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Resummation for 2 — n processes in single-particle-inclusive kinematics

Matthew Forslund' and Nikolaos Kidonakis®>

1Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
2Department of Physics, Kennesaw State University, Kennesaw, Georgia 30144, USA

® (Received 19 March 2020; accepted 27 July 2020; published 6 August 2020)

We present a formalism and detailed analytical results for soft-gluon resummation for 2 — n processes
in single-particle-inclusive (1PI) kinematics. This generalizes previous work on resummation for 2 — 2
processes in 1PI kinematics. We also present soft anomalous dimensions at one and two loops for certain
2 — 3 processes involving top quarks and Higgs or Z bosons, and we provide some brief numerical results.
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I. INTRODUCTION

In theoretical calculations of hard-scattering cross sec-
tions of relevance to hadron colliders, the state of the art has
been moving steadily towards higher orders, more loops,
and resummations at higher logarithmic accuracy; it has
also been gradually expanded to processes with larger
numbers of final-state particles. In particular, soft-gluon
resummations have become a very useful tool in making
predictions for additional corrections beyond complete
fixed-order results. The soft-gluon corrections appear in
the perturbative series as logarithms of a threshold variable
that involves the energy in the soft emission.

Soft-gluon resummation follows from factorization
properties of the cross section [1-6] and it has been applied
to a large number of processes in hadron collisions. Most of
the applications for total cross sections and differential
distributions have been done for 2 — 2 processes in single-
particle-inclusive (1PI) as well as pair-invariant-mass
(PIM) kinematics, most notably for top-quark production
(see Ref. [7] for a review) but also many other processes.
The choice of threshold variable in the resummation
depends on the kinematics. For example, in PIM kinematics
for top-antitop pair production, the threshold variable
involves the invariant mass of the 7 pair.

Applications to 2 — 3 processes using extensions of the
PIM formalism, e.g., three-particle-invariant-mass kin-
ematics, have also been made [8-16]. These processes
include W production [8,11,15,16], ftH production
[9,10,12,14,16], and f7Z production [13,15,16]. In these
extensions of the PIM formalism, the threshold variable
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involves the invariant mass of the three-particle final state,
e.g., ItH.

In this paper, we instead generalize resummation to
processes with n particles in the final state explicitly in 1PI
kinematics. In addition to providing an alternative way of
calculating total cross sections, this new formalism also
allows the calculation of 1PI differential distributions (for
example in transverse momentum or rapidity) that cannot
be calculated with the other kinematics. We also give more
details for 2 — 3 processes with top quarks and Higgs or Z
bosons in 1PI kinematics.

In many cases, and especially for top-quark production
(see Ref. [7] for a review of results in 1PI kinematics), these
soft-gluon corrections are large; in fact, they numerically
dominate the complete corrections and can be thought of as
very good approximations to complete results. In particular,
for top-antitop pair production, the soft-gluon corrections
provide excellent approximations at next-to-leading order
(NLO) and next-to-next-to-leading order (NNLO), and are
significant even at next-to-NNLO (N3LO) [17]. Another
important set of processes where soft-gluon terms provide
excellent approximations and large corrections involve
single-top production [18], top production in association
with a charged Higgs boson [19], and top production via
anomalous couplings in association with a Z boson [20], a
photon [21], or a Z’ boson [22].

We begin in Sec. II with the development of the
formalism, starting with elementary considerations and
kinematics for 2 — 2 processes, and then for 2 — 3
processes, before moving on to the generalization to
2 — n processes and the derivation of the resummed cross
section in the general case. We define a threshold variable
s,, which measures the extra energy in soft radiation and
which vanishes at partonic threshold. Logarithms of this
threshold variable appear in the perturbative expansion as
plus distributions of the general form [In"(s;,/s)/su] .
with m < 2n — 1 at nth order. The exponentiation of these
threshold logarithms is organized in the resummed cross
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section. We also provide results for the expansion of the
resummed cross section to fixed order, in particular NLO
and NNLO. In Sec. IIl, we provide some kinematical
details about the cross section calculation at the partonic
and hadronic levels. In Sec. IV we present results for the
soft anomalous dimensions through two loops for 2 — 3
processes involving a top quark and a Higgs or Z boson,
and a brief numerical application to t-channel tgH pro-
duction which shows the power and relevance of the
formalism. We conclude in Sec. V, and we include two
appendixes with details on kinematical integration variables
for 2 — n processes.

II. RESUMMATION FOR 2 — rn PROCESSES

In this section we develop the formalism for resumma-
tion in 1PI kinematics with multiparticle final states. We
begin with some simple considerations and definitions for
2 — 2 processes in the next subsection, and extend them to
2 — 3 processes in Sec. IIB and to 2 — n processes in
Sec. I C. The complete resummation formalism for 2 — n
processes is given in Sec. II D. Fixed-order expansions of
the resummed cross section are provided in Sec. ITE.

A. Kinematics and threshold for 2 — 2 processes

We first consider processes that are 2 — 2 at lowest
order, p, + pp — pi + p,» (e.g., qg — tf). We define the
usual kinematical variables s = (p,+p,)* t = (p, — 1)
and u = (p;, — p)*. We also define the threshold variable
s;p=s-+1t+u—pi—p3. Of course p? =m? and p3 = m3
where, depending on the process, the masses m; and m,
can be zero or finite. As we approach partonic threshold,
s;, — 0 and there is vanishing energy for any additional
radiation.

If we have an additional gluon with momentum p, being
emitted in the final state, then by using momentum con-
servation, p, + p, = p; + pa + pg, itis straightforward to
show that the above definition of s, is equivalent to
s = (P2 + py)* — p3. It is clear that s,, goes to 0 as p,
goes to O (soft gluon). The physical meaning is also more
clear from this way of writing s,,: it is the invariant mass
squared of the “particle 2 + gluon” system minus the invariant
mass squared of particle 2, i.e., it describes the extra energy in
the soft emission. Note that particle 1 is the observed particle
in this single-particle-inclusive kinematics.

If the incoming partons a and b come from hadrons A
and B, then we also define the hadron-level variables
S=(pa+prs) T=(pa—p1)’ U= (psp—p1)° and
Sp=S+T+U-=p}—ps. Assuming that p, = x,p,
and p, = x,pp, where x, and x, denote the fraction of
the momentum carried by partons @ and b in hadrons A and
B, respectively, then we have the relations s = x,x,S,
t=x,T+ (1 -x,)p3, and u = x,U + (1 —x;) p?.

Then, using the above relations and after some algebra,
we find that

(t—p3)

Su_sn g1y,

2_ .2
+(1—xu)(1—xb)@. (2.1)
The last term, involving (1 — x,)(1 —x;), is higher order
and can be ignored near threshold, as x, - 1 and x;, — 1.

B. Kinematics and threshold for 2 — 3 processes

We next consider processes that are 2 — 3 at lowest
order, p,+ p, = p| + p>+ p3 (e.g., bg — tg’H). We
define the parton-level variables s, ¢, u, and the hadron-
level variables S, T, U, as before. If we have an additional
gluon with momentum p, in the final state, then momen-
tum conservation is p, + p, = p; + pa + p3 + py-

We can define the threshold variable as s, =
(p2 + p3 + py)* — (p2 + p3)* This clearly gives the same
physical meaning as extra energy from gluon emission and
clearly vanishes as p, — 0. One can also show after some
work that this is equivalent to s, =s+71+u— pi—
(P2 + p3)*

We also define S;, =S+T+ U - p?—(p,+ p3)%
and find, after some algebra, the relation

&:sﬂ—(l )(u—(p2+p3)2)
) (t—(p2+ p3)?)
) (Pt — (P2 + p3)?) '

= (I =x,

+ (1 =x,)(1 =x, (2.2)
The last term, involving (1 — x,)(1 — x;,), can be ignored in
the threshold limit, as x, — 1 and x, — 1. We see that
our results here are a natural extension of the relations for
2 — 2 kinematics.

C. Kinematics and threshold for 2 — n processes

These relations can be extended to an arbitrary number
of particles: we consider processes that are 2 — n at lowest
order, p,+ pp = p1 + p2+ -+ p,. Again, we define
the parton-level variables s, #, u, and the hadron-level
variables S, 7', U, as before. With an additional gluon with
momentum p, in the final state, momentum conservation
8 patpp=pitp2t-+pitp,

Then the threshold variable is s,;, = (po + -+ + p, +
py)* = (p2 + - + p,)? with the same physical meaning as
before, and vanishing as p, — 0. Using the abbreviation
P2..n = P2 + -+ + p,, we canrewrite the threshold variable
as s, = (P + pg)2 - p%,“n. We can also show that this
variable can also be written as s,;, = s + 7+ u — p7 — p5_,.

We also define S, =S+ T + U — p? — p3..,, and find
that
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&:%_(1 _xa>%—(l —xb)(t%p%“'”)
(1)1 =) P P2), 23)

Again, the last term, involving (1 —x,)(1 —x,), can be
ignored as x, — 1 and x;, — 1.

Finally, we note that one can appropriately redefine the
above relations if, instead of particle 1, the observed
particle is n or any of the other particles.

D. Resummation

The factorized form of the differential cross section in
proton-proton collisions in 1PI kinematics is

do.AB—»lmn
*p,

— Z/dxadxb(ﬁa/A(xa)lf’b/B(xb)El
a,b

E,

d&ab—»lmn (sth)
&’ p, ’
(2.4)

where E is the energy of the observed particle 1, ¢, 4
(¢y/p) are parton distribution functions (pdf) for parton
a (b) in proton A (B), and 6*>~!"" is the hard-scattering
partonic cross section. For simplicity we do not explicitly
show in the above equation the dependence on p and pg,
the factorization and renormalization scales.

The resummation of soft-gluon corrections follows
from the factorization of the cross section in integral
transform space [1,4]. We define Laplace transforms
(indicated by a tilde) of the partonic cross section as
6(N) = [3(dsy/s)e /56 (s,,), where N is the transform
variable, and note that logarithms of s,, transform into
logarithms of N, with the latter exponentiating. We also
define transforms of the pdf as ¢p(N) = [ e ¥I=¥)¢p(x)dx.
These definitions are motivated by the structure of
Eq. (2.3).

We also consider the parton-parton cross section
E,dc®"=1" | d3 p,, of the same form as Eq. (2.4) but with
the incoming hadrons replaced by partons [1-5]
|

do.ab—»l---n
E,

22 Vi /dxadquﬁa/a(xa)(l)b/b(xb)

a5,

X El y
d3P1

(2.5)

and define its transform (again indicated by a tilde) as

de"=""(N) /S O o NSulSE do®"="(Sy,)
1 d3 .
0 P

) e “oth
! d3P1

(2.6)
Taking a transform of Eq. (2.5), as defined in Eq. (2.6)

above, and using Eq. (2.3) (ignoring the higher-order
terms), we have

déah—»l-un(N)

E,
d3p1

1
= [ e 05
1
X/ dxbe_Nb(l_Xb>¢b/b(xb)
0

s ds d&ab—ﬂmn s
X/ th e_NSIh/SE] (th)
0

s d3P1
. B dgab—»I-un(N)
g N N E - 2
Paja(Na)bisp(Np)E &,
(2.7)

where N, = N(p3., —u)/s and N, = N(p3.,—1)/s.

Next, we proceed with a refactorization of the cross
section in terms of a new set of functions [1-5]. We first
rewrite Eq. (2.3) as

Slh o

N

2 2 n
U=Prp =P
= —wa< 2 )—wb( S2 )—l—ws—i- ,'51 w;  (2.8)

where the w’s denote dimensionless weights. Note that
w, # 1 —x, and w, # 1 — x;, since they refer to different
functions.

Then, a refactorized form of this cross section [1,4,5] is

d3P1

- / dWadwy (ﬁ dwi) AWsWasa(Wa)Wop(Wh) <ﬁ Ji (Wi)> tr{H”b_’l"'"(as (ug))Seb=tom (WS—\/E) }

HF
(t=p3.,) Z
Wy s2 nZ Wg — w; .

i=1

)
X 5(& + w, (l/t pZ-un) +
S S

(2.9)

The infrared-safe hard function H**~!" describes contributions from the amplitude and from the complex conjugate of the
amplitude. The soft function $°~!" describes the emission of noncollinear soft gluons in the 2 — n process. Both the hard
and the soft functions are process-dependent matrices in color space in the partonic scattering, and the trace of their product
is explicit in the above result. The functions y are distributions for incoming partons at fixed value of momentum, that
describe the dynamics of collinear emission from those partons, and differ from the pdf ¢ [1-4,23]. The J; denote functions
that describe collinear emission from final-state colored particles.
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Taking a transform of Eq. (2.9), of the form defined in Eq. (2.6), and using Eq. (2.8), we then have

d&ab—d---n (N)

E,
d3p1

1 1
_/ dw,e _N“W“!//a/a(wa)/ dwype™NeYoyr, 1, (w),)

( / dw;e i ], (w ))tr{Hab—»l n(as(ﬂR))Aldwse—szxsabﬂ...,, (w;t_;/E)}

= Vasa(Na)5(Ny) <H !

We note that in this refactorized form all the N dependence is
absorbed in the functions S, W, and J, while the hard function
H is independent of N; this is in contrast to the original
factorized form where both the partonic cross section & and
the parton densities ¢ are N dependent [1-4,23].

Comparing Eqgs. (2.7) and (2.10), we get the following
expression for the transform-space hard-scattering partonic
cross section:

df\ab—rl n(N)

£ d3P1
_ lpa(N:t)lilb(NbZ(H?:l Ji(N))
¢a/a(Na)¢b/b(Nb)
x tr{H“b_’l“'"(as(uR))S’“b"l""’ (Niﬂi) } (2.11)

The N dependence of the soft matrix $°~!" is resummed
via renormalization group evolution [1]. We have

S‘Zb—’l'“ﬂ — (Zgb—ﬂ~-n)TS'ab—>1-~nZ§b—>1,..n (212)
where $¢°~1"" is the unrenormalized quantity and Zg"~!""

is a matrix of renormalization constants. Thus, S?~!"
obeys the renormalization group equation

d*\ab—>1 n(
E—————— &p, = exp Lza:bE ] xp[

x tr{H“’Hl (@, (V3)P exp [ /

1700 ) =t 5 (00 ) |

(2.10)
[
0 0\ <
7 Sab—>l~-n
(IMR aﬂR + ﬂ(gs) 893)

_ _(ng—»I-un)%S‘ab—ﬂmn _ Sab—»l---nrgh—»lmn (213)

where ¢ = 4za, and S is the QCD beta function,

dlna = a;\ 1

) = S = — = 2.14
P) = iy =~ 2P < 4ﬂ> (2.14)

The lowest-order term in the above series for the beta
function [24,25] is given by fy = (11C, —2n;)/3 where
C4 = N, with N . the number of colors, and n; is the number
of light quark flavors. The evolution of the soft function is
controlled by the soft anomalous dimension matrix, ng —len
which is calculated from the coefficients of the ultraviolet
poles of eikonal diagrams [1,3,18,26,27].

The transform-space resummed cross section is
derived from the renormalization-group evolution of the
soft function and the other N-dependent functions in
Eq. (2.11), and it is given by [1,4,7]

Zz/ﬂﬁ%yi/i(zvi)} exp{ > E;(N)]

i=a,b

F i=f.s.q.9

0 )

N

- Vs/N d
500 (a, () e | [ Lrgrna o] | 2.15)
N N H
where the symbols P (P) refer to path-ordering in the same (reverse) sense as the integration variable .
The first exponential resums universal soft and collinear contributions from the incoming partons [23,28],
(Y A | 2)? d/l
Ew) = ["a: T St + e - 29} .10
0 - 1
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with A; = Z,‘f’:](as/ﬂ)kAf-k), where Al(-l) = C; with C; =
Cr=(N?2-1)/(2N.) for a quark or antiquark and
C,=C, for a gluon, while A® =C,K/2 with K=

CA(67/18=172/6)=5n,/9. Also D; = 3% (a,/m)kDV,

with Dlm =0 in Feynman gauge (Dgl) = —AEU in axial

gauge). The second exponential gives the scale evolution
in terms of the parton anomalous dimensions y;; =
—A;InN; +y; where y; = Z,‘f’:l(as/ﬂ)kygk), with ygl) =
3Cr/4 for quarks and yE,l) = f,/4 for gluons.

The exponential involving E! describes radiation from
any final-state (f.s.) massless quarks and gluons [3,4]. The
exponential is of course absent for colorless particles, and it
is also absent for massive particles since the mass protects
against mass divergences. For final-state massless quarks or
gluons we have

B - ! Pl { /( )

1-z¢ e 4

+Bjlay((1=2)5)]+ Djlay((1-2)s)] } (2.17)

where B; = Z,‘f:l(as/ﬂ)kBEk), with B(y) = —3Cp/4 for
quarks and Bél) = —f,/4 for gluons.

We note that for jet production the final-state exponential
can have different forms depending on definitions or
constraints for the jets [3]. In this paper we do not study
jet or hadron production but focus on single-particle-
inclusive cross sections, with the form of the exponent
for the final-state particles as given in Eq. (2.17) above.

The process-dependent hard and soft functions (matri-
ces) have the perturbative expansions H®=!"" =
S o (adtk/zkYH®, where the power d depends on
the partonic process, and %=1 =% (g /7)k§H),
Finally the soft anomalous dimension has the expansion
rg= = 5 (/)T

The moment-space resummed cross section in Eq. (2.15)
resums logarithms of the moment variable N. The logarith-
mic accuracy of the resummed cross section in Eq. (2.15) is
not a priorilimited, but it depends on how many higher-order
terms are included in the exponentials and in the process-
dependent hard and soft functions and soft anomalous
dimensions. When the (next-to-)leading powers of loga-
rithms of N are resummed, then we have (next-to-)leading-
logarithm accuracy, etc. For next-to-leading-logarithm
(NLL) resummation, we need one-loop results for the
process-dependent functions; for next-to-NLL (NNLL)
resummation, we need two-loop results, etc. When we invert
the resummed cross section back to momentum space we get
powers of logarithms of s,;, in the form of plus distributions,
with the exact form given in the next subsection.

E. Fixed-order expansions

We can expand the formula for the resummed cross
section, Eq. (2.15), to any fixed order and invert it back to
momentum space. Below we provide explicit results for the
soft-gluon corrections at NLO and NNLO.

The NLO soft-gluon corrections are

ds( ag(u
E, 7 =Fio (k) {e3Di(sm) +c2Do(s) +¢16(s,) }
P T
adt (p .
+ 7r( 2 [A“Dy(s0) + T76(s )], (2.18)

where the plus distributions of logarithms of the threshold
variable are denoted by

M] . (2.19)

Di(sm) = {

Sth

Here F, o, = adtr{H?) S} denotes the leading-order (LO)
coefficient,

ey =2 + A - 3 Al
i=f.s.q,9

(2.20)

where the sum in the last term is over final-state massless
quarks and gluons, and ¢, is given by ¢, = ¢4 + T, with

(2.21)

2
= —(al) +A,(]1>) In </’i)
s

denoting the terms involving logarithms of the scale, and

— 2 ¢ 2
T, = —214,(;1) In <m> _ 2A§)l) In (&)
§ s

+0 +D + 3 (B + D) (2.22)
i=f.s.q,9
denoting the scale-independent terms. Also,
¢ _ 0)~(D7 ¢(0) (0) ¢(0)~(1)
A =u(HYTG'SY + HOSOT).  (2.23)

With regard to the 6(s4) terms, we split them into a term
¢, that is proportional to the Born cross section, and a term
TS that is not. We write ¢; = ¢ + T, with

w2 2
= [AE,I) In (—u + Pz...,,> —I—AE,I) In <—+ pz"‘”)
s s

2 2
— ygl) - yl(qw] In (ﬂ) + d'@ln (lﬁ)
s 4 s

denoting the terms involving logarithms of the scale.
We note that T and T cannot be calculated from the

(2.24)
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resummation formalism but they can be determined from a
comparison to a complete NLO calculation.

We also note that these results differ from past expres-
sions for 2 — 2 processes (see e.g., the review in Ref. [7] or
the earlier review, using different notation, in Ref. [29]) by
having a generalized argument of the logarithms involving
|

d6(2>:F ag(ﬂR)
d3p1 LO 2

1 3 ﬂ Ji!
E, {5(’%1)3(*91}:) + {50302 76 +2

+|:C3C1+C%—§2C§ %Tz—'—% 3111( >+2(

_ 2 /’l Fr) _Po
+ {0201 $rczey + 305+ 1 c21n< S) >
_ 2
( —2A{ +ﬁ0Da )1 (—””2"‘") ( —240

s

+DY? + D P

ad+2(

A((l In <—l/t+p2 n)
2

DAy + A )n? (’i> (AP + AT >)1n< >+
§ i=f.s.q.9

u and t in Eqgs. (2.22) and (2.24), and by having an
expanded sum over final-state particles in Egs. (2.20) and
(2.22). Of course, the 2 — n expressions reduce to the
2 — 2 expressions when n = 2.

The NNLO soft-gluon corrections are

AP +A(2)) + < A 'ZO >:|Dl (S:n)
i=f.5.q,9

t+p2 -n
s

+ DSZ))} Do(s,h)}

)

3 8

d 3 : :
+ ‘72”’0 {5 c3A“Dy(s,,) + [(262 —%)AL + 3Ty + FC] D (s:m)

T

+ ﬂ_O l'l_%? c c c
Cl—C2C3+ 4ln s A +C2T1+G DO(Sth) N

where
Fe = a[HOT{")>s0 4 HO§

and

G° = u[HOTY 5O + HOSOTY 1 FOr{YTsO 4 gOSOY  gOrPTs0) 1 gO Oy,

Again, these results generalize expressions for 2 — 2
processes (see e.g., [7]) and reduce to them when n = 2.
We note that at NNLL (or higher) resummation accuracy
for a given process, all soft-gluon terms in the expansion
through NNLO can be fully calculated.

III. CROSS SECTION AND KINEMATICS

In this section we provide some formulas that are needed
for the calculation of cross sections with multiparticle final
states.

It has been shown by Byckling and Kajantie [30,31] that
one can write the expression for the phase space integration
of a 2 — n scattering process while integrating over only
invariant variables. The details are given in Appendix A.
One can alternatively [31] do the phase space integration by
breaking the process down into successive 1 — 2 decays
and integrating over the relevant solid angle in each rest

(2.25)

Oy 4 2HOT SO (2.26)

(2.27)

|
frame explicitly, as shown in Appendix B. Either way
one obtains an expression for the differential partonic
cross section d?6°0=1" /(dt,_ du,_,) where t,_; = (p, —
pr—-=paa)? and u,y = (pp=pr == par)®
The LO hadronic cross section is obtained by convolut-
ing the differential partonic cross section with the appro-
priate parton distribution functions:

dzal’l"’l n /ldxa/ldxb ) 2d26ab—>1-»-n
S 77

dTn ldUn 1 X, dtn—ldun—l
(3.1)

where S, T,_;, and U,_; are the hadronic analogs of the
partonic invariants. We extend 2 — 3 particle kinematic
definitions [32] to 2 — n particle kinematics, giving the
conditions
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] :xb(Tn—l _m%) +m%7 Up—1 :xa(Un—l _m%l) +m%7

n—1
S=X,XpS, SHty_q+Uy_—mi> E m?,
i=1

0<x,.x, <1, (3.2)

which yield the integration bounds for x, and x;:

= _Tn—l + Z;lz_ll m2
“ S + Un—l - m% '
=y =X (Upy —my) + 370

2
=l (33)

Xb =
an + Tn—l — ny,

0 1

1 0

L pi
Ari(prspas - P —PB) = 1 ph

L ph

1 0

IV. SOFT-GLUON CORRECTIONS FOR 2 - 3
PROCESSES WITH A TOP QUARK AND A HIGGS
OR Z BOSON

In this section we consider several processes involving a
three-particle final state with a top quark and a Higgs
boson, or a top quark and a Z boson. We present the soft
anomalous dimension matrices for these processes at one
and two loops. We also give some brief numerical results

«1 s’ —m? 1
-eb(5)-]
Cr Ly t'(t—m7)
2N, \W'(u-m3?))’

o1 ! (t—m?)

FS(ZI) =1In (/72) ’

u'(u—m?

s(1
Iy =

s(1 S/—mz 1 1
rl) = c, [m( » S’) —2] —N—Cln

where m, is the top-quark mass.
We continue with the z-channel processes b(p,) +

qa(py) = t(p1) + 4'(p2) + H(p3) and b(pa)+q(py) =
t(p1)+4q (p2)+Z(p3). We define the kinematical variables

For an arbitrary 2 — n process, there are § (n — 2)(n — 3)

relations between all possible kinematic invariants that are
not fixed by momentum conservation. These must instead
be fixed by the condition that any five or more vectors are
always linearly dependent in four-dimensional space and
their symmetric Gram determinant vanishes:

Al+l(p17p27'°'1p17_pb):0’ 4§lsn (34)

The Gram determinant condition A;,; = 0 can be equiv-
alently written as a Cayley determinant condition [30] as

1 1 1

ri P Py O

0 ps o Py h

2 0 Pia h|=o. (3.5)
Phg Py 0 1

f th - t; O

|
for t-channel tgH production to illustrate the use of the
formalism.

We begin with the s-channel processes ¢(p,,) + ¢’ (p,) —
H(p1) +b(p2) + H(ps) and q(p.) +q'(py) = t(p1) +
b(py) + Z(p3). We define s, ¢, and u as in Sec. II,
and further define s’ = (p, + p,)%, ¥ = (p, — p»)*, and

= (pa — P2)*. We choose the color basis ¢; = §,,8,, and
¢, = T4,T{,. Then, at one loop, the four elements of the
s-channel soft anomalous dimension matrix are given by

() 5 ()
[

as before and choose the color basis ¢; = §,,0,, and
=TS,T5,. The four elements of the r-channel soft

anomalous dimension matrix at one loop for these proc-
esses are given by

(4.1)
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ey = e [m(18) - .

M= S (%) ,

) =),

r'd) = c, {m (%) - %] - NL In <%>

! 2
e (=)

2 "\ 71 —m)

(4.2)

At two loops, the soft anomalous dimension matrices for
each of these #-channel or s-channel processes can be
written compactly in terms of the corresponding one-loop
results. We have

y K 1

|
F(sn = EF( 1)1 +ZCFCA<1 -{3),
2y K_a
Ii(ﬂ)z = jrgl)z’
2 K _1
1ﬂ<s2>1 = EF.(SZ)I’
K 1

2 1
1ﬂ§2>2 = EF(Sz)z +ZCFCA<1 - {3). (4.3)

We also note that soft anomalous dimension matrices at
one loop for processes with three colored particles in the
final state have appeared in Refs. [33,34].

To illustrate the usefulness of our formalism, we now
briefly apply our methods to the cross section for the
t-channel process b(p,)+q(py) > 1(p1) +4'(p2) + H(p3).
NLO calculations for this process have appeared in
Refs. [35,36]. We set m; =173 GeV and my = 125 GeV,
and we use MMHT2014 pdf [37] via LHAPDF6 [38]. The
calculations of the cross sections at each perturbative order
use the pdf provided at that order.

In our results below we compute higher-order soft-gluon
corrections from resummation at next-to-leading-logarithm
accuracy, and thus only the terms for the highest two
powers of the logarithms are fully determined in our NLO
and NNLO expansions. In our discussion, we denote the
sum of the LO cross section and the NLO soft-gluon
corrections as approximate NLO (aNLO); and we denote
the sum of the aNLO cross section and the NNLO soft-
gluon corrections as approximate NNLO (aNNLO).

For the t-channel tqgH production process with scale
choice up = ugr = m,, we find aNLO enhancements of the
total top + antitop LO cross section of 5.20% at 8 TeV,
14.9% at 13 TeV, and 16.2% at 14 TeV. At aNNLO, we find
enhancements over aNLO of 4.3% at 8 TeV, 4.4% at
13 TeV, and 4.5% at 14 TeV.

The exact NLO enhancements over LO from
MADGRAPH5_aMC@NLO [39] are 5.15% at 8 TeV, 12.5%
at 13 TeV, and 13.0% at 14 TeV, which are quite close to the
aNLO enhancements, showing that the soft-gluon correc-
tions are a significant and dominant portion of the full
corrections, and that our aNLO results approximate very
well the exact NLO results at LHC energies. Our results are
similarly quite close to those from Refs. [35,36] when we
use the corresponding pdf sets and parameters used in those
references.

A detailed phenomenological study of these processes,
including scale dependence, pdf uncertainties, energy
dependence, subleading terms, matching to exact NLO,
etc., is beyond the scope of this work. We plan to further
study these and other processes in future work.

V. CONCLUSIONS

We have presented a soft-gluon resummation formalism
for 2 - n processes in 1PI kinematics, and provided
analytical results for the resummed cross section and
fixed-orders expansions. We also considered in particular
2 — 3 processes, involving a three-particle final state with a
top quark and a Higgs boson, or a top quark and a Z boson,
and we provided explicit results for the soft anomalous
dimension matrices at one and two loops for those
processes, as well as some brief numerical results for
tqH production. We foresee a large number of other
applications to Standard Model and to beyond the
Standard Model processes.
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APPENDIX A: FRAME-INVARIANT
INTEGRATION VARIABLES

As shown by Byckling and Kajantie [30,31], one can
write the expression for the phase space integration of a
2 — n scattering process while integrating over only
invariant variables. For processes with massless initial
states, we have the phase space integral

1
Rals) = 5 [ A} sdty-rdo

[ i 2
X oo X /dp%ﬂtﬂ&%

0(-44(2))
x/dtldszw
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with s=(p,+p;)* and p;.,=(p;+-+p,)*. We define the generalized kinematic invariants t;=(p,—p;—--—p;)>,
u; = (pp—p1—---—p;)? and s; = (p; + pii1)> A4(i) is the four-dimensional Gram determinant which can be
written as
0 tiot = P oic =Dy tis1 = DY
11t =p* . 2t t. 1. —m? [P -
A4(l) I 1 p;l 1 i—1 ) i i—1 i i—1 i+1 21 ) (A2)
16|+, —p7 i+t —m; 2t L+t —miy
it = PTi1 fio Flipn =8 Gt —mpy 214,

The limits of integration are given by

Pii=(s—my = —my)?
pl N ( +m>
P -1 T (2P1 e l[(_p%...i+ti)(p%...i+p%...i—l _mzz) i)“lﬂ(p%...i’ti’0))'1/2(17%...1"p%..,i—l’m%)]’

o V) £ 606G - )] (a3

+ 2 2
S =Pl.is1 TPl T

where A(x,y,z) = (x —y — z)? —4yz, and G(i) and V(i) are given by

0 1 1 1 1
I 0 mi, L P
. 1
G(i) = ) 1 mi, 0 tist Pioin (Ad)
1 4ty 0 0
1 P%..z P1..i+1 0 0
and
| 2pt Pii—t PPl i —m
V(i) = -3 Pii—t 0 Pl =t (AS)
Pl i+ P i—miy Pioig =i 0

The angle ¢ describes a rotation of the process around the beam axis and is trivial for our purposes. Integrating it out,
including the flux factor and the matrix element | M |, and using the identity p? , | = s + t,_; + u,_; — m>%, we obtain the
differential partonic cross section

d*eb=ten 1 O(=A4(n—1))
2 2 4
s == d dt,_»ds,_
dt,_idu,_, 8 (27)*> / Pron2@n=2@n-t g A (n — 1)1/

X - x/dp%zdtzd%%/dhdszwp\/ﬂz (A6)

APPENDIX B: FRAME-DEPENDENT INTEGRATION VARIABLES

One can alternatively [31] do the phase space integration of a2 — n scattering process by breaking the process down into
successive 1 — 2 decays and integrating over the relevant solid angle in each rest frame explicitly:
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ll/Q , 2 ) ’2
Ra(5) = [ apt. g, F 0 L)

M2(pt 1 pYm)
X/dp%...n—zdgn—l Lon-l L.n=2 !

Sp%...n—l
1202 2 2 12002 2 2
X...x/afp%zdS%}L (P122,P12’m3)/d92/1 (P12’2ml’m2)_ (B1)
8P 8P1s

For each of the 1 — 2 decays, one takes the center-of-mass (CM) frame of the outgoing particles. For the nth particle, one
takes the CM frame of the initial state:

pa = (ES,0,0,E(),
Py = (Eb ,0 0 E )
= (E,.0, |p,|sina, |p,|cosa),
P12..n-1 = (E12.p-1,0, =|p,| sina, —|p,| cos @). (B2)
In this frame, we have
Egln) _ Eén) ﬁ, E, =- Lot + Uy — 2m% _ s+ m% — p%...n—l )
2 2./s 2./s
/11/2’2 ’2 =t 2__2_2
Ipn| — (S Pl -1 mn)’ cosa — 1/2un 12 n—1 . :S+ l/uzn 1 2Wln plz_,,n—l7 (B3)
2\/E A (S, pl‘..n—l’mn) A (S, pl..‘n—l’m”)

and dQ,, = d(cos a)dy,,, where the integral over ¢, is trivial for our purposes as before. The first integration can therefore
be converted to the frame-independent form

/11/2(5, p2 m2) 1
dp? dQ Plen=lr 77— dr o du,_d B4
/ pl...n—l n 8S 4-S/ n—10Uy_14¢Q, ( )

to yield the differential partonic cross section

E d*gab=ton :l 1 /dp2 4o AT i PEsas )
dt,_du,_;  8(2x)" o2 8P% e
A2(p2 . p2 ., m2 M2 (py,mi,
‘oox / dptpae, i Pt / a2, ("éz M) | g (BS)
P23 P12

In order to do these integrations, one must go into each 1 — 2 frame explicitly. For the /th particle, one takes the frame

EY.0,0,EM),

= (
= (E).0.prer. al siny . pp_al cosy — ),
Picton = (Erit.m 0 [prer | sing®, priq ulcosyrh),
= (E}, 0, |py| sin@, cos ¢, |p;| cos 9)),
(

Pi.i—1 = (Ei_1-1,0,—|py| sin 6, cos ¢;, —|p;| cos 0;), (B6)

with [dQ; = [7sin0,d0; [}* dg;. Using the same definitions as above, conservation of momentum and on-mass-shell
conditions yield
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gD ST~ Pt EV = S=l=DPiy
2\/1—’%..1 2\/1’%..1
E _ S_p%..l_plz+1...n _ﬂl/z(s’p%...l’pirl...n)
I+1.n = 5 , Pri1.al = ; ;
20/ P 24/ P1.
E - Pra= Pl t Pzz’ E, ., = Prt P~ Plz’

2\/ P%...z

Ipi| = A2 (pimipiic)

2\/ P%...z

2\/ P%..l

[ 1
(E = (EDV + g al?
2|I’l+1.4.n|E£zl)

(B7)
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