
Planaria: Dynamic Architecture Fission for Spatial
Multi-Tenant Acceleration of Deep Neural Networks

Soroush Ghodrati Byung Hoon Ahn Joon Kyung Kim Sean Kinzer Brahmendra Reddy Yatham Navateja Alla

Hardik Sharma⇤ Mohammad Alian[Eiman Ebrahimi‡ Nam Sung Kim† Cliff Young§ Hadi Esmaeilzadeh
Alternative Computing Technologies (ACT) Lab

University of California, San Diego
⇤Bigstream Inc. [Kansas University †University of Illinois Urbana-Champaign ‡NVIDIA Research §Google Inc.

{soghodra, bhahn, jkkim, skinzer, byatham, nalla}@eng.ucsd.edu hardik@bigstream.co alian@ku.edu

eebrahimi@nvidia.com nskim@illinois.edu cliffy@google.com hadi@eng.ucsd.edu

Abstract—Deep Neural Networks (DNNs) have reinvigorated
real-world applications that rely on learning patterns of data
and are permeating into different industries and markets. Cloud
infrastructure and accelerators that offer INFerence-as-a-Service
(INFaaS) have become the enabler of this rather quick and
invasive shift in the industry. To that end, mostly accelerator-
based INFaaS (Google’s TPU [1], NVIDIA T4 [2], Microsoft
Brainwave [3], etc.) has become the backbone of many real-life
applications. However, as the demand for such services grows,
merely scaling-out the number of accelerators is not economically
cost-effective. Although multi-tenancy has propelled datacenter
scalability, it has not been a primary factor in designing DNN
accelerators due to the arms race for higher speed and efficiency.
This paper sets out to explore this timely requirement of multi-
tenancy through a new dimension: dynamic architecture fission.
To that end, we define Planaria

1 that can dynamically fission
(break) into multiple smaller yet full-fledged DNN engines at
runtime. This microarchitectural capability enables spatially co-
locating multiple DNN inference services on the same hardware,
offering simultaneous multi-tenant DNN acceleration. To realize
this dynamic reconfigurability, we first devise breakable omni-
directional systolic arrays for DNN acceleration that allows omni-
directional flow of data. Second, it uses this capability and a
unique organization of on-chip memory, interconnection, and
compute resources to enable fission in systolic array based DNN
accelerators. Architecture fission and its associated flexibility
enables an extra degree of freedom for task scheduling, that even
allows breaking the accelerator with regard to the server load,
DNN topology, and task priority. As such, it can simultaneously
co-locate DNNs to enhance utilization, throughput, QoS, and fair-
ness. We compare the proposed design to PREMA [4], a recent ef-
fort that offers multi-tenancy by time-multiplexing the DNN accel-
erator across multiple tasks. We use the same frequency, the same
amount of compute and memory resources for both accelerators.
The results show significant benefits with (soft, medium, hard)
QoS requirements, in throughput (7.4⇥, 7.2⇥, 12.2⇥), SLA sat-
isfaction rate (45%, 15%, 16%), and fairness (2.1⇥, 2.3⇥, 1.9⇥).

Index Terms—Accelerators; Deep Neural Networks; DNN;
DNN Acceleration; Multi-Tenancy; Spatial DNN Task
Co-Location; Multi-Tenant DNN Acceleration; Dynamic
Architecture Fission; Omni-Directional Systolic Arrays

1Planaria is a species which, when an individual is cut (fissioned) into pieces,
all pieces can regenerate to fully formed individuals.

I. INTRODUCTION

The end of Dennard scaling [5] and diminishing benefits
from transistor scaling [6–8] has propelled an era of Domain-
Specific Architectures [9]. As such, accelerators are put in the
spotlight to enable performance improvements necessary for
emerging workloads [10]. Although, most recently, accelerators
have made their way into consumer electronics, edge devices,
and cell-phones (e.g., Edge TPU [11], NVIDIA Jetson [12],
and Apple Bionic Engine [13]), their limited computational
capacity still necessitates offloading most of the inference tasks
to the cloud. In fact, INFerence-as-a-Service (INFaaS) [14],
has become the backbone of the deployed applications in Voice
Assistants [15, 16], Smart Speakers [17], and enterprise applica-
tions [18–20], etc. Cloud-backed inference currently dominates
the market [21–24] and is enabled by various forms of custom
accelerators, such as Google’s TPU [1], NVIDIA T4 [2],
Microsoft Brainwave [3], and Facebook’s DeepRecSys [25].

As the demand for INFaaS scales, one solution could be
continuously increasing the number of accelerators in the cloud.
Although intuitive, this approach is neither cost-effective nor
scalable with the ever-increasing demand for DNN services.
On the other hand, multi-tenancy, where a single node is shared
across multiple requests, has been a primary enabler for the
success of cloud-computing in current scale. Without multi-
tenancy, it is hard to even fathom the progress and future of data-
centers and cloud-based computing. In fact, the broader research
community invested more than a decade of efforts to develop
solutions across the computing stack to bring forth seamless and
scalable multi-tenant cloud execution models [26–48]. Nonethe-
less, multi-tenancy has not been a primary factor in the design
of DNN accelerators because of the arms race to design the
fastest accelerator, the utmost recency of accelerator adoption
in datacenters, and challenges associated with multi-tenancy in
accelerators. The datacenter accelerator designs revealed–for
instance in Google’s TPU [1] or Microsoft Brainwave [3]–
tend to show results focused on running a single neural
network model as fast as possible. Even the MLPerf benchmark

���

�������SE�"OOVBM�*&&&�"$.�*OUFSOBUJPOBM�4ZNQPTJVN�PO�.JDSPBSDIJUFDUVSF�	.*$30

����������������������������¥�����*&&&
%0*���������.*$30����������������

C C C C

C C C C

C C C C

C C C C

MM

MM

MM

MM

M

M

C C

C C

C C C C

C C C C

MM

MM

C C

C C

M

M
C C C CMM

C C C CMM

C C C C

C C C C

MM

MM

C

M

Compute

On-chip Memory

Fission

DNN-A

(a) Whole accelerator
executing DNN-A

(b) Two logical accelerators
executing DNN-A and DNN-B

(c) Three logical accelerators
executing DNN-A, DNN-B, DNN-C

DNN-A

DNN-B

DNN-A

DNN-B

DNN-C

Fig. 1: Illustration of possible fission schemes of Planaria with their corresponding spatially mapped DNNs.

suite [49, 50] keeps this single-model focus for both training
and inference. But experience in cloud accelerator systems
shows that keeping multiple models simultaneously resident on
an accelerator has deployment benefits. Beyond just multiple
customers sharing an accelerator, there is demand for multi-
tenancy inside of a single application. For example, speech
recognition and voice synthesis systems tend to require multiple
models in deployment and can significantly benefit from multi-
tenancy and co-location [51]. Yet, only this year PREMA [4]
has explored a scheduling algorithm that time-multiplexes a
DNN accelerator across different DNNs through preemption.

This paper, on the other hand, sets out to explore this
timely, yet unexplored dimension of multi-tenancy in the
architecture design of DNN accelerators. This work presents
Planaria, where the key idea is dynamically fissioning the
DNN accelerator at runtime to spatially co-locate multiple
DNN inferences on the same hardware. To that end, the paper
makes the following contributions:
1) Dynamic architecture fission for spatial multi-tenant

execution. This paper introduces and explores the
dimension of dynamic fission in DNN accelerators. This
innovation enables simultaneous execution of multiple DNN
acceleration threads to be spatially co-located on the same
hardware substrate. This exclusive runtime reconfigurability
in DNN acceleration offers a new degree of freedom in
task scheduling to promote utilization and fairness while
meeting the Qulity of Service (QoS) constraints.

2) Microarchitecture design for dynamic fission. The paper
devises a concrete microarchitecture as an instance of
dynamic fissionable architectures by delving into the design
challenges associated with offering this technology on
TPU [1]-like systolic designs. Specifically, we devise omni-
directional systolic arrays for DNN acceleration that permits
flow of data in all four directions from each elements in the
array. This low-cost additional flexibility expands the fission
possibilities leading to significant energy reduction and
performance gains. To coordinate fission with appropriate
on-chip and off-chip data transfer, we arrange these omni-
directional systolic arrays in on-chip pods that also comprise
specialized interconnection and shared storage for each pod.

3) Task scheduling for spatial multi-tenant execution. To
leverage architecture-level fission, the paper defines a
task scheduling algorithm that breaks up the accelerator
with respect to the current server load, DNN topology,

and task priorities, all while considering the latency
bounds of the tasks. As the following results indicate,
this scheduling algorithm can harness fission capability to
simultaneously co-locate DNNs to significantly improve
utilization, throughput, QoS, and fairness.

We evaluate Planaria using three INFaaS workload scenarios
made up of inference requests to nine diverse DNN benchmarks.
Each scenario is evaluated under three different Quality of
Service (QoS) requirements. We compare the proposed design
to PREMA [4], a recent effort that offers multi-tenancy by
time-multiplexing the DNN accelerator across multiple tasks.
We use the same frequency, the same amount of compute
and memory resource for both accelerators. Our results show
that Planaria outperforms PREMA in terms of throughput
by 7.4⇥, 7.2⇥, and 12.2⇥ for soft, medium, and hard QoS
constraints, respectively. For these set of constraints, Planaria
also offers 45%, 15%, and 16% increase in Service-Level
Agreement (SLA) satisfaction rate, respectively. At the same
time, Planaria improves fairness by 2.1⇥, 2.3⇥, and 1.9⇥.

Our results suggest that exploring simultaneous spatial
co-location through architecture fission and balanced task
scheduling provides significant benefits. To this end, dynamic
architecture fission paves the way for spatial multi-tenancy
that can offer a unique direction in the era of cloud-scale
acceleration of DNNs.

II. DYNAMIC ARCHITECTURE FISSION:
CONCEPTS AND OVERVIEW

The objective is to enable multi-tenant execution of DNNs by
spatially co-locating multiple DNN tasks on a single accelerator.
To do so, the underlying accelerator needs to dynamically
fission at runtime into smaller pieces of logical full-fledged
accelerators that can execute their pertinent DNN. Figure 1
illustrates three possible examples for the proposed accelerator
fission and how the accelerator can spatially execute multiple
DNN tasks simultaneously. Generally, a DNN accelerator is a
collection of on-chip memory banks M and compute resources,
e.g. Multiply-ACcumulate (MAC) units C . Figure 1(a) illus-
trates that if a DNN task with high priority or tight slack to meet
the QoS constraint is dispatched to the accelerator, an entire
accelerator is dedicated to the task to expedite its completion.
In contrast, Figure 1(b,c) show multiple DNN tasks being
dispatched simultaneously. To process them all, the accelerator
can fission into multiple logical accelerators, each of which

���

executes a given task as shown. Importantly, fission needs to
take place at both compute and memory level, since each logical
engine is a standalone independent DNN accelerator. Moreover,
the amount of compute and memory resources assigned to each
logical accelerator ought to be balanced with the computational
demand of the dispatched DNNs to maximize the throughput of
the accelerator while meeting the QoS constraints. To that end,
bringing forth spatial multi-tenant execution requires devising
two major components as follows:
Fission microarchitecture. The first component of this work
is a microarchitecture that can fission dynamically into smaller
full-fledged accelerators to execute multiple DNNs simulta-
neously. Section III starts from a baseline monolithic DNN
accelerator based on systolic array architecture and discusses a
set of challenges as well as the design requirements that should
be taken into account to fission a monolithic design both at
compute and on-chip memory level. Then, Section IV delves
into the microarchitectural innards of Planaria, an incarnation of
dynamic architecture fission. First, the design of Planaria adds
omni-directional data movement in systolic arrays to offer varie-
gated logical fission possibilities. Second, it uses this capability
and a unique reorganization of the accelerator, called Fission
Pods, to enable fission in systolic array based DNN accelerators.
Fission Pods are designed to offer a significant degree of fission
flexibility, through specialized connectivity, on-chip memory or-
ganization, and omni-directional flow of data in its systolic units.
This degree of flexibility is necessary to cope with the varying
needs of dispatched DNNs that can be best matched by forming
heterogeneous logical accelerators as depicted in Figure 1.
Task scheduler. As the second component of this work, we
devise a task scheduling algorithm that adaptively schedules
and assigns the resources to different tasks. First, the scheduler
identifies minimal amount of resources required to execute the
DNN while meeting the QoS constraints imposed. Then, it
uses a scoring mechanism that congregates task priority and
remaining time to distribute the remaining resources on the
accelerator to spatially co-locate tasks. This scoring mechanism
leads to higher fairness as it considers multiple criteria and
flexibility in the accelerator to co-locate multiple DNNs.
Importantly, while the spatial co-location improves fairness, the
scheduler effectively utilizes the dynamic fission mechanism
and considers improving the QoS as its primary design principle.
In fact, spatial co-location leads to better utilization of the
accelerator resources as more than one task can run at the same
time. Section V discusses this scheduling mechanism in detail.

III. ARCHITECTURE DESIGN FOR FISSION:
CHALLENGES AND OPPORTUNITIES

This section starts by reviewing a monolithic systolic accel-
erator, similar to TPU [1]. Then, it provides a series of design
requirements to enable spatial multi-tenant execution for DNNs.
Monolithic Systolic Array. Figure 2(a) illustrates a monolithic
systolic DNN accelerator2. The accelerator consists of a 2D

2This section uses a 4⇥4 systolic array as an example for clarity.

array of Processing Elements (PE) to perform matrix multipli-
cations and convolutions, a unified multi-bank Activation Buffer,
a 1D array of Output Buffers, and a SIMD Vector Unit to execute
the remaining layers such as pooling, activation, batch nor-
malization, and etc. Input activations are stored on-chip in the
unified Activation Buffer–generally implemented as a multi-bank
scratchpad, where each bank is shared across PEs within a row.
Consequently, at each cycle, an input activation is read from an
Activation Buffer’s Bank and is reused for all the PEs (MAC units)
within the row. At each cycle, each PE forwards the input activa-
tion to the PE to its right (horizontal) and the output partial sum
to the PE to its bottom (vertical). In short, this is a waterfall-like
uni-directional flow of data as illustrated in Figure 2(b). Finally,
the outputs are fed to the SIMD Vector Unit for further processing.
The remainder of the section elaborates on how to fission all
the components comprising this monolithic accelerator.

A. Fission for Compute and the Need for New Communication
Patterns

(1) The need for flexible and cost-effective fission of
compute resources. Computational characteristics of DNNs
such as data reuse and coarse-grained parallelism vary
significantly across different networks or even across different
layers of a network [52–55]. The systolic array architectures
inherently exploit spatial data reuse for input activations
along its rows and partial sums along its columns. However,
a monolithic array design provides only a fixed dimension
of this spatial data reuse. Moreover, as shown for TPU [1],
mapping a convolution or matrix multiplication operation to
a big monolithic systolic array can lead to underutilization
of compute resources. As such, some layers naturally perform
better if they are tiled to smaller chunks and parallelized across
multiple smaller arrays, as that would exploit coarse-grain
parallelism and yield better resource utilization.

Figure 3 illustrates multiple examples of possible configura-
tions for decomposition of a 4⇥4 systolic array, where a 2⇥2
subarray is used as the granularity for fission. Figure 3(a) shows
a fission where the systolic array is broken down horizontally
into two subarrays, while Figure 3(b) shows an instance of its

U
ni

fie
d

M
ul

ti-
Ba

nk
 A

ct
iv

at
io

n
Bu

ffe
r

O
ut

pu
t B

uff
er

s

Multi-Bank
Weight Buffer

WB WB WB WB

WB WB WB WB

WB WB WB WB

WB WB WB

SIMD Vector Unit
(Pooling, Normalization,

Activation, etc.)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

WB

(a) (b)

Input Activation Forwarding

Partial Sum Forwarding

Fig. 2: A monolithic systolic array accelerator.

���

(a)

(b)

(c)

(e)

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

(d)

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

Fig. 3: Illustration of possible fission scenarios.

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

(a) Down and up for partial sums (b) Right and left for input activations

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

Fig. 4: Omni-directional systolic execution.

vertical fission into two subarrays. Figure 3(c) illustrates another
fission in both vertical and horizontal directions, yielding four
systolic subarrays. For a layer that requires high coarse grain
parallelism, fission in Figure 3(c) would be a good match,
while Figure 3(b) would yield the best performance for layers
that enjoy more partial sum reuse as well as the coarse-grain
parallelism. In another scenario, if a layer requires high input
activation reuse, moderate partial sum reuse, and coarse-grain
parallelism, fissioning to Figure 3(a) will be the best choice.
Fission granularity. With respect to compute fission, an
important design decision is where to break the systolic array.
As Figure 2 shows, PEs are connected via two uni-directional
links: horizontal and vertical. One extreme option is to replace
these links to those that can be dynamically switched on and
off to fission the systolic array at the granularity of a single PE.
However, such a fine granularity of fission will impose signif-
icant overheads. Therefore, we instead replace a subset of the
links to determine the granularity such that they can disconnect
a subarray of the PEs instead of a single PE. The design space
exploration of the subarray size is discussed in Section VI-B2.
(2) The need for new and flexible patterns of communica-
tion for richer fission possibilities. Figure 3(d,e) illustrates
two more fission scenarios. If a network layer provides signifi-
cantly higher opportunity in input activation reuse than partial
sum reuse, while not requiring high parallelism, a scheme such
as Figure 3(d) is desirable, while fissioning to Figure 3(e) will
be a better design for significantly high partial sum reuse. Re-

alizing the last two configurations, however, requires additional
design considerations. To forward the input activations along
four subarray fragments in Figure 3(d) and partial sums in
Figure 3(e), the data needs to flow in all directions: right and
left for input activations and up and down for partial sums.
Figure 4(a) and Figure 4(b) illustrates how the partial sums
and input activations need to flow at all directions to realize
the desired scenario. To that end, we propose omni-directional
systolic arrays that can forward the input activations and par-
tial sums in all directions as opposed to conventional systolic
arrays that always forward the data in just two directions.
Communication across the fissioned subarrays. In addition
to the omni-directional intra-subarray data movement, there is
a need for low-cost inter-subarray communication that also fa-
cilitates reconfigurability. As such, we propose a bi-directional
ring bus to connect the fissioned systolic subarrays instead of
other forms of connectivity, e.g. crossbar, that would impose sig-
nificant overheads. The bi-directional nature is to extend omni-
directional communication along the subarrays. The links of the
ring are configurable in that they can be either off to fission two
subarrays or on to forward input activations and partial sums.
(3) Enabling full-fledged logical accelerators through
fission for the SIMD Vector Unit. To create stand-alone acceler-
ators from the fissioned units, the SIMD Vector Unit also needs to
be broken into smaller segments and coupled with each systolic
subarray. Due to the parallel nature of this unit, we divide
the original SIMD Vector Unit to smaller segments proportional
to the number of systolic subarrays, and designate a segment
to each. When systolic subarrays are vertically stacked (e.g.,
Figure 3(b,e)), a subset of these SIMD segments are bypassed.

B. Fission for the On-Chip Memory and the Need for
Reorganizing the Entire Design

Besides the systolic array, the accelerator also requires
fissioning the on-chip memory blocks to allocate commensurate
storage to the compute units. Memory disaggregation across the
chip is crucial for maximizing on-chip resource utilization. That
is because, the on-chip buffers bandwidth to the PE subarrays
needs to be kept unchanged to supply enough data to keep the
PEs busy. Otherwise, fission would diminish utilization instead
of improving it, which was a primary objective of this work.

While decomposing Weight Buffer is straightforward due to
its coupling within the PEs, fission for the Activation Buffer and
Output Buffer is more challenging.
Weight buffer fission. In systolic arrays, each PE harbors
a private Weight Buffer that holds a subset of the network
parameters. As such, the total Weight Buffer gets broken down
naturally during fission as our strategy does not break the PE.
Activation and output buffer fission. Figure 5 illustrates
on-chip memory fission for three of the scenarios shown in
Figure 3(b,c,d). Each of the scenarios requires different fission
scheme for the Activation Buffer and Output Buffer as well as
various patterns of connection between the buffers with the
systolic subarray, which are not possible in a monolithic design.
In the monolithic case, the Activation Buffer is just connected
to the leftmost PEs and Output Buffer to the bottom-most PEs.

���

(b) Both vertical and horizontal fission(a) Vertical fission

(c) Horizontal fission

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

Fig. 5: On-chip memory fission and connection to subarrays.

However, as Figure 5 depicts, more patterns of connectivity
between these buffers and the PEs/subarrays are necessary.
To support these variegated patterns, we reorganize the entire
accelerator and devise a microarchitectural block, dubbed
Fission Pod, where the Activation Buffer and Output Buffer are
co-located in a dedicated memory substrate that is shared
amongst a group of connected omni-directional systolic
subarrays. This reorganization and sharing a dedicated memory
substrate amongst a group of subarrays is crucial to strike a
balance between the cost of connectivity in the hardware and
achieved utilization of the compute and memory resources.

C. Fission without Reorganization Defeats the Purpose
Figure 6 illustrates a hypothetical case when the systolic

array has been partitioned into multiple independent subarrays
without properly reorganizing the memory modules. As shown,
only the subarray at the left-bottom corner could be utilized,
as it would be the only one connected to the Activation Buffer
and Output Buffer banks. The other subarrays could not be
utilized and would remain idle as illustrated in Figure 6. This
underutilization would be a common case if fission happens
at granularities other than a single subarray.

Another extreme is illustrated in Figure 7 illustrates where an
alternative hypothetical design point connects all the Activation
Buffer and Output Buffer banks to all the subarrays. As depicted,
this design would require two high-radix n⇥n crossbars, where
n is the number of subarrays. This significantly costly solution
is necessary to provide the connectivity patterns discussed in
Figure 5 and avoid underutilization of the subarrays. This design
point is also not acceptable due to the high-radix crossbars,
and can seriously curtail scaling up the compute resources.

Our Fission Pod which reorganizes the subarrays and on-chip
memory amortizes this significant overhead, while providing
the connectivity patterns required to achieve high utilization
of the computer resources as discussed in the next section.

IV. MICROARCHITECTURE FOR FISSION

This section delves into the microarchitecture design of
dynamic architecture fission for spatial multi-tenant execution.

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

…
…

…

…

…

Not utilized Not utilized Not utilized

Not utilized Not utilizedUtilized

Fig. 6: Underutilization of the subarrays while they are connected to on-chip

memory similar to conventional systolic arrays without reorganization of the

design. The teal-colored subarray is the only one that can be utilized.

…
nxn

crossbar PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

… …

nxn
crossbar

Ac
tiv

at
io

n
Bu

ffe
rs

O
ut

pu
t B

uff
er

s

…… …

Fig. 7: On-chip memory to subarrays connectivity through high-radix

crossbars in an alternative hypothetical design point.

A. Omni-Directional Systolic Array Design
Our novel insight is that, for fission, there is a need for omni-

directional pattern of communication in the systolic array to en-
able richer fission and rearrangement possibilities. An opportu-
nity exists to support this pattern through addition of a low-cost
logic to each PE. Figure 8 illustrates how a set of of additional
multiplexers around a PE can enable this omni-directional move-
ment. In addition to the normal flow of data (right and down),
these multiplexers enable each PE to send input activations to
its left and partial sums to the PEs at its top. As highlighted in
dark blue, a multiplexer at the left of the PE selects its input
from either the activation coming from the right or the left. A
de-multiplexer at the right selects which of the left or the right
PE should receive the activation. The multiplexer and the de-
multiplexer are coupled and are controlled by the same single
bit, setting the direction of input activations along the array.
Similarly, another pair of multiplexer/de-multiplexer on the
north and south of the PE in the Figure 8 control the flow of par-
tial sums. To enable fission and omni-directional inter-subarray
data movements, PEs at the boundaries of systolic subarrays
are also connected through these multiplexer/de-multiplexer
pairs to the corresponding PEs in the adjacent subarrays.
Effect on clock frequency. Synthesis results show that this

���

+

Ac
t R

eg

Weight

*
16b

Input Activation
from left PE

Input Activation
from right PE

a_d_sel
16b

a_d_sel
Input Activation

to right PE

Input Activation
to left PE

Partial Sum
from bottom PE

Partial Sum
from top PE

64b

ps_d_sel

64b

ps_d_sel

Partial Sum
to bottom PE

Partial Sum
to top PE

PE

0

1
0

1

1 0

1 0

Out Reg

Fig. 8: Switching network for omni-directional systolic array.

extra logic does not reside on the critical path that determines
the clock cycle of the systolic subarray. In fact, the critical
path is from the Weight Buffer to the Output Register, as access
to the on-chip buffer dominates the execution time.

B. Reorganizing the Accelerator Microarchitecture through
Fission Pod Design

The key objectives in designing the microarchitecture for
dynamic fission are:

1) Creating multiple stand-alone and full-fledged logical
accelerators to enable spatial co-location.

2) Enriching the fission possibilities as much as possible to
serve various computational needs of co-located DNNs.

3) Maximizing the PE subarray utilization.
4) Maximizing the on-chip buffers utilization and their

bandwidths to subarrays.
While meeting these design objectives, the following design

constraints need to be considered:
1) Imposing minimal power/area overhead to the hardware
2) Maintaining the baseline clock frequency
With these design objectives and constraints in mind, we pro-

pose a microarchitectural unit, called Fission Pod, which inter-
weaves the on-chip memory with the systolic subarrays and pro-
vides balanced cooperation of these components. Figure 9 illus-
trates the design. As shown, at the center of this unit, an on-chip
memory substrate, called Pod Memory, is placed and connected
to a group of systolic subarrays. Following discusses the cooper-
ation and communication of the subarrays and the Pod Memory.
Memory-compute interweaving in Fission Pod. A conven-
tional systolic array harbors a unified multi-bank Activation
Buffer and a unified multi-bank Output Buffer on their left and bot-
tom, respectively (see Figure 2). When a systolic array is broken
into four subarrays as depicted in Figure 9, the aforementioned
buffers are moved to Pod Memory and are broken down into
four corresponding independent multi-bank buffers. These four
buffers are connected to the four systolic subarrays via two 4⇥4
crossbars to maximize flexibility and fission possibilities that
require various patterns of connectivity between on-chip buffer
and a group of (size four in this work) systolic subarrays, while
also maximizing the PE subarray and on-chip buffer utilization.
One crossbar is for reading from Activation Buffers and the other

PE PE

PE PE

WB WB

WB WB

SIMD Vector
Unit

PE PE

PE PE

WB WB

WB WB

SIMD Vector
Unit

PE PE

PE PE

WB WB

WB WB

SIMD Vector
Unit

PE PE

PE PE

WB WB

WB WB

SIMD Vector
Unit

4x
4

R
ea

d
C

ro
ss

ba
r

Input Activation Buffer

4x4 W
rite C

rossbar

Output Buffer

Omni-directional intra-subarray
data movement

Omni-directional inter-subarray
input activation movement

Omni-directional inter-subarray
partial sum movement

Read/Write from/to on-chip
Pod Memory

Onchip Pod
Memory

Sy
st

ol
ic

Su
br

ra
y-

0

Sy
st

ol
ic

Su
ba

rr
ay

-1
Sy

st
ol

ic
Su

ba
rr

ay
-2

Sy
st

ol
ic

Su
ba

rr
ay

-3

1 2

3 4

1 1

11

3

3

3

32 2

4 4

4 4

44

2

2

Fig. 9: Fission Pod.

for writing to Output Buffers of the Pod Memory. This design
point is in contrast with the design shown in Figure 7, where
all the subarrays are connected globally to all on-chip buffers
through high-radix crossbars, leading to significant power/area
overheads, as in here lower-radix crossbars are sufficient due
to reorganizing a group of subbarrays and on-chip buffers in
a Fission Pod (first design constraint).
Intra Fission Pod data communication. The systolic
subarrays are also connected to one another via two sets
of bi-directional ring buses. One bus is to pass activations
between omni-directional subarrays (2) and the other is to
forward the subarray partial sums (3). These buses enable
realizing different fission possibilities while leveraging the
omni-directional feature of proposed subarrays. For instance, to
realize the fission scheme in Figure 3(d), where the subarrays
reconstruct a fat and short array, the activation ring bus will
chain the subarrays. The SystolicSubarray-0 in Figure 9 sends the
activations to SystolicSubarray-1, and so on and so forth. Since
for fission scheme in Figure 3(d), there is no need for partial
sum forwarding, the partial sum ring bus will be switched off.
Clock frequency consideration. The two ring buses are
pipelined with 12 registers to alleviate any potential critical

���

O
ff-

ch
ip

 M
em

or
y

C
ha

nn
el

-0
O
ff-

ch
ip

 M
em

or
y

C
ha

nn
el

-3

O
ff-

ch
ip

 M
em

or
y

C
ha

nn
el

-1
O
ff-

ch
ip

 M
em

or
y

C
ha

nn
el

-2

Fission
Pod-0

Fission
Pod-1

Fission
Pod-2

Fission
Pod-3

On-chip
Pod

Memory

Sub
Array-0

Sub
Array-1

Sub
Array-2

Sub
Array-3

On-chip
Pod

Memory

Sub
Array-0

Sub
Array-1

Sub
Array-2

Sub
Array-3

On-chip
Pod

Memory

Sub
Array-0

Sub
Array-1

Sub
Array-2

Sub
Array-3

On-chip
Pod

Memory

Sub
Array-0

Sub
Array-1

Sub
Array-2

Sub
Array-3

Fig. 10: Overall architecture of Planaria.

paths due to the connectivity between the subarrays. Pipelining
is feasible due to natural behavior of systolic arrays that
pump wavefronts of data continuously. As such, the added
connectivity and switching mechanisms does not result in
altering the baseline frequency (second design constraint).

C. Planaria Overall Architecture
Figure 10 illustrates the overall architecture of our proposed

accelerator, Planaria. As shown, the original monolithic systolic
array has been broken down into 16 omni-directional systolic
subarrays, where a group of four subarrays form one Fission
Pod that contains a Pod Memory. All these 16 subarrays are
connected globally along the accelerator chip via the afore-
mentioned bi-directional ring busses for input activations and
partial sums data movement. Hence, in one extreme, all these
ring busses can be switched on to construct the biggest logical
accelerator, running only one DNN on the entire accelerator.
Alternatively, in another extreme, all of the ring buses can be
switched off to provide 16 standalone logical accelerators, spa-
tially co-locating 16 different DNNs simultaneously for multi-
tenant execution. Overall, this architecture supports 65 fission
scenarios that can simultaneously co-locate various number of
DNNs from 1 to 16. Each of the four Fission Pods is connected
to one off-chip memory channel. The bus that brings the data
from off-chip memory channel simply goes around the subar-
rays and can fill their weight buffers. This bus is also connected
to the Pod Memory to load/store intermediate activations/output
to/from the off-chip memory channel. This bus is pipelined
and is no different than the bus that feeds the off-chip data to
a conventional systolic array. To avoid clutter, Figure 10 does
not illustrate the off-chip memory buses. The Fission Pods are
connected to their neighbors through a direct link that can foster
data reuse to reduce costly off-chip accesses. If data is present in
one of the pods, it can be sent to another at most with two hops.

Planaria can fission up to 16 logical accelerators and
therefore, it can simultaneously co-locate 16 different DNNs.
However, depending on the combination of the co-located
DNNs, 65 total fission scenarios are possible. A logical

accelerator, which represents one of these 65 possibilities, can
encompass multiple physical Fission Pods. A logical accelerator
can either work as a logical monolithic systolic array or further
fission if a DNN layer benefits from coarse-grain parallelism.
Planaria’s interconnections and bus are designed such that, a
logical accelerator can take a portion of a Fission Pod and an-
other logical accelerator takes the rest. In Figure 10, one logical
accelerator that accelerates DNNA can comprise the subarrays
in Fission Pod-0 with two subarrays from Fission Pod-3 (Fission
Pod-3.SystolicSubarray-0 and Fission Pod-3.SystolicSubarray-1).
The remaining two subarrays from Fission Pod-3 can form
another logical accelerator to accelerate DNNB .
Dynamic reconfiguration for fission and multi-tenant exe-
cution. Conventional systolic arrays operate in tile granularity.
That is, they fetch a tile of weights and activations and produce
a tile of intermediate activations or outputs. Planaria does
not deviate from this convention. Consider a scenario where
three DNNs are simultaneously co-located with some fission
scheme on Planaria, and fourth DNN is now dispatched to be
accelerated. In this case, Planaria allows the old three co-located
DNNs finish computing the tile that they are processing. In
the meantime, the scheduler decides the new allocation of the
subarrays considering the newly dispatched DNN. At the same
time, Planaria loads this new fission configuration as a set of
bits that decides the direction of the subarrays and the off/on
connectivity state of the buses. Each Planaria subarray requires
two 6-bit registers, one retaining the current configuration state
and the other pre-holding the next state. Six bits is sufficient
for reconfiguration of each subarray and its directions/buses.
Two bits determines the direction of input activation and
partial sums. Each subarray can potentially connect to four
other subarrays, which can be in the neighboring Fission Pods,
determined by four bits. The direction of connectivity can
be deduced from the direction of the subarray. Another eight
bits determine the connectivity of the Pod Memory buffers to
the subarrays in the same Fission Pod. Similar to conventional
systolic design, each subarray is equipped with an instruction
buffer and a Program Counter, indicating the current macro
instruction. While the subarray is draining the instructions for
the old DNNs, Planaria fetches the next instructions associated
with the new configuration. The mechanism is no different
than prefetching the instructions for a new tile in conventional
systolic arrays. The difference is that, each subarray has a
designated PC and a designated 4 KB instruction buffer.
Compilation for Planaria. For INFaaS, since each DNN will
serve unbounded set of inference requests, it is intuitive to
precompile the DNN and run the precompiled binary again and
again. Figure 11(a) illustrates the workflow of Planaria compiler.
As the DNN may be allocated different number of subarrays
(from 1 to 16) during its execution on Planaria, the compiler
generates a total of 16 binaries and 16 configuration tables per
DNN to cover all the possibilities. The compiler is aware of all
the possible architecture fission configurations at compile time.
As such, it iterates over all possible configurations to identify
the optimal fission configuration as well as the corresponding

���

Task Queue

Spatial
Task

Scheduling
CompilerTarget DNNs

Possible Fission
Configurations

e.g., ResNet-50, YOLOv3, …

Binaries

Task Monitor
Task ID Start Time Expected End Time

(QoS Constraint)
Current Status

(Layer ID, % completion)
Task 1 Tstart,A Tend,A Layer N, n%
Task 2 Tstart,B Tend,B Layer M, m%

* set of configuration tables is generated per target DNN

…

Configuration
Tables

Binaries

Configuration
Tables

Planaria

(a) compile time (b) runtime

Layer ID Optimal Fission
Configuration

Layer 1 Fission Config n
Layer 2 Fission Config m

Tiles in Layer

k1

k2

Cycles per Tile

t1

t2

Network: ResNet-50, # Subarrays: 16

Layer 1 Fission Config n
Layer 2 Fission Config m

k1
k2

t1
t2

Network: ResNet-50, # Subarrays: 1

Layer ID Optimal Fission
Configuration # Tiles in Layer # Cycles per Tile

Fig. 11: Overall workflow.

tiling sizes. Importantly, as different layers vary in parallelism
and data reuse, so does the optimal fission configuration for
the layer. Therefore, for each layer, in an offline manner, the
configuration table stores the optimal fission configuration,
the number of tiles, and the estimated number of cycles per
tile. Such estimation is viable because dataflow graphs of
DNNs are fixed, there is neither control flow speculation, nor
hardware manged cache to cause significant variation in the
latency. At runtime, the proposed scheduler which runs on
the host CPU uses this software table of estimates to perform
QoS-aware scheduling and resource allocation.

V. SPATIAL TASK SCHEDULING

Dynamic architecture fission adds a new dimension in task
scheduling, and provides opportunity to break the DNN acceler-
ator into multiple logical accelerators to not only co-locate mul-
tiple tasks, but also to provide logical accelerators tailored for
the needs of DNN tasks to promote utilization and consequently
throughput, SLA satisfaction rate, and fairness. To that end, the
scheduler needs to take into account the following requirements:

1) The scheduler ideally needs to be aware of the optimal
fission configurations for DNN tasks to leverage dynamic
fission and co-location.

2) The scheduler needs to be QoS-aware and leverage the
available slack time offered by QoS constraint of each
task to maximize the co-location and utilization while
adhering to the SLA.

3) Task re-allocation requires checkpointing the intermediate
results, while making sure that the re-allocation and
checkpointing does not overuse on-chip memory or result
in significant context switching overheads.

With these requirements, this section delineates the overall
flow of our proposed spatial task scheduling (Algorithm 1).
Overall flow. To leverage the dynamic architecture fission,
the scheduler is invoked whenever (1) a new inference task
is dispatched to the task queue (Q in Algorithm 1) of the
datacenter node or (2) a running inference task finishes. Each
scheduling event consists of the following two major stages.
Given the DNNs in the queue, the first stage determines the
minimum amount of resource (number of subarrays) necessary
to meet the QoS requirements for each task. Given that, the
second stage determines the allocation of the subarrays based
on their availability and priority of the inference requests.
This high level flow of the scheduling is shown in function
SCHEDULETASKSSPATIALLY.

Estimating minimal resource to meet the QoS requirement.
This algorithm exploits the dynamic architecture fission by
adaptively assigning resources with regard to the intrinsic slack
times provided by each DNN inference task. The algorithm
begins by first identifying the minimal resources required
to meet the QoS requirement. As illustrated in Figure 11(b),
spatial task scheduler utilizes a task monitor to keep track
of the running tasks. As shown, the configuration tables
generated during compilation is used in conjunction with the
current status of the task to predict its remaining time. Thus,
the PREDICTTIME function reduces to merely looking up the
number of remaining tiles with their cycles and performing
simple calculation. Then, the scheduler uses the prediction
for each configuration to determine the minimum number of
subarrays for each task. The ESTIMATERESOURCES function
in Algorithm 1 summarizes this stage.
Allocating resources to improve QoS. After identifying min-
imal resource for each task, the scheduler determines whether
all the tasks in the queue can be co-located simultaneously.
Depending on whether or not all the tasks can be spatially co-
located on Planaria, this stage invokes two different functions,
ALLOCATEFITTASKS and ALLOCATEUNFITTASKS, as shown
in line 6–10 in Algorithm 1. First, when all the tasks can be
spatially co-located, the function ALLOCATEFITTASKS will
first assign the minimum number of subarray required to meet
the QoS requirements. Then, if there are remaining resources,
the scheduler aims to optimally distribute these spare resources
using a score function that balances priority and the remaining
time of each task, as shown in line 27 in Algorithm 1. Conse-
quently, this score function not only fosters throughput but also
the fairness among the tasks. Finally, the scheduler allocates
the spare resources proportional to the score of each task.

On the other hand, when only subset of the tasks fit on
Planaria, the scheduler uses the ALLOCATEUNFITTASKS
function to resolve the competition among the tasks. Similar
to the approach used to assign the spare resources, the
function leverages a score that uses priority, slack, and the
minimum required resource of each task, as shown in line
40 in Algorithm 1. This scoring mechanism gives advantages
to the tasks with higher priority to improve fairness, and to
the ones with less slack time or less resource requirement
to maximize QoS satisfaction and throughput. Finally, the
scheduler allocates the resources to different tasks in the order
of their scores until Planaria becomes fully occupied.
Tile-based scheduling to minimize re-allocation overheads.
To prevent the running tasks from stalling, (1) the scheduling
happens at tile-granularity and (2) the tasks are preempted only
when the resource allocation changes. These two strategies
in tandem minimizes the potential preemption delays that
may reduce throughput. Moreover, the tile-based scheduling
minimizes the memory requirements for preemption as only
a single tile of intermediate results needs to be stored off-chip.
This in turn obviates the need for additional on-chip storage
to support preemption.

���

Algorithm 1 Spatial Scheduling for Planaria

1: function SCHEDULETASKSSPATIALLY(Q):
2: estimates {}
3: for task in Q do
4: estimates[task] ESTIMATERESOURCES (task)
5: end for
6: if Planaria.fits(estimates) then
7: s ALLOCATEFITTASKS (Q, estimates)
8: else
9: s ALLOCATEUNFITTASKS (Q, estimates)

10: end if
11: return s
12: end function

13: function ESTIMATERESOURCES(task):
14: candidates []
15: slack = task.constraint - task.executed_time
16: for num_subarray in range(Planaria.size) do
17: if PREDICTTIME(task)  slack then
18: candidates.append(num_subarray)
19: end if
20: end for
21: return min(candidates)
22: end function

23: function ALLOCATEFITTASKS(Q, estimates):
24: allocation {}, scores {}
25: for task in Q do
26: allocation[task] estimates
27: scores[task] task.priority

task.remaining_time
28: end for
29: remaining_array Planaria.size -

P
estimates

30: for task in Q do
31: fraction scores[task]P

scores
32: allocation[task] += fraction⇥remaining_array
33: end for
34: return allocation
35: end function

36: function ALLOCATEUNFITTASKS(Q, estimates):
37: allocation {}, scores {}
38: for task in Q do
39: slack task.constraints - task.executed_time
40: scores[task] task.priority

slack⇥estimates[task]
41: end for
42: scores.sort(reversed=True)
43: remaining_array Planaria.size
44: while remaining_array > 0 do
45: allocation[task] estimates[task]
46: remaining_array -= estimates[task]
47: end while
48: return allocation
49: end function

VI. EVALUATION

A. Methodology

Benchmark DNNs. Following the MLPerf [49] methodology,
we choose our representative DNN models from domains of
image classification [56–59], object detection [60–62], and
machine translation [63]. We use nine diverse DNNs from these
domains to construct a set of DNN tasks with various layer
dimensions and types of operations including recent and state-
of-the-art deep neural models such as EfficientNet and YOLOv3.

Workload Load Weight Domain DNN Model (Release year)

Machine Translation GNMT (2016)

Machine Translation GNMT

Heavier

Workload
Scenario-B

Lighter
Image Classification

Object Detection

ResNet-50, GoogLeNet,
EfficientNet-B0, MobileNet-v1
YOLOv3, SSD-ResNet34, SSD-

MobileNet, Tiny YOLO

Image Classification

Object Detection
Workload
Scenario-A

Workload
Scenario-C

Mixed

Image Classification

Object Detection

ResNet-50 (2015), GoogLeNet
(2014)

YOLOv3 (2018), SSD-R (2016)

EfficientNet-B0 (2019),
MobileNet-v1 (2017)

SSD-M (2017), Tiny YOLO
(2017)

TABLE I: Workload scenarios and benchmark DNNs from three domains: image

classification [56–59], object detection [60–62], and machine translation [63].

Multi-tenant workloads. Commensurate with MLPerf, as
Table I shows, we create three INFaaS workload scenarios
made up of inference requests to the benchmark DNNs: (a)
Workload-A (from requests to ResNet-50 [56], GoogLeNet [57],
YOLOv3 [62], SSD-R [60], and GNMT [63]); (b) Workload-B
(from requests to EfficientNet-B0 [58], MobileNet [59], SSD-
M [60], and Tiny YOLO [61]; and (c) mixed weight Workload-C
(from request to all the nine DNNs). To generate multi-tenant
instances from these scenarios, we assign a random arrival time
for each request from a Poisson distribution, commensurate
with MLPerf and other works [64–66] to mimic task
dispatching in datacenters. We assign priority levels within
the range of 1 to 11 according to [67] to the dispatched tasks
from a uniform distribution. We use Quality of Service (QoS)
constraints presented by MLPerf for the server scenarios. To
well exercise our proposed system, we use three levels of QoS
for each workload scenario, (a) QoS-S as a soft QoS constraint
(defined as 1⇥ QoS given in MLPerf), (b) QoS-M as a medium
constraint (14⇥ QoS), and (c) QoS-H as a hard constraint (1

16⇥
QoS) to evaluate sensitivity to QoS latency constraints.
Hardware modeling. We implement the proposed omni-
directional systolic subarray and the bussing systems including
crossbars for the Fission Pods in Verilog and synthesize
them with Synopsys Design Compiler (L-2016.03-SP5) using
FreePDK-45nm standard cell library [68] to extract their
power/area. We model the on-chip SRAM using CACTI-P [69]
that provides energy and area. The on-chip busing system is
modeled using McPAT 1.3 [70] and the energy cost estimated
to be 0.64 pJ/bit per hop.
Simulation infrastructure for Planaria. We compile each
DNN benchmark to Planaria, and develop a cycle-accurate
simulator that provides the cycle counts and statistics for energy
measurements for each DNN using the modeling described
above. We include all the overheads of reconfiguration, fission,
instruction fetch, off-chip memory accesses, etc. We verify
the cycle counts with our Verilog implementations.
Comparison with PREMA. We compare our proposed Pla-
naria accelerator that supports spatial multi-tenant execution of
DNNs to PREMA [4] that offers multi-tenancy via temporal
execution. Baseline PREMA utilizes a monolithic TPU-like
systolic DNN accelerator as its hardware. For fair comparison,
we use the same number of PEs (128⇥128=16,384), on-chip ac-
tivation/weight/output buffers (12 MB), frequency (700 MHz),

���

and off-chip memory bandwidth as reported in PREMA. The
detailed analysis of the synthesis results shows that our design
can meet 1GHz frequency and the added omni-directional
links or the buses are not on the critical path due to pipelining.
However, for fair comparison with PREMA [4], we still use
their reported 700 MHz frequency which is based on TPU [1].

PREMA’s monolithic systolic array is not explicitly
optimized to execute the most recent DNNs that use depth-wise
convolutions such as EfficientNet and MobileNet. For this reason,
in our evaluation, Workload-A does not include any DNNs
with separable depth-wise convolutions. However, it is most
reasonable to expect both heavy and lightweight workloads
running on the same accelerator, according to industry collab-
orators. For instance, Google Photos runs image classification
(e.g., GoogLeNet), object detection (e.g., MobileNet), and text
recognition (e.g., GNMT) all on the same accelerator. One
of Planaria’s non-tangible benefits is its adaptability to various
DNNs that is not available in monolithic designs. Moreover,
the “ligh” and “heavy” are merely MLPerf terminologies. Even
light benchmarks such as MobileNet-v1 require 1.1 billion
operations/4.2 million parameters. We, in good faith, segregate
these DNNs to eliminate any bias in our comparisons.
Evaluation Metrics. To evaluate the effectiveness of the
proposed solutions, we use the following metrics:
• Throughput is defined as the maximum queries-per-

second (1�) achieved by the system according to the Poisson
distribution (�) while meeting the SLA for different QoS con-
straints (QoS-S, QoS-M, and QoS-H). According to MLPerf [49],
meeting SLA is defined as executing an image classification
or object detection task 99% of the time and a translation task
(e.g. GNMT) 97% of time within its QoS latency bound in a
multi-tenant workload. This is the main metric for evaluation
of server scenarios for inference tasks in MLPerf [49].
• SLA Satisfaction Rate is the fraction of multi-tenant

workloads that adheres to the SLA described above.
• Fairness measures the equal progress of the tasks while

considering task priorities. We use the same definition for fair-
ness given in PREMA baseline [4], as: fairness=mini,j

PPi
PPj

,

while PPi=
T isolated
i

Tmulti�tenant
i

/ PriorityiP
Priorityk

.
• Energy reduction compares total energy consumption

to run multi-tenant workloads on both Planaria and PREMA.

B. Experimental Results
1) Comparison with PREMA

Throughput comparison. Figure 12 compares the throughput
of Planaria with PREMA across various workload scenarios and
QoS requirements. For Workload-C as the most comprehensive
workload scenario that encompasses all the benchmark DNNs,
Planaria improves the throughput by 7.4⇥, 7.2⇥, and 12.2⇥,
for QoS-S, QoS-M, and QoS-H, respectively. For Workload-B
the improvements increase to 13.2⇥ and 43.1⇥ for QoS-S and
QoS-M, respectively, while for QoS-H, the baseline PREMA
does not meet the 99% QoS constraints. This trend emanates
from the fact that the DNNs in Workload-B include separable
depth-wise/point-wise convolutions (except for Tiny YOLO).

Since Planaria has fission capability, it can better utilize its
resources for depth-wise convolution while a monolithic
design in PREMA cannot conform to the requirements of this
layer. This is an additional advantage of fission that enables
running these recent DNNs more efficiently. With regard to
Workload-A, Planaria improves the throughput by 1.1⇥, 1.5⇥,
2.3⇥, for QoS-S, QoS-M, QoS-H, respectively. These DNNs
do not include depth-wise convolution, yet our hardware
and scheduling yields significant benefits. Across all three
workload scenarios, improvements are more significant for
the case of hard QoS. Planaria performs better than PREMA
in meeting the stricter QoS requirements, as its scheduler is
QoS-aware and allocates resources to tasks based on their QoS.
SLA satisfaction rate comparison. Figure 13 illustrates the
SLA satisfaction rate of Planaria and PREMA for a the same
throughput (1�). As the results show, Planaria improves the SLA
satisfaction rate across all the workloads and QoS requirements.
The Planaria’s fission-capable microarchitecture combined with
its QoS-aware task scheduling algorithm enables significantly
larger number of workloads to be executed while adhering
to SLA, compared to PREMA. Based on the adopted QoS
constraints from [49], Workload-A allows relatively larger slack
time compared to other workloads. As such, both Planaria
and PREMA performs relatively better in SLA satisfaction for
Workload-A. Except for the case of QoS-S, where both Planaria
and PREMA satisfy the SLAs 99% of the time, Planaria
provides a 14% and 28% increase in SLA satisfaction rate
compared to PREMA. For the case of Workload-B that requires
tighter QoS as compared to Workload-A, improvements increase
to 22%, 31%, and 51%, for QoS-H, QoS-M, and QoS-S,
respectively. Finally, the improvements ranges from 16% to
45% for QoS-S to QoS-H, with respect to the mixed Workload-C.
Fairness comparison. Figure 14 shows fairness with Planaria
normalized to fairness with PREMA across all the three
workload scenarios. Planaria significantly improves fairness
for Workload-A by 2.8⇥, 5.1⇥, 2.8⇥ across the three QoS
requirements. Overall, Planaria improves fairness significantly
with minimum of 1.9⇥ for (Workload-C, QoS-H) and maximum
of 9.1⇥ for (Workload-B, QoS-M). That is because spatial
co-location in Planaria allows multiple tasks to progress
simultaneously, whereas in temporal co-location only one task
is privileged to be executed at a time. Besides, spatial co-
location takes advantage of existing underutilized resources to
improve execution of other tasks. In addition to that, Planaria’s
task scheduling algorithm (functions ALLOCATEFITTASKS
and ALLOCATEUNFITTASKS in Algorithm 1) ensures that
each dispatched task receives adequate number of subarrays
with respect to its priority and overall execution time.
Energy comparison. Figure 15 compares the total energy
consumption for the execution of workloads on Planaria and
PREMA systems. For Workload-A, Planaria consumes slightly
more energy than PREMA ranging 11% (QoS-M) to 25% (QoS-
S). Multi-tenancy leverages the slack in QoS requirements and
as such runs the application slightly slower than an isolated
mode to improve throughput and fairness. This slower execution

���

Improvement over PREMA
Iso-Power
Speedup

QoS-S 1.10
QoS-M 1.5
QoS-H 2.3

QoS-S 13.2
QoS-M 43.1
QoS-H 100

QoS-S 7.4
QoS-M 7.2
QoS-H 12.2

Th
ro
ug

hp
ut
/P
RE

M
A

0.0x

4.0x

8.0x

12.0x

16.0x

20.0x

QoS-S
QoS-M

QoS-H
QoS-S

QoS-M
QoS-H

QoS-S
QoS-M

QoS-H

12.2

7.2
7.4

100.0
43.1

13.2

2.3

1.5

1.1

Workload-A Workload-B Workload-C

N
ot

 a
tta

in
ab

le
 fo

r P
R

EM
A

1.
1

1.
5 2.
3

13
.2
43

.1

7.
4

7.
2

12
.2

Fig. 12: Throughput improvement over PREMA.

Improvement over PREMA
Iso-Power
Speedup

Iso-Area
Speedup

QoS-S 99.00 99.00
QoS-M 77 91
QoS-H 24 52

QoS-S 20 71
QoS-M 4 35
QoS-H 0 22

QoS-S 52 97
QoS-M 49 64
QoS-H 25 41

0%
20%
40%
60%
80%

100%

QoS-S
QoS-M

QoS-H
QoS-S

QoS-M
QoS-H

QoS-S
QoS-M

QoS-H

41%

64%

97%

22%

35%

71%

52%

91%

99%

25%

49%

52%

0%

4%

20%

24%

77%

99%

PREMA Planaria

Workload-A

99%

99%

Workload-B Workload-C

Improvement over PREMA-1
Iso-Power
Speedup

Iso-Area
Speedup

SLA-S 99.00 99.00
SLA-M 77 91
SLA-H 24 52

SLA-S 20 71
SLA-M 4 35
SLA-H 0 22

SLA-S 52 97
SLA-M 49 64
SLA-H 25 41

SL
A

Sa
tis

fa
ct

io
n

Ra
te

0%

20%

40%

60%

80%

100%

SLA-S
SLA-M

SLA-H
SLA-S

SLA-M
SLA-H

SLA-S
SLA-M

SLA-H

PREMA Planaria

Workload-A

99%99%

Workload-B Workload-C

99
%

99
%

77
% 91

%
24

%
52

%

20
%

71
%

4%
35

%
0%

22
%

52
%

97
%

49
% 64

%
25

% 41
%

SL
A

Sa
tis

fa
ct

io
n

Ra
te

Fig. 13: SLA satisfaction rate comparison.

Improvement over PREMA
Iso-Power
Speedup

QoS-S 2.80
QoS-M 5.1
QoS-H 2.8

QoS-S 7.3
QoS-M 9.1
QoS-H 2.6

QoS-S 2.1
QoS-M 2.3
QoS-H 1.9

0.0x
2.0x
4.0x
6.0x
8.0x

10.0x

QoS-S
QoS-M

QoS-H
QoS-S

QoS-M
QoS-H

QoS-S
QoS-M

QoS-H

1.9

2.3

2.1

2.6

9.1

7.3

2.8

5.1

2.8

Workload-A Workload-B Workload-C

2.
8

5.
1

2.
8

7.
3
9.
1

2.
6

2.
1 2.
3

1.
9

Fa
irn

es
s/
PR

EM
A

Fig. 14: Fairness improvement over PREMA.

Improvement over PREMA
Iso-Power
Speedup

QoS-S 0.8
QoS-M 0.9
QoS-H 1.1

QoS-S 5.6
QoS-M 10.0
QoS-H 12.0

QoS-S 3.3
QoS-M 4.3
QoS-H 5.1

0.0x
2.0x
4.0x
6.0x
8.0x

10.0x

QoS-S
QoS-M

QoS-H
QoS-S

QoS-M
QoS-H

QoS-S
QoS-M

QoS-H

5.1

4.3

3.3

12.010.0

5.6

1.1

0.90.8

Workload-A Workload-B Workload-C

0.
8

0.
9

1.
1

5.
6 10

.0
12

.1

3.
3 4.

3 5.
1

En
er

gy
 R

ed
uc

tio
n/

PR
EM

A

Improvement over PREMA-1
Iso-Power
Speedup

QoS-S 0.80 0.78
QoS-M 0.9 0.87
QoS-H 1.1 1.07

0.00
QoS-S 5.8 5.63
QoS-M 10.3 9.99
QoS-H 12.4 12.03

0.00
QoS-S 3.4 3.30
QoS-M 4.4 4.27
QoS-H 5.3 5.14

Fig. 15: Planaria energy reduction compared to

PREMA.

Improvement over PREMA
Iso-Power
Speedup

QoS-S 1.00
QoS-M 2
QoS-H 3

QoS-S 2
QoS-M 4
QoS-H 7

QoS-S 2
QoS-M 3
QoS-H 5

0
2
4
6
8

QoS-S
QoS-M

QoS-H
QoS-S

QoS-M
QoS-H

QoS-S
QoS-M

QoS-H

5

3

2

7

4

2

3

2

1

Workload-A Workload-B Workload-C

Improvement over PREMA-1
Iso-Power
Speedup

SLA-S 1.00
SLA-M 2
SLA-H 3

SLA-S 2
SLA-M 4
SLA-H 7

SLA-S 2
SLA-M 3
SLA-H 5

N
um

be
r o

f N
od

es

0

2

4

6

8

SLA-S
SLA-M

SLA-H
SLA-S

SLA-M
SLA-H

SLA-S
SLA-M

SLA-H

Workload-A Workload-B Workload-C

1
2

3

2
4

7

2

3
5

N
um

be
r o

f

 N

od
es

Fig. 16: Required number of nodes to achieve

99% SLA satisfaction. PREMA is not designed

for SLA. To avoid unfairness, the results for

PREMA is omitted.

Improvement over Eyeriss
Iso-Power
Speedup

Iso-Area
Speedup

EfficientNet-B0 20.30 38.10
GNMT 1 1

GoogLeNet 1.5 2.5
MobileNet-v1 21.2 45.2

ResNet-50 1.2 1.9
SSD-M 20.2 41.4
SSD-R 1.4 3.3
Tiny YOLO 2.8 5.7
YOLOv3 1.4 2.9
Geomean 3.53 6.42

1.50 2.50

0.0x
2.0x
4.0x
6.0x
8.0x

10.0x

EfficientNet-B0

GNMT
GoogLeNet

MobileNet-v1

ResNet-50

SSD-M
SSD-R

Tiny YOLO

YOLOv3

Geomean

2.5

6.4

2.9

5.7

3.3

41.4

1.9

45.2

2.5

1.0

38.1

1.5

3.5

1.4

2.8

1.4

20.2

1.2

21.2

1.5

1.0

20.3

Speedup Energy Reduction

Geomean for

DNNs without

DW-Conv

Im
pr

ov
em

en
ts

/
Sy

st
ol

ic
 A

rra
y

20
.3

38
.1

1.
1

1.
1 1.
5 2.

5
21

.2
45

.2
1.

2 1.
9

20
.2

41
.4

1.
4 3.

3
2.

8
5.

7
1.

4 2.
9 3.

5
6.

4
1.

5 2.
5

Fig. 17: Planaria improvements for single DNN

inference compared to a conventional systolic

accelerator with the same on-chip memory and

compute resources.

manifests itself as increased total energy compared to running
each DNN in isolation with fastest possible speed without
considering QoS. As a result, we see a degree of total energy
increase for these traditional workloads. In the case of Workload-
B and Workload-C, however, when modern DNNs are mixed, the
energy benefits from fission outweighs this effect. Workload-B
enjoys the maximum energy improvements using Planaria, with
minimum of 5.6⇥ and maximum of 12.1⇥ gains over PREMA.
A subset of the DNNs in Workload-B require depth-wise convolu-
tion layers. Planaria’s fission capability significantly reduces the
underutilization that monolithic systolic designs suffer due to
these layers. Hence, this increase in utilization leads to a higher
speedup and lower energy consumption for this workload. More
details are presented in Section VI-B2. Overall, with respect to
Workload-C which is a mixture of both DNN classes, Planaria
reduces the total energy consumption of the workloads by 3.3⇥,
4.3⇥, and 5.1⇥ for QoS-S, QoS-M and QoS-H, respectively.
Scaling out resources. Figure 16 illustrates the minimum
number of Planaria nodes necessary to achieve 99% SLA
satisfaction, using a constant throughput across all workloads
and QoS requirements. In this scaled-out setting, the DNN
task traffic is distributed across multiple Planaria-equipped
node, where each node has one accelerator. Each DNN task
is mapped to a single ship instead of being distributed across
multiple nodes. As illustrated in the figure, the number of
nodes necessary to achieve SLA satisfaction increases as we
go from soft (QoS-S) to hard constraints (QoS-H) on QoS.
Among the workload scenarios, Workload-B, which has stricter
QoS constraints, requires larger number of nodes compared
to other workloads, with minimum of 2 nodes for QoS-S and
maximum of 7 nodes for QoS-H. Also, one Planaria accelerator
is sufficient for QoS-S of Workload-A which already satisfies the
SLAs 99% of the time (Figure 13) and thus obviates the need
for an increased number of nodes, whereas QoS-H requires
three nodes. Finally, with regard to Workload-C, 2, 3, and 5

nodes are required for QoS-S, QoS-M, andQoS-H, respectively.
2) Sensitivity Studies

Planaria performance/energy on a single DNN inference.
Figure 17 shows the speedup and energy reduction of Planaria
as compared to a conventional systolic-based accelerator
(similar to PREMA’s) with the same amount of compute and
memory resources, while each DNN inference is executed in
isolation. Across the nine DNN benchmarks, Planaria offers
3.5⇥and 6.3⇥ speedup and energy reduction, respectively.
The fission-capable design of Planaria enables it to adapt to
the various computational characteristics that exist in DNN
layers and exploits the opportunities for parallelism and data
reuse to improve the performance and energy consumption.

Among them, EfficientNet-B0, MobileNet-v1, and SSD-M which
exploit depth-wise convolutions enjoy the maximum benefits.
To run depth-wise layers on monolithic systolic arrays, a depth-
wise 2-D filter is vectorized and mapped to one column of the
array. Lack of input reuse in depth-wise convolution leads to uti-
lizing only one column of the array. This column then accumu-
lates the results of the multiplication of depth-wise filter and its
corresponding inputs while the filter weight remains stationary
for all the inputs of the pertinent channel. Architecture fission
capability and dynamic reconfigurability of Planaria enables it to
fission into 16 independent smaller subarrays for executing the
depth-wise layers. As such, 16 systolic columns, each of which
from different subarrays, are utilized to process 16 channels in
parallel for depth-wise convolution, yielding up to 16⇥ higher
utilization. Therefore, the proposed architecture fission yields
significantly higher performance for depth-wise convolution.

With regard to DNNs without depth-wise convolution, Tiny
YOLO achieves the maximum benefits, 2.8⇥ speedup and 5.5⇥
energy reduction. GNMT attains the least improvements, since it
mostly requires matrix-multiplication operations, which is also
suitable for a monolithic design. Unlike the multi-tenant case
for Workload-A, there is no increase in energy for its isolated

���

Re
la

tiv
e

En
er

gy
De

la
y

Pr
od

uc
t

1.0
1.2
1.4
1.6
1.8
2.0 16x16

subarray

64x64
subarray

32x32
subarrayOptimal

Granularity

Fission Granularity

Better utilization,
higher performance

Less inter-subarray movement,
lower energy

Fig. 18: Design space exploration for fission granularity.

DNNs. As discussed, multi-tenancy trades off individual energy
and speed for higher throughput. In the isolated case, that
trade-off is not employed and all the resources are allocated to
one DNN maximizing its efficiency and speed through fission.
Design space exploration for fission granularity. To find
the optimal fission granularity, we perform a design space
exploration that yields the most efficient granularity, as shown
in Figure 18. We consider 128⇥ 128 total number of PEs
(as was in PREMA[4] and TPU [1]) and sweep the size of
subarrays for 16⇥16, 32⇥32, and 64⇥64. To find the optimal
size, we consider Energy-Delay-Product (EDP) and measure
its average value across the benchmark DNNs, while they
run in isolation. Figure 18 illustrates the relative EDP values
for the three design points. Blue arrows in Figure 18 show
the tradeoff between energy and performance for the design
space exploration with respect to the fission granularity. As
Figure 18 shows, 32⇥32 PEs per subarray offers least EDP,
that considers both energy and performance. This is the size
that Planaria has adopted for its fission granularity.
Sensitivity analysis for fission possibilities. Table II
illustrates the DNN layers sensitivity to various fission
possibilities, where the whole accelerator is dedicated to one
DNN inference. The dark blue cells of the table show the
15 most fitting fission possibilities for the benchmarks when
run in isolation. The table also reports their architectural
characteristics (parallelism (P), input activation reuse (IAR),
partial sum reuse (PSR), and usage of omni-directional
systolic movement (OD-SA)) with respect to the 32 ⇥ 32
fission granularity. A cell also lists the DNNs with the
percentage of their layers that have utilized the pertinent
fission configuration. Omni-directional systolic design enables
six of these configurations. The black cell in Table II captures
the most prevalent and fruitful fission configuration that, in fact,
exploits the omni-directional feature. All nine DNNs utilize this
configuration in their execution, where GNMT, YOLOv3, and
MobileNet-v1 are the three DNNs that utilize this configuration
more than others. Another important configuration is where
fission takes place at the finest granularity and 16 of 32⇥32
subarrays work independently in parallel. This configuration
is specifically important and useful for DNNs with depth-wise
convolution, e.g. EfficientNet-B0, MobielNet-v1.
Area and power overheads for fission. Figure 19 illustrates
the breakdown of area and power with respect to different
hardware components in Planaria when synthesized at 45 nm,
without considering on-chip buffers that are the same as one
used in PREMA. The breakdown includes the components
added to support dynamic fission, which includes the logic
for Omni-directional flow of data, Fission Pod crossbar,

45.9%

10.7%

24.3%

5.1%
1.4%

0.2%
4.8% 0.9% 4.1% 2.6% 0.0%

38.4%

6.6%24.7%

8.6%

1.1%
0.1%

14.4%

0.4% 3.4% 2.2% 0.0%

Overheads

<0.1% <0.1%

(a) area (b) power

38.4%

6.6%24.7%

8.6%

1.1%
0.1%

14.4%

0.4%
3.4%

2.2%
0.0%

Multipliers Adders
Pipelining Registers Control Logic
SIMD Vector Unit Instruction Buffer
Omni-directional Flow of Data Overhead Fission Pod Crossbar Overhead
SIMD Unit Overhead Instruction Buffer Overhead
Reconfiguration Registers Overhead

Fig. 19: Planaria power/area breakdown and its overheads.

SIMD vector unit additions, instruction buffer additions, and
re-configurations registers. Other components are multipliers,
adders and accumulators, pipelining registers for intra-systolic
array/subarray data movement, a SIMD unit, control logic, and
an instruction buffer. Note that these components are the same
for both regular systolic array and Planaria, and consequently
these are not considered overheads. Overall, dynamic fission
adds 12.6%, 20.6% extra area and power, respectively.

VII. RELATED WORK

The need for higher speed and efficiency in DNN execution
has led to an explosion of DNN accelerators [1, 3, 71–93]
that has even made their way to operational datacenters
(Google’s TPU [1], NVIDIA T4 [2], Microsoft Brainwave [3],
etc.). However, multi-tenancy has been largely omitted in the
proposed or deployed designs due to the arms race in the market
for higher speed and efficiency. This paper offers spatial multi-
tenant acceleration through architecture fission that is propelled
by unique microarchitectural mechanisms and organizations
that enables flexible task scheduling. As such, this paper
lies at the intersection of DNN acceleration and multi-tenant
execution. We discuss relevant related work categories below.
Multi-tenancy for DNN accelerators. PREMA [4] develops
a scheduling algorithm for preemptive execution of DNNs on a
monolithic accelerator and uses time-sharing for multi-tenancy.
On the other hand, AI-MT [94] develops an architecture that
supports multi-tenancy by first tiling the layers at compile
time, then exploiting hardware-based scheduling to maximize
resource utilization. In contrast to these temporal multi-tenancy
supports, this paper explores architecture design for spatial
co-location of DNNs for multi-tenant acceleration and its
unique scheduling challenges.
Flexibility in DNN accelerators. Flexibility in DNN accelera-
tion has recently gained attention [52–54, 88, 95, 96]. However,
these inspiring works do not explore simultaneous spatial co-
location of multiple DNNs on the same chip. Eyeriss v2 [54]
proposes a hierarchical architecture equipped with a flexible
mesh-based NoC that provides flexibility to adapt to various
level of data reuse. MAERI [52] and SIGMA [95] propose a
reconfigurable interconnect among the PEs to deal with sparsity
in neural networks [52] and matrix multiplications [95] and to

���

(32x512)-1 Cluster
P

IAR
PSR

OD-SA

(128x64)-2 Clusters
P

IAR
PSR

OD-SA

(32x128)-4 Clusters
P

IAR
PSR

OD-SA

(128x32)-4 Clusters
P

IAR
PSR

OD-SA

(64x64)-4 Clusters
P

IAR
PSR

OD-SA

(128x128)-1 Cluster
P

IAR
PSR

OD-SA

1x
4x
4x

Unused
DNN % of Layers

EfficientNet-B0 7.3 %
GoogLeNet 15.5 %

MobileNet-v1 7.1 %
ResNet-50 26.5 %

SSD-M 26.1 %
SSD-R 62.5 %

Tiny YOLO 11.1 %
YOLOv3 21.2 %

1x
16x
1x

Used
DNN % of Layers

EfficientNet-B0 15.9 %

(512x32)-1 Cluster
P

IAR
PSR

OD-SA

1x
1x
16x

Used
DNN % of Layers

EfficientNet-B0 9.8 %
GoogLeNet 15.5 %
ResNet-50 6.1 %
Tiny YOLO 22.2 %

YOLOv3 7.7 %

(64x256)-1 Cluster
P

IAR
PSR

OD-SA

1x
8x
2x

Used
DNN % of Layers

EfficientNet-B0 11.0 %
GoogLeNet 1.7 %
ResNet-50 8.2 %

(256x64)-1 Cluster
P

IAR
PSR

OD-SA

1x
2x
8x

Used
DNN % of Layers

EfficientNet-B0 7.3 %

GoogLeNet 29.3 %
MobileNet-v1 35.7 %

ResNet-50 32.6 %
SSD-M 26.1 %
SSD-R 16.7 %

Tiny YOLO 22.2 %
YOLOv3 53.8 %

GNMT 100 %

(64x128)-2 Clusters
P

IAR
PSR

OD-SA

2x
4x
2x

Unused
DNN % of Layers

GoogLeNet 6.9 %

SSD-M 4.3 %
SSD-R 4.2 %

YOLOv3 5.8 %

MobileNet-v1 3.6 %

2x
2x
4x

Unused
DNN % of Layers

GoogLeNet 3.4 %

YOLOv3 5.8 %
ResNet-50 12.2 %

(256x32)-2 Clusters
P

IAR
PSR

OD-SA

2x
1x
8x

Used
DNN % of Layers

EfficientNet-B0 1.2 %

Tiny YOLO 11.1 %
GoogLeNet 12.1 %

(32x256)-2 Clusters
P

IAR
PSR

OD-SA

2x
8x
1x

Used
DNN % of Layers

EfficientNet-B0 2.4 %
YOLOv3 1.9 %

4x
4x
1x

Unused
DNN % of Layers

EfficientNet-B0 1.2 %
SSD-M 8.7 %

4x
1x
4x

Unused
DNN % of Layers

GoogLetNet 8.6 %
SSD-M 4.3 %

(64x32)-8 Clusters
P

IAR
PSR

OD-SA

8x
1x
2x

Unused
DNN % of Layers

GoogLeNet 1.7 %
Tiny YOLO 11.1 %

YOLOv3 1.9 %

(32x64)-8 Clusters
P

IAR
PSR

OD-SA

8x
2x
1x

Unused
DNN % of Layers

EfficientNet-B0 2.4 %
MobileNet-v1 7.1 %

SSD-M 4.3 %

(32x32)-16 Clusters
P

IAR
PSR

OD-SA

16x
1x
1x

Unused
DNN % of Layers

EfficientNet-B0 23.1 %
GoogLeNet 1.7 %

MobileNet-v1 46.4 %
ResNet-50 6.1 %

SSD-M 26.1 %
Tiny YOLO 11.1 %

4x
2x
2x

Unused
DNN % of Layers

EfficientNet-B0 1.2 %
ResNet-50 8.2 %

SSD-R 16.7 %
Tiny YOLO 11.1 %
YOLOv3 1.9 %

A 32x32 Omni-diractional Systolic Subarray P: Parallelism IAR: Input Activation Reuse PSR: Partial Sum Reuse OD-SA: Omni-Directional Systolic Array Feature

TABLE II: Layer sensitivity to various fission configurations. Each cell shows a configuration with its architectural attributes (parallelism, input activation reuse,

partial sum reuse, and usage of omni-directional data movement) and the percentage of the layers that uses the configuration.

increase resource utilization. Simba [96] proposes a scalable
multi-chip module-based accelerator to reduce fabrication cost
and provide scalability with respect to inter-chip and intra-chip
communication. BitFusion [88] explores bit-level dynamic
composability in its multipliers to support heterogeneity in
deeply quantized neural networks. Tangram [53] explores
dataflow optimizations by buffer-sharing dataflow and
inter-layer pipelining on a hierarchical design to reduce energy.
Multi-tenancy for CPUs and GPUs. There is a large swath
of related work on multi-tenancy for CPUs [36, 66, 97–103]
and GPUs [29, 35, 37–42, 66, 104–110] due to its vitality for
cloud-scale computing. NVIDIA Triton Inference Server [111]
(formerly TensorRT Inference Server) provides a cloud
software inference solution optimized for GPUs and offers
benefits by supporting multi-tenant execution of DNNs on
them [112]. GrandSLAm [66] proposes scheduling policies
to minimize SLA violation rates for microservices in the
cloud for CPUs and GPUs, and the studied workloads
include DNNs. In contrast, this paper uniquely enables spatial
multi-tenancy on DNN accelerators, by leveraging a dynamic
fission in the architecture and leveraging that through the
scheduler. Kubernetes [48] and Mesos [113] are cloud-scale
resource management framework, but have not explored spatial
multi-tenancy in DNN accelerators due to its unavailability.
Our scheduling algorithm is complementary to their operation.
DNN acceleration. There is a large body of work [1, 3, 52–
55, 71–82, 84–88, 91–93, 95, 96, 114–124] for isolated
acceleration of DNNs that, although inspired our work, are not
focused on multi-tenancy but rather offer various innovations
to improve the speed and efficiency of DNN execution.

VIII. CONCLUSION

As INFerence-as-a-Service is growing in demand, it is timely
to explore multi-tenancy for DNN accelerators. This paper
explored this topic through a novel approach of dynamic archi-
tecture fission, and provided a concrete architecture, Planaria,
and its respective scheduling algorithm. Evaluation with a
diverse set of DNN benchmarks and workload scenarios shows
significant gains in throughput, SLA satisfaction, and fairness.

IX. ACKNOWLEDGEMENT

We thank Norm Jouppi for his constructive and insightful
feedbacks on the design and manuscript. This work was in
part supported by generous gifts from Google, Qualcomm,
Microsoft, Xilinx as well as the National Science Foundation
(NSF) awards CNS#1703812, ECCS#1609823, CCF#1553192,
Air Force Office of Scientific Research (AFOSR) Young In-
vestigator Program (YIP) award #FA9550-17-1-0274, National
Institute of Health (NIH) award #R01EB028350, and AirForce
Research Laboratory (AFRL) and Defense Advanced Research
Project Agency (DARPA) under agreement number #FA8650-
20-2-7009 and #HR0011-18-C-0020. The U.S. Government is
authorized to reproduce and distribute reprints for Governmen-
tal purposes not withstanding any copyright notation thereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied
of Google, Qualcomm, Microsoft, Xilinx, Samsung, Bigstream,
NSF, AFSOR, NIH, AFRL, DARPA or the U.S. Government.

REFERENCES

[1] Norman P Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers,
et al. In-datacenter performance analysis of a tensor
processing unit. In ISCA, 2017.

[2] Nvidia T4: Tensor core GPU for AI inference.
https://www.nvidia.com/en-us/data-center/tesla-t4/, .

[3] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay,
Michael Haselman, Logan Adams, Mahdi Ghandi, et al.
A configurable cloud-scale dnn processor for real-time
ai. In ISCA, 2018.

[4] Yujeong Choi and Minsoo Rhu. Prema: A predictive
multi-task scheduling algorithm for preemptible neural
processing units. HPCA, 2020.

[5] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bas-
sous, and A. R. LeBlanc. Design of ion-implanted MOS-
FET’s with very small physical dimensions. JSSC, 1974.

���

[6] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Toward dark silicon in servers. IEEE Micro, 2011.

[7] Ganesh Venkatesh, Jack Sampson, Nathan Goulding,
Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-
Martinez, Steven Swanson, and Michael Bedford Taylor.
Conservation cores: Reducing the energy of mature
computations. In ASPLOS, 2010.

[8] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant,
Karthikeyan Sankaralingam, and Doug Burger. Dark
silicon and the end of multicore scaling. In ISCA, 2011.

[9] John L Hennessy and David A Patterson. A new golden
age for computer architecture. CACM and Turing
Lecture, 2019.

[10] Rehan Hameed, Wajahat Qadeer, Megan Wachs,
Omid Azizi, Alex Solomatnikov, Benjamin C Lee,
Stephen Richardson, Christos Kozyrakis, and Mark
Horowitz. Understanding sources of inefficiency in
general-purpose chips. In ISCA, 2010.

[11] Edge TPU. https://cloud.google.com/edge-tpu/.
[12] Nvidia Jetson: The AI platform for autonomous

machines. https://developer.nvidia.com/embedded/
develop/hardware, .

[13] Apple a11-bionic. https://en.wikipedia.org/wiki/Apple_
A11, .

[14] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. INFaaS: Managed & model-less
inference serving. arXiv, 2019.

[15] Google assistant. https://assistant.google.com, .
[16] Apple siri. https://www.apple.com/siri/, .
[17] Amazon alexa. https://developer.amazon.com/en-

US/alexa/, .
[18] Google cloud customers. https://cloud.google.com/

customers/, .
[19] Amazon case studies. https://aws.amazon.com/solutions/

case-studies/, .
[20] Amazon sagemaker customers. https://aws.amazon.com/

sagemaker/customers/, .
[21] Google cloud. https://cloud.google.com/products/ai/, .
[22] Amazon elastic inference. https://aws.amazon.com/

machine-learning/elastic-inference/.
[23] Amazon sagemaker. https://aws.amazon.com/sagemaker/,

.
[24] Azure machine learning. https://azure.microsoft.com/en-

us/services/machine-learning/.
[25] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong

Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S
Lee, David Brooks, and Carole-Jean Wu. Deeprecsys:
A system for optimizing end-to-end at-scale neural
recommendation inference. ISCA, 2020.

[26] Yuhao Zhu, Matthew Halpern, and Vijay Janapa Reddi.
Event-based scheduling for energy-efficient qos (eqos)
in mobile web applications. In HPCA, 2015.

[27] Yuhao Zhu, Daniel Richins, Matthew Halpern, and
Vijay Janapa Reddi. Microarchitectural implications of
event-driven server-side web applications. In MICRO,
2015.

[28] Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen,
and Jeffrey Vetter. Enabling and exploiting flexible
task assignment on gpu through sm-centric program
transformations. In ICS, 2015.

[29] Guoyang Chen and Xipeng Shen. Free launch:
optimizing gpu dynamic kernel launches through thread
reuse. In MICRO, 2015.

[30] Bo Wu, Xu Liu, Xiaobo Zhou, and Changjun Jiang.
Flep: Enabling flexible and efficient preemption on
gpus. In ASPLOS, 2017.

[31] Harshad Kasture and Daniel Sanchez. Ubik: Efficient
Cache Sharing with Strict QoS for Latency-Critical
Workloads. In ASPLOS, 2014.

[32] Christina Delimitrou, Daniel Sanchez, and Christos
Kozyrakis. Tarcil: Reconciling Scheduling Speed and
Quality in Large Shared Clusters. In SoCC, 2015.

[33] Yuzhao Wang, Lele Li, You Wu, Junqing Yu, Zhibin
Yu, and Xuehai Qian. Tpshare: a time-space sharing
scheduling abstraction for shared cloud via vertical
labels. In ISCA, 2019.

[34] Abdulaziz Tabbakh, Murali Annavaram, and Xuehai
Qian. Power efficient sharing-aware gpu data
management. In IPDPS, 2017.

[35] Nandita Vijaykumar, Kevin Hsieh, Gennady Pekhimenko,
Samira Khan, Ashish Shrestha, Saugata Ghose, Adwait
Jog, Phillip B Gibbons, and Onur Mutlu. Zorua: A
holistic approach to resource virtualization in gpus. In
MICRO, 2016.

[36] Sudipto Das, Vivek R. Narasayya, Feng Li, and Manoj
Syamala. Cpu sharing techniques for performance
isolation in multi-tenant relational database-as-a-service.
Proc. VLDB Endow., 2013.

[37] Quan Chen, Hailong Yang, Jason Mars, and Lingjia
Tang. Baymax: Qos awareness and increased utilization
for non-preemptive accelerators in warehouse scale
computers. ASPLOS, 2016.

[38] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa
Kannan, Jason Mars, and Lingjia Tang. Prophet:
Precise qos prediction on non-preemptive accelerators
to improve utilization in warehouse-scale computers.
ASPLOS, 2017.

[39] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex
Ramirez, Nacho Navarro, and Mateo Valero. Enabling
preemptive multiprogramming on gpus. In ISCA, 2014.

[40] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke.
Chimera: Collaborative preemption for multitasking on
a shared gpu. ASPLOS, 2015.

[41] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke.
Dynamic resource management for efficient utilization
of multitasking gpus. ASPLOS, 2017.

[42] Dipanjan Sengupta, Anshuman Goswami, Karsten
Schwan, and Krishna Pallavi. Scheduling multi-tenant
cloud workloads on accelerator-based systems. In SC,
2014.

[43] David Wentzlaff, Charles Gruenwald III, Nathan
Beckmann, Kevin Modzelewski, Adam Belay, Lamia

���

Youseff, Jason Miller, and Anant Agarwal. An operating
system for multicore and clouds: Mechanisms and
implementation. In SoCC, 2010.

[44] Prashanth Thinakaran, Jashwant Raj, Bikash Sharma,
Mahmut T Kandemir, and Chita R Das. The curious
case of container orchestration and scheduling in
gpu-based datacenters. In SoCC, 2018.

[45] Adwait Jog, Onur Kayiran, Tuba Kesten, Ashutosh
Pattnaik, Evgeny Bolotin, Niladrish Chatterjee,
Stephen W Keckler, Mahmut T Kandemir, and
Chita R Das. Anatomy of gpu memory system for
multi-application execution. In MEMSYS, 2015.

[46] Prashanth Thinakaran, Jashwant Raj Gunasekaran,
Bikash Sharma, Mahmut Taylan Kandemir, and Chita R
Das. Kube-knots: Resource harvesting through dynamic
container orchestration in gpu-based datacenters. In
CLUSTER, 2019.

[47] Natalie Enright Jerger, Dana Vantrease, and Mikko
Lipasti. An evaluation of server consolidation workloads
for multi-core designs. In IISWC, 2007.

[48] Kubernetes. https://kubernetes.io.
[49] Vijay Janapa Reddi, Christine Cheng, David Kanter,

Peter Mattson, Guenther Schmuelling, Carole-Jean Wu,
Brian Anderson, Maximilien Breughe, Mark Charlebois,
William Chou, et al. Mlperf inference benchmark.
arxiv, 2019.

[50] Peter Mattson, Christine Cheng, Cody Coleman, Greg
Diamos, Paulius Micikevicius, David Patterson, Hanlin
Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, et al.
Mlperf training benchmark. arxiv, 2019.

[51] Zero-shot translation with google’s multilingual neural
machine translation system. https://ai.googleblog.com/
2016/11/zero-shot-translation-with-googles.html.

[52] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna.
Maeri: Enabling flexible dataflow mapping over dnn
accelerators via reconfigurable interconnects. ASPLOS,
2018.

[53] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and
Christos Kozyrakis. Tangram: Optimized coarse-grained
dataflow for scalable nn accelerators. In ASPLOS, 2019.

[54] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne
Sze. Eyeriss v2: A flexible accelerator for emerging
deep neural networks on mobile devices. JETCAS, 2019.

[55] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer,
Angshuman Parashar, Vivek Sarkar, and Tushar Krishna.
Understanding reuse, performance, and hardware cost of
dnn dataflow: A data-centric approach. In MICRO, 2019.

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[57] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. In CVPR, 2015.

[58] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. ICML,

2019.
[59] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision
applications. arXiv, 2017.

[60] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In ECCV,
2016.

[61] Joseph Redmon and Ali Farhadi. Yolo9000: better,
faster, stronger. In CVPR, 2017.

[62] Joseph Redmon and Ali Farhadi. Yolov3: An
incremental improvement. arXiv, 2018.

[63] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv,
2016.

[64] Balajee Vamanan, Hamza Bin Sohail, Jahangir Hasan,
and TN Vijaykumar. Timetrader: Exploiting latency tail
to save datacenter energy for online search. In MICRO,
2015.

[65] Lalith Suresh, Peter Bodik, Ishai Menache, Marco
Canini, and Florin Ciucu. Distributed resource
management across process boundaries. In SoCC, 2017.

[66] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin
Raju, Jeongseob Ahn, Jason Mars, and Lingjia Tang.
Grandslam: Guaranteeing slas for jobs in microservices
execution frameworks. In EuroSys, 2019.

[67] Pascale Minet, Eric Renault, Ines Khoufi, and Selma
Boumerdassi. Analyzing traces from a google data
center. In IWCMC, 2018.

[68] FreePDK45. https://www.eda.ncsu.edu/wiki/FreePDK45.
[69] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and

N. P. Jouppi. CACTI-P: Architecture-level Modeling
for SRAM-based Structures with Advanced Leakage
Reduction Techniques. In ICCAD, 2011.

[70] Sheng Li, Jung Ho Ahn, R.D. Strong, J.B. Brockman,
D.M. Tullsen, and N.P. Jouppi. McPAT: An integrated
power, area, and timing modeling framework for
multicore and manycore architectures. In MICRO, 2009.

[71] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang
He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu,
Ninghui Sun, et al. Dadiannao: A machine-learning
supercomputer. In MICRO, 2014.

[72] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss:
A spatial architecture for energy-efficient dataflow for
convolutional neural networks. In ISCA, 2016.

[73] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan
Pedram, Mark A Horowitz, and William J Dally. Eie:
efficient inference engine on compressed deep neural
network. In ISCA, 2016.

[74] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor
Aamodt, Natalie Enright Jerger, and Andreas Moshovos.

���

Cnvlutin: ineffectual-neuron-free deep neural network
computing. In ISCA, 2016.

[75] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo,
Yuan Xie, Yunji Chen, and Tianshi Chen. Cambricon:
An instruction set architecture for neural networks. In
ISCA, 2016.

[76] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan,
Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji
Chen. Cambricon-x: An accelerator for sparse neural
networks. In MICRO, 2016.

[77] Patrick Judd, Jorge Albericio, Tayler Hetherington,
Tor M Aamodt, and Andreas Moshovos. Stripes: Bit-
serial deep neural network computing. In MICRO, 2016.

[78] Ali Shafiee, Anirban Nag, Naveen Muralimanohar,
Rajeev Balasubramonian, John Paul Strachan, Miao
Hu, R Stanley Williams, and Vivek Srikumar. Isaac:
A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. In ISCA, 2016.

[79] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen
Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. Prime:
A novel processing-in-memory architecture for neural
network computation in reram-based main memory. In
ISCA, 2016.

[80] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar
Yalamanchili, and Saibal Mukhopadhyay. Neurocube:
A programmable digital neuromorphic architecture with
high-density 3d memory. In ISCA, 2016.

[81] Brandon Reagen, Paul Whatmough, Robert Adolf,
Saketh Rama, Hyunkwang Lee, Sae Kyu Lee,
José Miguel Hernández-Lobato, Gu-Yeon Wei, and
David Brooks. Minerva: Enabling low-power, highly-
accurate deep neural network accelerators. In ISCA,
2016.

[82] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and
Christos Kozyrakis. Tetris: Scalable and efficient neural
network acceleration with 3d memory. In ASPLOS, 2017.

[83] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca
Benini. Yodann: An ultra-low power convolutional
neural network accelerator based on binary weights.
arXiv, 2016.

[84] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel
Amaro, Joon Kim, Chenkai Shao, Asit Misra, and Hadi
Esmaeilzadeh. From high-level deep neural models to
fpgas. In MICRO, 2016.

[85] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara,
Antonio Puglielli, Rangharajan Venkatesan, Brucek
Khailany, Joel Emer, Stephen W Keckler, and William J
Dally. SCNN: An Accelerator for Compressed-sparse
Convolutional Neural Networks. In ISCA, 2017.

[86] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen.
Pipelayer: A pipelined reram-based accelerator for deep
learning. In HPCA, 2017.

[87] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh
Sharify, Gerard O’Leary, Roman Genov, and Andreas
Moshovos. Bit-pragmatic deep neural network
computing. In MICRO, 2017.

[88] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen
Lai, Benson Chau, Vikas Chandra, and Hadi
Esmaeilzadeh. Bit fusion: Bit-level dynamically
composable architecture for accelerating deep neural
networks. ISCA, 2018.

[89] Vahide Aklaghi, Amir Yazdanbakhsh, Kambiz Samadi,
Hadi Esmaeilzadeh, and Rajesh K. Gupta. Snapea:
Predictive early activation for reducing computation in
deep convolutional neural networks. In ISCA, 2018.

[90] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan,
Michael Pellauer, and Christopher W Fletcher. Ucnn:
Exploiting computational reuse in deep neural networks
via weight repetition. arXiv, 2018.

[91] Jinmook Lee, Changhyeon Kim, Sanghoon Kang,
Dongjoo Shin, Sangyeob Kim, and Hoi-Jun Yoo. Unpu:
A 50.6 tops/w unified deep neural network accelerator
with 1b-to-16b fully-variable weight bit-precision. In
ISSCC, 2018.

[92] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone
Stuart, Zissis Poulos, Mostafa Mahmoud, Sayeh Sharify,
Milos Nikolic, Kevin Siu, and Andreas Moshovos.
Bit-tactical: A software/hardware approach to exploiting
value and bit sparsity in neural networks. In ASPLOS,
2019.

[93] Sayeh Sharify, Alberto Delmas Lascorz, Mostafa
Mahmoud, Milos Nikolic, Kevin Siu, Dylan Malone
Stuart, Zissis Poulos, and Andreas Moshovos. Laconic
deep learning inference acceleration. In ISCA, 2019.

[94] Eunjin Baek, Dongup Kwon, and Jangwoo Kim. A multi-
neural network acceleration architecture. ISCA, 2020.

[95] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet
Nadella, Sudarshan Srinivasan, Dipankar Das, Bharat
Kaul, and Tushar Krishna. Sigma: A sparse and
irregular gemm accelerator with flexible interconnects
for dnn training. HPCA, 2020.

[96] Yakun Sophia Shao, Jason Clemons, Rangharajan
Venkatesan, Brian Zimmer, Matthew Fojtik, Nan Jiang,
Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. Simba: Scaling deep-learning
inference with multi-chip-module-based architecture. In
MICRO, 2019.

[97] James E. Smith and Andrew R. Pleszkun. Implementing
precise interrupts in pipelined processors. TC, 1988.

[98] Lingjia Tang, Jason Mars, and Mary Lou Soffa.
Compiling for niceness: Mitigating contention for qos
in warehouse scale computers. In CGO, 2012.

[99] Jason Mars and Lingjia Tang. Whare-map: heterogeneity
in" homogeneous" warehouse-scale computers. In ISCA,
2013.

[100] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron,
and Mary Lou Soffa. Bubble-up: Increasing utilization
in modern warehouse scale computers via sensible
co-locations. In MICRO, 2011.

[101] Wei Wang, Tanima Dey, Jason Mars, Lingjia Tang,
Jack W Davidson, and Mary Lou Soffa. Performance
analysis of thread mappings with a holistic view of the

���

hardware resources. In ISPASS, 2012.
[102] Christina Delimitrou and Christos Kozyrakis. Quasar:

resource-efficient and qos-aware cluster management.
In ASPLOS, 2014.

[103] Yunqi Zhang, Michael A Laurenzano, Jason Mars,
and Lingjia Tang. Smite: Precise qos prediction on
real-system smt processors to improve utilization in
warehouse scale computers. In MICRO, 2014.

[104] Haishan Zhu and Mattan Erez. Dirigent: Enforcing qos
for latency-critical tasks on shared multicore systems.
In ASPLOS, 2016.

[105] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang,
and M. Guo. Simultaneous multikernel gpu: Multi-
tasking throughput processors via fine-grained sharing.
In HPCA, 2016.

[106] Zhou Fang, Tong Yu, Ole J Mengshoel, and Rajesh K
Gupta. Qos-aware scheduling of heterogeneous servers
for inference in deep neural networks. In CIKM, 2017.

[107] Y. Ukidave, X. Li, and D. Kaeli. Mystic: Predictive
scheduling for gpu based cloud servers using machine
learning. In IPDPS, 2016.

[108] Z. Lin, L. Nyland, and H. Zhou. Enabling efficient
preemption for simt architectures with lightweight
context switching. In SC, 2016.

[109] Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, and
Srimat Chakradhar. Supporting gpu sharing in cloud
environments with a transparent runtime consolidation
framework. In HPDC, 2011.

[110] Michela Becchi, Kittisak Sajjapongse, Ian Graves,
Adam Procter, Vignesh Ravi, and Srimat Chakradhar. A
virtual memory based runtime to support multi-tenancy
in clusters with gpus. In HPDC, 2012.

[111] Nvidia triton inference server. https://github.com/
NVIDIA/triton-inference-server/.

[112] Tripti Singhal. Maximizing gpu utilization for datacenter
inference with nvidia tensorrt inference server. 2019.

[113] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: a platform for
fine-grained resource sharing in the data center. In
NSDI, 2011.

[114] Sayeh Sharify, Alberto Delmas Lascorz, Kevin
Siu, Patrick Judd, and Andreas Moshovos. Loom:
Exploiting weight and activation precisions to accelerate

convolutional neural networks. In DAC, 2018.
[115] Soroush Ghodrati, Hardik Sharma, Sean Kinzer, Amir

Yazdanbakhsh, Jongse Park, Nam Sung Kim, Doug
Burger, and Hadi Esmaeilzadeh. Mixed-signal charge-
domain acceleration of deep neural networks through
interleaved bit-partitioned arithmetic. In PACT, 2020.

[116] Soroush Ghodrati, Hardik Sharma, Cliff Young,
Nam Sung Kim, and Hadi Esmaeilzadeh. Bit-parallel
vector composability for neural acceleration. In DAC,
2020.

[117] Byung Hoon Ahn, Prannoy Pilligundla, and Hadi
Esmaeilzadeh. Chameleon: Adaptive code optimization
for expedited deep neural network compilation. In
ICLR, 2020.

[118] Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-
Pai Cheng, Jilei Hou, and Hadi Esmaeilzadeh. Ordering
chaos: Memory-aware scheduling of irregularly wired
neural networks for edge devices. In MLSys, 2020.

[119] Sungju Ryu, Hyungjun Kim, Wooseok Yi, and
Jae-Joon Kim. Bitblade: Area and energy-efficient
precision-scalable neural network accelerator with
bitwise summation. In DAC, 2019.

[120] Amir Yazdanbakhsh, Michael Brzozowski, Behnam
Khaleghi, Soroush Ghodrati, Kambiz Samadi, Nam Sung
Kim, and Hadi Esmaeilzadeh. Flexigan: An end-to-end
solution for fpga acceleration of generative adversarial
networks. In FCCM, 2018.

[121] Bita Darvish Rouhani, Mohammad Samragh, Mojan
Javaheripi, Tara Javidi, and Farinaz Koushanfar.
Deepfense: Online accelerated defense against
adversarial deep learning. In ICCAD, 2018.

[122] Mohammad Samragh, Mojan Javaheripi, and Farinaz
Koushanfar. Encodeep: Realizing bit-flexible encoding
for deep neural networks. TECS, 2019.

[123] Shehzeen Hussain, Mojan Javaheripi, Paarth Neekhara,
Ryan Kastner, and Farinaz Koushanfar. Fastwave:
Accelerating autoregressive convolutional neural
networks on fpga. arXiv, 2020.

[124] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun
Subramaniyan, Ravi Iyer, Dennis Sylvester, David
Blaaauw, and Reetuparna Das. Neural cache: Bit-serial
in-cache acceleration of deep neural networks. In ISCA,
2018.

���

