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ABSTRACT
Whenreceivingmachine learningservices fromthecloud, theprovider
does not need to receive all features; in fact, only a subset of the fea-
tures are necessary for the target prediction task. Discerning this
subset is the key problem of this work.We formulate this problem as
a gradient-based perturbation maximization method that discovers
this subset in the input feature spacewith respect to the functionality
of the prediction model used by the provider. After identifying the
subset, our framework, Cloak, suppresses the rest of the features
using utility-preserving constant values that are discovered through
a separate gradient-based optimization process.We show that Cloak
does not necessarily require collaboration from the service provider
beyond its normal service, and can be applied in scenarios where
we only have black-box access to the service provider’s model. We
theoretically guarantee that Cloak’s optimizations reduce the upper
bound of the Mutual Information (MI) between the data and the
sifted representations that are sent out. Experimental results show
that Cloak reduces the mutual information between the input and
the sifted representations by 85.01% with only negligible reduction
in utility (1.42%). In addition, we show that Cloak greatly diminishes
adversaries’ ability to learn and infer non-conducive features.

CCS CONCEPTS
• Security and privacy! Privacy protections;Usability in se-
curity and privacy; •Computingmethodologies!Neural net-
works; Computer vision tasks; • Mathematics of computing !
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1 INTRODUCTION
The computational complexity of Machine Learning (ML) models
has pushed their execution to the cloud. The edge devices on the user
side capture and send their data to the cloud for prediction services.
On the one hand, this exchange of data for services has become
pervasive since the provider can enhance the user experience by
potentially using the data for the betterment of its services [68],
which inmany cases is o�ered for free. On the other hand, as soon as
the data is sent to the cloud, it can be misused by the cloud provider,
or leaked through security vulnerabilities even if the cloud provider
is trusted [35, 43, 59, 80, 81]. The insight in this paper is that a large
fraction of the data is not relevant to the prediction service and can
be sifted prior to sending the data out, thus enabling access to the
services with much greater privacy. As such, we propose Cloak, an
orthogonal approach to the existing techniques that mostly rely on
cryptographic solutions and impose prohibitive delays and compu-
tational cost. Table 1 summarizes most state-of-the-art encryption-
based methods and their runtime compared to unencrypted execu-
tion on GPUs. As shown, these techniques impose between 318⇥ to
14,000⇥ slowdown.An image classi�cation inference is performed in
multiple seconds, an order ofmagnitude away from the service-level
agreement between users and cloud providers, which is between 10
to 100 milliseconds according to MLPerf industry measures [55, 69].
Such slowdowns will lead to unacceptable interaction with services
that requirenear real-time response (e.g., homeautomation cameras).
Cloak provides a middle ground, where there is a provable degree
of privacy while the prediction latency is essentially una�ected. To
that end, Cloak only sends out the features that the provider essen-
tially requires to carry out the requested service. Existing privacy
techniques are applicable to scenarios that can tolerate longer de-
lays, but are not currently suitable for consumer applications, which
rely on interactive prediction services. However, having no privacy
protection is also not desirable.

To that end, this paper presents Cloak, a framework that sifts the
features of the data based on their relevance to the target prediction
task.Tosolve thisproblem,wereformulate theobjectiveasagradient-
based optimization problem, that generates a sifted representation of
the input. The intuition is that if a feature can consistently tolerate
the addition of noise without degrading the utility, that feature is
not conducive to the classi�cation task. As such, we augment each
feature iwith a scaled addition of a noise distribution (�i .N(0,1)) and
learn the scales (�i s). To learn the scales, we start with a pre-trained
classi�er with known parameters and drive a loss function with
respect to the scales while the formulation comprises the model as a
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Table 1: Slowdown of cryptographic techniques vs. conventional GPU execution on Titan Xp and Cloak.

Cryptographic Release DNN Dataset Prediction Time (sec) Slowdown
Technique Year Encrypted Conventional Cloak

FALCON [85] 2020 VGG-16 ImageNet 12.96 0.0145 0.0148 906⇥
DELPHI [54] 2020 ResNet-32 CIFAR-100 3.5 0.0112 0.0113 318⇥
CrypTen [22] 2019 ResNet-18 ImageNet 8.30 0.0121 0.0123 691⇥
GAZELLE [30] 2018 ResNet-32 CIFAR-100 82.00 0.0112 0.0113 7,454⇥
MiniONN [45] 2017 LeNet-5 MNIST 9.32 0.0007 0.0007 14,121⇥

Figure 1: Cloak’s discovered features for target DNN classi-
�ers (VGG-16) for black-hair color, eyeglasses, gender, and
smile detection. The colored features are conducive to the
task. The 3 sets of features depicted for each task correspond
to di�erent suppression ratios (SR). AL denotes the range of
accuracy loss imposed by the suppression.

known analytical function. The larger the scales, the larger the noise
that can be added to a corresponding feature, and the less conducive
the feature is. As such, the learned scales are thresholded to sup-
press the non-conducive features to a constant value, which yields
the sifted representation of the input. By removing such features,
Cloak guarantees that no information about them can be learned
or inferred from the sifted representation that the consumer sends.
Figure 1 shows examples of conducive features formultiple tasks dis-
covered by Cloak and the corresponding sifted representation for an
example image. Our di�erentiable formulation of �nding the scales
minimizes the upper bound of theMutual Information (MI) between
the irrelevant features and the sifted representation (maximizing pri-
vacy) while maximizing the lower bound of MI between the relevant
features and the generated representation (preserving utility).

Experimentalevaluationwithreal-worlddatasetsofUTKFace[87],
CIFAR-100 [37], andMNIST [40] shows that Cloak can reduce the
mutual information between input images and the publicized repre-
sentation by 85.01%with an accuracy loss of only 1.42%. In addition,

we evaluate the protection o�ered by Cloak against adversaries that
try to infer data properties from sifted representations on CelebA
dataset [47].Weshowthat sifted representationsgenerated for “smile
detection” as the target task e�ectively prevent adversaries from
inferring information about hair color and/or eyeglasses. We show
that Cloak can provide these protections even in a black-box setting
where we do not have access to the service provider’s model param-
eters or architecture. Additionally, we show that Cloak outperforms
Shredder [52], a recent work in prediction privacy that heuristically
samples and reorders additive noise at run time to imitate the pre-
viously collected patterns. We further show that Cloak can improve
the classi�er’s fairness. The code for the proposed method is avail-
able at https://github.com/mireshghallah/cloak-www-21, and the
details of the experimental setup and the hyperparameters used for
the evaluations are provided in the appendix.

2 PRELIMINARIES
In this section, we discuss the notation and fundamental concepts
used in the rest of the paper, starting with our threat model.

Threat Model. We assume a remote prediction service setup,
where a speci�c target prediction task is executed on input data. Our
goal is to create a representation xs of the input data x that has only
the features that are essential to the target task, and suppresses exces-
sive features in the input.We then send thisxs to the service provider.
For our theoretical and empirical evaluations, we adopt supervised
classi�cation tasks as our target.We assume two accessmodes to the
target classi�er f� : white-box and black-box. In the white-box setup,
we assume access to the architecture and parameters � of the target
classi�er. In the black-box setup, we have no access to the target clas-
si�er, nor the data it was trained on. In both cases, we need labeled
training data from the data distributionD, that the target classi�er
was trained on. We do not, however, need access to the exact same
trainingdata, nordoweneedanyextra collaboration fromthe service
provider, such as a change in infrastructure or model parameters.

Feature Space.We assume each given input x to be a collection
of features, and group these features based on their importance for
the decision making of the target classi�er, f� . We de�ne the two
disjoint feature groups of conducive features, c, which are those
relevant to the target task and important to f� and non-conducive
features, u, which are less relevant. Our goal is to �nd the conducive
features and only keep them.

Mutual Information. The amount of mutual information be-
tween the raw data x, and the representation that is to be publicized,
xs is ameasure of privacy that is widely used in literature [16, 33, 42],

670



Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

and is denoted by I (x; xs). Cloak aims at learning representations
xs that decrease this mutual information while maintaining the
accuracy of the target classi�cation task. Formally, Cloak tries to
minimize I (xs; u)while maximizing I (xs; c).

3 CLOAK’S OPTIMIZATION PROBLEM
Thissection formallydescribes theoptimizationproblemandpresents
a computationally tractable method towards solving it. Let x2Rn be
an input, and c✓x and u✓x be two disjoint sets of conducive and
non-conducive features with respect to our target classi�er (f� ). We
construct a noisy representation xc=x+rwhere r⇠N(µ,�) and � is
a diagonal covariance matrix, as we set the elements of the noise to
be independent. This noisy representation helps �nd the conducive
features and is used to create a �nal suppressed representation xs
that is sent to the service provider. The goal is to construct xc such
that the mutual information between xc and u is minimized (for
privacy), while the mutual information between xc and c is maxi-
mized (for utility). The is written as the following soft-constrained
optimization problem:

min
xc

I (xc; u)��I (xc; c) (1)

The intuitive solution is to set xc = c. But, directly �nding c is, in
most cases, not tractable due to the high complexity of classi�ers. To
solve this problem, we bound the terms of our optimization problem
of Equation 1, and then take an iterative approach [8]. To this end,
we �nd an upper bound for I (xc; u) and a lower bound for I (xc; c).

3.1 Upper bound on I (xc;u)
Since u is a subset of x, the following holds:

I (xc; u) I (xc; x)=H(xc)�H(xc |x)=H(xc)�
1
2
log((2�e)n |�|)

(2)

WhereH(xc |x) is the entropy of the added Gaussian noise. Here
|�| denotes the determinant of the covariancematrix. Then by apply-
ing Theorem A.1 (from the appendix) which gives an upper bound
for the entropy, to xc, we can write:

I (xc; u)
1
2
log((2�e)n

|Co�(xc)|
|�|

) (3)

Since x and r are independent variables and xc = x+r, we have
|Co�(xc)|= |Co�(x)+�|. In addition, since covariance matrices are
positive semi-de�nite, we can get the eigen decomposition ofCo�(x)
asQ�QT where the diagonal matrix � has the eigenvalues. Since
� is already a diagonal matrix, |Co�(x) + �| = |Q(� + �2

)QT
| =Œn

i=1(�i +�
2
i ). By substituting this in Equation 3, and simplifying

we get the upper bound for I (xc; u) as the following:

I (xc; u)
1
2
log((2�e)n

n÷
i=1

(1+
�i
� 2
i
)) (4)

3.2 Lower bound on I (xc;c)
Theorem 3.1. The lower bound on I (xc;c) is:

H(c)+max
q
Exc,c[logq(c|xc)] (5)

Where q denotes all members of a possible family of distributions for
this conditional probability.

P����. The lemma and accompanying proof for this theorem are
in the appendix. ⇤

3.3 Loss Function
Now that we have the upper and lower bounds, we can reduce our
problem to the following optimizationwhereweminimize the upper
bound (Equation 4) and maximize the lower bound (Equation 5):

min
� ,q

1
2
log((2�e)n

n÷
i=1

(1+
�i
� 2
i
))+�

’
ci,xci

(�logq(ci |xci )) (6)

We omit theH(c) from the lower bound in Equation 5, since it is a
constant.Wealsowrite theexpectedvalue in the sameequation in the
formof a summation over all possible representations and conducive
features. To make this summation tractable, in our loss function we
replace this part of the formulation with the empirical cross-entropy
loss of the target classi�er over all training examples. In other words,
the lossofpreserving theconducive features is substitutedby theclas-
si�cation loss for those features. We also relax the optimization fur-
ther by rewriting the �rst term. Since minimizing this term is equiv-
alent to maximizing the standard deviation of the noise, we change
the fraction into a subtraction. Our �nal loss function becomes:

L=�log
1
n

n’
i=0

� 2
i +�Er⇠N(µ,� 2),x⇠D

h
�

K’
k=1

�k log(f� (x+r))k
i

(7)

The second term is the expected cross-entropy loss, over the ran-
domness of the noise and the data instances. The variable µ is the
mean of the noise distributions. The variable K is the number of
classes for the target task, and�k is the indicator variable that deter-
mines if a given example belongs to classk . More intuitively, the �rst
term increases thenoiseof each featureandprovidesprivacy.The sec-
ond term decreases the classi�cation error and maintains accuracy.
Theparameter� is a knob thatprovides a trade-o�between these two.

3.4 Suppressed Representation
After �nding the noisy representation xc, we use it to generate the
�nal suppressed representation xs. By applying a cuto� threshold
T on � , we generate binary mask b such that bi = 1 if �i �T , and
bi =0 otherwise. We create representation xs= (x+r)�b+µs, where
r ⇠N(0,� ) and µs are constant values that are set to replace non-
conducive features. According to the data processing inequality [7],
theupperboundon I (xc;u)holds forxs aswell, since I (xs;u) I (xc;u).
The same inequality also implies that the lower bound achieved for
I (xc;c) does not necessarily hold for xs. To address this, we write
another optimization problem, to�nd µs such that cross entropy loss,
i.e,minµs

ÕK
k=1�k log(f� (xs))k isminimized. Solving this guarantees

that the lower bound of Equation 5 also holds for I (xs; c).

4 CLOAK FRAMEWORK
This section describes Cloak’s framework in more detail. Cloak
comprises of two phases: �rst, an o�ine phase where we solve the
optimization problems to �nd the conduciveness of the features and
the suppression constant values. Second, an online prediction phase
where the non-conducive features in a given input are suppressed
and a sifted and a suppressed representation of the data is sent to
the remote target service provider for prediction. In this section we
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discuss details of these two phases, starting from the details of the
o�ine phase.

4.1 Noise Re-parameterization and Constraints
To solve the optimization problem of Section 3, Cloak’s approach is
to cast the noise distribution parameters as trainable tensors,making
it possible to solve the problem using conventional gradient-based
methods. To be able to de�ne gradients over the means and vari-
ances, we rewrite the noise sampling to be r=� �e+µ, instead of
r⇠N(µ,�2

), where e⇠N(0,1). The symbol � denotes the element-
wise multiplication of elements of� and e. This rede�nition enables
us to formulate the problem as an analytical function for which we
can calculate the gradients.We also need to reparameterize� to limit
the range of standard deviation of each feature (� ). If it is learned
through a gradient-based optimization, it can take on any value,
while we know that variance can not be negative. In addition, we
also do not want the �s to grow over a given maximum,M . We put
this extra constraint on the distributions, to limit the �s from grow-
ing in�nitely (to decrease the loss), taking the growth opportunity
from the standard deviation of the other features. Finally, we de�ne
a trainable parameter � and write� = 1.0+tanh(�)

2 M , where the tanh
function is used to constraint the range of the �s, and the addition
of 1 is to guarantee the positivity of the variance.

4.2 Cloak’s Perturbation TrainingWork�ow
Algorithm 1 shows the steps of Cloak’s optimization process. This
algorithm takes the training data (D), labels (�), a pre-trained model
(f� ), and the privacy-utility knob (�) as input, and computes the
optimized tensor for noise distribution parameters. During the ini-
tialization step, the algorithm sets the trainable tensor for the means
(µ) to 0 and initializes the substitute trainable tensor (�) with a large
negative number. This generates the initial value of zero for the
standard deviations.

In each step of the optimization, the algorithm calculates the loss
function on a batch of training data and computes the gradient of
the loss with respect to the µ and � by applying backpropagation.
Since the loss (Equation 7) incorporates expected value over noise
samples, Cloak uses Monte Carlo sampling [34] with a su�ciently
large number of noise samples to calculate the loss. This means that
to apply a single update to the trainable parameters, Cloak runs
multiple forward passes on the entire classi�er, at each pass draws
new samples for the noise tensor (the elements ofwhich are indepen-
dently drawn), and averages over the losses and applies the update
using the average. However, in practice, if mini-batch training is
used, only a single noise sample for each update can yield desirable
results, since anewnoise tensor is sampled for eachmini-batch.Once
the training is �nished, the optimized mean and standard deviation
tensors are collected and passed to the next phase.

4.3 Feature Sifting and Suppression
For sifting the features we use the trained standard deviation tensor
(� ), which we call “noise map". A high value in the noise map for a
feature indicates that the feature is less important. Di�erent noise
maps are created by changing the privacy-utility knob (�). We use
a cuto� thresholdT , to map the continuous spectrum of values of a
noise map, to binary values (b). While choosing the cuto� threshold

Algorithm 1 Perturbation Training
1: Input:D,�, f� ,m, �
2: Initialize µ=0, �=�10 andM � 0
3: repeat
4: Select training batch x fromD

5: Sample e⇠N(0,1)
6: Let� = 1.0+tanh(�)

2 (M)

7: Let r=� �e+µ
8: Take gradient step on µ, � from Eq. (7)
9: untilAlgorithm converges
10: Return: µ,�

Algorithm 2 Suppression-Value Training
1: Input:D,�, f� ,� , µ, b
2: Initialize µs =µ
3: repeat
4: Select training batch x fromD

5: Sample r⇠N(0,�2
)

6: Let xs= (x+r)�b+µs
7: Take gradient step on µs from Er [LCE (f� (xs),�)]
8: untilAlgorithm converges
9: Return: µs

(T ) depends on the privacy-utility trade-o�s, in practice, �nding the
optimal value forT is not challenging. That is because the trained� s
are easy to be sifted as they are pushed to either side of the spectrum,
i.e., they either have a very large (nearM) or a very small value (near
0). See Section 5.6 for more details.

To suppress the non-conducive features, one simpleway is to send
the noisy representations, i.e, adding noise from the (µ,�2

) to the
input to get the xc representations that are sent out for prediction.
This method, however, su�ers from two shortcomings: �rst, it does
not directly suppress and remove the features, which could leave the
possibility of data leakage. Second, because of the high standard devi-
ations of noise, in some cases, the generated representationmight be
out of the domain of the target classi�er, which could have negative
e�ects on the utility. Anotherway of suppressing the non-conducive
features is to replace them with zeros (black pixels in images for
example). This scheme also, su�ers from potential accuracy degrada-
tion, as the values we are using for suppression (i.e. the zeros) might
not match the distribution of the data that the classi�er expects.

To address this, we �nd a suppressed representation (Section 3.4),
i.e., we train the constant suppression values that need to replace
the non-conducive features. Intuitively, these learned values reveal
what the target classi�er perceives as common among all the inputs
from the training set, and what it expects to see. Algorithm 2 shows
the steps of this training process. The algorithm �nds µs , the values
by which we replace the non-conducive features. The only objective
of this training process is to increase the accuracy, therefore we use
the cross-entropy loss as our loss function.
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4.4 Online Prediction
The prediction (inference) phase is when unseen test inputs that we
protect are sent to the remote service provider for classi�cation. This
process is computationally e�cient; it only adds noise sampling,
masking, and addition to the normal conventional prediction pro-
cess. First, a noise tensor sampled from the optimized distribution
N(0,�2

) is added to the input, then the binary mask b is applied to
the noisy input image. Finally, µs is added to x and the resulting
sifted representation is sent to the service provider. As an example,
the last row of Figure 1 shows representations generated by Cloak,
for di�erent tasks, using the noise maps from the third row. As the
images show, the non-conducive features are removed and replaced
with µs . The conducive features, however, are visible.

5 EXPERIMENTALRESULTS
To evaluate Cloak, we use four real-world datasets on four Deep
Neural Networks (DNNs). Namely, we use VGG-16 [76] and ResNet-
18 [26] on CelebA [47], AlexNet [38] on CIFAR-100 [37], a modi�ed
version of VGG-16 model on UTKFace [87], and LeNet-5 [39] on
MNIST [40]. The mutual information numbers reported in this sec-
tion are estimated over the test set using the ShannonMutual Infor-
mation estimator provided by the Python ITE toolbox [79]. For the
experiments that are devised to compare Cloak with previous work,
Shredder [52], in order to create a similar setup, we apply Cloak to
the last convolution layer of the DNN and create sifted intermediate
representations which are then sent to the target classi�er. In the
other experiments, Cloak is applied directly to the input images.
Code and information about hyper-parameters used in each of the
experiments is provided in the appendix.

5.1 Detailed Experimental Setup
In this section, we elaborate on the details of our experimental setup.
This includes dataset speci�cations, hardware and OS speci�cations,
neural network architectures, and �nally, mutual information esti-
mation.

5.1.1 Dataset Specifications. There are four datasets used in our
evaluations:CelebA[47],CIFAR-100[37],UTKFace[87]andMNIST[40].
We have used these datasets with VGG-16 [76], ResNet-18 [26],
AlexNet [38], VGG-16 (modi�ed), and LeNet-5 [39] neural networks,
respectively. We de�ne a set of target prediction tasks over these
datasets. Speci�cally, we use smile detection, black-hair color classi-
�cation, and eyeglass detection onCelebA, the 20 super-class classi�-
cation on CIFAR-100, and gender detection on UTKFace. For MNIST,
we use a classi�er that detects if the input is greater than �ve and an-
other one that classi�eswhat the input digit actually is. The accuracy
numbers reported in this section are all on a held-out test set, which
has not been seen during training by the neural networks. For Cloak
results, since the output is not deterministic, we repeatedly run the
prediction ten times on the test set with the batch size of one and re-
port themean accuracy. Since the standard deviation of the accuracy
numbers is small (consistently less than 1.0%) the con�dence bars are
not visible on the graphs. The input image sizes for CelebA, CIFAR-
100, UTKFace and MNIST are 224⇥224⇥3, 32⇥32⇥3, 32⇥32⇥3, and
32⇥32, respectively. In addition, in our experiments, the inputs are all

normalized to 1. The experiments are all carried out using Python 3.6
and PyTorch 1.3.1. We use Adam optimizer for perturbation training.

5.1.2 Experimentation Hardware and OS. We have run the experi-
ments for CelebA dataset on an Nvidia RTX 2080 Ti GPU, with 11GB
VRAM, paired with 10 Intel Core i9-9820X processors with 64GBs
of memory. The rest of the experiments were run on the CPU. The
system runs an Ubuntu 18.04 OS, with CUDA version V10.2.89.

5.1.3 Neural Network Architectures. The code for all the models is
available in the supplementary materials. The VGG-16 for UTKFace
is di�erent from the conventional one in the size of the last 3 fully
connected layers. They are (512,256), (256,256) and (256,2). The pre-
trained accuracy of the networks for smile detection, super-class
classi�cation, gender detection, and greater than �ve detection are
91.8%, 55.7%, 87.87%, and 99.29%.

5.1.4 Mutual Information Estimation. The mutual information be-
tween the input images and their noisy representations are estimated
over the test set images using ITE [79] toolbox’s Shannonmutual in-
formationestimator. ForMNIST images, ourdatasethas inputsof size
32⇥32 pixels, which we �atten to 1024 element vectors, for estimat-
ing the mutual information. For other datasets, since the images are
larger (32⇥32⇥3), there are more dimensions and mutual informa-
tion estimation is not accurate. So, we calculate mutual information
channel by channel (i.e.we estimate themutual informationbetween
the red channel of the image and its noisy representation, then the
green channel and then blue), and we average over all channels.

The numbers reported in 5.2 are mutual information loss percent-
ages,whichmeans the lostmutual information among the publicized
image and the original one is divided by the information content in
the original images. This information content was estimated using
self-information (Shannon information), using the same toolbox.

5.2 Privacy-Accuracy Trade-O�
Figure 2 shows accuracy loss of the DNN classi�ers using sifted
representations vs. the loss in mutual information. This is the loss
in mutual information between the original image and its noisy
representation, divided by the amount of information in bits in the
original image. The target tasks are 20 superclass classi�cation for
CIFAR-100,>5 classi�cation forMNIST and gender classi�cation for
UTKFace. In this experiment, we compare Cloak to adding Gaussian
perturbation of mean zero and di�erent standard deviations to all
pixels of the images. For fair comparison,we chooseCloak’s suppres-
sion with noisy representations. For MNIST and UTKFace, Cloak
reduces the information in the input signi�cantly (93% and 85% re-
spectively) with little loss in accuracy (0.5% and 2.7%). In CIFAR-100,
the accuracy is slightly more sensitive to the mutual information
loss. This is due to the di�erence in the classi�cation tasks. The tasks
forMNIST andUTKFace have only two classes, while for CIFAR-100,
the classi�er needs to distinguish between 20 classes.

For all three datasets, we see that Cloak achieves a signi�cantly
higher accuracy for same loss in mutual information compared to
Gaussian perturbation. This is because Cloak adds more noise to
the irrelevant features, and less to the relevant ones, whereas Gauss-
ian perturbations are added uniformly across the input. We do not
presentmutual information results for theCelebAdataset here, since
the input images have an extremely large number of features and
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(a) CIFAR-100 (b) MNIST (c) UTKFace

Figure 2: Privacy-accuracy trade-o� for CIFAR-100, MNIST and UTKFace dataset.

the mutual information estimator tool is not capable of estimating
the mutual information accurately.

5.3 Adversary to Infer Information
To further evaluate the e�ectiveness of the representations that
Cloak generates, we devise an experiment in which an adversary
tries to infer properties of the sifted representations using a DNN
classi�er.We assume two adversarymodels here. First, the adversary
has access to a unlimited number of samples from the sifted represen-
tations, therefore she can re-train her classi�er to regain accuracy
on the sifted representations. Second, a model in which the adver-
sary’s access to the sifted representation is limited and therefore she
cannot retrain her classi�er on the sifted representations. In this ex-
periment, we choose smile detection as the target prediction task for
which Cloak generates representations. Then, we model adversaries
who try to discover two properties from the sifted representations:
whether people in images wear glasses or not andwhether their hair
is black or not. The adversaries have pre-trained classi�ers for both
these tasks. The classi�ers areVGG-16DNNs,with accuracy of 96.4%
and 88.2% for glasses and hair color classi�cation, respectively.

Figure 3 shows the results of this experiment. Each point in this
�gure is generated using a noise mapwith a Suppression Ration (SR)
noted in the �gure. Higher SR means more features are suppressed.
When adversaries do not retrain their models, using sifted represen-
tationswith 95.6% suppression ratio causes the adversaries to almost
completely lose their ability to infer eyeglasses or hair color and
reach to the random classi�er accuracy (50%). This is achieved while
the target smile detection task only loses 5.16% accuracy. When
adversaries retrain their models, using representations with slightly
higher suppression ratio (98.3%) achieves the same goal. But this
time, the accuracy of the target task drops to 78.9%. With the same
suppression ratio, the adversary who tries to infer hair color loses
more accuracy than the adversary who tries to infer eyeglasses. This
is because, as shown in Figure 1, the conducive features of smile over-
lap less with the conducive features of hair than with the conducive
features of eyeglasses.

5.4 Black-Box AccessMode
To show the applicability of Cloak, we show that it is possible for
Cloak to protect users’ privacy even when we have limited access to
the targetmodel.Weconsiderablack-boxsetting inwhichweassume
Cloak does not have any knowledge of the target model architecture

Figure 3: Cloak’s protection for target task of smile detection
(CelebA dataset) against adversaries that try to infer black-
hair color or wearing of eyeglasses from the sifted represen-
tations.

Figure 4: E�ects of Cloak on fairness

Figure 5: Comparison to Shredder [52]
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or its parameters and is only allowed to send requests and get back
responses. In this setting, we �rst train a substitute model that helps
us to train Cloak’s representations. Note that training a substitute
model for black-box setting is a well-established practice in the con-
text of adversarial examples [49, 63] and inference attacks [28, 75].
The main challenge is generating the training data needed for train-
ing the substitute model. However, that has been already addressed
inpreviousworkandwe followa similarmethodology to themethod-
ology described in Shokri et al. [75]. We divide the original dataset
(CelebA) into two equal-size disjoint training sets, one for the target
and the other for the substitute model. We assume a target service
provider that has twoResNet18 [26]DNNs deployed, one for the task
ofblackhair color classi�cation, andone for smiledetection. Sincewe
assume no knowledge of the model architecture, Cloak substitutes
the target classi�ers with another architecture, i.e, with two VGG-16
DNNs. Cloak substitute models for the hair and smile tasks have
accuracies of 84.9% and 90.9% and the target models have accuracies
of 87.3% and 91.8%. After training the substitute model, we apply
Cloak to them to �nd noise maps and suppressed representations.

Figure 6c and 6d show the results for these experiments. Cloak
performs similarly e�ective in both white-box and black-box set-
tings and for both hair color classi�cation and smile detection tasks.
The reason is that the DNN classi�ers of the same task are known to
learn similar patterns and decision boundaries [3, 63]. For the smile
detection, we can see that with suppression ratio of 33%, The Cloak
black-box generated representations can get prediction accuracy
of 91.3%, even higher than the baseline prediction accuracy of the
classi�er it is produced from. That is because the generated repre-
sentations are fed to the target classi�er, which has a higher baseline
accuracy than the substitute model.

5.5 Post-hoc E�ects of Cloak on Fairness
Cloak, by removing extra features, not only bene�ts privacy but can
also remove unintended biases of the classi�er, resulting in a more
fair classi�cation. In many cases the features that bias the classi�ers
highly overlapwith the non-conducive features that Cloak discovers.
Therefore, applying Cloak can result in predictions that are more
fair, without the need to change the classi�er. This subsection eval-
uates this positive side-e�ect of Cloak by adopting a setup similar to
that of Kairouz et al. [31]. We measure the fairness of the black-hair
color classi�er using the sifted representations, while considering
gender to be a sensitive variable that can cause bias. We use two
metrics for our experiments, the di�erence in Demographic Par-
ity (�DemP ), and the di�erence in Equal Opportunity (�EO ). More
details on themetrics and themeasurements can be found in the sup-
plementary material. Figure 4 shows that as Cloak suppresses more
non-conducive features, the fairness metrics improve signi�cantly.
We see 0.05 reduction in both metrics due to the removal of gender
related non-conducive features. It is noteworthy that the biasing
features in the hair color classi�er are not necessarily the gender fea-
tures shown in Figure 1. Those features showwhat a gender classi�er
uses to make its decision.

5.6 Thresholds, Suppression
Mechanisms, and Comparison to Shredder

Sensitivity to threshold values. Figure 6a shows the e�ect of dif-
ferent thresholds (T ) values on suppression ratio of features on smile
detection (on CelebA/ VGG-16). Di�erent series show di�erent noise
maps attained with di�erent values of �. �̄ denotes the average
standard deviation of a noise map, and the parameterM (maximum
standard deviation) of Section 4.1 is set to 5. The�gure shows that the
choiceofT isnotcritical and in fact is a simple task, since ithas little ef-
fect on the subset of features that get suppressed. This is because dur-
ing the training of perturbation parameters, the standard deviations
arepushed to the either sides of the spectrum (close to 0or close toM).

Di�erent suppression schemes. Figure 6b shows the accuracy
of three suppression schemes described in Section 4.3 on the smile
detection task (on CelebA/ VGG-16). Among di�erent schemes, sup-
pression using the trained values yields better accuracy for the same
suppression ratio, since it captures what the classi�er expects to
receives. Suppression with noise (sending noisy representations)
performs slightly worse than training, and that is mainly due to the
uncertainty brought by the noise.

Comparision to Shredder. Figure 5 compares Cloak and Shred-
der [52] on theMNIST dataset using LeNet for the target task of digit
classi�cation. To create a fair setup, we deploy Cloak to the output
of the last convolution layer of LeNet, similar to Shredder. Cloak
achieves a signi�cantly higher accuracy for same levels of MI loss,
which shows the e�ectiveness of Cloak, in the intermediate repre-
sentation space. For the initial point where there is almost no loss in
accuracy, Cloak achieves 18.4%more information loss. This better
performance is partly due to directly learning the importance of each
feature, as opposed to generating patterns similar to a collection that
yields high accuracy. It is also partly due to the extra step that Cloak
takes at learning the constant suppression values, which ensures the
generated representations are in the domain of the classi�er.

6 RELATEDWORK
This section reviews related work on the privacy of web services.
The section �rst brie�y discusses the privacy of web applications in
general, and then more thoroughly discusses privacy in the context
of machine learning.

6.1 Web-application Privacy
Despite the privacy issues, sharing personal content on the web
unfortunately is still common. Therefore, researchers lavished at-
tention on the research that makes such sharing safe, secure, and
private [4, 17]. Mannan et al. [51] proposed amethod that focuses on
privacy-enhanced web content sharing in any user-chosen web
server. There is also a body of work that conducts longitudinal
studies on deleted web content and their subsequent information
leakage [6, 57]. The research in this area focuses on data leakage
through socialmedia [73, 88], blogging services that publish informa-
tion [83], or aggregation of web data [66]. Cloak, however, focuses
on an inference-as-a-service setup where private queries that poten-
tially contain sensitive information are sent to a web-service to run
machine learning inference.
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(a) Threshold Sensitivity (b) Suppression Schemes (c) Black-box-smile detection (d) Black-box-hair color

Figure 6: (a) shows the e�ect of di�erent thresholds on suppression rate. (b) compares di�erent suppressionmethods. (c) and (d)
show performance of Cloak in a black-box setting.

6.2 Machine Learning Privacy
Privacy-preserving machine learning research can be broadly cat-
egorized based on the phase on which they focus, i.e., training vs
prediction. The majority of these studies fall under the training cat-
egory [53] where they try to protect contributors’ private data from
getting embedded in the trained MLmodel [1, 13, 14, 29, 62, 74, 78]
or from being published in public datasets [19–21]. However, the im-
pending importance of prediction (inference) privacy has led to the
emergence of recent research e�orts in this direction [18, 27, 41, 60,
61, 86]. There is also a smaller body of work focused on the privacy
of model architecture and parameters [11, 36], which is out of the
scope of this paper. Below, the more related works are discussed in
more detail.

Trainingphase. For training, the literature aboundswith studies
that use noise addition as a randomizationmechanism to protect pri-
vacy [1, 13, 14, 21, 62, 64, 74]. Most notably, di�erential privacy [20],
a mathematical framework that quanti�es privacy, has spawned a
vast body of research in noise-adding mechanisms. For instance,
it has been applied to many machine learning algorithms, such as
logistic regression [12], statistical risk minimization [13], principal
component analysis [14, 29], and deep learning [1, 62, 64, 72, 74], to
name a few. Many of these studies have applied di�erential privacy
to a training setting where they are concerned with leaking private
information in training set through the machine learning model.
There is also a body of work focused on secure training of machine
learning models using cryptographic protocols [2, 2, 25, 56, 70, 71].

Finally, there are also several privacy-enhancing mechanisms,
such as Federated learning [32, 46] and Split learning [65, 77], which
use gradients or abstract representations of data in lieu of raw inputs,
to train MLmodels and enhance privacy. These methods have been
coupled with di�erential privacy [5, 10, 67] or information-theoretic
notions [84] to provide meaningful privacy guarantees.

Prediction/Inference privacy.Only a handful of studies have
addressed privacy of prediction by adding noise to the data. Osia
et al. [60] employed dimensionality reduction techniques to reduce
the amount of information before sending it to an untrusted cloud
service. Wang et al. [86] propose a noise injection framework that
randomly nulli�es input elements for private inference, but their
method requires retraining of the entire network. Leroux et al. [41]
propose an autoencoder to randomize the data, but the intensity of
their obfuscation is too small to be irreversible, as they state.

Liu et al. [44] propose DEEProtect, an information-theoretic
method which o�ers two usage modes for protecting privacy. One

where it assumes no access to the privacy-sensitive inference la-
bels and one where it assumes access to the privacy-sensitive labels.
Deeprotect incorporates the sensitive inference into its formulation
for the latter usage mode. Amore recent work, Shredder [52], pro-
poses to heuristically sample and reorder additive noise at run time
based on the previously collected additive tensors that the DNN can
tolerate (anti-adversarial patterns). In contrast, Cloak’s approach is
to directly reduce information by learning conducive features and
suppressing non-conducive ones with learned constant values. We
also experimentally show that Cloak outperforms this prior work.
More importantly, this prior work relies on executing parts of the
network on the edge side and sending the results to the cloud. How-
ever, this separation is not always possible, as the service providers
might not be willing to share the model parameters or change their
infrastructure to accommodate for this method. Also, in some cases,
the edge device might be incapable of running the �rst convolu-
tion layers of the neural network. In contrast, we show that Cloak
can perform equally e�ciently in black-box settings without the
collaboration of the service provider.

Privacy on o�oaded computation can also be provided by the
means of cryptographic tools such as homomorphic encryption
and/or Secure Multiparty Computation (SMC) [9, 18, 23, 30, 45, 48,
54, 85]. However, these approaches su�er from a prohibitive compu-
tational cost (Table 1), on both the cloud and user side, exacerbating
the complexity and compute-intensity of neural networks especially
on resource-constrained edge devices. Cloak, in contrast, avoids the
signi�cant cost of encryption and homomorphic data processing.

Several other research [24, 58, 82] rely on trusted execution en-
vironments to remotely run ML algorithms. However, this model
requires the users to send their data to an enclave running on remote
servers and is vulnerable to the new breaches in hardware [35, 43].

7 CONCLUSION
The surge in the use of machine learning is driven by the growth in
data and compute power. The data mostly comes from people [81]
and includes anabundanceofprivate information.WeproposeCloak,
a mechanism that �nds features in the data that are unimportant
and non-conducive for a cloudML prediction model. This enables
Cloak to suppress those features before sending them to the cloud,
providing only the minimum information exposure necessary to
receive the particular service. In doing so, Cloak not only minimizes
the impact on the utility of the service, but it also imposes minimal
overhead on the response time of the prediction service.
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A APPENDIX
A.1 Theorem for Upper bound on I (xc;u)
TheoremA.1. Given a random vector x2Rn with covariancematrix
K, then:

H(x)
1
2
log((2�e)n |K|) (8)

P����. This theoremisprovedusing the fact that theKL-divergence
of two distributions is always positive. The complete proof is in [15],
Theorem 8.6.5. ⇤

A.2 Lower bound on I (xc;c)
First, we introduce a lemma [60] that we use for �nding the lower
bound of I (xc;c).

LemmaA.2. For any arbitrary conditional distribution q(c|xc), we
have:

Exc,c[log
q(c|xc)
p(c)

] I (xc;c) (9)

P����. SinceweknowthatKL-divergence isalwaysnon-negative,
we can write:

DKL(p(c|xc)| |q(c|xc))=
π

p(c|xc) log
p(c|xc)
q(c|xc)

dc� 0

From this, we can come to:π
p(c,xc) log

p(c|xc)p(c)
q(c|xc)p(c)

dcdxc � 0

By negation, we get:

�

π
p(c,xc) log

p(c|xc)p(c)
q(c|xc)p(c)

dcdxc  0 (10)

On the other hand, from the de�nition of mutual information, we
can write:

I (xc;c)=
π

p(c,xc) log
p(c,xc)
p(c)p(xc)

dxcdc (11)

If we add I (xc;c) from Equation 11 to 10, we get:
π

p(xc,c) log
q(c|xc)
p(c)

 I (xc;c)

Which yields:

Exc,c[log
q(c|xc)
p(c)

] I (xc;c) (12)

⇤

Now, we review the theorem and prove it.
Theorem 3.2. The lower bound on I (xc;c) is:

H(c)+max
q
Exc,c[logq(c|xc)] (13)

Byq, we mean all members of a possible family of distributions for this
conditional probability.

P����. For all q, the left hand side of equation 9 o�ers a lower
bound. The equality happens whenq(c|xc) is equal top(c|xc). Given
this, if we estimate a close enough distribution q that maximizes the
left hand side of the inequality 9, we can �nd a tight lower bound for
the mutual information. We can re-write inequality 9 as:

�Ec[log p(c)]+Exc,c[log q(c|xc)] I (xc;c)

Based on the de�nition of Entropy and the discussion above about
tightening the bound, the lower bound on the mutual information is:

H(c)+max
q
Exc,c[logq(c|xc)] (14)

⇤

A.3 Hyperparameters for Training
Tables 2, 3 and 4 show the hyperparameters used for training in the
experiments of Sections 5.2, 5.3 and 5.4. For the �rst one, the Point#
indicates the experiment that produced the given point in the graph,
if the points were numbered from left to right. The hyperparameters
of the rest of the experiments are the same as the ones brought. In
our implementation, for ease of use and without loss of generality,
we have introduced a variable� to the loss function in Equation 7, in
a way that� = 1

� . With this introduction, we do not directly assign a
� (as if �were removed and replaced by� as a coe�cient of the other
term). In the tables, we have used lambda to be consistent, and in the
cells where the value for � is not given, it means that the loss is only
cross-entropy. But in theCode, the coe�cient is set on the other term
and is 1/�s reported here. The batch sizes used for training are 128
for CIFAR-100, MNIST, and UTKFace and 40 and 30 for CelebA. For
testing the batch size is 1, so as to sample a new noise tensor for each
image and capture the stochasticity. Also, the number of samples
taken for each update in optimization is 1 since we do mini-batch
training and for each mini-batch we take a new sample. Finally,M is
set to 1.5 for all benchmarks, except for CelebAwhere it is set to be 5.

A.4 Code Directory Structure
The code and model checkpoints used to produce the results are
provided at https://github.com/mireshghallah/cloak-www-21. The
code is in the directory code and the models and NumPy �les are
named saved_nps.zip and they both have the same directory struc-
ture.Theyeachcontain5Foldersnamedexp1-trade-o�, exp2-adversary,
exp3-black-box, exp4-fairness and exp5-shredder which are related
to the results in the experiments section in the same order. The
pre-trained parameters needed are provided in the saved_nps.zip,
in the corresponding directory. So, all that is needed to be done is
to copy all �les from the saved_nps.zip directory to their corre-
sponding positions in the code folders, and then run the provided
Jupyter notebooks. The notebooks that were used to generate rep-
resentations are provided, in case someone wants to reproduce the
results, and the saved Cloak models and pre-trained models are
given as well. For acquiring the datasets, you can have a look at the
acquire_datasets.ipynb notebook, included in the code.zip.

In short, each notebook has Cloak in its namewill start by loading
the required datasets and then creating a model. Then, the model is
trained based on the experiments and using the hyperparameters
provided in section A.3. Finally, you can run a test function that is
provided to evaluate the model. For seeing how the mutual informa-
tion is estimated, you can run the notebooks that have mutual_info
in their names. You need not have run the training beforehand if
you place the provided .npy �les in the correct directories. For the
mutual information estimation, you will need to download the ITE
toolbox [79]. The link is provided in the code.
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Table 2: hyper parameters for Section 5.2

Model Point# Training Phase 1 Training Phase 2

epoch LR � epoch LR �

CIFAR-100

1 17 0.001 1 3 0.001 10
2 24 0.001 1 2 0.001 10
3 30 0.001 1 2 0.001 10
4 40 0.001 0.2 2 0.001 10
5 140 0.001 0.2 2 0.001 10

MNIST

1 50 0.01 100 90 0.001 200
2 50 0.01 100 160 0.001 200
3 50 0.01 100 180 0.001 200
4 50 0.01 100 260 0.001 100
5 50 0.01 100 290 0.001 100

UTKFace

1 6 0.01 0.1 6 0.0001 100
2 4 0.01 0.1 2 0.0001 100
3 8 0.01 0.1 2 0.0001 100
4 10 0.01 0.1 2 0.0001 100
5 12 0.01 0.1 2 0.0001 100

Table 3: hyper parameters for Section 5.4

Model Point# Training Phase 1 Training Phase 2 Training Phase 3

epoch LR � epoch LR � epoch LR �

VGG16

1 0.5 0.01 1 0.5 0.001 1 - - -
2 0.5 0.01 1 0.7 0.001 1 - - -
3 0.5 0.01 1 0.8 0.001 1 - - -
4 0.8 0.01 1 0.8 0.001 1 0.2 0.001 5
5 1 0.01 1 0.8 0.001 1 0.2 0.001 100

ResNet18

1 1 0.01 10 0.5 0.001 1 - - -
2 1 0.01 5 0.5 0.001 1 - - -
3 1 0.01 5 0.7 0.001 1 - - -
4 1.2 0.01 3 0.5 0.001 1 0.2 0.001 5
5 2 0.01 5 0.5 0.001 1 0.2 0.001 5

Table 4: hyper parameters for Section 5.3

Model SR(%) Training Phase 1 Training Phase 2 Training Phase 3

epoch LR epoch LR epoch LR

Adversary-hair

00.00 1 0.01 - - - -
33.60 1 0.01 2 0.0001 1 0.00001
53.70 1 0.01 2 0.0001 1 0.00001
71.00 1 0.01 2 0.0001 1 0.00001
89.70 1 0.01 2 0.0001 3 0.00001
95.60 1 0.01 2 0.0001 2 0.00001
98.30 1 0.01 2 0.0001 3 0.00001

Adversary-glasses

00.00 1 0.01 - - - -
33.60 1 0.01 2 0.0001 1 0.00001
53.70 1 0.01 2 0.0001 1 0.00001
71.00 1 0.01 2 0.0001 1 0.00001
89.70 1 0.01 2 0.0001 3 0.00001
95.60 1 0.01 2 0.0001 2 0.00001
98.30 1 0.01 2 0.0001 3 0.00001

A.5 FairnessMetrics
In a classi�cation task, demographic parity requires the conditional
probability of the classi�er predicting output class Ŷ =� given sen-
sitive variable S = 0 to be the same as predicting class Ŷ =� given
S = 1. In other words, P(Ŷ =� |S = 0)=P(Ŷ =� |S = 1). Since in most
real cases these values are not the same, the maximum pair-wise dif-
ference between these values is considered as a measure of fairness,
�DemP , and the lower this di�erence, the more fair the classi�er.
Here S would be the gender, which due to the data provided in the
dataset, is binary. We have only two target classes of black hair and
non-black hair, so the �DemP (�=0) is the same as �DemP (�=1).

Equalized odds is another fairness measure, which requires the
conditional probability of the classi�er predicting class Ŷ =� given
sensitive variable S = 0 and ground truth class Y = � be equal to
the same conditional probability but with S = 1. In other words,
P(Ŷ = � |S = 0,Y = �) = P(Ŷ = � |S = 1,Y = �). Similar to the demo-
graphic parity case, we also measure the di�erence in these condi-
tional probabilities for both�=1 (black hair) and�=0 (non-black
hair) and report their summation as �EO , commensurate with [50].
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