on the initial data as much as on the order
of singularity in the angular section.

A very important tool for the success of summability properties for polynomial
moments relies on the fact that such moments are both created and propagated
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depending on how moments of the collision operator can be estimated: the positive
part of the (gain) collision operator must have a decay rate with respect to the
moment order while the negative part of such moments prevails in the dynamics,
when sufficiently many moments are taken into account.

This is indeed a key step, arising as a consequence of an angular averaged
Povzner lemma. In the case of single gas components, these estimates are based on
integration of the collision operator against polynomial test functions on the pre-
collisional velocities in the sphere. While these objects were originally introduced
by Povzner [20] in the 1960s, a sharper form that uses the conservation of energy
and angular averaging was introduced in [6] for the case of hard spheres in three di-
mensions with a constant angular cross section, where the polynomial test functions
are proportional to even powers of the velocity magnitude. Later this technique was
extended in [8] for the inelastic collision with heating sources, in [14] to the elastic
case with hard potentials with L1+ integrable angular cross section, as well as in
[2] for the case with just L1 integrable angular cross section. Further, the approach
was enlarged to hard spheres with non-integrable angular cross section in [16,22]
for hard potentials. All of these estimates were developed for the mono-component
model.

Hence, the angular averaged Povzner lemma is our starting point in the case
of mixtures as well. However, it requires a subtle modification of the polynomial
weight that define the scalar moment for the mixture, to be defined in (2.1) next
section, that renormalizes the polynomial test function from just even powers of the
magnitude of the velocity vector to a dimensionless bracket form independent of
mass density units, as the mono-component treatment to obtain moment estimates
from [6] for the elastic case, or from [14] for inelastic hard sphere interactions, can
not be directly extended to the mixture case, when masses are possibly different.

These facts enticed us to introduce a new approach that relies on a way of
rewriting collisional rules and scalar polynomial moments in such a dimensionless,
independent of mass density units form that it is very convenient to obtain a convex
combination form between the conserved local quantities for a binary interaction,
namely, local center of mass and energy. As a consequence, we conclude that
averaging over the S2-sphere yields decay properties as the a function of themoment
order for as long as the angular kernel is L1-integrable on S2. In particular, these
decay properties will be significantly influenced by the disparateness of the species
masses. It will be shown that as much as renormalized species masses deviate from
each other, the decay rate will do so even more slowly.

The paper is organized as follows: in Sect. 2 we introduce notation and prelim-
inaries, and state the main results, namely the Existence and Uniqueness Theorem
for the vector value solution of the homogeneous Boltzmann system, and then gen-
eration and propagation of both scalar polynomial and exponential moments. Then
in Sect. 3 we describe in details kinetic model that we use. Section 4 contains two
preliminary Lemmas that we need for further work, including the Povzner lemma.
Sections 5, 6 and 7 are devoted to proofs of our main results. A final Appendix
contains some auxiliary calculations relevant to our estimates.
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2. Notation, Preliminaries and Main Results

2.1. Notation and Preliminaries

In this paper, we consider amixture of I gases, andwe label its components with
A1, . . . ,AI . Each component of the mixtureAi , i = 1, . . . , I , is described with its
own distribution function, denoted with fi := fi (t, v) � 0, that, in this manuscript,
depends on time t > 0 andvelocityv ∈ R

3. Fixing some i ∈ {1, . . . , I }, distribution
function fi satisfy Boltzmann like equation, which now, in the mixture context, has
to take into account influence of all other components of the mixture on speciesAi .
In the kinetic theory style, this is achieved by defining collision operator Qi j for
each j = 1, . . . , I that measures interaction between species Ai that we fixed and
all the othersA j , j = 1, . . . , I , including itselfAi . If the speciesA j are described
with distribution functions f j , then the evolution of fi is described via

∂t fi (t, v) =
I∑

j=1

Qi j ( fi , f j )(t, v), i = 1, . . . , I. (2.1)

The form of Qi j , for distribution functions f and g and any i, j = 1, . . . I , is
given by the non-local bilinear form

Qi j (g, h)(v) =
∫

R3

∫

S2

(
1

J g(v′
i j )h(v′∗i j ) − g(v)h(v∗)

)

Bi j (v, v∗, σ ) dσ dv∗,

(2.2)

where pre-collisional quantities v′
i j and v′∗i j depend on post-collisional ones v, v∗

and parameter σ , as much as on the masses mi and m j mass of colliding particles
of species Ai and A j , respectively, in the following manner:

v′
i j = miv + m jv∗

mi + m j
+ m j

mi + m j
|v − v∗| σ,

v′∗i j = miv + m jv∗
mi + m j

− mi

mi + m j
|v − v∗| σ. (2.3)

The collisional rules (2.3) can be written in scattering direction coordinates (or in a
center of mass reference framework) by introducing the velocity of center of mass
Vi j and relative velocity u of the two colliding particles

Vi j := miv + m jv∗
mi + m j

, u := v − v∗, (2.4)

as follows:

v′
i j = Vi j + m j

mi + m j
|u| σ, v′∗i j = Vi j − mi

mi + m j
|u| σ ; (2.5)

equivalently, introducing the two-body mass fraction parameter ri j = mi
mi +m j

∈
(0, 1), associated to one of the particles, say mi , without loss of generality, we get

v′
i j = Vi j + (1 − ri j ) |u| σ, v′∗i j = Vi j − ri j |u| σ. (2.6)
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Remark 1. For simplicity of notation, from now on, we will eliminate subindices
i, j from v′

i j , v
′∗i j , Vi j and ri j .

The transition probability rates or collision cross section terms Bi j are positive
functions supposed to satisfy the following micro-reversibility assumptions

Bi j (v, v∗, σ ) = Bi j (v
′, v′∗, σ ′) = B j i (v∗, v,−σ), (2.7)

where σ = u′/
∣
∣u′∣∣ and u′ = v′ − v′∗ (note that then σ ′ = u/ |u|).

The factor in the positive non-local binary term J = ∣∣det J(v′,v′∗,σ ′)/(v,v∗,σ )

∣
∣ is

the absolute value of determinant of the Jacobian associated to the exchange of ve-
locity variables transformation (2.3) frompre to post for the givenbinary interaction.
The Jacobian of this transformation can be easily computed by passing to the scatter-
ing direction coordinates i.e by considering the followingmappings: (v′, v′∗, σ ′) �→
(u′, V ′, σ ′) �→ (

∣
∣u′∣∣ , u′

|u′| , V ′, σ ′) �→ (|u| , u
|u| , V, σ ) �→ (u, V, σ ) �→ (v, v∗, σ ),

with the notation (2.4) and using Remark 1. The first mapping is of unit Jacobian
from definition of u and V , the second one is passage from Cartesian to spherical
coordinates for u′. Since from the collisional rules of (2.3) it follows that

∣
∣u′∣∣ = |u|

and V ′ = V , the passage from primes to non-primes described in the third mapping
is of unit Jacobian. Then we pass from spherical to Cartesian coordinates for u and
finally go back to the original variables (v, v∗, σ ). Thus, the Jacobian is computed
as the decomposition of the mentioned mappings,

J = 1 · 1

|u′|2 · 1 · |u|2 · 1 = 1,

since
∣
∣u′∣∣ = |u|. Therefore, each Qi j from (2.2) simply becomes

Qi j (g, h)(v) =
∫

R3

∫

S2

(
g(v′)h(v′∗) − g(v)h(v∗)

)Bi j (v, v∗, σ ) dσ dv∗. (2.8)

Since we consider a mixture as a whole, it will be convenient to introduce the
following vector notation: we put all distribution functions fi , i = 1, . . . , I into
vector of distribution functions

F = [ fi ]1�i�I . (2.9)

Moreover, a vector value collision operator is defined as

Q(F) =
⎡

⎣
I∑

j=1

Qi j ( fi , f j )

⎤

⎦

1�i�I

. (2.10)

Then the system of Boltzmann equations (2.1) can be written in a vector form

∂tF(t, v) = Q(F)(t, v). (2.11)
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Definition 2.1. (Bracket forms for the mixture’s dimensionless polynomial moments
independent of mass density units) Let F = [ fi ]1�i�I be a suitable vector value
distribution function. Let the mixture’s bracket forms be denoted by

〈v〉i :=
√

1 + mi
∑I

j=1 m j
|v|2, v ∈ R

3. (2.12)

Scalar polynomial moments independent of mass density units of order q � 0
for F is defined with

mq [F](t) =
I∑

i=1

∫

R3
fi (t, v) 〈v〉q

i dv. (2.13)

In particular, we define a scalar polynomial moment of zero order for each species
Ai as

m0,i [F](t) =
∫

R3
fi (t, v) dv, i = 1, . . . , I,

having in mind that
∑I

i=1m0,i [F] = m0[F].
Scalar exponential moment, or exponential weighted L1−forms, for F of a rate

α := (α1, . . . , αI ), αi > 0, and an order s := (s1, . . . , sI ) > 0, 0 < si � 2, is
defined by

Es[F](α, t) =
I∑

i=1

∫

R3
fi (t, v)eαi 〈v〉si

i dv. (2.14)

The case si = 2, ∀i , is referred to as an inverse Maxwellian (or Gaussian) moment,
otherwise these are super exponential moments (some authors referred as stretched
exponentials though this concept usually refers to exponential times).

Remark 2. It can be noticed that both dimensionless polynomial and exponential
moments for the mixture are defined as a sum of the resulting moments corre-
sponding to each species independent of mass density units. In particular, when
F solves the Boltzmann system of equations (2.11), then m0,i [F] is interpreted as
number density of the species Ai , for any i = 1, . . . , I , while the zeroth scalar
moment m0[F] is the total number density of the mixture. Moreover, the second
scalar moment m2[F] represents total energy of the mixture.

Remark 3. If, for given exponential moments individually for each speciesAi , we
seek for the maximum value of both their rate and order, i.e.

α̂ = max
1�i�I

αi , ŝ = max
1�i�I

si , (2.15)

then

Es[F](α, t) �
I∑

i=1

∫

R3
fi (t, v) eα̂〈v〉ŝ

i dv =: Eŝ[F](α̂, t).

Therefore, finiteness of the exponential moment Es[F](α, t) is a consequence of
the finiteness of Eŝ[F](α̂, t), with α̂ and ŝ as in (2.15), for any time t � 0.
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2.1.1. Functional Space Wework in L1 space weighted polynomially in velocity
v and summed over all species, that is,

L1
k =

{

F = [ fi ]1�i�I measurable :
I∑

i=1

∫

R3
| fi (v)| 〈v〉k

i dv < ∞, k � 0

}

,

(2.16)

where thepolynomialweightwasdefined in (2.12) by 〈v〉i =
(

1 + mi∑I
j=1 m j

|v|2
)1/2

;

its associated norm is

‖F‖L1
k

=
I∑

i=1

∫

R3
| fi (v)| 〈v〉k

i dv. (2.17)

Note that if F � 0, then its norm in L1
k is precisely its polynomial moment of order

k, i.e. ‖F‖L1
k

:= mk[F].
Sometimes we will consider species separately, i.e., fix some component of the

mixture Ai . We define a space together with its norm as

L1
k,i =

{

g measurable :
∫

R3
|g(v)| 〈v〉k

i dv < ∞, k � 0

}

,

‖g‖L1
k,i

=
∫

R3
|g(v)| 〈v〉k

i dv.

Note that the norm of F in L1
k is related to the norm of its components fi in the

space L1
k,i via ‖F‖L1

k
=∑I

i=1 ‖ fi‖L1
k,i

.

Finally, since we use bracket forms 〈·〉 defined in (2.12), the monotonicity
property holds, i.e.

‖ fi‖L1
k1,i

� ‖ fi‖L1
k2,i

and ‖F‖L1
k1

� ‖F‖L1
k2

,whenever 0 � k1 � k2. (2.18)

2.2. Main Results

We study the Cauchy problem for the system of spatially homogeneous Boltz-
mann equations for the mixture of gases A1, . . . , AI :

{
∂tF(t, v) = Q(F)(t, v), t > 0, v ∈ R

3,

F(0, v) = F0(v),
(2.19)

where F is a vector of distribution functions F = [ fi ]1�i�I , fi being a distribution
function of the component Ai , i = 1, . . . , I , as defined in (2.9), and Q(F) =[∑I

j=1 Qi j ( fi , f j )
]

1�i�I
is a collision operator introduced in (2.8, 2.10).

We consider the particular case when the transition probability termsBi j , i, j =
1, . . . , I are assumed to take the form

Bi j (v, v∗, σ ) = |u|γi j bi j (σ · û), γi j ∈ (0, 1], and bi j (σ · û) ∈ L1(S2; dσ),
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(2.20)

where u := v − v∗, û := u/ |u|. This form of cross-section corresponds to variable
hard potentials with an integrable angular part. In themixture setting, both potential
γi j and angular kernel bi j may depend on species Ai and A j . In order to satisfy
micro-reversibility assumptions (2.7), it is supposed that

γi j = γ j i , and bi j (σ · û) = b ji (σ · û)

for any choice i, j = 1, . . . , I . Moreover, let γ denote the maximum value of
potentials γi j , i.e.

γ = max
1�i, j�I

γi j . (2.21)

2.2.1. Povzner Lemma by Angular Averaging The essential ingredient of this
manuscript is the Povzner lemma obtained by averaging in the scattering angle
representation of the collision kernel, originally introduced in [6,8], for the case of
elastic and inelastic collisions; it estimates the positive contribution of the collision
operator after integration against σ ∈ S2, that is crucial for all further proofs.

Lemma 2.2. (Povzner lemma by angular averaging for the mixing model) Let the
angular part bi j (σ · û) of the cross-section be integrable in σ variable (that is
bi j ∈ L1(S2; dσ)), û being the normalized relative velocity u = v − v∗. Let v′
and v′∗ be functions of v, v∗, σ as in (2.3), with mi , m j > 0. Then the following
estimate holds for any fixed i, j :

∫

S2

(〈
v′〉k

i + 〈v′∗
〉k

j

)
bi j (σ · û) dσ � Ci j

k
2

(
〈v〉2i + 〈v∗〉2j

) k
2
, (2.22)

where constant Ci j
k
2

tends to zero as k grows, and moreover,

Ci j
k
2

− ∥∥bi j
∥
∥

L1(dσ)
< 0, for any k ≥ ki j∗ , 1 � i, j � I, (2.23)

where each ki j∗ depends on bi j and ri j .

The proof of Lemma 2.2 genuinely reflects a difference between single and
multicomponent gas, with an emphasis on writing collisional rules in a convex
combination form for mixtures, in contrast to symmetric or “half–half” writing
for the single component gas. It turns out that the single component case-due to
symmetry-has a lot of room for estimates and further simplification, as presented
in [8] as for example. For mixtures, this is not the case any longer, and writing
should be exact as much as possible; we use Taylor expansion of second order with
a remainder in the integral form, and estimates are done only in the remainder.

A very important consequence of the Povzner lemma is the ability to estimate
moments of the collision operator. In particular, averaging over the sphere yields
decay properties of the gain term polynomial moment with respect to its order.
This decay allows polynomial moments of loss term to prevail in dynamics, when
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sufficiently many moments are taken into account. In a single component gas, it
suffices to take 2+ order of polynomial moment, that is, slightly more than the
energy, to obtain this property [8]. Mixtures bring great novelty in this aspect, too:
decay properties of the constant issuing from the Povzner lemma strongly depend
on the two-body mass fraction parameter ri j . We study this issue in detail in the

case bi j ∈ L∞(S2; dσ) when it is possible to explicitly calculate the constant Ci j
k/2

from (2.23). It will be shown that when ri j = 1/2 (which corresponds tomi = m j ),

we recover the same decay properties of the constant Ci j
k/2 as in the case of single

gas component. However, when mixtures are considered, we observe that as much
as ri j deviates from 1/2, the larger ki j∗ that ensures (2.23) is, or larger and larger
order of moment that guarantees prevail of loss term moment is.

2.2.2. Existence and Uniqueness Theory In this manuscript, we discuss exis-
tence and uniqueness for the vector value solution F to the initial value problem
(2.19) of space homogeneous Boltzmann equations for monatomic gas mixtures,
with transition probabilities (or collision kernels) associated to speciesAi andA j ,
i, j ∈ {1, . . . , I } having hard potential growth of order |u|γi j for γi j ∈ (0, 1] and an
integrable angular part bi j , with an initial total mixture number density and energy
bounded below (i.e. the initial data can not be singular measure), and have at least
a k∗ (scalar) polynomial moments

k∗ � max{k, 2 + 2γ } for k = max
1�i, j�I

{ki j∗ } and γ = max
1�i, j�I

γi j , (2.24)

chosen to ensure the inequality (2.23) holds for any i, j = 1, . . . , I .
Such a study fits into an abstract framework of ODE theory in Banach spaces,

which can be found in [17]. For the Boltzmann equation, the application of this
theory was clarified in [3], after being recognized in [10]. The formulation of
theorem that we apply in this manuscript is given in Appendix A. As for the choice
ofBanach space, it is known that the naturalBanach space for solving theBoltzmann
equation is L1 polynomially weighted, or in mixture setting space, L1

k defined in
(2.16).More precisely, here we take k = 2, because the norm in that space is related
to energy whose conservation is exploited.

In order to apply Theorem A.1, we need to find an invariant region � ⊂ L1
2

in which collision operator Q : � → L1
2 will satisfy (i) Hölder continuity, (ii)

Sub-tangent and (iii) one-sided Lipschitz conditions.
To that end, we first study the map Lγ ,k∗ : [0,∞) → R, defined with

Lγ ,k∗(x) = −Ax1+
γ
k∗ + Bx,

where A and B are positive constants, γ ∈ (0, 1] and k∗ defined in (2.24). This
map has only one root, denoted with x∗

γ ,k∗ , at which Lγ ,k∗ changes from positive
to negative. Thus, for any x � 0, we may write

Lγ ,k∗(x) � max
0�x�x∗

γ ,k∗
Lγ ,k∗(x) =: L∗

γ ,k∗ .
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Define

Ck∗ := x∗
γ ,k∗ + L∗

γ ,k∗ . (2.25)

Now, we are in position to define the bounded, convex and closed subset � ⊂
L1
2:

� =
{
F(t, ·) ∈ L1

2 : F � 0 in v,

I∑

i=1

∫

R3
miv fi (t, v) dv = 0,

∃ c0, C0, c2, , C2, C2+ε > 0, and C0 < c2, such that ∀t � 0,

c0 � m0[F](t) � C0, c2 � m2[F](t) � C2,

m2+ε[F](t) � C2+ε, for ε > 0,

mk∗ [F](t) � Ck∗ , with Ck∗ from (2.25)
}
,

where

m2+ε[F](t) = ‖F‖L1
2+ε

=
I∑

i=1

∫

R3
| fi (t, v)| 〈v〉2+ε

i dv

for any ε > 0, which can be arbitrarily small.
Then, the existence and uniqueness theory of a vector value F solution to the

Cauchy problem (2.19) fits into the study of ODE in a Banach space (L1
2, ‖·‖L1

2
)

and its bounded, convex and closed subset �. The collision operator Q is viewed
as a mapQ : � → L1

2. We will show that it satisfies Hölder continuity, sub-tangent
and one-sided Lipschitz conditions, which will enable us to prove the following
Theorem:

Theorem 2.3. (Existence and Uniqueness) Assume that F(0, v) = F0(v) ∈ �.
Then the Boltzmann system (2.19) for the cross section (2.20)has the unique solution
in C ([0,∞) ,�) ∩ C1 ((0,∞) , L1

2

)
.

Remark 4. Let us point out that for the existence and uniqueness result no condi-
tions on initial entropy are necessary. However, if the initial data has finite entropy,
then the entropy inequality implies that it will remain bounded for all times. Let us
give a sketch of the proof. The definition of the entropy and entropy inequality is
taken from [13], Proposition 1.

Definition 2.4. (Mixture entropy and entropy production) Let F be a vector value
distribution function as in (2.9). The (mixture) entropy is defined as

η(t) =
I∑

i=1

∫

R3
fi log fi dv, (2.26)

while the (mixture) entropy production is given with

D(F) =
I∑

i=1

∫

R3
[Q(F)]i log fi dv. (2.27)
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Then the following Proposition holds:

Proposition 1. (Entropy inequality or thefirst part of theH-theorem, [13])Let us as-
sume that the cross section terms Bi j , 1 � i, j � I , are positive almost everywhere
and that F � 0 is such that both collision operator Q(F) and entropy production
are well defined. Then the entropy production is non-positive, i.e. D(F) � 0.

As an immediate consequence, we get from the Boltzmann equation that ∂tη � 0;
in other words, η(t) � η(0) for any t � 0. Therefore, we conclude that the entropy
inequality implies that mixture entropy remains bounded at any time if initially so.

2.2.3. Generation and Propagation of Polynomial Moments The second part
of the manuscript is devoted to the study of generation and propagation of scalar
polynomial moments associated to the solution of the Boltzmann system (2.19) for
the cross section (2.20), that initially belongs to �.

First, in the following Lemma, we derive from the Boltzmann system (2.19) an
ordinary differential inequality for polynomial moment of order k, mk[F](t), for
large enough k, that relies on the Povzner estimate from Lemma 2.2, uniformly in
each pair i, j :

Lemma 2.5. (Ordinary differential inequality for polynomial moments) Let F =
[ fi ]i=1,...,I be a solution of the Boltzmann system (2.19) with the cross section
(2.20)–(2.21). Then the polynomial moment (2.13) satisfies the following Ordinary
Differential Inequality:

d

dt
mk[F](t) =

I∑

i=1

[Q(F)]i 〈v〉k
i dv � −Ak mk[F](t)1+ γ

k + Bk mk[F](t),

(2.28)

for large enough k to ensure (2.24), and some positive constants Ak and Bk.

The proof of this Lemma follows from comparison principles for ODE’s, which
yields the generation and propagation estimates stated in the following Theorem,
which is proved in Sect. 6:

Theorem 2.6. (Generation and propagation of polynomial moments) Let F be a
solution of the Boltzmann system (2.19) with a cross section (2.20)–(2.21) and an
initial data F(0, v) = F0(v) ∈ �. Then,

1. (Generation) There is a constant Cm such that for any k > k∗ defined in (2.24),

mk[F](t) � Cm
(
1 − e− γ Bk t

k

)− k
γ

, ∀t > 0, (2.29)

where constants Cm depend on Ak, Bk from (2.28) and γ .
2. (Propagation) Moreover, if mk[F](0) < ∞, then

mk[F](t) � max{Cm,mk[F](0)}, (2.30)

for all t � 0.
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Finally, we show that, under the assumed conditions on the collision kernel form
(2.20), the renormalized series of moments is summable depending on themoments
of the initial data, yielding the following result on generation and propagation of
exponential, or Mittag-Leffler moments:

2.2.4. Generation and Propagation of Exponential Moments With bounds on
polynomial moment at hand, one can deal with exponential moments. We prove
the following Theorem:

Theorem 2.7. (Generation and propagation of exponential moments) Let F be a
solution of the Boltzmann system (2.19) with a cross section (2.20)–(2.21) and an
initial data F(0, v) = F0(v) ∈ �. Then,

(a) (Generation) There exist constants α > 0 and BE > 0 such that

Eγ [F](αmin {t, 1} , t) � BE , ∀t � 0.

(b) (Propagation) Let 0 < s � 2. Suppose that there exists a constant α0 > 0, such
that

Es[F](α0, 0) � M0 < ∞. (2.31)

Then there exist constants 0 < α � α0 and CE > 0 such that

Es[F](α, t) � CE , ∀t � 0. (2.32)

3. Kinetic Model

3.1. Study of Collision Process

In our setting molecules are assumed to interact via elastic collisions. Let us fix
two colliding molecules; one of the speciesAi having mass mi and pre-collisional
velocity v′ and the another one belonging to the species A j with mass m j and
pre-collisional velocity v′∗ (note that we here immediately adopted the simplicity
of notation pointed out in Remark 1). If the post-collisional velocities are denoted
with v and v∗, respectively, then the momentum and kinetic energy during the
collision are conserved:

miv
′ + m jv

′∗ = miv + m jv∗,

mi
∣
∣v′∣∣2 + m j

∣
∣v′∗
∣
∣2 = mi |v|2 + m j |v∗|2 . (3.1)

As usual, we parametrize these equations with a parameter σ ∈ S2, in order to
express pre-collisional velocities in terms of post-collisional ones:

v′ = miv + m jv∗
mi + m j

+ m j

mi + m j
|v − v∗| σ,

v′∗ = miv + m jv∗
mi + m j

− mi

mi + m j
|v − v∗| σ. (3.2)
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|u|σ

v

u

v+v∗
2

u′

v+v∗
2 + 1

2 |u|σ

v+v∗
2 − 1

2 |u|σ

mi−mj

2(mi+mj)
u

Vij

v′
∗

v′
σ

v∗

Fig. 1. Illustration of the collision transformation, with notation Vi j := mi v+m j v∗
mi +m j

, u :=
v − v∗, u′ := v′ − v′∗. The displacement of the center of mass with respect to a single

component elastic binary interaction is given by (ri j − 1
2 )u = mi −m j

2(mi +m j )
u, if mi > m j .

Solid lines denote vectors after collision, or given data. Dash-dotted vectors represent primed
(pre-collisional) quantities that can be calculated from the given data, and compared to the
casemi = m j , represented by dotted vectors. The dashed vector direction is the displacement
along the direction of the relative velocity u proportional to the half difference of relative
masses, (which clearly vanishes for mi = m j , reducing the model to a classical collision).
Note that the scattering direction σ is preserved as the pre-collisional relative velocity u′
keeps the same magnitude as the post-collisional u, u′ is parallel the reference elastic pre-
collisional relative velocity |u|σ

Note that if mi = m j , then the collisional rules simplify and take the usual single
component gas form

v′ = v + v∗
2

+ 1

2
|v − v∗| σ, v′∗ = v + v∗

2
− 1

2
|v − v∗| σ. (3.3)

Figure 1 illustrates the collision transformation (3.2) and aims at explaining its
difference with respect to the collision transformation (3.3) when masses are equal.
Namely, for given v, v∗, σ and mi , m j , we calculate center of mass V = mi v+m j v∗

mi +m j
,

and velocities v′ and v′∗ according to (3.2). One can notice that the magnitude of the
relative velocity does not change during the collision, i.e. |v − v∗| = ∣∣v′ − v′∗

∣
∣, as

it is when masses are the same. Difference comes with the vector of center of mass:
the vector of center of mass for equal masses v+v∗

2 displaces by adding a quantity
that is proportional to the difference of masses mi − m j and thus is peculiar to the
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mixture case. More precisely,

V = v + v∗
2

+ mi − m j

2(mi + m j )
u,

with u := v − v∗.

3.2. Collision Operators

Collisionoperators Qi j , as defined in (2.8), describe binary interactions between
molecules of species Ai and A j , i, j = 1, . . . , I . Fix the species Ai for any
i = 1, . . . , I , and let its distribution function be g. On the other hand, let distribution
function h describe species A j .

Note that each Qi j for a fix (i, j)-pair has its corresponding counterpart, Q ji ,
that describes interaction of molecules of species A j with molecules of species
Ai :

Q ji (h, g)(v) =
∫

R3

∫

S2

(
h(w′)g(w′∗) − h(v)g(v∗)

)B j i (v, v∗, σ ) dσ dv∗,

(3.4)

where pre-collisional velocities w′ and w′∗ now differ from the previous ones given
in (3.2) by an exchange of mass mi ↔ m j , i.e.

w′ = m jv + miv∗
mi + m j

+ mi

mi + m j
|v − v∗| σ,

w′∗ = m jv + miv∗
mi + m j

− m j

mi + m j
|v − v∗| σ. (3.5)

When mi = m j , although primed velocities are the same, Qi j and Q ji still defer,
because of the cross section.

3.3. Weak Form of Collision Operator

Testing the collision operator against some suitable test functions ψ(v) and
φ(v) yields

∫

R3
Qi j (g, h)(v)ψ(v) dv

=
∫∫∫

R3×R3×S2
g(v)h(v∗)

(
ψ(v′) − ψ(v)

)Bi j (v, v∗, σ ) dσ dv∗ dv,

and
∫

R3
Q ji (h, g)(v)φ(v) dv

=
∫∫∫

R3×R3×S2
h(v∗)g(v)

(
φ(v′∗) − φ(v∗)

)Bi j (v, v∗, σ ) dσ dv∗ dv,
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where now v′ and v′∗ are denoting the post-collisional velocities as defined by (3.2).
Therefore, looking at these two integrals pairwise, meaning that each time when
Qi j is considered we add his pair Q ji , we have

∫

R3

(
Qi j (g, h)(v)ψ(v) + Q ji (h, g)(v)φ(v)

)
dv

=
∫∫∫

R3×R3×S2
g(v)h(v∗)

(
ψ(v′) + φ(v′∗) − ψ(v) − φ(v∗)

)

Bi j (v, v∗, σ ) dσ dv∗ dv, (3.6)

with v′ and v′∗ are now given by the post-collisional velocities as defined by (3.2).
Some choice of test function leads to annihilation of the weak form. Namely,

from the conservation laws during collision process, we see

∫

R3
Qi j (g, h)(v) dv = 0, (3.7)

as well as
∫

R3

(

Qi j (g, h)(v)

(
miv

mi |v|2
)

+ Q ji (h, g)(v)

(
m jv

m j |v|2
))

dv = 0. (3.8)

Therefore, if we consider distribution function F = [ fi ]1�i�I , then the weak
form (3.6) yields

2
I∑

i=1

I∑

j=1

∫

R3
Qi j ( fi , f j )(v)ψi (v) dv

=
I∑

i=1

I∑

j=1

∫∫∫

R3×R3×S2
fi (v) f j (v∗)

× (ψi (v
′) + ψ j (v

′∗) − ψi (v) − ψ j (v∗)
)Bi j (v, v∗, σ ) dσ dv∗ dv. (3.9)

3.4. Conservation Laws

Weak forms of collision operator imply some its conservative properties. More
precisely, for any suitable F, (3.7) implies

∫

R3
[Q(F)]i dv = 0, for any i = 1, . . . , I, (3.10)

and moreover, from (3.9), choosing ψ�(x) = m� |x |2 and ψ�(x) = m�x , x ∈ R
3,

one has

I∑

i=1

[Q(F)]i mi |v|2 dv = 0 (3.11)
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and

I∑

i=1

[Q(F)]i miv dv = 0

for any time t � 0.
If F is a solution to the Boltzmann system (2.19), then these properties imply

conservation laws for the number density of each speciesAi , i = 1, . . . , I , and the
total energy of the mixture. Indeed,

∂tm0,i [F](t) = 0, ∀i = 1, . . . , I, ∂tm2[F](t) = 0. (3.12)

4. Proof of Povzner Lemma 2.2

The proof of Povzner lemma 2.2 by angular averaging for the mixing model
leads us to obtain estimates for the quantity

〈
v′〉k

i + 〈v′∗
〉k

j integrated over the sphere

S2, which represents the gain part of (3.9) for ψi (x) = 〈x〉k
i . The usual techniques

used in [2], for example, cannot be directly adapted when mi �= m j . This becomes
clear when one writes local kinetic energies of each colliding molecule pair. When
mi �= m j , these energies can be written as a certain convex combination, while the
single component case (or in the same fashion when mi = m j ) corresponds to the
“middle” of this convex combination, or to the “halfs” (see Remark 5 below). The
single component situation (orwhenmi = m j ) is therefore “symmetric”, in a sense,
and the techniques for proof of a sharper Povzner lemma by angular averaging, as
done by [6] or [14], cannot be extended to the mixture case in a straight forward
form.

Indeed, in the mixture setting when mi �= m j , the proof of the Povzner
lemma 2.2 in the cases of a non-linear gas mixture system uses a non-trivial modifi-
cation of a powerful energy identity in scattering angle coordinates. This identity is
needed in order to compute moment estimates that clearly show positive moments
from the gain collision operator part are dominated by the moments of the corre-
sponding loss part, which yields a very sharp estimate sufficient to obtain not only
moments propagation and generation, but also their scaled summability that prove
propagation and generation of exponential moment estimates as well. An energy
identity in scattering angle coordinates was first developed in [6,8] for the elastic
and inelastic case for scalar Boltzmann binary models. While such an identity is
rather easy in the elastic single species setting, where local energies are just the
sum of the collision invariant |v|2 and just its interacting counterpart |v∗|2, in the
mixing case under consideration the problem becomes highly non-trivial and the
local energies to be estimated now depend on binary sums of 〈v〉2i and 〈v∗〉2j and
their corresponding post collisional sum of

〈
v′〉2

i and
〈
v′∗
〉2

j .

Lemma 4.1. (Energy identity in scattering direction coordinates for the (i, j)−pair
of colliding particles.) Consider any (i, j)-pair of interacting velocities v and v∗
corresponding to particles masses mi and m j , respectively, with i, j fixed. Let their
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local micro energy be Ei j = 〈v〉2i +〈v∗〉2j , with 〈v〉2i and 〈v∗〉2j defined according to
(2.12), and recall the two-body mass fraction parameter ri j = mi

mi +m j
introduced

in (2.5).
Then, there exists a couple of functions pi j = pi j (v, v∗, mi , m j ) and qi j =

qi j (v, v∗, mi , m j ) such that pi j + qi j = Ei j and the following representation
holds:

〈v′
i j 〉2i = pi j + λi j σ · V̂i j , 〈v′∗i j 〉2j = qi j − λi j σ · V̂i j , (4.1)

where λi j := 2
√

ri j (1 − ri j )(s Ei j − 1)((1 − si j )Ei j − 1) with si j = si j (v, v∗, mi ,

m j ) ∈ [0, 1]. In particular, this representation preserves the local energy identity

〈v′
i j 〉2i + 〈v′∗i j 〉2j = pi j + qi j = Ei j = 〈v〉2i + 〈v∗〉2j . (4.2)

Moreover, the following inequalities hold:

pi j + λi j � Ei j , qi j + λi j � Ei j , (4.3)

for any velocities v, v∗ ∈ R
3 and any masses mi , m j > 0.

As we mentioned earlier in Remark 1, we eliminate subindex i j from Ei j , pi j , qi j ,
λi j , si j as we did in Remark 1 for v′

i j , v
′∗i j , Vi j and ri j .

Proof of Lemma 4.1. As anticipated, we represent the exchange of coordinates
at the interaction using the center of mass and relative velocity reference frame
(2.3) [with its symmetric form (3.5)] where the angular integration is performed
in the scattering direction corresponding to the post-collisional relative velocity
σ = û′. Thus, let’s denote with V the vector of center-of-mass and with u the
relative velocity as in (2.4):

V = miv + m jv∗
mi + m j

, u = v − v∗.

Then, taking the squares of the magnitudes of the post-collisional velocities given
in (3.2), one obtains

∣
∣v′∣∣2 = |V |2 + m2

j

(mi + m j )2
|u|2 + 2m j

mi + m j
|u| |V | σ · V̂ ,

∣
∣v′∗
∣
∣2 = |V |2 + m2

i

(mi + m j )2
|u|2 − 2mi

mi + m j
|u| |V | σ · V̂ ,
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where V̂ denotes the unit vector of V . Passing to 〈·〉 bracket forms from (2.12)
implies

〈
v′〉2

i = 1 + mi
∑I

�=1 m�

|V |2 + mi m2
j

(mi + m j )2
∑I

�=1 m�

|u|2

+ 2mi m j

(mi + m j )
∑I

�=1 m�

|u| |V | σ · V̂ ,

〈
v′∗
〉2

j = 1 + m j
∑I

�=1 m�

|V |2 + m j m2
i

(mi + m j )2
∑I

�=1 m�

|u|2

− 2mi m j

(mi + m j )
∑I

�=1 m�

|u| |V | σ · V̂ .

(4.4)

Let us introduce the total energy E of two colliding particles in 〈·〉 bracket forms,
which is conserved during collision process by (3.1):

E := 〈v〉2i + 〈v∗〉2j = 〈v′〉2
i + 〈v′∗

〉2
j .

Using the above Eq. (4.4), the energy E can be written in u − V notation as well:

E = 2 + mi + m j
∑I

�=1 m�

|V |2 + mi m j

(mi + m j )
∑I

�=1 m�

|u|2 . (4.5)

The aim is to represent the squares of the post-collisional velocities
〈
v′〉2

i and
〈
v′∗
〉2

j as a scalar convex combination of different “parts” of the energy E . This is
achieved by introducing two quantities:

(i) the parameter r ∈ (0, 1), that distributes masses in the following convex pair:

r = mi

mi + m j
and 1 − r = m j

mi + m j
; (4.6)

(ii) the function s ∈ [0, 1] that convexly partitions the energy E into two compo-
nents, one related to |u|2 and another to |V |2, using the above identity (4.5) as
follows:

s E = 1 + mi m j

(mi + m j )
∑I

�=1 m�

|u|2 and (1 − s)E = 1 + mi + m j
∑I

�=1 m�

|V |2 .

(4.7)

Finally, each of the post-collisional quantities,
〈
v′〉2

i and
〈
v′∗
〉2

j , as written in the
representation as in (4.4), can be recast through the energy E and the dot product
between the center of mass vector V and the scattering direction σ as follows:

〈
v′〉2

i = r(1 − s)E + (1 − r)s E + 2
√

r(1 − r)(s E − 1)((1 − s)E − 1) σ · V̂ ,
〈
v′∗
〉2

j = rs E + (1 − r)(1 − s)E − 2
√

r(1 − r)(s E − 1)((1 − s)E − 1) σ · V̂ ,

(4.8)
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which yields the important relation that expresses the post-collisional local micro
energy E as a rotation of factors of E and V · σ , while preserving the local energy
itself. Indeed, denoting

p = r(1 − s)E + (1 − r)s E,

q = E − p = rs E + (1 − r)(1 − s)E,

λ = 2
√

r(1 − r)(s E − 1)((1 − s)E − 1)

= 2
√

r(1 − r)

√
mi m j

∑I
�=1 m�

|u| |V |,

p+q = E and the representation (4.1) clearly follows, while preserving the binary
micro energy relation (4.2):

〈
v′〉2

i = p + λ σ · V̂ ,
〈
v′∗
〉2

j = q − λ σ · V̂ .

This completes the proof of the energy identities (4.1) and (4.2).
Moreover, it follows that

1

E
(p + λ) �

(√
r(1 − s) +√(1 − r)s

)2
� 1,

since

max
0<r<1
0�s�1

(√
r(1 − s) +√(1 − r)s

)
= 1.

Similarly,

1

E
(q + λ) �

(√
rs +√(1 − r)(1 − s)

)2
� 1

uniformly in any (i, j)-pair, which concludes the proof of Lemma. ��
Remark 5. Let us elaborate on the difference betweenwriting kinetic energies (4.4)
when mi �= m j versus mi = m j . In order to be more precise, we will put a bar on
a quantity when assuming the same masses. For instance, the total energy of the
two colliding particles of the same masses mi is

Ē = 〈v〉2i + 〈v∗〉2i = 2 + 2mi
∑I

j=1 m j
|V |2 + mi

2
∑I

j=1 m j
|u|2 .

When mi = m j , we have the parameter r = 1/2, and consequently, for p̄ :=
p(v, v∗, mi , mi ), q̄ := q(v, v∗, mi , mi ) and λ̄ give us

p̄ = q̄ = 1

2
Ē, λ̄ = mi

∑I
j=1 m j

|u| |V |,
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which gives the squares of the magnitudes of the post-collisional velocities when
mi = m j :

〈
v′〉2

i = Ē

(
1

2
+ mi
∑I

j=1 m j

|u| |V |
Ē

σ · V̂

)

,

〈
v′∗
〉2
i = Ē

(
1

2
− mi
∑I

j=1 m j

|u| |V |
Ē

σ · V̂

)

.

(4.9)

Now, the difference between (4.8) as a convex combination writing in the mixture
setting and (4.9) as its special “middle point”, or “half” case in single component
case (or mixture for mi = m j ), is clear.

Another important aspect to be pointed out is the comparison of inequalities
(4.3) in the case mi �= m j versus mi = m j . When mi = m j , by simply performing
Young’s inequality we get

λ̄

Ē
� 1

2
, (4.10)

which yields

1

Ē

(
p̄ + λ̄

) = 1

Ē

(
q̄ + λ̄

)
� 1.

This inequality is an analogue of (4.3) for mi = m j . Note that when masses are
the same we can make use of the Young inequality, while in the case of different
masses, we have to be more precise, since both 1

E (p + λ) and 1
E (q + λ) attain 1

as a maximal value for some values of their arguments, and therefore there is no
room for any inequality. In particular, this inequality will be of decisive importance
for the success of the Povzner lemma that will guarantee decay of the gain term
with respect to the number of moments.

Proof of Povzner lemma 2.2. In order to compute the angular average estimate
(2.22) we use the representation (4.1) and (4.2) from the energy identity Lemma 4.1
raised to power k/2. Then, the left hand side integral of (2.22) becomes

∫

S2

(〈
v′〉k

i + 〈v′∗
〉k

j

)
bi j (σ · û) dσ

=
∫

S2

((
p + λ σ · V̂

) k
2 +

(
q − λ σ · V̂

) k
2
)

bi j (σ · û) dσ. (4.11)

Now we use polar coordinates for σ and V̂ with zenith û. Namely, denoting with θ

the angle between σ and û, we decompose σ as

σ = cos θ û + sin θ ω, with û · ω = 0 and

ω = (cosϕ, sin ϕ), θ ∈ [0, π), ϕ ∈ [0, 2π). (4.12)

In the same fashion we decompose V̂ , by denoting with α ∈ [0, π) the angle
between V̂ and û:

V̂ = cosα û + sin α �, where � ∈ S1 with û · � = 0.
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Then the scalar product σ · V̂ becomes

σ · V̂ = cos θ cosα + � · ω sin θ sin α.

Defining τ := cos θ and expressing sin θ = √
1 − τ 2, since sin θ � 0 on the range

of θ , this scalar product reads as

σ · V̂ = τ cosα + � · ω
√
1 − τ 2 sin α =: μ = μ(τ, α,� · ω). (4.13)

In the integral (4.11), we first express σ in its polar coordinates (4.12) and then
change variables θ �→ τ = cos θ , which yields

∫

S2

((
p + λ σ · V̂

) k
2 +

(
q − λ σ · V̂

) k
2
)

bi j (σ · û) dσ

=
∫ 2π

0

∫ π

0

((
p + λ σ · V̂

) k
2 +

(
q − λ σ · V̂

) k
2
)

bi j (cos θ) sin θ dθ dϕ

=
∫ 2π

0

∫ 1

−1

(
(p + λ μ)

k
2 + (q − λ μ)

k
2

)
bi j (τ ) dτ dϕ.

For k � 4, Taylor expansion of (p + λ μ)k/2 and (q − λ μ)k/2 around μ = 0 up to
second order yields:

(p + λ μ)
k
2 = p

k
2 + k

2 p
k
2−1

λμ + k
2

( k
2 − 1

)
λ2μ2

∫ 1

0
(1 − z)(p + λμz)

k
2−2 dz,

(q − λ μ)
k
2 = q

k
2 − k

2q
k
2−1λμ + k

2

( k
2 − 1

)
λ2μ2

∫ 1

0
(1 − z)(q − λμz)

k
2−2 dz.

For 2 < k < 4, we stop at the first order and proceed similarly.
Now, let us analyze the integrands. By the Young inequality, for λ, the following

estimates hold:

± λ � q − 1 � q, and ± λ � p − 1 � p. (4.14)

We recall definition of p and q, and get

p = (r(1 − s) + (1 − r)s) E, q = (rs + (1 − r)(1 − s)) E

for r ∈ (0, 1) and s ∈ [0, 1]. Considering r as parameter, for both coefficients,
the maximum with respect to variable s is achieved on the boundary, i.e. for either
s = 0 or s = 1, and moreover the following estimate holds for both coefficients:

r(1 − s) + (1 − r)s � max{r, (1 − r)}, rs + (1 − r)(1 − s) � max{r, (1 − r)}.
Denoting

r = max{r, 1 − r}, (4.15)

we conclude on the upper bound for both p and q:

p � r E, q � r E .
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Moreover, for p and q it holds that

p = r(1 − s)E + (1 − r)s E � r E and q � r E,

where we have denoted

r = min{r, 1 − r}. (4.16)

Taking into account the inequalities above, one has

p + λμz � p + qμz = E − q(1 − μz) � E(1 − r(1 − |μ|z)),
and similarly,

q − λμz � E(1 − r(1 − |μ|z)).
Therefore,

(p + λ μ)
k
2 + (q − λ μ)

k
2

� p
k
2 + q

k
2 + k

2μ
(

p
k
2 + q

k
2

)

+ k
( k
2 − 1

)
r2μ2E

k
2

∫ 1

0
(1 − z)(1 − r(1 − |μ|z)) k

2−2 dz.

Then
∫ 2π

0

∫ 1

−1

(
(p + λ μ)

k
2 + (q − λ μ)

k
2

)
bi j (τ ) dτ dϕ � P1 + P2 + P3,

with

P1 :=
(

p
k
2 + q

k
2

) ∫ 2π

0

∫ 1

−1
bi j (τ ) dτ dϕ,

P2 := k
2

(
p

k
2 + q

k
2

) ∫ 2π

0

∫ 1

−1
μ bi j (τ ) dτ dϕ,

P3 := k
( k
2 − 1

)
r2E

k
2

∫ 2π

0

∫ 1

−1
μ2

×
(∫ 1

0
(1 − z)(1 − r(1 − |μ|z)) k

2−2 dz

)

bi j (τ ) dτ dϕ.

Term P1. Introducing constant C̃n , we have

C̃n = rn, 0 < r < 1, (4.17)

which clearly decays in n, so we get

P1 = ∥∥bi j
∥
∥

L1(dσ)

(
p

k
2 + q

k
2

)
�
∥
∥bi j

∥
∥

L1(dσ)
2C̃ k

2
E

k
2 .
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Term P2. Taking into account definition of μ from (4.13), the parity arguments
yield

P2 = k
2

(
p

k
2 + q

k
2

) ∫ 2π

0

∫ 1

−1
τ cosα bi j (τ ) dτ dϕ,

after bounding cos α � 1.Using the estimate above for P1 and the fact that τ cosα �
1, we finally obtain

P2 �
∥
∥bi j

∥
∥

L1(dσ)
k C̃ k

2
E

k
2 .

Since the constant C̃ k
2
has power decay in k, the constant k C̃ k

2
also decreases in k.

Term P3. We can compute explicitly the integral with respect to z as

∫ 1

0
(1 − z)(1 − a(1 − Az))n−2 dz

= 1

a2A2

1

n(n − 1)

(
(1 + a(A − 1))n − (1 − a)n − a A(1 − a)n−1n

)

for any 0 < a < 1 and A > 0. If A = 0, then we easily obtain

∫ 1

0
(1 − z)(1 − a)n−2 dz = 1

2
(1 − a)n−2.

In our case, a = r and A = |μ|, μ being a function of variables of integration τ

and ϕ defined in (4.13) that satisfies |μ| � 1, and thus P3 becomes

P3 = 2
r2

r2
E

k
2

∫ 2π

0

∫ 1

−1

(
(
1 + r(|μ| − 1)

) k
2

− (1 − r)
k
2 − r |μ|(1 − r)

k
2−1 k

2

)
bi j (τ ) dτ dϕ

=: P31 + P32 + P33 ,

� E
k
2

(

Č
bi j
k
2

+ ∥∥bi j
∥
∥

L1(dσ)

(
C̄ k

2
+ Ĉ k

2

))

,

where we have denoted

P31 := 2
r2

r2
E

k
2

∫ 2π

0

∫ 1

−1

(
1 + r(|μ| − 1)

) k
2 bi j (τ ) dτ dϕ,

P32 := −2
r2

r2
(1 − r)

k
2 E

k
2

∫ 2π

0

∫ 1

−1
bi j (τ ) dτ dϕ,

P33 := −r2

r
k (1 − r)

k
2−1E

k
2

∫ 2π

0

∫ 1

−1
|μ| bi j (τ ) dτ dϕ.

Term P31 . We rewrite term P31 as

P31 = Č
bi j
k
2

E
k
2



748 Irene M. Gamba & Milana Pavić-Čolić

by introducing the constant Č
bi j
n :

Č
bi j
n = 2

r2

r2

∫ 2π

0

∫ 1

−1

(
1 + r(|μ| − 1)

)n
bi j (τ ) dτ dϕ. (4.18)

In order to study its properties, we first note that 1+ r(|μ|−1) � 1, since |μ| � 1,
and the equality holds only when |μ| = 1 (or σ = {±V̂ }). Therefore, the sequence
of functions

An(x) := (1 + r(x − 1)
)n

decreases monotonically in n and tends to 0 as n → ∞ for every x ∈ (0, 1) up to a
set of measure zero. Finally, we conclude by monotone convergence Theorem that

Č
bi j
k
2

↘0 as k → ∞.

When bi j ∈ L∞(S2; dσ), we can obtain the explicit decay rate of the constant

Č
bi j
k
2
, since in this case the integral (4.18) significantly simplifies. The rate will be

calculated in the Remark 6 below.
Term P32 . For the term P32 we immediately obtain

P32 = ∥∥bi j
∥
∥

L1(dσ)
C̄ k

2
E

k
2 ,

with the constant

C̄n = −2
r2

r2
(1 − r)n .

Term P33 . We first estimate the term P33 using |μ| � 1 to get

P33 � r2

r
k (1 − r)

k
2−1E

k
2

∫ 2π

0

∫ 1

−1
bi j (τ ) dτ dϕ.

�
∥
∥bi j

∥
∥

L1(dσ)
Ĉ k

2
E

k
2 ,

and the constant is defined with

Ĉn = 2
r2

r
n (1 − r)n−1. (4.19)

Gathering estimates for P1, P2 and P3 completes the proof of (2.22) with

Ci j
n = ∥∥bi j

∥
∥

L1(dσ)

(
(2n + 2)C̃n + C̄n + Ĉn

)
+ Č

bi j
n , n > 2,

and Ci j
n = ∥∥bi j

∥
∥

L1(dσ)
2C̃n , if 1 < n � 2. Thus, the constant Ci j

k
2
issuing from the

Povzner lemma satisfies Ci j
k
2

→ 0 as k → ∞, and so there exists ki j∗ = ki j∗ (ri j , bi j )

for which Ci j
k
2

<
∥
∥bi j

∥
∥

L1(dσ)
, for k > ki j∗ . ��
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Remark 6. (The case bi j ∈ L∞(S2; dσ)) When the angular kernel is assumed to
be bounded, some calculations are simpler. Pulling out the L∞ norm of bi j , we
have

∫ 2π

0

∫ 1

−1
bi j (τ ) dτ dϕ � 4π

∥
∥bi j

∥
∥

L∞(dσ)
,

and so terms P1 and P32 become

P1 � 8π
∥
∥bi j

∥
∥

L∞(dσ)
C̃ k

2
E

k
2 , P32 = 4π

∥
∥bi j

∥
∥

L∞(dσ)
C̄ k

2
E

k
2 .

Moreover, when bi j is assumed to be bounded, the starting integral (4.11) does
not depend on σ · û anymore, so we may take V̂ instead of û as a zenith of polar
coordinates in (4.12), which amounts to taking α = 0 in (4.13), which implies that
μ = τ . In this case, thanks to the parity arguments, term P2 vanishes, and term P33
can be explicitly calculated without using any estimate, so we get

P33 = − r2

r
k (1 − r)

k
2−1E

k
2

∫ 2π

0

∫ 1

−1
|τ | bi j (τ ) dτ dϕ

= − 2π
∥
∥bi j

∥
∥

L∞(dσ)
Ĉ k

2
E

k
2 ,

with the constant Ĉ k
2
from (4.19).

Finally, let us compute explicitly the constant Č
bi j
n from (4.18) when bi j (σ ·û) ∈

L∞(S2; dσ). Namely, pulling out the L∞ norm of bi j from the integral and using
μ = τ , we get

Č
bi j
n = 2

r2

r2
∥
∥bi j

∥
∥

L∞(dσ)

∫ 2π

0

∫ 1

−1

(
1 + r(|τ | − 1)

)n dτ dϕ

= 8π
r2

r3
∥
∥bi j

∥
∥

L∞(dσ)

(
1

n + 1
− (1 − r)n+1

n + 1

)

,

which shows its decay rate.
To summarize, the constant from the Povzner lemma in the case of bounded

angular part reads as

Ci j
n = 4π

∥
∥bi j

∥
∥

L∞(dσ)
C∞

n (r), (4.20)

where we have denoted

C∞
n (r) = 2C̃n + C̄n − 1

2
Ĉn + 2

r2

r3

(
1

n + 1
− (1 − r)n+1

n + 1

)

, n > 2, (4.21)

and C∞
n (r) = 2C̃n if 1 < n � 2, recalling (4.16) and (4.15). Moreover, it satis-

fies Ci j
k
2

< 4π
∥
∥bi j

∥
∥

L∞(dσ)
, or, equivalently, C∞

n (r) < 1 for sufficiently large ki j∗
depending on ri j and bi j .
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4.1. Study of the Povzner Constant for bi j (σ · û) ∈ L∞(S2; dσ)

In this section we study in detail the constant (4.20) from the Povzner lemma
2.2 in the case of bounded angular part. More precisely, we study its normalized
part (4.21)

C∞
n (r) = 2rn − 2

r2

r2
(1 − r)n − r2

r
n (1 − r)n−1 + 2

r2

r3

(
1

n + 1
− (1 − r)n+1

n + 1

)

(4.22)

for n > 2 and C∞
n (r) = 2rn if 1 < n � 2, with r = max {r, 1 − r} and r =

min {r, 1 − r}, and elaborate more on its decay rate in n depending on r .
First, taking r = 1

2 we expect to recover the same properties as for the single gas
when decay rate of the Povzner constant [3] was 2

n+1 , that monotonically decreases
and tends to zero in n > 1. In our case,

C∞
n

(
1

2

)

=
{

4
n+1 − ( 12

)n (
n + 2

n+1

)
, if n > 2,

2
( 1
2

)n
, if 1 < n � 2,

which keeps the same properties as for the single gas, as is illustrated in Fig. 2.
For general r ∈ (0, 1), decay properties of the constant issuing from the Povzner

lemma (4.21) strongly depend on r or the degree to which species masses mi ,
i = 1, . . . , I are disparate. It is clear that, since 0 < r < 1, the constant C∞

n (r)

will tend to zero as n goes to infinity. Here we are interested in a more subtle
question: determine n∗ such that it holds that C∞

n (r) < 1 for n � n∗ and any fixed
0 < r < 1. Converging C∞

n (r) in n towards zero for any 0 < r < 1 ensures the
existence of such n∗. It can be observed that n∗ grows as much as r is deviated from
1
2 , since the constants in C∞

n (r) with a power decay rate will decay more slowly
as r deviates from 1

2 . This behavior is illustrated in Fig. 3. We can reformulate the
problem as follows: for some fixed value of n determine the interval of r for which
it holds that C∞

n (r) < 1, as is illustrated in Fig. 4.

5. Proof of Existence and Uniqueness Theorem 2.3

Before proving Theorem 2.3, we first study a property of the collision operator
that is a consequence of the Povzner Lemmas 2.23 and B.1.

Lemma 5.1. Let F = [ fi ]i=1,...,I ∈ � and k∗ as defined in (2.24). Then, the
following estimate holds:

I∑

i=1

∫

R3
[Q(F)]i 〈v〉k∗

i dv � −Ak∗ mk∗ [F](t)1+ γ
k∗ + Bk∗ mk∗ [F](t), (5.1)
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Fig. 2. Comparison of the Povzner constant for r = 1
2 in the mixture setting and the single

component gas for n > 1
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Fig. 3. Constant C∞
n (r) from Povzner Lemma 2.2 for some fixed value of r =: r∗. This

figure illustrates the non-monotonic behavior in n variable, and the growth of n needed to
ensure that C∞

n (r∗) < 1 caused by a deviation of r with respect to 1
2

with positive constants

Ak∗ = min
1�i, j�I

(
∥
∥bi j

∥
∥

L1(dσ)
− Ci j

k∗
2

)
clb

max1�i�I mi
(I C0)

− γ
k∗ ,

Bk∗ = 2C2 max
1�i, j�I

((∑I
i=1 mi√
mi m j

)γi j

Ci j
k∗
2

) � k∗+1
2 �∑

�=1

(
k∗
�

)

,

(5.2)
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Fig. 4. Constant C∞
n (r) from Povzner Lemma 2.2 for some fixed value of n =: n∗. This

figure illustrates the interval of r for which it holds C∞
n∗(r) < 1

where C0 and C2 are from the characterization of the set �, clb is from the lower
bound (B.4), and Ci j

k∗
2

is a constant from the Povzner Lemma 2.2 with k∗ > k,

as defined in (2.24), ensuring the property (2.23) for any pair (i, j) that yields
positivity of the constant Ak∗ .

Remark 7. It is important to notice that the strict positivity of the constant Ak∗ can
be viewed as a coercive condition that secures global in time solutions, without
the need to require boundedness of entropy.

Proof. We start with the weak form (3.9). Taking test function ψi (x) = 〈v〉k∗
i and

cross section (2.20), we have

I∑

i=1

∫

R3
[Q(F)]i 〈v〉k∗

i dv (5.3)

=
I∑

i=1

I∑

j=1

∫

R3
〈v〉k∗

i Qi j ( fi , f j ) dv

= 1

2

I∑

i=1

I∑

j=1

∫∫∫

R3×R3×S2
|v − v∗|γi j fi (v) f j (v∗)

×
(〈

v′〉k∗
i + 〈v′∗

〉k∗
j − 〈v〉k∗

i − 〈v∗〉k∗
j

)
bi j (σ · û) dσ dv∗ dv, (5.4)

where this collisional rules are (3.2). The primed quantities integrated over sphere
S2 are estimated via Povzner lemma. Indeed, by Lemma 2.2 , (5.3) becomes
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I∑

i=1

∫

R3
[Q(F)]i 〈v〉k∗

i dv � 1

2

I∑

i=1

I∑

j=1

∫∫

R3×R3
fi (v) f j (v∗) |v − v∗|γi j

×
(

Ci j
k∗
2

(
〈v〉2i + 〈v∗〉2j

) k∗
2 − ∥∥bi j

∥
∥

L1(dσ)

(
〈v〉k∗

i + 〈v∗〉k∗
j

)
)

dv∗ dv, (5.5)

where Ci j
k∗
2
is a constant from Povzner lemma 2.2 with k∗ � k = max1≤i, j≤I {ki j∗ }

chosen large enough to ensure (2.23) uniformly in i, j-pairs. On the one hand, we
use polynomial inequalities from Lemmas C.1 and C.2 to get

(
〈v〉2i + 〈v∗〉2j

) k∗
2

�
(〈v〉i + 〈v∗〉 j

)k∗

� 〈v〉k∗
i + 〈v∗〉k∗

j +
�k∗∑

�=1

(
k∗
�

)(
〈v〉�i 〈v∗〉k∗−�

j + 〈v〉k∗−�
i 〈v∗〉�j

)
,

� 〈v〉k∗
i + 〈v∗〉k∗

j +
(
〈v〉i 〈v∗〉k∗−1

j + 〈v〉k∗−1
i 〈v∗〉 j

)
⎛

⎝
�k∗∑

�=1

(
k∗
�

)
⎞

⎠ ,

with �k∗ = � k∗+1
2 �, and therefore

I∑

i=1

∫

R3
[Q(F)]i 〈v〉k∗

i dv � 1

2

I∑

i=1

I∑

j=1

∫∫

R3×R3
fi (v) f j (v∗) |v − v∗|γi j

×
{

−
(
∥
∥bi j

∥
∥

L1(dσ)
− Ci j

k∗
2

)(
〈v〉k∗

i + 〈v∗〉k∗
j

)

+Ci j
k∗
2

⎛

⎝
�k∗∑

�=1

(
k∗
�

)
⎞

⎠
(
〈v〉i 〈v∗〉k∗−1

j + 〈v〉k∗−1
i 〈v∗〉 j

)
⎫
⎬

⎭
dv∗ dv. (5.6)

On the other hand we use upper and lower bound of the non-angular cross section
|v − v∗|γi j . For the upper bound, from (B.2) it follows that

|v−v∗|γi j �
(∑I

i=1 mi√
mi m j

)γi j (
〈v〉γi j

i +〈v∗〉γi j
j

)
�
(∑I

i=1 mi√
mi m j

)γi j (
〈v〉γi +〈v∗〉γj

)

for γ = max1�i, j�I γi j ∈ (0, 1]. For the lower bound, we use Lemma B.1, but
we first check that all assumptions are satisfied from the fact that F ∈ �. Indeed,
bounds on m0 imply

c0 min
1�i�I

mi �
I∑

i=1

∫

R3
mi fi dv � C0 max

1�i�I
mi .
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From the other side, bounds on m2 yield

(c2 − C0)

I∑

j=1

m j �
I∑

i=1

∫

R3
mi |v|2 fi dv � (C2 − c0)

I∑

j=1

m j .

Therefore, for constants c and C , from the assumptions of Lemma B.1, we can
choose

c := min

⎧
⎨

⎩
c0 min

1�i�I
mi , (c2 − C0)

I∑

j=1

m j

⎫
⎬

⎭
,

C := max

⎧
⎨

⎩
C0 max

1�i�I
mi , (C2 − c0)

I∑

j=1

m j

⎫
⎬

⎭
.

Note that positivity of c is guaranteed by the definition of the set �. Finally, since
it can be estimated that

I∑

i=1

∫

R3
mi |v|2+ε fi dv � m2+ε

⎛

⎝
I∑

j=1

m j

⎞

⎠

1+ ε
2

max
1�i�I

m
− ε

2
i ,

we can choose

B := C2+ε

⎛

⎝
I∑

j=1

m j

⎞

⎠

1+ ε
2

max
1�i�I

m
− ε

2
i .

Then (B.4) implies

I∑

i=1

∫

R3
fi (v) |v − v∗|γi j dv � 1

max1�i�I mi
clb 〈v∗〉γj

and

I∑

j=1

∫

R3
f j (v∗) |v − v∗|γi j dv � 1

max1� j�I m j
clb 〈v〉γi .

With these estimates, (5.6) becomes

I∑

i=1

∫

R3
[Q(F)]i 〈v〉k∗

i dv � − Dk∗mk∗+γ + Ek∗
(
m1+γ mk∗−1 + mk∗−1+γ m1

)
,

where Dk∗ and Ek∗ are positive constants

Dk∗ = min
1�i, j�I

(
∥
∥bi j

∥
∥

L1(dσ)
− Ci j

k∗
2

)
clb

max1�i�I mi
,

Ek∗ = max
1�i, j�I

((∑I
i=1 mi√
mi m j

)γi j

Ci j
k∗
2

) �k∗∑

�=1

(
k∗
�

)

.
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In particular, Dk∗ is positive since, by assumption, k∗ ≥ k defined in (2.24) large
enough ensuring (2.23) for the constant Ci j

k∗
2
from Povzner lemma (2.22).

Arriving at moment notation, we can use the monotonicity of moments (2.18),
together with an estimate on m2 from the characterization of set �, to get the
following estimate:

I∑

i=1

∫

R3
[Q(F)]i 〈v〉k∗

i dv � −Dk∗ mk∗+γ + 2Ek∗C2mk∗ .

It remains to use a control from below derived in (C.3) for the highest order moment
mk∗+γ , taking k = k∗, λ = γ and Cm0 = C0 there, to get

mk∗+γ � (I C0)
− γ

k∗ m
1+ γ

k∗
k∗ ,

which yields the final estimate (5.1). ��
We turn to the proof of the Existence and Uniqueness Theorem 2.3. Our proof
follows the one given in [3] for the single Boltzmann equation. In particular, our
aim is to apply TheoremA.1 from a general ODE theory in Banach spaces. In order
to do this, we first show that the collision operator is a mapping Q : � → L1

2.
Indeed, take any F ∈ �. Then,

‖Q(F)‖L1
2

=
I∑

i=1

∫

R3
|[Q(F)]i (v)| 〈v〉2i dv

�
I∑

i=1

I∑

j=1

∫

R3

∣
∣Qi j ( fi , f j )(v)

∣
∣ 〈v〉2i dv. (5.7)

The absolute value
∣
∣Qi j ( fi , f j )(v)

∣
∣ is written with the help of a sign function and

the shorter notation
∣
∣Qi j ( fi , f j )(v)

∣
∣ = Qi j ( fi , f j )(v) si j (v), si j (v) := sign

(
Qi j ( fi , f j )(v)

)
.

Then si j (v) 〈v〉2i in (5.7) are viewed as test functions, so theweak form (3.9) implies

‖Q(F)‖L1
2

� 1

2

I∑

i=1

I∑

j=1

∫∫∫

R3×R3×S2
fi (v) f j (v∗)Bi j (v, v∗, σ )

×
(

si j (v
′)
〈
v′〉2

i + s ji (v
′∗)
〈
v′∗
〉2

j − si j (v) 〈v〉2i − s ji (v∗) 〈v∗〉2j
)

×dσ dv∗ dv.

Since the sign function is upper bounded by 1, we obtain

‖Q(F)‖L1
2

� 1

2

I∑

i=1

I∑

j=1

∫∫∫

R3×R3×S2
fi (v) f j (v∗)Bi j (v, v∗, σ )

×
(〈

v′〉2
i + 〈v′∗

〉2
j + 〈v〉2i + 〈v∗〉2j

)
dσ dv∗ dv.
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Using the conservation of energy (3.1), together with the form of the cross section
(2.20), implies

‖Q(F)‖L1
2

�
I∑

i=1

I∑

j=1

∥
∥bi j

∥
∥

L1(dσ)

∫∫

R3×R3
fi (v) f j (v∗) |v − v∗|γi j

×
(
〈v〉2i + 〈v∗〉2j

)
dv∗ dv.

Finally, using upper bound (B.3), we obtain the estimate in terms of norms:

‖Q(F)‖L1
2

� max
1�i, j�I

(
∥
∥bi j

∥
∥

L1(dσ)

(∑I
i=1 mi√
mi m j

)γi j
)

×
I∑

i=1

I∑

j=1

∫∫

R3×R3
fi (v) f j (v∗) 〈v〉γi 〈v∗〉γj

(
〈v〉2i + 〈v∗〉2j

)
dv∗ dv

= 2 max
1�i, j�I

(
∥
∥bi j

∥
∥

L1(dσ)

(∑I
i=1 mi√
mi m j

)γi j
)
(
‖F‖L1

2+γ
‖F‖L1

γ

)
.

Since F ∈ �, the right hand side is bounded, and therefore Q(F) ∈ L1
2.

The next task is to show that the mapping F �→ Q(F), when restricted to �,
satisfies (i) Hölder continuity, (ii) the sub-tangent and (iii) the one-sided Lipschitz
conditions. Indeed, the proof is divided into proofs of these three properties.

Assume that F,G ∈ � and cross section Bi j are given in (2.20). Then, the
following three properties hold:

(i) Hölder continuity condition

‖Q(F) − Q(G)‖L1
2

� CH ‖F − G‖
1
2

L1
2
; (5.8)

(ii) Sub-tangent condition

lim
h→0+

dist (F + hQ(F),�)

h
= 0,

where

dist (H,�) = inf
ω∈�

‖H − ω‖L1
2
;

(iii) One-sided Lipschitz condition

[Q(F) − Q(G),F − G] � CL ‖F − G‖L1
2
,

where, by Remark 9,

[Q(F) − Q(G),F − G]

= lim
h→0−

(
‖(F − G) + h (Q(F) − Q(G))‖L1

2
− ‖(F − G)‖L1

2

)

h

�
I∑

i=1

∫

R3
([Q(F)]i (v) − [Q(G)]i (v)) sign ( fi (v) − gi (v)) 〈v〉2i dv.
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Constants CH and CL depend on
∥
∥bi j

∥
∥

L1(dσ)
, the number of species I and their

masses mi , i = 1, . . . , I , and constants from characterization of the set �.

Proof of (i) Hölder continuity condition. LetF = [ fi ]1�i�I andG = [gi ]1�i�I
belong to �. We need to estimate the following expression

IH := ‖Q(F) − Q(G)‖L1
2

=
I∑

i=1

∫

R3

∣
∣
∣
∣
∣
∣

I∑

j=1

(
Qi j ( fi , f j ) − Qi j (gi , g j )

)
∣
∣
∣
∣
∣
∣
〈v〉2i dv.

(5.9)

Using the binary structure of collision operator (2.1), it follows that

Qi j ( fi , f j )−Qi j (gi , g j )= 1

2

(
Qi j ( fi − gi , f j +g j )+Qi j ( fi + gi , f j − g j )

)
.

(5.10)

Therefore, using properties of absolute value, (5.9) becomes

IH � 1

2

I∑

i=1

I∑

j=1

∫

R3

(∣
∣Qi j ( fi − gi , f j +g j )

∣
∣+∣∣Qi j ( fi +gi , f j − g j )

∣
∣
) 〈v〉2i dv.

(5.11)

The absolute value of collision operator will be written with the help of a sign
function, using |·| = · sign(·). Since, at the end, all sign functions will be bounded
by 1, we will not go deeply into details of its structure. Thus, let us for the moment
denote

sign(Qi j ( fi − gi , f j + g j )) = s−+
i j , sign(Qi j ( fi + gi , f j − g j )) = s+−

i j .

Then, (5.11) becomes

IH � 1

2

I∑

i=1

I∑

j=1

∫

R3

(
Qi j ( fi − gi , f j + g j )s

−+
i j 〈v〉2i

+ Qi j ( fi + gi , f j − g j )s
+−
i j 〈v〉2i

)
dv. (5.12)

Now we use the weak form (3.6), and in order to do thus, we have to match pairs.
Indeed, we notice that the pair for i j-th element of the first sum is the j i-th element
of the second sum. That is, (3.6) implies, after dropping the sign function,
∫

v∈R3

(
Qi j ( fi − gi , f j + g j )s

−+
i j 〈v〉2i + Q ji ( f j + g j , fi − gi )s

+−
j i 〈v〉2j

)
dv

�
∫∫∫

R3×R3×S2
| fi (v) − gi (v)| ( f j (v∗) + g j (v∗))

×
(〈

v′〉2
i + 〈v′∗

〉2
j + 〈v〉2i + 〈v∗〉2j

)
Bi j (v, v∗, σ ) dσ dv∗ dv

= 2
∫∫∫

R3×R3×S2
| fi (v) − gi (v)| ( f j (v∗) + g j (v∗))

×
(
〈v〉2i + 〈v∗〉2j

)
Bi j (v, v∗, σ ) dσ dv∗ dv;
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the last equality is due to the conservation law at the microscopic level (3.1).
Therefore, (5.12) becomes

IH �
I∑

i=1

I∑

j=1

∫∫∫

R3×R3×S2
| fi (v) − gi (v)| ( f j (v∗) + g j (v∗))

×
(
〈v〉2i + 〈v∗〉2j

)
Bi j (v, v∗, σ ) dσ dv∗ dv.

Now we use the form of cross section (2.20). Inequality (B.2) yields the fol-
lowing upper bound of the previous expression:

IH � max
1�i, j�I

(
∥
∥bi j

∥
∥

L1(dσ)

(∑I
i=1 mi√
mi m j

)γi j
)

I∑

i=1

I∑

j=1

∫∫

R3×R3
| fi (v) − gi (v)| ( f j (v∗) + g j (v∗))

×
(
〈v〉2+γ

i + 〈v〉2i 〈v∗〉γj + 〈v∗〉2j 〈v〉γi + 〈v∗〉2+γ

j

)
dv∗ dv

� max
1�i, j�I

(
∥
∥bi j

∥
∥

L1(dσ)

(∑I
i=1 mi√
mi m j

)γi j
)
(
‖F − G‖L1

2+γ
‖F + G‖L1

0

+ ‖F − G‖L1
2
‖F + G‖L1

γ
+ ‖F − G‖L1

γ
‖F + G‖L1

2

+‖F − G‖L1
0
‖F + G‖L1

2+γ

)

.

Monotonicity of the norm (2.18) yields

IH � 2 max
1�i, j�I

(
∥
∥bi j

∥
∥

L1(dσ)

(∑I
i=1 mi√
mi m j

)γi j
)

×‖F − G‖L1
2+γ

(
‖F + G‖L1

2
+ ‖F + G‖L1

2+γ

)
.

By the interpolation inequality (C.2), it follows that

IH � 2I max
1�i, j�I

(
∥
∥bi j

∥
∥

L1(dσ)

(∑I
i=1 mi√
mi m j

)γi j
)

×‖F − G‖1/2
L1
2

‖F − G‖1/2
L1
2+2γ

(
‖F + G‖L1

2
+ ‖F + G‖L1

2+γ

)
. (5.13)

Then we can bound term by term to get

‖F − G‖1/2
L1
2+2γ

� ‖F‖1/2
L1
2+2γ

+ ‖G‖1/2
L1
2+2γ

� 2C1/2
2+2γ ,

and in the same fashion,

‖F + G‖L1
2

� 2C2, ‖F + G‖L1
2+γ

� 2C2+γ ,
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since both F and G belong to �. Therefore, (5.13) becomes

IH � 8 max
1�i, j�I

(
∥
∥bi j

∥
∥

L1(dσ)

(∑I
i=1 mi√
mi m j

)γi j
)

C1/2
2+2γ

(
C2 + C2+γ

) ‖F − G‖1/2
L1
2

,

which concludes the proof of Hölder continuity. ��
Proof of (ii) sub-tangent condition. In order to prove the sub-tangent condition,
we first observe that, since we are in cut-off case, it is possible to split collision
operator Q(F) into a gain and a loss term. Namely,

[Q(F)]i = [Q+(F)
]

i − fi (v) [ν(F)]i ,

where Q+ is a positive operator, and collision frequency ν(F), for any component
1 � i � I , reads as

[ν(F)]i =
I∑

j=1

∫∫

R3×S2
f j (v∗)Bi j (v, v∗, σ ) dσ dv∗ � 0.

In our case, ν(F) is finite whenever F ∈ �. Indeed, for the cross section (2.20)–
(2.21), and since |v − v∗|γi j � |v − v∗|γ for |v − v∗| � 1 and |v − v∗|γ � |v|γ +
|v∗|γ ,

0 � [ν(F)]i (v) �
(

max
1�i, j�I

∥
∥bi j

∥
∥

L1(dσ)

)
I∑

j=1

∫

R3
f j (v∗) |v − v∗|γi j dv∗

�
(

max
1�i, j�I

∥
∥bi j

∥
∥

L1(dσ)

)⎛

⎝
I∑

j=1

∫

|v−v∗|<1
f j (v∗) dv∗

+
I∑

j=1

∫

|v−v∗|�1
f j (v∗) |v − v∗|γ dv∗

⎞

⎠

�
(

max
1�i, j�I

∥
∥bi j

∥
∥

L1(dσ)

)⎛

⎝C0 + |v|γ C0 +
( ∑I

i=1 mi

min1� j�I m j

)γ /2

‖F‖L1
γ

⎞

⎠

� K
(
1 + |v|γ

)
,

where

K =
(

max
1�i, j�I

∥
∥bi j

∥
∥

L1(dσ)

)(

2C0 +
( ∑I

i=1 mi

min1� j�I m j

)

C2

)

. (5.14)

Proposition 2. Fix F ∈ �. Then, for any ε > 0, there exists h1 > 0 such that
B(F + hQ(F), hε) ∩ � �= ∅ for any 0 < h < h1.
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Proof. Set χR(v) as the characteristic function of the ball of radius R > 0 and
introduce the truncated function FR(t, v) = χR(v)F(t, v). Let

WR = F + hQ(FR). (5.15)

The idea of the proof is to find R such that on the one hand, WR ∈ �, and on the
other hand, WR ∈ B(F + hQ(F), hε), with h explicitly calculated.

Step 1. We first show that it is possible to find an h1 such that WR remains non-
negative for as long 0 < h < h1. Indeed, for any F ∈ �, its truncation is FR ∈ �

as well. Since Q+ is a positive operator, we have

[WR]i = fi + h
[
Q

+(FR)
]

i − h [FR]i [ν(FR)]i � fi

(
1 − h K

(
1 + Rγ

))
� 0

for any 0 < h < 1
K (1+Rγ )

, and 1 � i � I , with K from (5.14).
Step 2. Since FR ∈ �, we use conservative properties of the collision operator
detailed in (3.10) and (3.11) to obtain

I∑

i=1

∫

R3
[Q(FR)]i dv = 0,

I∑

i=1

[Q(FR)]i 〈v〉2i dv = 0.

From (5.15), we get

m0[WR] = m0[F], m2[WR] = m2[F],
independently of R, which yields all needed lower and upper bounds on these
quantities.
Step 3. Finally, we need to show that L1

k∗ norm of WR is bounded.

Let the map Lγ ,k∗ : [0,∞) → R be defined with Lγ ,k∗(x) = −Ak∗ x1+
γ
k∗ +

Bk∗ x , where γ ∈ (0, 1] and k∗ is as defined in (2.24) such that it yields the positivity
of constants Ak∗ and Bk∗ ; it has only one root, denoted with x∗

γ ,k∗ , at which Lγ ,k∗
changes from positive to negative. Thus, for any x � 0, we may write

Lγ ,k∗(x) � max
0�x�x∗

γ ,k∗
Lγ ,k∗(x) =: L∗

γ ,k∗ .

Now, Lemma 5.1 implies

I∑

i=1

∫

R3
[Q(F)]i 〈v〉k∗

i dv � Lγ ,k∗
(
mk∗ [F]) � L∗

γ ,k∗ .

Define

ξγ ,k∗ := x∗
γ ,k∗ + L∗

γ ,k∗ .

For any F ∈ �we have two possibilities: eithermk∗ [F] � x∗
γ ,k∗ ormk∗ [F] > x∗

γ ,k∗ .
For the former, it follows that

mk∗ [WR] � x∗
γ ,k∗ + h

(
I∑

i=1

∫

R3
[Q(FR)]i 〈v〉k∗

i dv

)

� x∗
γ ,k∗ + h L∗

γ ,k∗ � ξγ ,k∗ ,
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where we have assumed, without loss of generality, that h � 1. For the latter, we
choose R = R(F) sufficiently large such that mk∗ [FR] > x∗

γ ,k∗ , and therefore,

Lγ ,k∗
(
mk∗ [FR]) � 0.

As a consequence,

mk∗ [WR] � x∗
γ ,k∗ � ξγ ,k∗ .

Therefore, we constructed a constant Ck∗ from a characterization of the set �, that
is, ξγ ,k∗ .

The conclusion is that WR ∈ � for any 0 < h < h∗, where

h∗ = min

{

1,
1

K
(
1 + R(F)γ

)

}

,

and K is from (5.14).
Now, Hölder estimate (5.8) implies that

h−1 ‖F + hQ(F) − WR‖L1
2

= ‖Q(F) − Q(FR)‖L1
2

� CH ‖F − FR‖
1
2

L1
2

� ε

for R := R(ε) sufficiently large. Then, for this choice of R, WR ∈ B(F +
hQ(F), hε).

Finally, choosing R = max{R(F), R(ε)} and h1 as

h1 = min

{

1,
1

K
(
1 + Rγ

)

}

, (5.16)

with c given in (5.14), one concludes thatWR ∈ B(F + hQ(F), hε) ∩ �. ��
Once the Proposition 2 is proved, it immediately follows that

h−1dist (F + hQ(F),�) � ε, ∀ 0 < h < h1,

with h1 from (5.16), which concludes the proof of the tangency condition. ��
Proof of (iii) one-sided Lipschitz condition. From definition and representation
(5.10), we have

IL := [Q(F) − Q(G),F − G]

�
I∑

i=1

I∑

j=1

∫

R3

(
Qi j ( fi , f j ) − Qi j (gi , g j )

)
sign( fi (v) − gi (v)) 〈v〉2i dv

= 1

2

I∑

i=1

I∑

j=1

∫

R3

(
Qi j ( fi − gi , f j + g j ) + Qi j ( fi + gi , f j − g j )

)

sign( fi (v) − gi (v)) 〈v〉2i dv.
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Changing i ↔ j in the second integral, we precisely obtain the binary structure of
the weak form (3.6) that yields

IL � 1

2

I∑

i=1

I∑

j=1

∫

R3

(
Qi j ( fi − gi , f j + g j ) sign( fi (v) − gi (v)) 〈v〉2i

+ Q ji ( f j + g j , fi − gi ) sign( f j (v) − g j (v)) 〈v〉2j
)
dv

= 1

2

I∑

i=1

I∑

j=1

∫∫∫

R3×R3×S2
Bi j (v, v∗, σ ) ( fi (v) − gi (v))

(
f j (v∗) + g j (v∗)

)

×
(
sign( fi (v

′) − gi (v
′))
〈
v′〉2

i + sign( f j (v
′∗) − g j (v

′∗))
〈
v′∗
〉2

j

− sign( fi (v) − gi (v)) 〈v〉2i − sign( f j (v∗) − g j (v∗)) 〈v∗〉2j
)
dσ dv∗ dv.

Using the upper bound of the sign function, one has

IL � 1

2

I∑

i=1

I∑

j=1

∫∫∫

R3×R3×S2
Bi j (v, v∗, σ )

×
(
| fi (v) − gi (v)| ( f j (v∗) + g j (v∗)

) (〈
v′〉2

i + 〈v′∗
〉2

j

)

− | fi (v) − gi (v)| ( f j (v∗) + g j (v∗)
) 〈v〉2i

+ | fi (v) − gi (v)| ( f j (v∗) + g j (v∗)
) 〈v∗〉2j

)
dσ dv∗ dv.

Then, conservation of energy implies

IL �
I∑

i=1

I∑

j=1

∫∫∫

R3×R3×S2
Bi j (v, v∗, σ )

× | fi (v) − gi (v)| ( f j (v∗) + g j (v∗)
) 〈v∗〉2j dσ dv∗ dv.

Now, specifying the collision cross section (2.20) and using (B.3), we get

|v − v∗|γi j �
(∑I

i=1 mi√
mi m j

)γi j

〈v〉γi j
i 〈v∗〉γi j

j �
(∑I

i=1 mi√
mi m j

)γi j

〈v〉γi 〈v∗〉γj ,

and we obtain

IL � max
1�i, j�I

(
∥
∥bi j

∥
∥

L1(dσ)

(∑I
i=1 mi√
mi m j

)γi j
)

‖F − G‖L1
γ
‖F + G‖L1

2+γ
.

Thanks to the monotonicity of norms (2.18),

‖F − G‖L1
γ

� ‖F − G‖L1
2
,

and we finally obtain

IL � 2 max
1�i, j�I

(
∥
∥bi j

∥
∥

L1(dσ)

(∑I
i=1 mi√
mi m j

)γi j
)

C2+γ ‖F − G‖L1
2
,

which completes the proof of one-sided Lipschitz condition. ��
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6. Proof of Theorem 2.6 (Generation and Propagation of Polynomial
Moments)

The proof consists of several steps. First, once the existence and uniqueness of
vector value solutionF to theBoltzmann system (2.19) is proven,we canderive from
the Boltzmann system an ordinary differential inequality for the scalar polynomial
moment mk[F](t). Then, the comparison principle for ODEs will yield estimates
that guarantee both generation and propagation of these polynomial moments.
Step 1. (Ordinary Differential Inequality for the Polynomial Moment.)

Lemma 6.1. Let F = [ fi ]i=1,...,I be a solution of the Boltzmann system (2.19).
Then the polynomial moment (2.13) satisfies the following Ordinary Differential
Inequality:

d

dt
mk[F](t) � −Ak mk[F](t)1+ γ

k + Bk mk[F](t), (6.1)

for k ≥ k∗ as defined in (2.24), with positive constants Ak and Bk as defined in
Lemma 5.1, Eq. (5.2), after replacing k∗ by k ≥ k∗.

Proof. Consider the i-th equation of the Boltzmann system (2.19):

∂t fi (t, v) =
I∑

j=1

Qi j ( fi , f j )(t, v), i = 1, . . . , I.

Integration with respect to velocity v with weight 〈v〉k
i , k � 0, and summation over

all species i = 1, . . . , I yields

d

dt
mk[F](t) =

I∑

i=1

I∑

j=1

∫

R3
〈v〉k

i Qi j ( fi , f j )(t, v) dv, (6.2)

after recalling definition (2.13) of polynomial moment. Using results from Lemma
5.1 for k ≥ k∗ as defined in (2.24), we conclude the estimate (6.1). ��
Step 2. (Comparison Principle.) The starting point is the inequality (6.1). We asso-
ciate to it an ODE of Bernoulli type as follows:

y′(t) = −a y(t)1+c + b y(t), (6.3)

whose solution will be an upper bound for mk[F](t). Indeed, the solution to (6.3)
reads as

y(t) =
(a

b

(
1 − e−c b t

)
+ y(0)−ce−c b t

)− 1
c
. (6.4)

Step 3. (Generation of Polynomial Moments.) Dropping initial data in (6.4) yields

y(t) �
(a

b

(
1 − e−c b t

))− 1
c
, ∀t > 0.
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Setting y(t) := mk[F](t), a := Ak , b := Bk and c := γ /k implies the generation
estimate (2.29) with

Cm =
(

Ak

Bk

)− k
γ

, for any k ≥ k∗.

Remark 8. For later purposes, we also derive the following inequality by approx-
imating the last result: for t < 1, we may write

(
1 − e−c b t

)− 1
c = (c b t)−

1
c

(

1 + b

2
t + o(t)

)

� (c b)−
1
c e

b
2 t t−

1
c � (c b)−

1
c e

b
2 t−

1
c .

On the other hand, for t � 1, it follows that

(
1 − e−c b t

)− 1
c �

(
1 − e−c b

)− 1
c
.

Therefore,

y(t) �
(a

b

)− 1
c

{
(c b)−

1
c e

b
2 t− 1

c , t < 1
(
1 − e−c b

)− 1
c , t � 1.

(6.5)

In other words, plugging in y(t) := mk[F](t), a := Ak , b := Bk and c := γ /k
yields

mk[F](t) � Bm max{1, t−
k
γ }, ∀t > 0, (6.6)

where the constant is

Bm = Cmmax

{(
γ

Bkk

)− k
γ

e
Bk
2 ,

(

1 − e
− γ

Bk k

)− k
γ

}

, for any k ≥ k∗.

Step 4. (Propagation of Polynomial Moments.) For the propagation result, when
y(0) is assumed to be finite, we first notice that y(t) is a monotone function of
t , which approaches y(0) as t → 0 on the one hand, and converges to (a/b)−1/c

when t → ∞ on the other hand. Therefore,

y(t) � max{y(0), (a/b)−1/c}

for all t � 0. Again, taking y(t) := mk[F](t), a := Ak , b := Bk and c := γ /k for
any k ≥ k∗ implies the propagation estimate (7.1).
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7. Generation and Propagation of Exponential Moments

Let F be a solution of the Boltzmann system (2.19). In this section we prove
both generation and propagation of an exponential moment (2.14) related to F. The
proof strongly relies on the generation and propagation of polynomial moments
stated in Theorem 2.29. Moreover, it uses polynomial moment ODI, but written in
a slightly different manner than in Sect. 6.1, whichwemake precise in the following
Lemma:

Lemma 7.1. Let F be a solution of the Boltzmann system (2.19). Then there exist
positive constants K1 and K2 such that the following two polynomial moments ODI
hold:

• ODI needed for propagation of exponential moments:

d

dt
msk[F](t) � −K1msk+γ [F](t)

+ K2

(

max
1�i, j�I

Ci j
sk
2

)
�k∑

�=1

(
k
�

)
(
ms�+γ [F](t) msk−s�[F](t)

+msk−s�+γ [F](t) ms�[F](t)) . (7.1)

• ODI needed for generation of exponential moments:

d

dt
mγ k[F](t) � −K1mγ k+γ [F](t)

+ K2

(

max
1�i, j�I

Ci j
γ k
2

)
�k∑

�=1

(
k
�

)
(
mγ �+γ [F](t) mγ k−γ �[F](t)

+mγ k−γ �+γ [F](t) mγ �[F](t)) . (7.2)

Proof. We briefly point out that the main steps in the proofs are an adaption of the
proof given in [22]. Let us consider the polynomial moment

mδq [F](t) =: mδq , 0 < δ � 2, q � 0, with δq > k∗,

with k∗ as defined in (2.24), and derive an ODI for it starting from (5.5) so that
Ci j

δq
2

<
∥
∥bi j

∥
∥

L1(dσ)
holds uniformly for any pair i, j = 1, . . . , I , with Ci j

n being

the constant from Povzner lemma 2.2. Once we derive it, (7.1) will follow, setting
δ := s, and (7.2) will follow with δ := γ . Indeed, from (5.5) we get that

m′
δq =

I∑

i=1

∫

R3
[Q(F)]i 〈v〉δq

i dv � 1

2

I∑

i=1

I∑

j=1

∫∫

R3×R3
fi (v) f j (v∗) |v − v∗|γi j

×
(

Ci j
δq
2

(
〈v〉2i + 〈v∗〉2j

) δq
2 − ∥∥bi j

∥
∥

L1(dσ)

(
〈v〉δq

i + 〈v∗〉δq
j

)
)

dv∗ dv.
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Before applying Lemma C.1, we first estimate, since (δ/2) � 1,

(
〈v〉2i + 〈v∗〉2j

) δq
2 �

(
〈v〉δi + 〈v∗〉δj

)q
,

and then apply it, which gives us
(
〈v〉δi + 〈v∗〉δj

)q
� 〈v〉δq

i + 〈v∗〉δq
j

+
�q∑

�=1

(
q
�

)(
〈v〉δ�i 〈v∗〉δq−δ�

j + 〈v〉δq−δ�
i 〈v∗〉δ�j

)
,

with �q = � q+1
2 �. The bound from above and below of the non-angular part of the

cross-section, |v − v∗|γi j , is used as in Sect. 6.1. This implies a polynomial moment
ODI:

m′
δq(t) � −K1mδq+γ + Ci j

δq
2

K2

�q∑

�=1

(
q
�

)
(
mδ�+γmδq−δ� + mδq−δ�+γmδ�

)
,

where K1 and K2 are positive constants, since δq ≥ k∗, with k∗ as defined in (2.24),
to get

K1 = min
1�i, j�I

(
∥
∥bi j

∥
∥

L1(dσ)
− Ci j

δq
2

)
clb

max1�i�I mi
,

K2 = 1

2

(

max
1�i, j�I

(∑I
i=1 mi√
mi m j

)γi j
)

,

which completes the proof. ��

8. Proof of Theorem 2.7 (b) (Propagation of Exponential Moments)

Using the Taylor series of an exponential function, one can represent the expo-
nential moment as

Es[F](α, t) =
∞∑

k=0

αk

k! msk[F](t).

We will show that the exponential rate is α = α(k∗), that is, if depends on the k∗
parameter defined in (2.24).

We consider its partial sum as shifted by γ one, namely,

En
s [F](α, t) =

n∑

k=0

αk

k! msk[F](t), En
s;γ [F](α, t) =

n∑

k=0

αk

k! msk+γ [F](t). (8.1)

In order to have lighter writing, we will drop from moment notation dependence
on t and α, and the relation to F, and we will instead write

En
s [F](α, t) =: En

s , En
s;γ [F](α, t) := En

s;γ , msk+γ [F](t) =: msk+γ .



On Existence and Uniqueness to Homogeneous Boltzmann Flows 767

When it will be important to highlight dependence on t and α, we will also, for
example, write En

s (α, t) instead of En
s .

The idea of the proof is to show that the partial sum En
s is bounded uniformly

in time t and n. To this end, we first derive ordinary differential inequality (ODI)
for it.
ODI for En

s . Taking derivative with respect to time t of (8.1), we get

d

dt
En

s =
k0−1∑

k=0

αk

k! m
′
sk +

n∑

k=k0

αk

k! m
′
sk,

where k0 is an index that will be determined later on. We use a polynomial moment
ODE (7.1) for the second term, which yields

d

dt
En

s �
k0−1∑

k=0

αk

k! m
′
sk − K1

n∑

k=k0

αk

k! msk+γ

+ K2

n∑

k=k0

(

max
1�i, j�I

Ci j
sk
2

)
αk

k!
�k∑

�=1

(
k
�

)
(
ms�+γmsk−s�+msk−s�+γms�

)

=: S0 − K1S1+K2S2. (8.2)

We estimate each sum S0, S1 and S2 separately.
Term S0. Propagation of polynomial moment (2.30) ensures a bound on msk uni-
formly in time, which implies from (6.1) a bound on its derivative, i.e. there exists
a constant ck0 such that

msk,m
′
sk � ck0 for all k ∈ {0, 1, . . . , k0}. (8.3)

For S0, this yields

S0 � ck0

k0−1∑

k=0

αk

k! � ck0eα � 2 ck0 (8.4)

for α small enough to satisfy

eα � 2. (8.5)

Term S1. We complete first the term S1 to introduce a shifted partial sum En
s;γ by

means of

S1 =
n∑

k=k0

αk

k! Dk msk+γ = En
s;γ −

k0−1∑

k=0

αk

k! Dk msk+γ .

From the bound (8.3) we can estimate msk+γ as well:

msk+γ � ck0 , k = 0, . . . , k0 − 1,

which together with considerations for the term S0 yields

S1 � En
s;γ − 2ck0 . (8.6)
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Term S2. Term S2 can be separated into two terms, namely

S2=
n∑

k=k0

(

max
1�i, j�I

Ci j
sk
2

)
αk

k!
�k∑

�=1

(
k
�

)
(
ms�+γmsk−s� + msk−s�+γms�

)=: S21+S22 .

Their treatment is the same, so as let perform an estimate on S21 . Rearranging, we
can write

S21 =
n∑

k=k0

(

max
1�i, j�I

Ci j
sk
2

)
�k∑

�=1

α� ms�+γ

�!
αk−� msk−s�

(k − �)! �
(

max
1�i, j�I

Ci j
sk0
2

)

En
s;γ En

s ;

the last inequality is due to the decreasing property of Ci j
k in k ≥ k∗, uniformly for

any i, j , with k∗ defined in (2.24). Therefore, we can estimate

S2 � 2

(

max
1�i, j�I

Ci j
sk0
2

)

En
s;γ En

s . (8.7)

Finally, the desired ODI for En
s is obtained from (8.2) by gathering all estimates:

(8.4), (8.6) and (8.7). Namely,

d

dt
En

s � −K1En
s;γ + 2ck0(1 + K1) + 2 K2

(

max
1�i, j�I

Ci j
sk0
2

)

En
s;γ En

s . (8.8)

Bound on En
s . For each n ∈ N we define

Tn := sup{t � 0 : En
s (α, τ ) � 4M0, ∀τ ∈ [0, t]},

where M0 is a bound on initial data in (2.31). We will show that En
s (t) is uniformly

bounded in t and n by proving that Tn = ∞ for all n ∈ N.
The sequence Tn is well-defined and positive. Indeed, since α � α0, at time

t = 0 we have that

En
s (α, 0) =

n∑

k=0

αk

k! msk(0) �
n∑

k=0

αk
0

k! msk(0) � Es(α0, 0) < 4M0

uniformly in n, by assumption (2.31). Since each term msk(t) is a continuous
function of t , so is En

s (α, t). Therefore, En
s (α, t) < 4M0 on some time interval

[0, tn), tn > 0. Thus Tn is well-defined and positive for every n ∈ N.
For t ∈ [0, Tn] it follows that En

s (α, t) � 4M0, which, from (8.8), implies that

d

dt
En

s � − En
s;γ

(

K1 − 8 K2

(

max
1�i, j�I

Ci j
sk0
2

)

M0

)

+ 2ck0 (1 + K1) . (8.9)
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Since Ci j
sk0
2

, for any i, j , converges to zero as sk0
2 > k∗ goes to infinity, we can

choose k0 > 2 k∗
s such that

K1 − 8 K2

(

max
1�i, j�I

Ci j
k∗

)

M0 >
K1

2
,

or, equivalently,

K1 < 16 K2

(

max
1�i, j�I

Ci j
k∗

)

M0, (8.10)

with K1 depending on k∗ as defined in (2.24). Hence, (8.9) becomes

d

dt
En

s � − K1

2
En

s;γ + 2ck∗ (1 + K1) . (8.11)

The next step consists in finding a lower bound for En
s;γ in terms of En

s . Indeed, we
can estimate

En
s;γ =

n∑

k=0

αk

k! msk+γ �
n∑

k=0

αk

k!
I∑

i=1

∫

{〈v〉i �α−1/2}
fi (t, v) 〈v〉sk+γ

i dv

� α−γ /2

(

En
s −

n∑

k=0

αk

k!
I∑

i=1

∫

{〈v〉i <α−1/2}
fi (t, v) 〈v〉sk

i dv

)

� α−γ /2

(

En
s −

n∑

k=0

αk(1− s
2 )

k! m0(0)

)

� α−γ /2
(

En
s − m0(0)e

α
1− s

2

)

.

Plugging this result into (8.11) yields

d

dt
En

s � − K1

2
α−γ /2En

s + K1

2
α−γ /2m0(0)e

α
1− s

2 + 2ck0 (1 + K1) .

By the maximum principle for ODEs, it follows that

En
s (α, t) � max

{

En
s (α, 0),m0(0) eα

1− s
2 + 4ck0 (1 + K1)

K1 α−γ /2

}

� M0 + m0(0) eα
1− s

2 + αγ/2 4ck0 (1 + K1)

K1
(8.12)

for any t ∈ [0, Tn]. On the other hand, since s � 2, the following limit property
holds:

m0(0) eα
1− s

2 + αγ/2 4ck0 (1 + K1)

K1
→ m0(0), as α → 0,

and m0(0) < En
s (α0, 0) for any α0, and therefore, by (2.31), m0(0) < M0. Thus,

we can choose a sufficiently small α = α1 such that

m0(0) eα
1− s

2 + αγ/2 4ck∗ (1 + K1)

K1
< 3M0 (8.13)
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for any s � 2 and K1 = K1(k∗) from (8.10). In this case, inequality (8.12) implies
the following strict inequality:

En
s (α, t) < 4M0, (8.14)

for any t ∈ [0, Tn] and 0 < α(k∗) � α1, with α depending on k∗ defined in (2.24).
Conclusion I. If k0 is chosen such that (8.11) holds, and the choice of α is such
that 0 < α � α0 and (8.5), (8.13) are satisfied, which amounts to taking α =
min {α0, ln 2, α1}, then we have strict inequality (8.14), En

s (α, t) < 4M0, which
holds on the closed interval [0, Tn] uniformly in n. Because of the continuity of
En

s (α, t) with respect to time t , this strict inequality actually holds on a slightly
larger time interval [0, Tn + ε), ε > 0. This contradicts the maximality of Tn ,
unless Tn = +∞. Therefore, En

s (α, t) � 4M0 for all t � 0 and n ∈ N. Thus,
letting n → ∞, we conclude that

Es[F](α, t) = lim
n→∞ En

s [F](α, t) � 4M0, ∀t � 0,

i.e. the solution F to a system of Boltzmann equations with finite initial exponential
moment of order s and rate α0 will propagate exponential moments of the same
order s and a rate α that satisfies α = min {α0, ln 2, α1}. It is also very interesting
to note that the rate α depends on the k∗ parameter from (2.24), which depends on
uniformity in the i, j pairs, upper bounds for the intermolecular potentials γi j and

for controls of the ki j∗ as defined in (2.23) in the Povzner Lemma 2.2.

9. Proof of Theorem 2.7 (a) (Generation of Exponential Moments)

We consider an exponential moment of order γ and rate αt , where α depends
on k∗ from (2.24) for the solution F of the Boltzmann system, namely

Eγ [F](αt, t) =
I∑

i=1

∫

R3
fi (t, v) eαt〈v〉γi dv =

∞∑

k=0

(αt)k

k! mγ k[F](t).

Consider its partial sum, and a shifted one at that, to get

En
γ [F](αt, t) =

n∑

k=0

(αt)k

k! mγ k[F](t), En
γ ;γ [F](αt, t) =

n∑

k=0

(αt)k

k! mγ k+γ [F](t).

As usual, we will most of the time lighten notation by omitting explicit dependence
on time t and the relation to F, and write

En
γ [F](αt, t) =: En

γ , En
γ ;γ [F](αt, t) := En

γ ;γ .

Fix α and γ and define

T̄n := sup
{

t ∈ [0, 1] : En
γ [F](αt, t) � 4M̄0

}
.
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T̄n is well defined. Indeed, taking M̄0 := ∑I
i=1 fi (t, v) 〈v〉2i dv = ∑I

i=1 fi (0, v)

〈v〉2i dv for t = 0, we get En
γ (0, 0) � Eγ (0, 0) = m0(0) < 4M̄0. By the continuity

of partial sum En
γ with respect to t , En

γ (αt, t) � 4M̄0 on a slightly larger time

interval t ∈ [0, tn), tn > 0, and thus T̄n > 0.
ODI for En

γ . Taking the time derivative of En
γ yields

d

dt
En

γ = α

n∑

k=1

(αt)k−1

(k − 1)!mγ k +
k0−1∑

k=0

(αt)k

k! m′
γ k +

n∑

k=k0

(αt)k

k! m′
γ k .

For the first term we simply re-index the sum and use the definition of a shifted
partial sum, and for the last one we use polynomial moment ODI (7.2), which,
taken together, implies

d

dt
En

γ � α En
γ ;γ +

k0−1∑

k=0

(αt)k

k! m′
γ k − K1

n∑

k=k0

(αt)k

k! mγ k+γ

+ K2

n∑

k=k0

(αt)k

k!

(

max
1�i, j�I

Ci j
γ k
2

)
�k∑

�=1

×
(

k
�

)
(
mγ �+γmγ k−γ � + mγ k−γ �+γmγ �

)

=: α En
γ ;γ + S0 − K1S1 + K2

(
S21 + S22

)
. (9.1)

Term S0. From polynomial moment generation estimate (6.6) we can bound a
polynomial moment of any order, as well as its derivative, by means of (6.1). In
particular,

mγ k � Bm max
t>0

{1, t−k}, m′
γ k � Bγ kB

m max
t>0

{1, t−k}.

Denote

c̄k0 := max
k∈{0,...k0−1}

{
Bm, Bγ kB

m} .

For S0, taking t � 1, we have m′
γ k � c̄k0 t−k , and therefore

S0 :=
k0−1∑

k=0

(αt)k

k! m′
γ k � c̄k0

k0−1∑

k=0

αk

k! � c̄k0eα � 2c̄k0

for α such that

eα � 2. (9.2)

Term S1. Using the boundedness of mγ k+γ , we can write

S1 :=
n∑

k=k0

(αt)k

k! mγ k+γ = En
γ ;γ −

k0−1∑

k=0

(αt)k

k! mγ k+γ � En
γ ;γ − 2c̄k0

1

t
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for α chosen as in (9.2).
Term S2. Terms S21 and S22 are treated in the same fashion. We will detail the
calculation for S21 . We first reorganize the terms in sum and get

S21 :=
n∑

k=k0

(αt)k

k!

(

max
1�i, j�I

Ci j
γ k
2

)
�k∑

�=1

(
k
�

)

mγ �+γmγ k−γ �

=
n∑

k=k0

(

max
1�i, j�I

Ci j
γ k
2

)
�k∑

�=1

(αt)�mγ �+γ

�!
(αt)k−�mγ k−γ �

(k − �)!

�
(

max
1�i, j�I

Ci j
γ k0
2

)

En
γ ;γ En

γ ,

since constant Ci j
γ k
2

decays with respect to k for any i, j and large enough k0 ≥ 2 k∗
γ
,

with k∗ from (2.24) to ensure (2.23), and therefore Ci j
γ k
2

� Ci j
k∗ . Gathering all

estimates together, (9.1) becomes

d

dt
En

γ � α En
γ ;γ + 2c̄k0 − K1

(

En
γ ;γ − 2c̄k0

1

t

)

+ K2

(

max
1�i, j�I

Ci j
k∗

)

En
γ ;γ En

γ ,

(9.3)

for α satisfying (9.2).
Bound on En

γ . Consider t ∈ [0, T̄n]. On this interval, En
γ (αt, t) � 4M̄0, and T̄n � 1

yields t−1 � 1, which implies, for (9.3), the following estimate:

d

dt
En

γ � − En
γ ;γ

(

−α + K1 − K2

(

max
1�i, j�I

Ci j
k∗

)

4M̄0

)

+ 2c̄k∗
(1 + K1) t

.

Since Ci j
γ k0
2

converges to zero as k0 ≥ 2 k∗
γ
uniformly i, j , choosing such a large k0

and a small enough α such that

−α + K1 − K2

(

max
1�i, j�I

Ci j
k∗

)

4M̄0 >
K1

2
,

with K1 = K1(k∗), yields

d

dt
En

γ � − K1

2
En

γ ;γ + K3

t

for K3(k∗) := 2c̄k∗ (1 + K1(k∗)). Finally, the shifted moment can be bounded as
follows:

En
γ ;γ (αt, t) =

n+1∑

k=1

(αt)kmγ k(t)

k!
k

αt
� 1

αt

n∑

k=2

(αt)kmγ k(t)

k! �
En

γ (αt, t) − M̄0

αt
,
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which yields

d

dt
En

γ � − K1

2αt

(

En
γ − M̄0 − 2α

K1
K3

)

.

Now we choose α small enough so that

M̄0 + 2α

K1
K3 < 2M̄0, or, equivalently α = α(k∗) <

K1(k∗)M̄0

2K3(k∗)
,

which implies

d

dt
En

γ (αt, t) � − K1

2αt

(
En

γ (αt, t) − 2M̄0

)
.

As in [22], integrating this differential inequality with an integrating factor t
K1
2α

yields

En
γ (αt, t) � max

{
En

γ (0, 0), 2M̄0

}
� 2M̄0, ∀t ∈ [0, T̄n], (9.4)

since Eγ (0, 0) = m0(0) < 2M̄0.
Conclusion II. From (9.4), the following bound on En

γ (αt, t) holds:

En
γ (αt, t) � 2M̄0 < 4M̄0, ∀t ∈ [0, T̄n].

Exploring the continuity of the partial sum En
γ (αt, t), this inequality holds on a

slightly larger interval, which contradicts the maximality of T̄n , unless T̄n = 1.
Therefore, we can conclude that T̄n = 1 for all n ∈ N, or, in other words, that

En
γ (αt, t) � 4M̄0, ∀t ∈ [0, 1], ∀n ∈ N.

Letting n → ∞, we conclude that

En
γ (αt, t) � 4M̄0, ∀t ∈ [0, 1]. (9.5)

In particular, for time t = 1, (9.5) can be seen as an initial condition for propagation
(2.31), and thus the exponential moment of the order γ and a rate 0 < ᾱ � α(k∗)
stays uniformly bounded for all t > 1 for k∗, as in (2.24).
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Appendix A. Existence and Uniqueness Theory for ODE in Banach Spaces

Theorem A.1. Let E := (E, ‖·‖) be a Banach space, S be a bounded, convex
and closed subset of E, and Q : S → E be an operator satisfying the following
properties:

(a) The Hölder continuity condition

‖Q[u] − Q[v]‖ � C ‖u − v‖β , β ∈ (0, 1), ∀u, v ∈ S;
(b) The Sub-tangent condition

lim
h→0+

dist (u + hQ[u],S)

h
= 0, ∀u ∈ S;

(c) The One-sided Lipschitz condition

[Q[u] − Q[v], u − v] � C ‖u − v‖ , ∀u, v ∈ S,

where [ϕ, φ] = limh→0− h−1 (‖φ + hϕ‖ − ‖φ‖).
Then the equation

∂t u = Q[u], for t ∈ (0,∞), with initial data u(0) = u0 in S,

has a unique solution in C([0,∞),S) ∩ C1((0,∞), E).

The proof of this Theorem on ODE flows on Banach spaces can be found in the
unpublished notes [10] or in [3].

Remark 9. In Sect. 5, wewill concentrate on E := L1
2. Therefore, for the one-sided

Lipschitz condition, we will use the following inequality:

[ϕ, φ] �
I∑

i=1

∫

R3
ϕi (v) sign(φi (v)) 〈v〉2i dv,

for ϕ = [ϕi ]1�i�I and φ = [φi ]1�i�I , as pointed out in [3].

Appendix B. Upper and Lower Bound of the Cross Section

In this section, we derive an upper and lower estimate for the non-angular part of
the cross section, |v − v∗|γi j , γi j ∈ (0, 1], with 1 � i, j,� I . First, for the upper
estimate, by triangle inequality, we have

√
mi

∑I
i=1 mi

√
m j

∑I
i=1 mi

|v − v∗| � min

{√
mi

∑I
i=1 mi

,

√
m j

∑I
i=1 mi

}

|v − v∗|

� min

{√
mi

∑I
i=1 mi

,

√
m j

∑I
i=1 mi

}

(|v| + |v∗|)
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�
√

mi
∑I

i=1 mi
|v| +

√
m j

∑I
i=1 mi

|v∗|

�
√

1 + mi
∑I

i=1 mi
|v|2 +

√

1 + m j
∑I

i=1 mi
|v∗|2.

(B.1)

Therefore,

|v − v∗|γi j �
(∑I

i=1 mi√
mi m j

)γi j (
〈v〉γi j

i + 〈v∗〉γi j
j

)
(B.2)

for γi j ∈ (0, 1], and any i, j ∈ {1, . . . , I }.
From (B.1) it also follows that

√
mi

∑I
i=1 mi

√
m j

∑I
i=1 mi

|v − v∗|

�
√

mi
∑I

i=1 mi
|v| +

√
m j

∑I
i=1 mi

|v∗|

=
(

mi
∑I

i=1 mi
|v|2 + m j

∑I
i=1 mi

|v∗|2 + 2
√

mi m j
∑I

i=1 mi
|v| |v∗|

)1/2

� 〈v〉i 〈v∗〉 j .

Therefore,

|v − v∗|γi j �
(∑I

i=1 mi√
mi m j

)γi j

〈v〉γi j
i 〈v∗〉γi j

j (B.3)

for γi j ∈ (0, 1] and 1 � i, j � I .
Then, for the lower estimate, we use the ideas of Lemma 2.1 in [4] to prove the next
Lemma. Note that here functions F do not need to be solutions of the Boltzmann
problem. Moreover, this lower bound may not hold for F being a singular measure,
since the estimate degenerates as c goes to zero.

Lemma B.1. Let γi j ∈ [0, 2], for any i, j ∈ {1, . . . , I }, and assume that 0 �
{

F(t) = [ f1(t) . . . f I (t)]T
}

t�0 ⊂ L1
2 satisfies

c �
I∑

i=1

∫

R3
mi fi (t, v) dv � C, c �

I∑

i=1

∫

R3
fi (t, v)mi |v|2 dv � C,

I∑

i=1

∫

R3
fi (t, v)miv dv = 0
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for some positive constants c and C. Assume also the boundedness of the moment

I∑

i=1

∫

R3
fi (t, v)mi |v|2+ε dv � B, ε > 0.

Then, there exists a constant clb characterized in (B.11) such that

I∑

i=1

∫

R3
mi fi (t, w) |v − w|γi j dw � clb 〈v〉γj (B.4)

for any j ∈ {1, . . . , I }, with γ = max1�i, j�I γi j .

Proof. Case γi j = 0 is trivial, so take γi j ∈ (0, 2] for any i, j,= 1, . . . , I . Let us
denote the open ball centered at the origin and of radius r > 0 with B(0, r) ⊂ R

3.
We consider separately cases when v ∈ B(0, r) and v ∈ B(0, r)c, with r to be
chosen later on depending on constants c, C , and γi j .
For v ∈ B(0, r)c we first consider the whole domain R

3, and write, by the Young
inequality, for any v ∈ R

3 and γi j ∈ (0, 2],
I∑

i=1

mi

∫

R3
fi (t, w) |v − w|γi j dw �

I∑

i=1

mi

∫

R3
fi (t, w)

(
c̃ |v|γi j − |w|γi j

)
dw,

where c̃ = min1�i, j�I

(
min{1, 21−γi j }). Since

I∑

i=1

mi

∫

R3
fi (t, w) |w|γi j dw

�
I∑

i=1

mi

∫

B(0,1)
fi (t, w) dw +

I∑

i=1

mi

∫

B(0,1)c
fi (t, w) |w|2 dw � 2C,

we obtain that, for any v ∈ R
3,

I∑

i=1

mi

∫

R3
fi (t, w) |v − w|γi j dw

� c̃
I∑

i=1

|v|γi j mi

∫

R3
fi (t, w) dw − 2C. (B.5)

Since, for any i, j = 1, . . . , I and v ∈ R
3, we have the following lower bound:

|v|γi j = |v|γi j
(
1|v|<1(v) + 1|v|�1(v)

)
� |v|γ + 1,

where

γ = max
1�i, j�I

γi j .
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Therefore, (B.5) becomes

I∑

i=1

mi

∫

R3
fi (t, w) |v − w|γi j dw � c̃ c |v|γ + c̃ c − 2C

� c̃ c

(√
m j

∑I
i=1 mi

|v|
)γ

+ c̃ c − 2C

for every j ∈ {1, . . . , I }. Since here v ∈ B(0, r)c, we choose r in a such a way as
to ensure that

c̃ c

(√
m j

∑I
i=1 mi

|v|
)γ

+ c̃ c − 2C � c̃ c

2

(√
m j

∑I
i=1 mi

|v|
)γ

,

which amounts to choosing

r := r∗ =
(
2C

c̃ c

) 1
γ

, (B.6)

since C � c by assumption, and c̃ � 1. Therefore, for v ∈ B(0, r∗)c, we have

I∑

i=1

mi

∫

R3
fi (t, w) |v − w|γi j dw � c̃ c

2

(√
m j

∑I
i=1 mi

|v|
)γ

(B.7)

for any j ∈ {1, . . . , I }.
On the other hand, let us study the case v ∈ B(0, r∗). First note that for any R > 0,

I∑

i=1

mi

∫

|v−w|�R
fi (t, w) |v − w|2 dw

=
I∑

i=1

mi

∫

R3
fi (t, w) |v − w|2 dw −

I∑

i=1

mi

∫

|v−w|�R
fi (t, w) |v − w|2 dw

� c |v|2 + c −
I∑

i=1

mi

∫

|v−w|�R
fi (t, w) |v − w|2 dw

� c(1 + |v|2) − 1

Rε

I∑

i=1

mi

∫

|v−w|�R
fi (t, w) |v − w|2+ε dw. (B.8)

Next, we have

I∑

i=1

mi

∫

|v−w|�R
fi (t, w) |v − w|2+ε dw � 21+ε max{C, B}

(
1 + |v|2+ε

)

� 21+ε max{C, B}
(
1 + |v|2

) 2+ε
2 � 21+ε max{C, B}

(
1 + r2∗

) 2+ε
2

.
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Choosing R := R(r∗, c, C, B) > 0 sufficiently large such that

1

Rε
21+ε max{C, B}

(
1 + r2∗

) 2+ε
2 � c

2
, or R

�
(

22+ε

(
max{C, B}

c

)(
1 + r2∗

) 2+ε
2
) 1

ε

, (B.9)

from (B.8) we have

I∑

i=1

mi

∫

|v−w|�R
fi (t, w) |v − w|2 dw � c

2
∀v ∈ B(0, r∗).

Moreover, for this choice of R, for any γi j ∈ (0, 2] we have
I∑

i=1

mi

∫

R3
fi (t, w) |v − w|γi j dw �

I∑

i=1

mi

∫

|v−w|�R
fi (t, w) |v − w|γi j dw

�
I∑

i=1

Rγi j −2 mi

∫

|v−w|�R
fi (t, w) |v − w|2 dw.

Since R � 1, we can bound Rγi j −2 � R(min1�i, j�I γi j )−2, which yields the estimate

I∑

i=1

mi

∫

R3
fi (t, w) |v − w|γi j dw � c

2R2−min1�i, j�I γi j
, ∀v ∈ B(0, r∗).

(B.10)

Finally, summarizing (B.7) and (B.10),

I∑

i=1

mi

∫

R3
fi (t, w) |v − w|γi j dw

� c

2R2−min1�i, j�I γi j
1B(0,r∗)(v)

+ c̃ c

2

(√
m j

∑I
i=1 mi

|v|
)γ

1B(0,r∗)c (v)

� c̃ c

2R2−min1�i, j�I γi j

⎛

⎝1B(0,r∗)(v) +
(√

m j
∑I

i=1 mi
|v|
)γ

1B(0,r∗)c(v)

⎞

⎠ .

Then there exists a constant clb such that

c̃ c

2R2−min1�i, j�I γi j

⎛

⎝1B(0,r∗)(v) +
(√

m j
∑I

i=1 mi
|v|
)γ

1B(0,r∗)c (v)

⎞

⎠ � clb 〈v〉γj
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for any j ∈ {1, . . . , I }. In fact, one may even construct clb in order to ensure the
last inequality. For example, clb can take the value

clb = c

2
c̃

⎛

⎜
⎝22+ε

(
max{C, B}

c

)(

1 +
(
2C

c̃ c

) 2
γ

) 2+ε
2

⎞

⎟
⎠

−2+min1�i, j�I γi j
ε

×
(

1 + max1� j�I m j
∑I

i=1 mi

(
2C

c̃ c

)2
)−γ /2

, (B.11)

by taking into account (B.6) and (B.9). ��

Appendix C. Some Technical Results

Lemma C.1. (Polynomial inequality I, Lemma 2 from [8].) Assume p > 1, and
let n p = � p+1

2 �. Then, for all x, y > 0, the following inequality holds:

(x + y)p − x p − y p �
n p∑

n=1

(
p
n

)
(
xn y p−n + x p−n yn) .

Lemma C.2. (Polynomial inequality II.) Let b + 1 � a � p+1
2 . Then, for any

x, y � 0,

xa y p−a + x p−a ya � xb y p−b + x p−b yb.

Proof. This Lemma is a modified version of Lemma A.1 from [22]. Indeed, the
proof is the same; one just needs to observe that a − b � 0 and p − a − b � 0, and
therefore that

(
ya−b − xa−b

)
xb yb

(
y p−a−b − x p−a−b

)
� 0

for any x, y � 0. ��
Lemma C.3. (Interpolation inequality.) Let k = αk1 + (1 − α)k2, α ∈ (0, 1),
0 < k1 � k � k2. Then, for any g ∈ L1

k,i

‖g‖L1
k,i

� ‖g‖α

L1
k1,i

‖g‖1−α

L1
k2,i

. (C.1)

We can extend this interpolation inequality for vector functions G = [gi ]1�i�I .
Namely, under the same assumptions,

‖G‖L1
k

� I ‖G‖α

L1
k1

‖G‖1−α

L1
k2

. (C.2)
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Lemma C.4. (Jensen’s inequality.) Let f (x) be positive and integrable in R
d and

G a convex function. Then

G

(
1

∫
f (x) dx

∫

f (x)g(x) dx

)

� 1
∫

f (x) dx

∫

f (x)G(g(x)) dx

for any positive function g.

We apply this lemma specifying that g(x) = 〈x〉k
i and G(x) = x1+ λ

k , λ ∈ (0, 1]
and k � 1. This implies

∫

R3
fi (v) 〈v〉k+λ

i dv �
(∫

R3
fi (v) dv

)− λ
k
(∫

R3
fi (v) 〈v〉k

i dv

)1+ λ
k

.

If, additionally, we have an upper bound on the zero order scalar polynomial mo-
ment, that is, if it holds that

∫

R3
fi (v) dv = m0,i [F] � m0[F] � Cm0 ,

then
∫

R3
fi (v) 〈v〉k+λ

i dv � C
− λ

k
m0

(∫

R3
fi (v) 〈v〉k

i dv

)1+ λ
k

.

Summing over i = 1, . . . , I , after some manipulation we get a control from below
for the moment mk+λ[F]. Indeed, we get that

mk+λ[F] �
(
I Cm0

)− λ
k mk[F]1+ λ

k . (C.3)
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