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Abstract Manifold learning methods play a prominent role in nonlinear di-
mensionality reduction and other tasks involving high-dimensional data sets
with low intrinsic dimensionality. Many of these methods are graph-based:
they associate a vertex with each data point and a weighted edge with each
pair. Existing theory shows that the Laplacian matrix of the graph converges
to the Laplace-Beltrami operator of the data manifold, under the assumption
that the pairwise affinities are based on the Euclidean norm. In this paper, we
determine the limiting differential operator for graph Laplacians constructed
using any norm. Our proof involves an interplay between the second funda-
mental form of the manifold and the convex geometry of the given norm’s unit
ball. To demonstrate the potential benefits of non-Euclidean norms in mani-
fold learning, we consider the task of mapping the motion of large molecules
with continuous variability. In a numerical simulation we show that a modified
Laplacian eigenmaps algorithm, based on the Earthmover’s distance, outper-
forms the classic Euclidean Laplacian eigenmaps, both in terms of computa-
tional cost and the sample size needed to recover the intrinsic geometry.
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1 Introduction

Manifold learning is broadly concerned with analyzing high-dimensional data
sets that have a low intrinsic dimensionality. The standard assumption is that
the input data set X = {x1,...,x,} C R lies on or near a d-dimensional sub-
manifold M C RP where d < D. The key tasks are dimensionality reduction
[63,52,16,4,72,11,38,40,71], function representation and approximation [21,
10,35,59] and semi-supervised learning [5,24,45]. Most data analysis methods
in this setting rely on pairwise Euclidean distances between the data points.

In this paper, we focus on manifold learning methods that use a graph
Laplacian. These include the popular spectral embedding methods Laplacian
eigenmaps [4,5] and diffusion maps [11]. Both methods map the input points
to the eigenvectors of a graph Laplacian operator £,, (or weighted variant
thereof). By definition, £,, acts on a function f: X — R via

On

n 2
(Laf) (ki) = 3 Wiy (FGx5) — F(xi)), Wiy o= exp (—”XX”) ()
j=1

Under suitable conditions, as n — oo the discrete graph Laplacian operator
L,, converges to the continuous Laplace-Beltrami operator A on the mani-
fold [7], and its eigenvectors converge to the Laplacian eigenfunctions [6]. While
the convergence results can be extended to more general affinity kernels of the
form W;; = Ko, (||x; —x;|2), the role of the Euclidean norm here is essential.
This poses a potential limitation for graph Laplacian methods since Euclidean
metrics are not always the best choice for all application domains [8]. Further-
more, some non-Euclidean metrics use compressed representations, which can
have practical benefits in terms of runtime and memory requirements. Follow-
ing this line of reasoning leads to the following questions: can the machinery
of discrete Laplacian operators be generalized to non-Euclidean metrics? Does

doing so yield any practical benefits? If so, what is the underlying theory?
This paper is an initial step in answering these questions. The main con-
tribution of the paper is the derivation of the continuum limit of discrete
Laplacian operators similar to (1) but with an affinity kernel based on an ar-
bitrary norm. Our key result (Theorem 6) is a proof that using any norm,
graph Laplacians converge to an explicit second-order differential operator on
M. In contrast to the Euclidean case, in the general case the limiting operator
is not intrinsic to the manifold, i.e., it depends on the embedding of M in
RP. Furthermore, it has non-vanishing and possibly discontinuous first-order
terms. The second-order coefficients of the limiting differential operator at a
point p € M is given by the second moments of the intersection of the tan-
gent plane to M at p and the given norm’s unit ball. The first-order terms
depend on the second fundamental form of M at p and the tangent cones to
the norm’s unit sphere, through a function we call tilt, defined in Section 3.3.
In a second contribution, which was the original motivation for this work,
we present in Section 5 a variant of Laplacian eigenmaps that is based on
a norm that approximates the Earthmover’s distance (EMD), also known as
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the Wasserstein-1 metric, for learning volumetric shape spaces. This is mo-
tivated by an important problem in structural biology: learning the confor-
mation space of flexible proteins and other macromolecules with continuous
variability from cryo-electron microscopy images. Empirically, we demonstrate
that classical (Euclidean) Laplacian eigenmaps are at a disadvantage compared
to Laplacian eigenmaps based on this approximate EMD, as it requires far
fewer sample points to recover the intrinsic manifold of motion. Furthermore,
as we show in Section 5.5, the proposed method can achieve faster runtime and
a smaller memory footprint through an intermediate compressed representa-
tion. This demonstrates, at least for certain data sets, the use of non-Euclidean
norms in Laplacian-based manifold learning is desirable from a practical view.

1.1 Related work

Our convergence proof builds on the well-known proof of Belkin and Niyogi’s
for the case of the Euclidean norm [7]. However, the argument for the Eu-
clidean case is not directly adaptable to the case of other norms. It relies on
a special property of the Euclidean norm: that Euclidean distances provide a
second-order approximation to manifold geodesic distances (see [6, Figure 1]).
This fails for general norms, which do not even give a first-order approxima-
tion to geodesic distances. This difference introduces a first-order derivative
term in the limit in the general case. Another technical difference is that, in
the standard case, the intersection of an embedded tangent space with the
Euclidean unit ball is rotationally symmetric. This gives rise to the Laplace-
Beltrami operator, which is the only second-order rotationally symmetric dif-
ferential operator (up to scale). The property fails for general norms, thereby
introducing “cross-terms” in the second-order term of the general limit.

In [64], a different extension of the convergence proof for graph Laplacian
methods appeared. That work analyzed k-nearest neighbor graphs and other
constructions, but based on a Euclidean norm. We do not pursue this direction.

To the best of our knowledge, most Laplacian-based manifold learning
works employ the standard Euclidean norm. Two notable exceptions are the
works of Mishne and collaborators [42,41] where tree-based metrics [13] were
used as a basis for diffusion maps. These metrics can be interpreted as hierar-
chical Earthmover’s distances. However since the trees are data-dependent, our
main theorem does not apply since we do require a data-independent norm.

The application section in this paper is an extension of [70], where we
first proposed to use a variant of diffusion maps based on an approximate
Earthmover’s distance. In [50], the same approximate Earthmover’s distance
was used for the clustering of cryo-EM images. Lieu and Saito’s work [36] is
another that combines diffusion maps and the Earthmover’s distance. However,
the order of operations is different: they first use Euclidean diffusion maps and
only then apply the Earthmover’s distance to the resulting point clouds.
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Symbol Description

M CRP Compact embedded Riemannian submanifold
d = dim(M) Dimension of M

pEeM Point on M

ToM Tangent space to M at p

exp, : TpM — M Exponential map for M at p

s€ R~ TM Geodesic normal coordinates for M around p
fM—=>R Function on M

f: foexp, Function pulled-back to tangent space

gradf: R — R? Gradient of f

hess f: R? — R¥*4  Hessian of f

Ly : TyM — RP Differential of exponential map at p (Eq. (6))
Qp : ToM — RP Second fundamental form of M at p (Eq. (6))
BCRP Origin-symmetric convex body

|5 :RP — R Norm with unit ball B

| llz : RP = Rxo Euclidean norm

| llwa:RP = Rso Weighted ¢;-norm

Ky :R>0 = R>p Affinity kernel with width parameter o > 0

L, Point-cloud Laplacian based on || - |2 (Eq. (5))
L, B Point-cloud Laplacian based on || - ||g (Definition 1)
Apm Laplace-Beltrami operator on M

Am.B Laplacian-like differential operator (Definition 2)
tiltm.8.p Tilt function at p (Proposition/Definition 4)
5,8°,08 Closure, interior, boundary of a set

TCy(Y) CRP Tangent cone to Y C RP at y € Y (Eq. (12))

w Wavelet transform

() Inner product

R>0, R0 Non-negative/strictly positive real numbers

Table 1 List of notation.
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2 Background: graph Laplacian methods

In this section, we review graph Laplacian methods in more detail than in the
introduction. Given a subset X = {x1,...,%,} € RP and an affinity function
Ks, : R>g = R>g, consider the symmetric matrix of pairwise affinities:

Wij i= Ko, ([[%i = %;[2)- (2)

The canonical choice for K, is the Gaussian kernel, K, (t) = exp(—t2/o2)
(up to normalization conventions) where the width parameters o, decay to
zero at an appropriate rate. Another possibility is the 0/1 kernel, K, (t) =
1(t < 0y,). The matrix W defines a weighted graph G = (X, E, W) where the
set of edges E consists of all the pairs (4, j) for which W;; > 0. Define the
diagonal degree matrix by D;; = d;; >, Wir. The (unnormalized, negative
semi-definite) Laplacian matrix of G, or the graph Laplacian, is defined to be

EG =W —D. (3)

Remark 1 As a warning, several other authors use the positive semi-definite
graph Laplacian convention, EPGSd := D —W. In this paper, we chose the nega-
tive semi-definite conventions for both the discrete and continuous Laplacians.

The graph Laplacian acts on vectors f € R™. We think of f as a real-valued
function on the vertex set X'. Then the graph Laplacian averages, for each ver-
tex, the differences between the function’s value at the vertex and its neighbors:

n

(Laf) (xi) =Y Wii(£(x;) = f(x0) =D Ko, (x5 — xil2) (£(x;) = f(x1))-
j=1 j=1
(4)

Note Lg is an n X n symmetric negative semi-definite matrix. We list its
eigenvalues in descending order

O0=X2>A2>...2 N1,
and choose corresponding real orthonormal eigenvectors

(;507...,@5”,1 e R"

where ¢¢ = n~1/21. These eigenvectors give an orthonormal basis of functions
on X. Two common uses for the Laplacian eigenvectors are:

1. As a basis for function representation and approximation of real-valued
functions g defined on X [5,12,30],

o) = 3 a5 (xs).
=0



6 Joe Kileel, Amit Moscovich, Nathan Zelesko, Amit Singer

2. As a method for dimensionality reduction of the input set X [4,11],

Xi = (P1(%i), s b (%)) -

Here, each x; is mapped into R™ via the i-th coordinates of the first m
nontrivial Laplacian eigenvectors. This usage of eigenvectors is motivated
by the fact that any closed connected Riemannian manifold is smoothly
embedded into R™ by its first m Laplacian eigenfunctions for some m [3].

The Laplacian matrices L are often analyzed as points are added to X and
the graph G grows. In this context, the manifold assumption is standard,
namely that x; are drawn i.i.d. from some embedded submanifold M C RP
Other works, for example in the study of clustering, have analyzed the limit
of graph Laplacians without making the manifold assumption (see [66,20]).
It is convenient to work with an extension of the graph Laplacian that acts
on any function f whose domain is a superset of X'. Specifically we define
the (unnormalized, negative semi-definite) point-cloud Laplacian L,, computed
using X as follows: for each f:) — R where X C ), define £,,f : Y — R by

S|

Lof(p) =~ Ko, (lIx; = pll2)(f(x;) — f(P)). ()
j=1

After rescaling by n the point-cloud Laplacian (5) extends the graph Laplacian
(4), because for each f:Y — R where X C Y it holds (nL,f)|x = La(f|x)-

2.1 Existing theory: graph Laplacians using the Euclidean norm

It is known that using Euclidean norms to compute affinities, the point-cloud
Laplacian converges to the Laplace-Beltrami operator under the manifold as-
sumption (see [25,57,7,22]). Here is a precise statement.

Theorem 1 ([7, Th. 3.1]: Convergence of the point-cloud Laplacian based on
the Euclidean norm) Let M be a compact d-dimensional embedded Riemannian
submanifold of RP with Laplace-Beltrami operator Apq. Let xq, . .., X, be i.i.d.
draws from the uniform measure on M. Fix any constant o > 0, and set
op = 2n~ Y/ @dtAta) gnd e = %/20,‘%”, Let L,, be the point-cloud Laplacian
defined in Eq. (5) using the Gaussian affinity based on the Euclidean norm,
K,(||x; — pl|) = exp(||x; — pl|3/02). Then given a three-times continuously
differentiable function f : M — R and a point p € M, we have the following
convergence in probability:

RN —

. olM) Amf(p)

Our Theorem 6 extends Theorem 1 to the case of non-Euclidean norms.
Meanwhile, for a non-uniform sampling distribution, variants of the point-
cloud Laplacian are known to converge pointwise to a weighted Laplacian
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(or Fokker—Planck) operator, which has an additional density-dependent drift
term [11,46,64]. Theorem 7 extends this to the case of non-Euclidean norms.
In addition to pointwise consistency, spectral consistency has been proven
when the norm is Euclidean [6,26,37,51,20,19,68]. This is a stronger mode of
convergence than pointwise convergence: the eigenvalues/eigenvectors of the
graph Laplacians converge to the eigenvalues/eigenfunctions of the limiting
operator. We leave such considerations for arbitrary norms to future work.

3 Ingredients, main theorem statement, first properties

In this section the primary goal is to formulate our main result, Theorem 6, in
Section 3.4. Before this, we collect tools from differential geometry and convex
geometry. Then in Section 3.3, we define a particular function that depends
on the second-order geometry of a manifold and the unit ball of a given norm,;
this turns out to give the correct first-order derivative term in Theorem 6.
After the main statement, we explain how it adapts to non-uniform sampling
of the manifold (Theorem 7). Then we discuss first properties of the limiting
differential operator and show that it reduces to the Laplace-Beltrami operator
in the Euclidean case. As a non-Euclidean example, we calculate the limit
explicitly for a circle in the plane where the ambient norm is weighted ¢;.

3.1 Preliminaries from Riemannian geometry

We start by reviewing some basics from Riemannian geometry. These notions
are later used for our theorem statement and its proof. Textbook accounts of
differential geometry are abundant; we particularly like Lee’s books [32,33].

Throughout the paper, M C R denotes a d-dimensional compact embed-
ded Riemannian submanifold of RP. We let p € M denote a point (typically
fixed in our considerations). We write T, M for the abstract tangent space to
M at p (defined in [33, Ch. 3]). In particular, T, M is a d-dimensional real
vector space equipped with an inner product (-,-) = (-, -)p. Further, 0 € T, M
and we do not consider T, M to be embedded in RP. The canonical mapping
from the tangent space into the manifold is the exponential map at p [32,
Ch. 5], denoted exp,, : TpM — M. This is a C*°-map that carries straight
lines on 7T, M through the origin to geodesics on M through the point p. By
the inverse function theorem, there exist open neighborhoods ¢/ C Ty, M of 0
and ¥V C M of p (which we fix once and for all) such that the exponential
map restricts to a diffeomorphism between these neighborhoods,

expp:U;V.

Further, let us fix once and for all an orthonormal basis on T, M with respect
to (-,")p, and write s = (s1,...,84)" for coordinates on U with respect to

1 Compactness of M and the Hopf-Rinow theorem imply that expy, is defined on the
entire tangent space Tp M.
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this basis; these are geodesic normal coordinates for M around p with the
chart given by the exponential map. Identifying exp, with ¢ o exp,, where
t: M <= RP is inclusion, expp, is a smooth mapping from an open subset
of Euclidean space R? into Euclidean space R”, and thus it admits a Taylor
expansion around s = 0:

expp(s) = p + Lp(s) + %Qp(S)+O(IISII§’)~ (6)

Equation (6) links intrinsic coordinates to extrinsic coordinates for M. Here:

— Lp : TpM — RP is a homogeneous linear function, the differential of the
exponential map at p, namely L, = Dexp,(0); and

- Qp : TpM — RP is a homogeneous quadratic function (equivalently a
linear function of ss ") called the second fundamental form of M at p [43].

Consider the image (respectively, translated image) of Ly:

Lp(TyM) = {Lp(s) : s € TybM} CRP, and (7)
p+ Lp(TpM) = {p+ Lyp(s) : s € Tp,M} CRP.

We call these the linear (respectively, affine) embedded tangent space of M at
p. It is well-known that Ly provides an isometric embedding of T M into RP,

|ILp(s)|l2 = ||s]lz for all s € T M. (8)

Another important fact is that the second fundamental form @ takes values
in the normal space to M at p, that is Qp(TpM) C Lp(TpM)+ CRP, ie.,

(Lp(s),Qp(s"))grp =0 for all s,s8" € TpM, 9)

Finally, let p denote the density on M uniquely determined by the Riemannian
structure on M as in [33, Prop. 16.45]. The density determines a measure on
M, which we refer to as the uniform measure. The measure enables integration
of measurable functions f : M — R, which we write as [, f(x)du(x). Then
the Riemannian volume of M is vol(M) = [, 1du(x).

3.2 Preliminaries from convex geometry

We next give a quick reminder on general norms in finite-dimensional vector
spaces, and their equivalence with certain convex bodies. A few facts about
tangent cones that we will need are also recorded. The only (possibly) novel
content here is Proposition 3. A nice textbook on convex geometry is [27].

Let || - || : RP — R denote an arbitrary vector space norm on RP. This
means:

— |lv|l > 0 for all v € RP;
— |IAv|| = [M|[v]| for all A € R and v € RP;
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— Jlu+v| < |luf| + ||v|| for all u,v € RP.

Recall that | - || is necessarily a continuous function on R”. Also standard is
that all norms on RP are equivalent, that is if || - || is another norm on RP,
then there exist finite positive constants ¢, C' (depending only on || - ||, || - ||
such that

clvll < [Ivll < Cllv]l for all v € RP. (10)

We write B C RP for the unit ball with respect to the norm || - ||,
B={veRl:|v| <1} (11)

Then, B is a convex body in RP. This means: a compact convex subset of R”
with non-empty interior. Furthermore, the unit ball is origin-symmetric, i.e.,
v € B implies —v € B for all v € RP. Conversely, it is well-known that any
origin-symmetric convex body in RP occurs as the unit ball for some norm on
RP. Thus, there is a one-to-one correspondence (see [27, Chapter 2]):

{norms || - || on R’} «—  {origin-symmetric convex bodies B C R”}.

To emphasize this bijection, we shall let || - ||5 stand for the norm on RP with
unit ball B (except in the case of the £,-norm where we write || - ||,), i.e.,

|-z «— B.

A few general topological remarks follow. Given any subset ) C R”. The
(relative) topological boundary of ) is the closure of ) minus the relative
interior of ), written 9) := Y \ relint()). In the case of the unit ball (11),
the boundary is the unit sphere:

B ={veRl: |v|s=1}.

Given any point y € ), the tangent cone to ) at y is defined to be

ey () = {d € R”: 3(yr)ply SV, (7)721 € Rog st 7 = 0, ykT; Y d}.
(12)

Note that, unlike abstract tangent spaces to manifolds, tangent cones to sets
reside in RP by definition. We now give a few quick examples of tangent cones.

Example 1 (Tangent cones in familiar cases) For a submanifold ) C RP, the
tangent cone and embedded tangent space always agree: T'Cy()) = Ly (Ty (Y)).
If Y = {(x1,22) : 3 = 23 + 22} C R? is the nodal cubic plane curve, and
y = 0 is the node, the tangent cone is the union of two lines: TCy()) =
R (D UR (_11) If Y = {(x1,72) : 23 = 23} C R? is the cuspidal cu-
bic plane curve, and y = 0 is the cusp, the tangent cone is a half-line:

TCy(Y) = Rxo ((1)) Finally if ¥ = {x : Zi’;l lz;| < 1} € RP is the ¢,
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unit ball, the tangent cone TCy () is all of RP, a half-space in R” or a poly-
hedron in R” depending on whether y lies in the interior of the unit ball, the
relative interior of a facet of the unit sphere or elsewhere on the boundary.

We will use the following easy and well-known facts about tangent cones.

Lemma 2 1. [53, Lem. 3.12] For all sets Y C RY and points y € Y, we have
TCy(Y) is a closed cone.

2. For all sets Y C RP, points y € Y and linear subspaces S C RP, we have
TC,(Y)NS =TCy,(YNS).

3. [63, Lem. 3.13] For all convex sets Y C RP and points 'y € Y, we have the
explicit description (overline denotes closure in the Fuclidean topology):

TCy(Y) = R0 (VY ~y) = {B(F ~y) €RP: BeRs0,ye Y} (13)

In particular, if Y is convex (respectively, convex with non-empty interior),
then TCy () is convex (respectively, convexr with non-empty interior).

In light of the third item, we know all the possibilities in the plane for the
tangent cone to convex sets with non-empty interior.

Ezample 2 The closed convex cones in R? with non-empty interior are precisely
R2, closed half-spaces and the conical hull of two linearly independent vectors:

coni{dy,ds} := {B1d; + Bodz : B1, 82 € Ruo} CR?,  dy,ds € R

In the latter case, the pair dy, ds is unique up to positive scales, and one says
that they generate the cone’s extremal rays, coni{d; } and coni{ds}.

Finally, for technical purposes of the “tilt construction” developed in the next
section, we need to observe that the topological boundary and tangent cone
operations commute, at least in the case of our interest.

Lemma 3 For B C R the unit ball of a norm || - ||z and a boundary point
y € 0B, the boundary of the tangent cone is the tangent cone of the boundary:
0(TCy(B)) = TCy(0B). (14)

We include a proof of Lemma 3 in Appendix A, since we could not readily find
this statement in the literature.

3.3 Tilt construction

In this section, we present a construction that relates the second-order geom-
etry of a submanifold M C R? around a point p € M to tangent cones to the
unit sphere 9B C RP of a norm || -||5. We name this construction the tilt func-
tion, and denote it by tilt o1, 5,p. Though not apparent initially, the relevance
is that this function is required to define the limiting differential operator for
point-cloud Laplacians formed by sampling M and computing affinities using
I - I|s- Specifically, it appears in the first-order derivative term in Eq. (33).



Manifold learning with arbitrary norms 11

Fig. 1 Tilt construction. These diagrams take place in the 2D linear subspace S :=
Span{a,b} C RP, where a := Lp(s) and b := %Qp(’s\) are tangent and normal vectors

to M at p respectively. Blue indicates B=BnS (2D linear section of the unit ball B).
Red indicates the tangents to 0B at a/||a||s. By definition, tilt ;3,5 (8) equals the signed

la-length of the braced line segment. (left) An example where TCa/Ha”B(BE) consists of
one well-defined tangent line. Here tilt is positive; (right) An example where T'Cy /a5 (0B)

consists of two tangent rays due to a singularity of B at a/||a||z. Here tilt is negative.

Proposition/Definition 4 (Tilt function) Let M C RP be a compact em-
bedded Riemannian submanifold, let p € M be a point, and let s € T, M be
a tangent vector to M at p with |[S||2 = 1. Following Eq. (6), consider the
differential of the exponential map at p and the second fundamental form at
p both evaluated at's, and write

a:=L,(5), b= %Qp(g).

Further, let || -||s denote a norm on RP with unit ball B C RP and unit sphere
OB C RP. Also write TC to denote tangent cones as defined by Eq. (12).
Then, there exists a unique scalar n € R such that
b
Taz T2 € TCa/ja)s (9B). (15)
llallz

We define the tilt function by
tﬂtMJg,p(/S\) =1. (16)

Hence tilt pm gp 15 a well-defined function from Euclidean-normalized tangent
vectors to M at p into the real numbers.

Remark 2 In the course of proving Propostion/Definition 4 below, we shall
show that the tilt function tilt pq, 5 p (8) only depends on the norm ||-||z through
the following (typically) two-dimensional central slice of the unit ball:

Span{L(8),Qp(8)} N B.

This is two-dimensional origin-symmetric convex body (unless Qp(S) = 0,
in which case it is an origin-symmetric line segment). We make two remarks.
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First, as a consequence, we can visualize the tilt function using two-dimensional
figures on the page (see Figure 1). Second, in general, the central planar sec-
tions of the unit ball of a norm can vary significantly, and indeed qualitatively,
across different slices. For example, for the ¢1-ball in R3, there is not a unique
combinatorial type for a central planar section: instead either a quadrilateral
or a hexagon can occur depending on the specific slice.

Proof In the defining equation (15) for tilt o(,585(S), note that it is equivalent
to require the left-hand side lies in the linear slice of the tangent cone:

SNTCq|a) s (9B) (17)
where S := Span{L,(8), Qp(8)} C R”,

since membership in the linear space S is guaranteed by definition.
We shall rewrite the set (17) using basic properties relating tangent cones,
boundaries, and intersection by linear spaces. Firstly, we have

SN TCa/Ha”B(aB) = TCa/HaHB (S N oB) (18)
by Lemma 2, item 2. Next, let
B:=8SnBCS,

and note this is the unit ball of the restriction of the norm ||- ||z to the subspace
S, which is a norm in its own right on & (in our notation, || - ||z). Then,

SNIB={tecS:|t|s=1}={tecS:|t|z=1} =B,

from which it follows

TCyq|ja)s(S NOB) = TCyy|ja|s(0B). (19)

Now by Lemma 3,

TCayja)js (OB) = OTCyjja)js (B)- (20)
Combining Eq. (18), (19) and (20), we get that

SNTCa/jals(08) = 0T Cayjjays (B)- (21)

The upshot is that in the defining equation for tilty,5,p it is equivalent to
require membership in the right-hand side of (21).

We shall now obtain a more explicit description of the set (21). Firstly, note
that a = Ly(8) # 0, since ||Lp(8)||2 = [|s[l2 (Eq. (8)). If b = £Qp(8) = 0, then
the subspace S is one-dimensional. In this case, the existence and uniqueness

of n in Eq. (15) is clear: B is a line segment, TC’a/Ha”B(g) is a ray (half-line),
and its boundary 8TCa/||aHB(l§) is the origin. Thus in the light of Eq. (21), we
must take 7 = 0, so that tilt ;1 gp(S) = 0 when the second fundamental form
vanishes. Therefore, assume b # 0. Since (a,b) = 0 (Eq. (9)), it follows that

S = R? is two-dimensional and B is a convex body in R?. By Lemma 2, items
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1 and 3, we know the tangent cone T'Cy/|a|, is a closed convex cone in R?
with non-empty interior. Then by Example 2, the tangent cone is either all of
R?, a half-plane in R? or it is conically spanned by two linearly independent
vectors. We claim T'Cy/ja)s(B) # R?. Indeed since B is convex and a/l|al/s

lies in the boundary of B, the supporting hyperplane theorem implies:
IveS\{0} 37 €R s.t. (v,a/|allg) =~ A Yue B, (v,u)> 1.

Combining this with Eq. (13), it follows

TOa/HaHB(g) = [RZO(gf a/HaHB) < {11 €S: <Vau> 2 O}

In particular, TCy|a);(B) # R2, so by Example 2 the tangent cone is either
a half-plane or conically spanned by two extremal rays. For now, assume the
latter case: there exist linearly independent vectors d,ds € S = R? such that

TCa/ja)s(B) = coni{d;,da} C R*. (22)

The set (20) is thus the union of two rays:

8TCa/HaHB(B) = [Rzod1 + [Rzgdg. (23)
We shall now finish by proving the existence and uniqueness of 7 € R such
that

”2172 +77a S IRZOdl U |R20d2. (24)
B

To this end, first note that

b
I

relint([RZO(g— a/llal|s))

= rehnt(TOa/HaHB(B))
= Rsod1 + Rxoda.

m

—a = 0—|la||z (a/l|al|5)

where the penultimate equality is again by Eq. (13) and the last equality is
by Eq. (22). Thus there exist positive scalars 1,82 € Rsq such that —a =
B1d; + B2dz. Substituting this into (a, b) =0 (Eq. (9)), we get

Bi(d1,b) + B2(d2, b) = 0. (25)

Since dj,ds form a basis for S and b € § and we are presently assuming
b # 0, it cannot be that (d;,b) = (d2,b) = 0. Instead, Eq. (25) combined
with 81, 82 > 0 imply that exactly one of the inner products (d;, b), (dz, b)
is strictly positive while the other is strictly negative. Relabeling if necessary,
we can assume that (dq,b) > 0 > (dz2, b). With this in hand, let us examine
the membership (23).
Notice that for each n € R, it holds
b

T tna € Reoda. (26)
lalls
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This is by taking inner products with b: all vectors on the right-hand side of
(26) have a non-positive inner product with b using (ds,b) < 0. Meanwhile

on the left-hand side of (26), we have (b, m +na) = bl (the equality

~ lalls

is from (a, b) = 0 and the strict inequality is from the assumption b # 0).
On the other hand, there do exist scalars 7 € R and 5 € R>( satisfying

b
— +na=fd;. (27)
a5

Indeed using that a, b are an orthogonal basis for S, ||a[|3 = 1 and d; € S, note

(i, ), (28)

d; = (d;,a)a+ .
P b3

Then substituting Eq. (28) into (27) and equating coefficients, we compute the
following unique solution to Eq. (27):

8= bl / (lals(ds,b)).

n = [bl3(di, ) /(lalik(di, b)) . (29)

This completes the case when T'Cy/|ja| B(g) is conically spanned by in-
dependent vectors. As for the third case afforded by Example 2, when the
tangent cone is a half-plane, let the boundary of the half-plane be spanned
by d; € S = R?. Again we arrive at Eq. (27) but without the constraint that
B > 0. Solving as before, n is uniquely determined and given by Eq. (29).

This completes the proof that 7 exists and is unique. In sum: if Qp(8) =0
then tilt p,8,p(8) = 0, and otherwise tilt o, 5,p(8) is given by Eq. (29). O

In the next statement, we assume the local continuous differentiability of
the norm to get a more explicit expression for the tilt function. The proof is
in Appendix B.

Proposition 5 (Simplifications for tilt in the case of Cl-norm) Regard the
norm || - |g as a function from RY to R.

1. Leta be a point in RP with ||a||g = 1. If || -||5 is continuously differentiable
in a neighborhood of @, then the tangent cone to the || - ||g-unit sphere at a
s the hyperplane:

TC3(0B) = {v e R : (v, grad | - |5(a)) = 0} . (30)

2. Assume the setup of Proposition/Definition 4, and further that || - ||p is
continuously differentiable in a neighborhood of the point Ly(S). Then, the
tilt function equals

tilt (8) = — (grad || - [ 8(Lp(8)), 3Qp(8)) 1
TR erad [ s(Le®): Lo®) L@
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3.4 Laplacian-like operator and main theorem statement

Here we state our main result in Theorem 6. We first need to define both sides
of Eq. (34), in particular the differential operator A s (Definition 2). For
simplicity, we consider only the standard Gaussian kernel with width o:

K, :Rsg — Rso defined by K, (t) = exp(—t?/c?).

Definition 1 (Point-cloud Laplacian with respect to an arbitrary norm) Let
|- Iz be a norm on RP. Let X = {x1,...,%,} € RP be a set of points. Then
we define the point-cloud Laplacian computed using the norm || - ||z and the
point set X C R to act on functions whose domains contain X as follows: for
each f:)Y — R where X C ), define £,, s5f : Y — R by

Lnsf(p):= % Y Ko, (Ix? = plls) (f(x™) = f(p)). (32)
i=1

Compare Eq. (5) with Eq. (32). In what follows, ds is the Lebesgue measure
on T, M, and ds is the uniform measure on the sphere {s € To,M : [[8]|2 = 1}.

Definition 2 (Laplacian-like differential operator with respect to an arbitrary
norm) The Laplacian-like operator on a submanifold M C RP with respect to
anorm || - ||z is defined to act on functions f : M — R according to

(Amsf)(p) == <(heSSf)(0), é/{ o] <1}SsTds>

+ <(grad 1)), /{geTthllgllz—l}

811 Lp ()15 tilt At 5,5 (3) d§>
(33)
where f = fo expy, : Tp M — R and Ly, = Dexp,(0) : TpbM — RP.

Remark 3 (Extrinsic interpretation of the integration domains and integrands
in Eq. (33)) Both domains of integration in Definition 2 are subsets of the
abstract tangent space T, M, since we have written the integrals in parame-
terized form. Using the isometry Ly, we can identify the first domain with the
d-dimensional intersection of the embedded tangent space and the unit ball:

Ly(TyM)N B,
and the first integral in Eq. (33) with the second-moment of this convex body:

/ tt ! dt.
teLp(TpM)NB

Meanwhile, under the mapping s +— Lp(s)/||Lp(s)||s, the second domain of
integration in Definition 2 identifies with the (d — 1)-dimensional intersection
of the embedded tangent with the unit sphere:

LP (TPM) N an
and the second integral in Eq. (33) is a weighted first-moment of this boundary.
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Theorem 6 (Main result: Convergence of the point-cloud Laplacian based

on an arbitrary norm) Let || - ||z be a norm on RP with unit ball B. Let M
be a compact d-dimensional embedded Riemannian submanifold of RP. Let
X1,...,Xy be i.i.d. draws from the uniform measure on M. Fix any constant

a >0, and set o, = n_l/(2d+4+0‘) and ¢, == F(%)o’g-"_? Then given a three-
times continuously differentiable function f: M — R and a point p € M, we
have the following almost sure convergence:

1 a.s. 1
aﬂn,Bf(p) — Vol(M)

Theorem 6 is proved in Section 4.

Amsf(P)- (34)

Remark 4 (Comparing Aap p and Axq) Note two key features that distinguish
the continuum limit for general norms from the Laplace-Beltrami operator:

— The operator Apy g is typically extrinsic. By Remark 3, both terms in (33)
vary with the orientation of the embedded tangent space Ly (TpM) C RP
in relation to the ball B C RP. (For a concrete example, see Section 3.7.)

— The operator Apq  has a first-order derivative term.

The Euclidean norm is special on both counts. However despite the added
complexity of general norms, there can be practical advantages to using
A, over Apg. At least this can hold for a well-chosen norm, when reducing
the dimension of certain data sets. We illustrate this numerically in Section 5.

We finish this section with an easy extension of Theorem 6 to the case
where the sampling of M is non-uniform.

Theorem 7 (Convergence of the point-cloud Laplacian based on an arbi-
trary norm with non-uniform sampling) Assume the same setup as Theorem 6
above, except X1, ...,X, are i.i.d. draws from a probability distribution on M
described by a C® probability density function, dP(x) = P(x)du(x). Then, the
almost sure limit of the LHS of (34) exists and equals Apq,pf(P), where

Apm.s,p i= VOI(M)PApr 5+ dpm,B,p- (35)

Here 6 p,8,p only modifies the first-order derivative term, and is defined by

(Omz,pf)(P) = <(grad f(O))(gradJS(O))T,/{ At <1}ssTds>

-/ (grad (0), s){grad P(0),s)ds,  (36)
{s€Tp M:||Lp(s)|[5<1}

where f: J oexp, and P="Po exXpp -

Proof Using the reduction in [7, Sec. 5] and then Theorem 6, the LHS of (34)
tends to Aaq gh(p) where h : M — Ris defined by h(x) := (f(x) — f(p)) P(x).
Let h = hoexp,,soh=fP— f(0)P. Then grad h(0) = P(0) grad f(0) and

hess 1(0) = P(0) hess f(0)+(grad f(0))(grad P(0)) T +(grad P(0))(grad f(0))T.
Inserting these formulas into Definition 2 and rearranging gives the result. 0O
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3.5 First properties of Ay

We give a few basic properties of the limit in Theorem 6. Firstly, it is elliptic.

Lemma 8 (A g is elliptic) For all compact embedded Riemannian subman-
ifolds M C RP and all norms || - ||g on RP, the Laplacian-like operator Ay s
is a uniformly elliptic differential operator on M.

The proof of this lemma is in Appendix C.

Next, we investigate the regularity properties of the coefficients of Axq s.
Surprisingly, the first-order coefficient function need not even be continuous
everywhere. Below, TM = |_]pe am TpM is the tangent bundle of M, and

Sym?(TM) = Upert Sym?(T, M) is its symmetric square bundle [33, Ch. 10].

Proposition 9 (Continuity properties of Axqg) For all compact embedded
Riemannian submanifolds M C RP and all norms ||- ||z on RP, the Laplacian-
like operator Anq has the following continuity properties.

1. As a section of Sme(TM), the coefficient of the second-order term,
1

/ ss'ds, (37)
2 JseTyM:| Ly(s) | 5<1

s continuous at all points p € M.
2. As a section of TM, the coefficient of the first-order term,

/ Sl Lo (3) 5Lt 5 (8) 5, (38)
S€T, M:|[8]2=1

is continuous at all points p € M such that the norm || - ||g is continu-
ously differentiable in a neighborhood of Ly(TpM)N SP=1. The first-order
coefficient can be discontinuous at other points p € M.

The proof of the second item relies on the expression for the tilt function in
Proposition 5, where the norm is locally continuously differentiable. Details
are in Appendix D.

3.6 Example: any manifold, Euclidean norm

Let us first check that Theorem 6 agrees with the standard Euclidean theory.
Let M C RP be any d-dimensional compact smooth embedded Riemannian
manifold, p € M, and consider the Euclidean norm || - ||z with Euclidean unit
ball B = {x: ||x|[; <1} C RP.

We first argue that tiltpzp = 0. Let 8 € T, M with [[S]jz = 1. Set a =
Lp(8), b = 1Qp(8) and S = Span{a,b}. If b = 0, then tiltr,p(S) = 0.
Else, put B := BN S. By construction, tiltpm,8,p(8) = n for n € R uniquely
determined by

b + na € TCy(0B)
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using ||al|y = 1 since Ly is an isometry (Eq. (8)). However, B is a Euclidean
unit disk in S = R2, and 0B is a BEuclidean unit circle in R2. So, TCy(0B) is
the orthogonal complement of Ra inside S. This gives Tca(aé) = Rb since Qp
takes values in the normal space (Eq. (9)). Clearly then, n = 0 and tiltp 5p =
0. We have verified that the first-order term vanishes in A g 3.

As for the second-order term, we compute the following second moment:

/ ss'ds = / ss'ds [by Eq. (8)]
{s€Tp M:||Lp(s)ll2<1} {s€Tp M:||s|[2<1}
= / s2ds|I; [oddness, symmetry]
{s€Tp M:||s||2<1}
0.8 Id. (39)

Here the second equality used that the integration domain {s € To,M : ||s]j2 <
1} is preserved under sign flips of individual coordinates of s, hence the off-
diagonal terms s;s; (i # j) integrate to 0.

Plugging into Definition 2, we obtain

Amsf () o (hess (0), L)

= trace (hessf(O))
= Amf(p).

This is the usual Laplace-Beltrami operator on M applied to f and evaluated
at p. Thus, we have checked that Theorem 6 indeed recovers Theorem 1.

Remark 5 Due to the lack of normalization in Definition 2, our Laplacian-like
operator A p in the Euclidean case differs from the usual Laplace-Beltrami
operator Ay by a multiplicative constant. From Eq. (39), the constant is

1 1

2 2
- sids = — |Is||3ds
2 /{seTpM:||s|2<1} 2d J{seT, M:|s]2<1}
1t - i 1 /1 . o /2 /2
= — r¢vol(S* T )dr = — rdtl dr = ———.
2d Jo ( ) 2d J, r) AT (4H4)

This is simply the ratio of prefactors in the scales ¢, in Theorems 1 and 6.

3.7 Example: circle in the plane, weighted ¢;-norm

Next, we look at a non-Euclidean example in full detail. Consider the (Eu-
clidean) unit circle in R? where the ambient norm is a weighted ¢;-norm. That
is, let M = S' = {x = (v1,22)" € R? : 2 + 22 = 1} and use the norm || - ||w.1
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defined by ||X|lw.1 = w1|x1| + wa|xa| where w = (w1, w2) " € (Rso)?. The unit
ball of || - |lw,1 is the region

B= {x = (z1,72)" € R? : wy|zy| + wolzs| < 1},
while the unit sphere of || - ||w,1 1S
OB = {x= (z1,22)" € R%: wy|z1| + wa|za| = 1},

a rthombus with vertices (£(1/w1),0), (0, £(1/w2)). Let p = (cos(f),sin(9)) " €
St. Parameterize Tp,S! (with respect to a fixed unit basis vector) using ¢ € R.
The exponential map is

expy, : TSt — S, 9+ (cos(f + ), sin(f + W)
The differential of this is
Lp(1) = ¥ (—sin(0), cos(9)) .

The second fundamental form is

Qp (1) = 1 (cos(B),sin(6)) .

We take on the terms in the limiting operator in Definition 2 in turn. For
the second-order term, we need the second moment of a line segment:

1

2/ vy =
{¥:l1Lp () [lw,1 <1}

2 / . 1
[] < |[(—sin(8),cos(0)) Tl
_ 1
3 (w [sin(0)] + wa|cos(0)])?

Yy

As for the first-order coeflicient, this becomes a sum of over the two endpoints
of the line segment. We shall show the first-order coefficient equals

—wi|cos(8)| + wa|sin(0)]

(w1 [sin(6)| + wa|cos(9)])4’ (40)

sign(cos(#)sin(6))

where sign : R — {—1,0,1} is given by sign(t) := 1 if ¢ > 0; sign(¢) := —1 if
t < 0; and sign(0) := 0. By the symmetry of the rhombus 0B with respect to
individual coordinate sign flips in R?, one easily sees formula (40) is correct
for 0 an integer multiple of 7 (the first-order coefficient is zero). Otherwise,
we may reduce to verifying correctness of the expression (40) when 6 € (0, §).
Then in this case, it is enough to show

. 1 —w;icos(0) + wosin(f
tltmesp(l) =5 (wlslin(ﬂ() )+w2czos(o()))3' (41)

To this end, let o € (0,%) be half the angle OB makes at (w%,O)T, SO
tan(a) = wy /wa. Let a = Lp(1) and b = $Qp(1). Let w be the signed angle at
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a/llal|lw,1 € 9B from a/||allw1 + Rso(=2,=2)T to a/||allw,1 + Rsob, where

w1’ wa
counterclockwise counts as positive. By elementary angle chasing,

w=0-a.
Thus (see Figure 1),

1
tan(w) = ———tan(f — «)
2[all3
1 tan(0) — (w1 /w2)
2 (wysin(f) 4+ wycos(0))® 1+ tan(d) (wr /w2)’
which indeed simplifies to Eq. (41).
Summarizing: for each angle 6 € [0, 27], Theorem 6 implies the Laplacian-

like differential operator Ap g is given by

tﬂtMyg’p(l) =

[EX[

sign(cos @ sin 6) —wi|cos 6] + wp|sinf] d 1 ai
& (wy | sin 6] 4+ wy| cos 6])* 0 3 (wy | sin O] 4 wy| cos 0])* dO?’
(42)

As an independent numerical verification of this formula, we performed the
following experiment. We fixed a particular function f : S — R (namely a
certain trigonometric polynomial). We drew n points uniformly i.i.d from the
circle. We computed the empirical point-cloud Laplacian applied to f, using
Eq. (32) and evaluating £,, gf along a dense regular grid. For comparison, we
evaluated the Laplacian-like operator applied to f, using Eq. (42) and evalu-
ating Axq g f along the same grid. Figure 2 shows a convincing match: as the
sample size n grows, the empirical and theoretical plots match up increasingly
well. Appendix F presents numerical results on the eigenfunctions of (42).

Remark 6 The coefficient of & in Eq. (42) is discontinuous at § =0, Z, , 3T

2
Thus, this example confirms the second sentence of Proposition 9, item 2.

4 Proof of Theorem 6

To improve readability, we split the proof of Theorem 6 into several steps.
First, we reduce to the population limit (n = 00), replacing sums by integrals,
via concentration of measure. The integrals are then parameterized by geodesic
normal coordinates on the manifold. Both of these are standard steps in the
analysis of empirical Laplacians based on the f3-norm. We then replace the
Gaussian kernel by the 0/1 kernel, so all considerations are local. The domain
of integration becomes the intersection of the manifold M with the convex
body oB (for ¢ — 0). This being a potentially unwieldy domain, we substitute
the Taylor series expansion of the exponential map to replace the manifold M
by first- and second-order approximations around p. For the term involving
the second fundamental form, we switch to spherical coordinates. Then we
study the radial domain of integration. We consider this step (Section 4.7) to
be the proof’s most technical. Following this analysis, the tilt function emerges
(Proposition 16), and dominated convergence is used to finish.
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Fig. 2 Empirical vs. theoretical weighted ¢1 Laplacian on the circle (w1 = 1, w2 = 1.5) ap-
plied to the function f(0) = sin(6)+ cos(260) + cos(50). For the empirical Laplacian, the sam-
ples were drawn from the uniform distribution on the unit circle. (top panel) n = 4,000 sam-
ples; (bottom panel) n = 40,000 samples. Here £, g f is scaled by Vol(Sl)/(F(%)UfﬂL%.

4.1 Step 1: reduce to the population limit (n — o)

This is a standard application of concentration of measure. Let

S8 1= vol(M) —— o, (I = lls) (/) — /(D))

n

S, == (vol(M)/en)Ln 5 f(P) = Z S,

For a fixed sample size n, the values Sg), R Sy(ll) are 1.i.d. random variables.
By the continuity of f and compactness of M, there is a constant Cy > 0 such
that | f(x)| < ¢ for all x € M. Recalling K,, <1, it follows that

1S5)] < (2Co vol(M))/(ncy). (43)
Let € > 0. By inequality (43) together with Hoeffding’s inequality,

€ 7627102 _GQF(M>n2d+i+a
P(|S, —E[S,]]>-)<2 — ) =2 2
(|S [l 2 2) =2expb (32002 VO](M)Q) P ( 32C2 vol(M)?

(44)
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where we substituted ¢, = I'(44%)0d+? and o, = n=1/(24+4+2) Here

E[S.] = F(fw / Kol = pls) (F60) ~ F(p) di(),

where dp is the Riemannian volume density on M. Since o,, — 0 as n — o0,
assuming we proved

. 1
i ey [ ol = plls) () = SR i) = Anesf (),
(45)
then it would follow there exists ng = no(€) such that for all n > ny,
€
E[S0] — A/ (p)] < 5 (46)
Combining inequalities (44) and (46) gives, for all n > ny,
P(|Sn — Amsf(P)f(P)]| =€) < P(|Sn —E[S,]| > §) (47)
_62]"(&)”%
<2 2 : 4
- exp( 32C2 vol(M)? (48)

By « > 0, the RHS of (47) converges to 0 as n — oo. Since € was arbitrary,
this shows that S,, converges to A gf(p) in probability. Dividing by vol(M)

gives L, 5f(p) = (1/vol(M))Arr5f(p). We can upgrade this to almost sure
convergence, simply by noting that the series
= —€2I (44 p2avira
Z 2 exp 5 2 5
— 32C§ vol(M)

converges and citing the Borel-Cantelli lemma. It remains to actually prove (45).

4.2 Step 2: reduce to the indicator function kernel

In this step, we replace the Gaussian kernel K, by the indicator function
kernel 1,,, defined by

1,, : R>0 = R>o where 1, (t) :=1if t € [0,0,] and 1, (¢) :=0if £ > oy,.

Precisely, we show

li 1
1m —-=
o0 gd+2

/EMHJ(IIX —plls) (f(x) = f(P)) du(x) = Amsf(p)  (49)

implies the required formula (45), and thereby we will reduce to proving (49).
To achieve this reduction, we now assume (49). Write the Gaussian kernel
K, as a sum of indicator functions:

Kolt) = [ mals)ats = [ no(syis (50)

=0 =t
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where K, : R>9 = R> is given by k,(s) := (2s/0?)exp(—s?/0?). Then,

/ Ky (% = plls)(fF(x) — F(p))du(x)
xeEM

- / ( / HG(S)dS> (F(x) = £(p))dp(x) [substituting (50)]
xEM s=[x—plls

= /00 Ko (8) (/ fx)— f(p)du(x)) ds [Fubini’s theorem)].
s=0 xEM:||x—p||p<s

(51)
Define
e(s) = (/ fx) = f(p)du(x)> — s Al (P)-
xEM:||x—p|s<s
In light of (49), we have

e(s) = o(s77?) as s — 0. (52)

Fix € > 0. By (52), we can fix § > 0 such that
0<s5<8 = le(s)| < es?. (53)

Returning to Eq. (51), we may change the upper limit of integration with the
following control on the approximation error:

/ " hals) ( / f(x) - f(p)du(X)) ds (54)
s=0 xEM:||x—p||s<s
)
=/ Ko (s) (/ fx) - f(p)du(X)> ds + exp(—0°/o?)poly(o).
s=0 XEM:||x—p||s<s

To justify Eq. (54) holds, we note the parenthesized integral has absolute value
bounded by 2¢ for all s € [0, o0], by the compactness of M. Thus, a tail bound
for the Gaussian kernel implies (54) (set £ = 0 in Eq. (103) in Appendix E).
Now the main term in Eq. (54) is

§
/:0 KU(S)(Sd-FQAM,Bf(p) + e(8))d$

From (53), this is bounded above by

6
/—0 ko ()92 (Apmsf(P) + €) ds, (55)

and below by 5
[ rel)s (A s o) =€) s (56)



24 Joe Kileel, Amit Moscovich, Nathan Zelesko, Amit Singer

By additional bounds for the Gaussian (Appendix E), the upper and lower
bounds (55) and (56) are equal to

/(X; Ko (8)89T2 (Apmsf(P) £ €) ds + exp(—6%/a?)poly (o).

But, the main term is
o2 () (A f(p) £ ),
by the formula for half the k-th absolute moment of k, (Eq. (105), Ap-

pendix E). Using lim,_,o exp(—6%/0?)poly(c) = 0, and the fact that € is arbi-
trary, we achieve what we wanted:

/ lim —— K, (% — plls)(f() — F(P))du(x) = [(L5)Ansf(p).

GMGHOJ

To sum up, Eq. (49) implies Eq. (45). It remains to prove Eq. (49).

4.3 Step 3: use geodesic normal coordinates and Taylor expand

In this step, we express the integral in the LHS of (49) in normal coordinates,

/ £(x) = F(p)du(x). (57)
xEM:[|x—p||s<o

We parameterize it using the exponential map (Section 3.1),
exp, : U =V,

where U C T, M and V' C M are open neighborhoods of 0 and p respectively.
Note that there exists some constant oy > 0 such that for all ¢ < ¢ the
domain of integration in (57) is contained in V|

fxeM:|x-plp<o}cV. (58)

This follows from the fact that M is an embedded submanifold of R”, hence
V can be written as an open set of R intersected with M, and the fact || - ||z
is equivalent to the Euclidean norm on R” and so induces the same open sets.
Therefore, by a change of variables, for each o < g, the integral (57) equals

/ (F(s) — F(0)) |detDexpy(s)] s (59)
s€U:||expy(s)—plls<o

where s = (sy,...,54)" denotes coordinates for TpoM with respect to an or-
thonormal basis and ds denotes the Lebesgue measure on (Tp M, (-, -)p).
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Our goal is to approximate the integral (59) up to order o9+2. To this end,
we will consider three Taylor expansions:

f(s) = F(0) +grad f(0) s + s hessf(0)s + O(||s|[3), (60)
detDexpp(s) =1- %STRiC(p)S + O(Hs||§) =1+ O(||s||§), (61)
expp(s) = P + Lp(s) + 3Qp(s) + O(lIs3). (62)

Here Ric(p) € R4 stands for the Ricci curvature of M at p (see [32, Ch. 7]).
Also, see Section 3.1 for discussion on Ly and Qp.
Substituting equations (60) and (61) into the integral (59) leads to

/ gradf(0)Ts + LsThessf(0)s + O(lslf3) ds.  (63)
S€Uillexpy (s)-plla<o

4.4 Step 4: approximate the domain of integration

In this step, we approximate the domain of integration in (63) using the Taylor
expansion of the exponential map (Definition 3). Then we assess the quality
of our approximations (Proposition 10).

Definition 3 For each o > 0, we define three subsets of T, M as follows.

Exact(c) := {s € U : |jexp,(s) — pHB <o},
Approx!V (o) == {s € TypM : | Lp(s)l 5 < o},
ApproxP (o) := {s € TyM : | Lp(s) + %QP(S)HB <o}

The set Exact(o) C TpM is the exact domain of integration, parameterized on

the tangent space. The sets Approx(l) (o) and Approx@) (o) are approximations
to Exact(c), where the manifold around p is approximated to first and second
order, respectively.

Proposition 10 i There exist constants c1,01 > 0 such that for all o < o1,
Exact(o) C {s € TopM : [|s]|, < ci0}. (64)
i1. There exist constants ca,c3,09 > 0 such that for all o < o4,

(1 — ¢p0) ApproxV (o) C Exact(o) C (1 + cs0) Approx (o). (65)

111. There exist constants cq,c5,03 > 0 such that for all 0 < o3,

(1 — ¢502) Approx? (o) C Exact(o) C (1 + c40?) ApproxP (o).  (66)
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Proof part i. First, note that for any ¢ > 0, we can shrink U and V in (58) so
as to guarantee that for all s € U we have

[expp(s) = P — Lp(s)|| 5 < els]l2- (67)

Let s € Exact(c). The result follows from:

o> ||expp(s p||B [definition of Exact(o)]
= |[Z5(5) = (Ep(s) — exvy(s) + )],
> |[[Lp(s)lls — [[Lp(s) — expp(s) + plls  [reverse triangle inequality]
> [|Lp(s)ll5 — ellsll2 [using (67)]
> ¢||Lp(s)||2 — €lls]|2 [norm equivalence, see (10)]
(L

p is an isometry]

= (c=9)|sll2-

part ii. For the right inclusion, assume s € Exact(o). Then,

o > |lexpy(s) = pl|, [definition of Exact(c)]
= Zs S)+O Is1*)]] 5 [from (6)]
= ||Lp(s) + HB [shown in part i
= ||Lp(s)l 5 + O( 2). [triangle inequality]

Take c3 to be the implicit constant inside the O(o?) term, it follows that
|Lp(s)||5 < o + 302 and therefore s € (1 + c30) Approx™M (o).

For the left inclusion, let s € (1—cy0) Approx™™ (o). Tt follows by definition
that || Lp(s)||s < 0 — cao®. We have just shown that

[expp(s) = b5 = [ILp(8) ]| 5 + O(0?)
Therefore,
”epr pHB <o —c0° +0(0?)

Picking ¢y to be the implicit constant inside the O(0?) term guarantees that
Hexpp(s) - pHB < ¢ and hence that s € Exact(o).

part iii. From Eq. (6) we have that

lexpp(s) = Pl 5 = [|Zn(s) + 3@p(s) + OlsI) [ 5 (68)
= [ Lp(s) + 3Qp(5) 5 + OClIs[I*) (69)

By part i, ||s|l2 = O(c). From (68) and the triangle inequality,

HGpr(S) - p||3 = ||LP(S) + %QP(S)HB < o +d4o, (70)
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for some constant ¢ > 0 and all sufficiently small 0. We want to find a constant
¢4 > 0 such that s/(1 + c402) € Approx® (o). To this end, compute

H ! L 1o

L - =
1+ ch0? p(s) + (14 ¢c40?)22

B
1 1 1

T ooz Ile(s) + 3Qp(s) 5 + <1+C402 - (1+C40_2)2) 13Q0(s)] 5

1 L 1 ,
1+C40’2 (0’+C4O' ) + <1+C40’2 (1+C4O’2)2)O(U )
= (1—c0®+0(c")) (0 + cyo®) + (cao® 4+ O(c*)) O(c?)

= o0 + (¢, —c)o® + O(o%). (71)

Here we used the triangle inequality, the bound (70), part i, and Taylor ex-
pansions in o for (1+c40?)~! and (1+4c402) 2. Thus, take c4 = 2¢}. For small
enough o, the RHS of Eq. (71) is at most o, so s/(1 4 ¢402) € Approx? (o).
Now consider the leftmost inclusion in part iii. Assume s € Approx? (). We
first prove that ||s||2 = O(c). Indeed,

o > ||Lp(s) +3Qp()||l5 2 [|ILp(s) + 3Qp(s)],
= VILG)IE + L1Qu®) 2 > e, = lsl,- (72)

The first equality comes from orthogonality between the images of @ and
Ly (9). Let the implicit constant in (72) be ¢§. Similarly to above, let us set
¢s = 2¢g and compute (for sufficiently small o):

/

Cs
|exp, ((1 — c50?)s) — pHB < 1@ = e50®) Lp(s) + (1 — 0502)2%QP(S)HB + cko®
< (1—¢50%) || Lp + 3Qp(s)|| s + (1 = c50%) = (1 — c50%)?) || 3 @p(5)|| 5 + 50
< (1 —c50%)0 4+ O0(0*) + cho® = 0 — cho® + O(0?) < 0.

We used the Taylor expansion (62), the triangle inequality, the bound (72),
and the triangle inequality again. Hence (1 — c50?)s € Exact(o). O

4.5 Step 5: drop O(]|s||3) and obtain the second-order term

In this step we prove that each of the terms in the integral (63) can be ap-
proximated up to an additive error of O(c%+3) by switching from the exact
domain Exact(c) to the approximate domains Approx* (¢) and Approx® (¢)
defined in Definition 3.

Proposition 11 The following bounds hold:
O(|lsl3)ds = O(a™*?),

(2 s€Exact(o)
- T _ T d+3
. s€Exact(o) ss ds = fSEAppI‘OX(l)(O') ss ' ds + O(J )’
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_ d+3
1. s€Exact(o) sds = stApprox(2> sds + O( )

Proof Let © denote the symmetric difference of sets.
part i. Let 0 < o1. By Proposition 10, part i, we have

/ O(ls|3) ds < / NE:
s€Exact(o) |Is|l2<cio

< (c10)?vol{s € R? : ||s]l2 < c10} = O(a¥3).
part ii. Let 0 < o5. By Proposition 10, part ii, we see
Exact(c) © Approx!) (o) C (1 + ¢s0) ApproxM (o) \ (1 — co0) Approx™M (o).

Then we have

/ ss'ds — / ss'ds
s€Exact(o) s€Approx(M) (o)

ss'ds

F

/seExact(o)\Approx(l)(U) F

ss'||.ds
- /EExact(a)\Approx(l)(U) H ||F

< T d
/GExact((r GAPmeu)(U) HSS ||F S
</

Is[|3ds
s€(14-c30) Approx(D (o)\(1—c20) Approx(M) (o)

/ Islds
s€(o4c302) Approx(D (1)\ (0 —c202) Approx(1) (1)

(o + c302)42 — (0 — 0202)d+2) / Is][3ds-
ILp(s)llz<1

This last quantity is O(c9?), because B is bounded and Ly, is an isometry.
part iii. Let ¢ < o3. By Proposition 10, part iii,

Exact(c) & Approx? (o)
C (1+ es0?) ApproxP (o) \ (1 — e502) Approx™ (o).

Then,
/ sds f/ sds|| = sds
s€Exact(o) s€Approx(® (o) 9 s€Exact(o)\Approx(? (o) 9
</ Islds < | Isllzds
s€Exact(o)\Approx(?) (o) s€Exact(o)SApprox(?® (o)

< / |Is||2ds.
s€(1+ca02) Approx(?) (a)\(1—c502) Approx(® (o)
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The upper bound equals

((1 + 0402)d+1 -(1- 0502)d+1) / |Is||2ds

s€Approx(? (o)

~o@) [ Jos'laoas = O™) [ ¥
s’€Approx(2) (1) s’€Approx(?) (1)

The last quantity is O(c%+3), because s € Approx? (o) implies ||s|2 = O(0),
as shown in the argument for Proposition 10, part iii. O

Now, plug Proposition 11 into the integral (63):

/ gradf(0)Ts + LsThessf(0)s + O([s|) ds
s€Exact(o)

= gradf(o), / sds
s€Approx(? (a)

+ { hessf(0), %/ ss'ds ) 4 O(c??),
s€Approx(M) (o) F

where linearity of Ly gives

/ SSTdS = 0'd+2 / SSTdS.
s€Approx(M (o) s:f|Lp(s)lls<1

Thus, (63) divided by 0?+2 tends to A 5f(p) as ¢ — 0, as desired, provided
we can show

|
Jim —/ sds :/ SILo @)l 5p(8) d5.  (73)
70 02 J e Approx (o) le=t 0 ?

4.6 Step 6: use spherical coordinates

It remains to estimate

/ sds. (74)
s€Approx(® (o)

First, we provide intuition for why this integral should scale like 0?2, Let
§4-1 C R? 2 T, M denote the fo-unit sphere, with density ds, where’s € 541,
Let r € R>o be a radial variable with density dr. Consider the integral (74) in
these spherical coordinates. Substituting s = 7S and ds = r?~'drds,

/ sds :/ §/ ridrds, (75)
si[|Lp(s)+3Qp(s)ls<c segd-1 r€RadialDomain(s,o)

where we define

RadialDomain(s, o) := {r >0: Her(/s\) + éQp(g)HB < cr} . (76)
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This is the second-order approximation set Approx(Q)(o) intersected with the
ray in the direction of 8. Note that by definition,

RadialDomain(8, o) = {r > 0 : 78 € Approx®()}. (77)
Compare this domain of integration against the domain for —s:

RadialDomain(3,0) = {r > 0: |rLp(-3) + ng(fg)HB <o}

= {r >0: HTLP(/S\) — ng(/S\)HB < U}~ (78)

Speaking roughly, the condition determining membership in (76) differs from
that in (78) at the O(r?) term; the conditions would be the same without the
Qp term. On the other hand, the integrand in (75) is odd (that is, it flips sign
upon inversion in the origin). Therefore, we should expect “near cancellation”
between the inner integrals:

§/ rddr — §/ ridr. (79)
rERadialDomain(s,o) r€RadialDomain(—S§,0)

Supposing r = O(o) for r in each radial domain (justified in Lemma 12),
then each of the two terms in (79) is O(c%*!). Thus after “near, but not
complete, cancellation” the sum (79) is expected to be O(c%2). Then, inte-
grating over the unit sphere gives O(c?*2) in (75). This informal discussion
explains why we expect the integral (74) to be O(o%*?2), the mechanism being
cancellation due to an approximate equality between RadialDomain(s, o) and
RadialDomain(—8, o).

We shall now make this claim rigorous. Beyond proving that the integral
(75) is O(09*+?), we will prove that dividing (75) by o9*2 produces a well-
defined limit as o — 0, namely the RHS of (73).

Remark 7 Steps 7-8 below are complicated by the fact that we do not assume
smoothness of the norm || - ||5. As a consequence, a priori we cannot Taylor-
expand the boundary points of the radial domain in the variable o.

Lemma 12 There exist constants cg, 04 > 0 such that for all o < o4 and all
s €S, we have

RadialDomain(s, o) C ¢[0, o].

Proof Set cg := 2¢y and o4 := min (01, o3, ¥) For o < 04, we have

265
Approx? (o) C T Exact(o) [by (66)]
C1 d .
- m{s ER:|s|2 <o} [by (64)]
Note that o < \/%75 implies piﬁ < 2¢1 = ¢g. Therefore,

ApproxP (o) C eg{s € R? : ||s|| < o}

By (77) it follows that RadialDomain(s, o) C ¢4[0, 0] for all § € 5471, |
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4.7 Step 7: study the boundary of RadialDomain(s, o)

In this step, we show that for small enough o, the set RadialDomain(s, o) is
a single closed interval in R>(. Then, we prove its nonzero boundary point is
a continuous function of (8,0) and we bound this to second-order in o.

Let G : 591 x Rsg — Rso; (8,7) —> Her(g) n ng(g)HB.

Lemma 13 There erists a constant c; > 0 such that for all's € S, the
function r— G(8,r) is strictly increasing in r € [0, c7].

Proof We will show that we can take

1 if =0
C7Z={ ! Qp ’

Iningegd—l ||Lp (/S\) ||B/maneSd_1 ||Qp(§) HB otherwise.

Obviously ¢7 > 0, because || Lp(8)|5 2 ||Lp(8)|l2 = |[8]l2 = 1 by equivalence of
norms and (8), and Qp(8) = O(1) by continuity and compactness.

Fix 8§ € §%7L Set g : Rsg — Rxo by g(r) = G(8,7), a := Lp(s) and
b = %Qp(g). Since ¢ is continuous, we may check g is strictly increasing on
the half-open interval [0, c7).

Let A > 0 satisfy (1 4+ A)r < ¢7. By the reverse triangle inequality and the
definition of c¢7, we have

g((1+M)r) = [[(1+ M) (ra+7°b) + (A + X*)r’b||,
> (1+N)|ra+7?b|s — (A + X2)7?|b|s
= [lra+7°b||s + Ar([la+ bl — (1 + N)r[b]5)
> |lra+7?bl|z + Ar(|lals — 7|[blls — (1 + A)r|b]|5)
> |ra+7b|[s + Ar(|lalls - 3llalls — 3llalls)-

The last quantity equals g(r), and the lemma follows. O

The following quantity is well-defined as a consequence of Lemma 13.

Corollary /Definition 4 There exists a constant o5 > 0 such that for all
o < 05 and all § € S9!, RadialDomain(s, o) is a closed interval. Thus, there
exists a function

7 : 5971 % [0,05] = Rso such that RadialDomain(s, o) = [0,7*(8,a)]. (80)

Lemma 14 There ezists a constant g > 0 such that the restriction of r* to
8971 % [0, 0¢] is a continuous function.

Proof Take o6 = o05/2. We shall verify continuity of r* by bare hands. For
notational convenience, within this proof, we denote the second argument of r*
by 7 (subscripted and/or primed) rather than by o. Fix (81, 71) € S¢71 x [0, 0]
and let € > 0.

Lemma 13 says r — G(S1,r) is continuous and strictly increasing around
0. By elementary facts, this has a well-defined continuous inverse function



32 Joe Kileel, Amit Moscovich, Nathan Zelesko, Amit Singer

around G(0) = 0. The inverse function is 7 — r*(81,7) defined for 7 € [0, o5]
(Lemma 4). So, we can take §’ € (0,04) such that for all 75 € [0, o5],

/_

|7 — 1| <8 = |[r*(s1,7%) —r*(s1,11)| <e. (81)

Since Ly, Qp are continuous, there exist §”, 8" > 0 such that for all 8, € 541,

~ ~ 5 10

||52 - S1||2 <§ = ||Lp(52) - Lp(SI)HB < ;757 (82)

~ o~ 1 . 1 . 14

sl <o” — |30n60 - j060| <5y
B 7

Define § := min (§"/3,6”,6") > 0. Let (82,72) € S471 x [0,04] satisfy
|(82,72) — (81, 71)|l5 < 0. We shall verify |r*(s2, 72) —r* (51, 71)| < €. Put ry :=
r*(81,711),m2 := 1*(S2,72) and 74 := G(S1,r2). By (81), it suffices to check
|75 — 11| < &', as then 74 € [0,05] (because 75 < 71 + ¢’ < 206 = 035) and also
r*(81,74) = r*(81, G(81, r2)) = 72. So, (81) gives |re — 1] < €.

To see that |75 — 71| < J indeed holds, we write

N 1. .
ralLp(®1) + 73 5Qp(E1)
B

/o
Ty =

r3 ~ - 1 ~ 1 ~
(roLp(s2) + pr(gz)) +72(Lp(81) = Lp(82)) +73(5Qp(82) — 3Qp(51))

B

Using the triangle inequality, (82), (83) and ro < ¢7 (from the proof of
Lemma 4),

§ 18 ,1d

=71 < =7+ —7| < 3 —&—075? —|—c7c—%§ — 4§
This proves r* is continuous on $¢=1 x [0, 0], when og = 05/2. O

Lemma 15 There exist constants cg > 0 and o7 > 0 such that for all o < o7
and all's € 5471,

1

2 * (o 2
0 — 30" < r*(8,0) < ————0 + cg0”. (84)
1L (5)ll5 ILp(s)ll5
Proof We shall prove that we may take
o msesit [Qp(E)ls )

Mmingegd—1 HLP(/S\) H?Z)S .

Given s € S9! Write a = Ly(S), b = Q5 (8), a = [|lal|z and b = ||b||5.
If b = 0, then r*(8,0) = (1/a)o for all ¢ > 0, so (84) is obviously satisfied.
Assume b # 0. The triangle inequality gives

g—(r) < g(r) < g4(r) forall r € Rxq, (86)
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where g(r) :== G(8,r) = |[ra+r?b||s, g_(r) := ar —br? and g, (r) := ar + br?.
Note g is strictly increasing over r € [0,00), while g_ is strictly increasing

over r € [0, 5¥] and g_(5;) = Z—Z. Let

ol = min ( o= Mingesi— HLP(g)H% >0
6 - 7 4InaX§egd71 ||Qp(§)||5 .

It follows from (86) and the intermediate value theorem that for all o € [0, 07],
(o) <o) < rZ (o),

where 7} | (o) denotes the greater of the two roots in r to the quadratic
equation g, (r) = o and where r* _ (o) denotes the lesser of the two roots in
r to g_(r) = o. Explicitly by the quadratic formula and Taylor series for the
square root function, we have

—a++va?+4bo 1 b,

i (o) = 5% Pl L +O(c?),
Va4 1
rt (o) = % = ga—k a%az +0(c®). (87)

On the other hand, from the compactness of 5¢~!, one can check the im-
plicit constants suppressed by the big O notation in (87) may all be taken
independently of 8. At the same time, % < cg for each s € 5?71, by the defi-
nition (85). Taking o7 > 0 to be sufficiently smaller than ¢/ yields the lemma.

O
Definition 5 Set og := min(cg, 07) > 0. Define n* : 59=1 x (0,05] — R by
1
r*(8,0) = ————0 + Ln*(8,0)0% (88)
ILp®)lls~ 2

By Lemma 14, %77* is continuous. By Lemma 15, it is bounded uniformly
in absolute value by 2cs.

4.8 Step 8: obtain tilt\s 5, and apply dominated convergence

It remains to establish Eq. (73): that is, to obtain the first-order term in
the limiting differential operator. We do this using spherical coordinates (Sec-
tion 4.6) and the results about the radial integration domain developed in
Section 4.7. By swapping the order of limit and the integration (justified by
dominated convergence), the tilt function emerges at last.

Proposition 16 For eachs € S¢1,
tim 17", ) = tiltc 5. (9) (39)

In particular, the limit on the LHS exists.



34 Joe Kileel, Amit Moscovich, Nathan Zelesko, Amit Singer

Proof By the bound (84) and compactness of [—cs, cs], it suffices to show that
every accumulation point of %77*@7 o) as 0 — 0 equals tilt o 5,p(8). That is,
assume (7;)p—, C (0,08] is such that 7, — 0 and 39*(S,7) — 1 € [—cs, cs]
as k — oo; we will show 1 = tiltyrq 5 p(S). Substituting (88) into (80), and
putting a = Ly(8), b = $Qu(8), e = n(8, ), gives

2
Tk 1 2) (Tk 1 2)
Tk = -7 la + | —— + znk7i; | b
* H(nanB 2T lalls ~ 277F) 7|

Rearranging and dividing by 7%, this reads

1 b b b
H ( Nga + ) T+ i+ LT;? (90)
lalls Il Jals = 4T
By the definition of tangent cones, (90) witnesses that
+na € TC’a/”aHB(BB) (91)

llal

Indeed, in the definition (12), take Y = 0B C RP; y = a/|allz € 0B; y,, =
2
s+ (%nka+ —”a‘]%)m + P2 4 BPrd ¢ OB; the same 7i,; and d =

llalls

ﬁJﬂ]a. Then, (91) follows because (y, —y)/7 = (%nka + ﬁ) +ﬁm+

%7’3 —d as k — oo, using 1ny — 1, 7 — 0 and n, = O(1) (Lemma 15) as

k — oo. From Proposition/Definition 4 and the membership (91), we obtain
n = tﬂtMyg’p(/S\). O

Finishing the proof of Theorem 6: From the end of Section 4.5, it remains to
establish (73). Let ¢ < min (05, 06,07, 0s). Then using spherical coordinates:

% ),
— sds
od+2 s€Approx(® (o)
! / 5 / 1rds 1(75)]
= S redrds
o2 se8d-1 reRadialDomain(s,o)
1 R r*(s,o J
:W[ y s/ s [(80), o < 03],
seSd-1 r=

Substituting Eq. (88) for r*(8,0) and evaluating the inner integral, we obtain
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L/ s < L Llre a)o2>d+tﬁ (88), o < o]
012 Jocsin d+1 \[Lp@®)s° 27 7=
1 / s
= —— 7d§
A+ 10 Jecsir [Ly@)IE
1o%(g
+f @(“”??+<xw)£ (81), 0 < o7, | Lp@l5" = w(D)
RN T AT
1, %3
~ 577 (S,J) )
= s| =——=5+0(0) | ds. oddness
/§esd1 (”Lp(s)“ds ( ) [ ]

By Eq. (89) and dominated convergence, as o — 0 this integral converges to
~ d e Lo N o —ds .
[ S tm s Geo)ds = [ SILa@) 5 e () 6
Sesd-1 002 Segd-1

The use of dominated convergence is justified because S — $n*(S,0) is con-
tinuous in 8 for each o < o¢ (Lemma 14), it is uniformly bounded in absolute
value by cg for each o0 < o7 (Lemma 15), and lim,_,0 7*(8, o) exists and is
tilt o, 8,p (Proposition 16). This completes the proof of Theorem 6. g

5 Application: mapping volumetric shape spaces

In this section, we demonstrate the use of non-Euclidean norms for embedding
a set of 3D densities with continuous variability. The specific motivation comes
from the field of single-particle cryo-electron microscopy (cryo-EM), an imag-
ing technique for reconstructing the 3D structure of proteins, ribosomes, and
other large molecules, using a large set of electron-microscope images. We give
a description of cryo-EM and the continuous heterogeneity problem, which
naturally lends itself to manifold learning. We then describe our method for
mapping general volumetric shape spaces using non-Euclidean diffusion maps,
and apply it to a simulated data set that satisfies the assumptions of Theo-
rem 7.. For a broader general introduction to cryo-EM see Chapter 1 of [23]
or the more mathematically-oriented reviews [58,9]. Code for reproducing the
numerical results is available at:
http://github.com/mosco/manifold-learning-arbitrary-norms

5.1 Single-particle cryo-EM

The goal of single-particle cryo-EM is to obtain the 3D structure of a molecule
of interest. This is done by obtaining a sample of the molecule and freezing it
so that it forms a thin sheet of ice. This sheet typically contains hundreds of
thousands of copies of the molecule, each suspended at a different orientation.
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Fig. 3 (left) Cryo-EM image showing ~ 220 noisy tomographic projections of the PaaZ
molecule and some contaminants (from [58]); (right) Surface plot of the reconstructed elec-
trostatic density of the PaaZ molecule, based on 118,203 tomographic projections (from [54]).

The frozen sample is then imaged using a transmission electron microscope.
This results in images that contain many noisy tomographic projections of the
same molecule, viewed from different (unknown) directions (See Figure 3). The
challenge is to compute a 3D reconstruction of the electrostatic density map.
The field of cryo-EM has made such progress over the last decade that it is now
common to see reconstructions of large rigid molecules, composed of tens of
thousands of individual atoms, with resolutions finer than 3 angstréms, which
allow for the accurate fitting of atomic models using specialized software. See
the right panel of Figure 3 for an example experimental reconstruction.

The basic assumption behind most single-particle cryo-EM methods is that
the molecule of interest is rigid. Hence, the different electron microscope im-
ages are tomographic projections of the same exact 3D volume from different
angles (or the at least, there is only a finite set 3D volumes). However, this
assumption does not always hold: some molecules have flexible components
that can move independently. This fact, known as the continuous heterogene-
ity problem in cryo-EM, poses a difficulty for existing reconstruction methods.
One of the key ongoing challenges in the field is the development of new meth-
ods that can map the entire space of molecular conformations [17,28,62,18,
47,14,29,73,49]. See [60] for a survey. Several works have applied diffusion
maps to this problem domain [15,55,14,44]. In our conference paper [70], we
applied diffusion maps with a particular non-Euclidean norm to a given set of
3D densities. Specifically, we used a fast wavelet-based approximation to the
Earthmover’s distance (WEMD). Those numerical results were the original
motivation for the present paper, and the rest of Section 5 extends them.
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Fig. 4 ATP synthase. (left) Fo and axle subunits. These jointly rotate in the presence
of hydrogen ions, together forming a molecular electric motor; (middle) the F; subunit
(in cyan) envelops the axle. As the axle rotates, the F1 subunit assembles ATP; (right)
representative 2D slice of the rotated Fp and axle subunits with additive noise shown.

5.2 WEMD-based diffusion maps

Given a set of volumetric arrays xp,...,%, € M C RN+*NyXNz ' we compute
an approximate Earthmover’s distance between all pairs of arrays [56]. This is
done by first computing the discrete wavelet transform of each input and then
using a weighted ¢1-norm on the pairwise differences of wavelet coeflicients,

|xi — X;|lwemD := Z 2752 |)Wx; () — Wx;(A)]. (92)
\

Here, Wx denotes a 3D wavelet transform of x [39]. The index A contains
the wavelet shifts (my,mo,m3) € Z3 and scale parameter s € Z>o. We then
compute pairwise Gaussian affinities,

Wij = exp (= [Ixi = %jllvemn /%) (93)

proceed to construct a graph Laplacian, and perform the eigenvector-based
embedding as described in Section 2. Since the construction uses a (fixed)
norm, the theory described in Section 3.4 applies in this case. Hence, in the
noiseless case, the graph Laplacian converges to an elliptic second-order differ-
ential operator on the relevant manifold M of ATP synthase conformations.
Here, M is embedded in the Euclidean space of arrays of size N, x Ny x N.

5.3 Simulation results

We tested our method on a synthetic volumetric data set that mimics the
motion space of ATP synthase [69], see Figure 4. This enzyme is a stepper
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Fig. 5 Fuclidean distance vs. wavelet-based approzimate Earthmover’s distance as func-
tions of the angle between rotations of the ATP synthase rotor. (top) distances for rotated
volumes without noise; (bottom) distances for the noisy data set. (Euclidean distances were
scaled to be comparable to WEMDs.)

motor with a central asymmetric axle that rotates in 120° steps relative to
the F; subunit, with short transient motions in-between the three dominant
states. Our synthetic data was generated as follows: we produced 3D density
maps of entry 1QO1 [61] from the Protein Data Bank [1] using the molmap
command in UCSF Chimera [48]. These density maps have array dimensions
47 x 47 x 107 and a resolution of 6A per voxel. We then took random rotations
of the Fy and axle subunits, where the angles were drawn i.i.d. according to
the following mixture distribution,

20[0,360] + tNV(0,1) + $N(120,1) + $M(240,1).

The resulting density maps formed the clean dataset. The noisy dataset was
generated in the same manner but also included additive i.i.d. Gaussian noise
with mean zero and a standard deviation of 1/10 of the maximum voxel value.

The discrete wavelet transform of all the volumes in the dataset was com-
puted using PyWavelets [31] with the sym3 wavelet (symmetric Daubechies
wavelets of order 3), though other wavelet choices also worked well [56, Sec
4.2]. The maximum scale level chosen was s = 6 to minimize the truncation
in Eq. (92). The number of resulting wavelet coefficients was 40% larger than
the number of voxels.



Manifold learning with arbitrary norms 39

Table 2 Running times [sec] for computing the discrete wavelet transform (DWT), all
pairwise wavelet-based Earthmover approximations (WEMD) not including the DWT, and
all pairwise Euclidean (¢2) distances.

n DWT WEMD {»

25 0.3 0.13 0.09
50 0.61 0.49 0.38
100 1.2 1.93 1.5
200 24 7.6 5.5
400 4.9 31 22
800 11 126 86

Figure 5 compares the Euclidean norm to the WEMD norm for a range
of angular differences for the noiseless and noisy datasets. Note that for the
clean dataset, WEMD is monotonic in the absolute value of the X axis (equal
to the angular difference between the ATP synthase rotors). This behavior
also holds for the Euclidean norm, but only for small angular differences up
to ~ £19°. This suggests that an affinity graph built from this dataset using
the Euclidean norm can capture the right geometry only when the dataset
contains a dense sampling of the angles and when the kernel width is properly
calibrated to nearly cut off connections at angles > 19°.

Figure 6 is the result of a two-dimensional Laplacian eigenmaps embed-
ding, once with the Euclidean norm and once with WEMD norm (92). These
embeddings use the unweighted graph Laplacian with a Gaussian kernel, which
corresponds to the setting of Theorem 6. For similar results that use the den-
sity normalized diffusion maps of [11], see [70, Fig. 5]. We chose o = 30 as the
Gaussian kernel width in Eq. (93) for the WEMD embeddings, however the
WEMD results were not very sensitive to the particular choice of o. In con-
trast, the Euclidean embeddings required fine-tuning of o to obtain the best
results for each sample size. This makes sense given the results of Figure 5.

The key takeaway from Figure 6 is that for the standard Laplacian eigen-
maps embedding based on the Euclidean norm, one needs > 400 samples to
conclude that the intrinsic geometry is a circle. In contrast, for the embeddings
based on WEMD, even small sample sizes give the right geometry.

5.4 Runtime

The running time of the WEMD-based diffusion maps is similar to that of
the standard Euclidean diffusion maps. This follows from the fact that both
algorithms need to compute (g) pairwise £)-distances (p € {1,2}) for vectors
of similar length. The cost of the discrete wavelet transform is negligible, since
it is linear with respect to the input size. For our sample sizes, the time to form
the Gaussian affinity matrix and compute its eigenvectors is also negligible.
Table 2 lists single-core running times on an Intel Core i7-8569U CPU.
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Fig. 6 Simulation results. Euclidean vs. WEMD-based Laplacian eigenmaps into R? using
the clean and noisy ATP synthase data sets. Sample sizes of n = 25,50, 100, 200, 400, 800.
The points are translucent to indicate density and the color is the groundtruth angle.
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Table 3 Running times [sec] for computing all pairs of sparsified wavelet-based Earth-
mover’s distances (sparse-WEMD), as compared to the dense computation.

n Sparse runtime  Sparse runtime  Dense runtime
(noiseless data)  (noisy data)

25 0.01 0.037 0.13

50 0.013 0.1 0.49

100  0.026 0.39 1.93

200 0.046 1.5 7.6

400 0.16 6.2 31

800 0.6 25 126

5.5 Using wavelet sparsity

To compute the approximate Earthmover’s distance between all pairs of vol-
umes, we first compute a weighted discrete wavelet transform of each volume
in the data set. For smooth signals, this results in sparse vectors of wavelet co-
efficients [39]. We can use this property by thresholding the vectors of weighted
wavelet coefficients, and then storing them in a sparse matrix. This is beneficial
because computing the ¢1-distance between two sparse vectors has a runtime
that is linear in the number of their non-zero elements. Since the computation
of all pairwise ¢, differences is the slowest part of our procedure, this approach
can reduce the running time significantly. To test this, we used the ATP syn-
thase data described in the previous section. First, we subtracted the mean
volume from all volumes in the data set. This mean-centering does not change
the pairwise WEMD distances but makes the resulting vectors more sparse.
We used the hard-thresholding function h; defined as follows:

ha(z) = 0 for |z] <t,
“T e for || > t.

We found a threshold ¢ for the wavelet coefficients such that the #;-norm of the
post-thresholding weighted wavelet coefficients are > 90% of the ¢;-norm of
the dataset prior to thresholding. This threshold was computed on the smallest
simulation of size n = 25 and then applied to the rest of the runs. Figure 7
shows the results of the WEMD embedding following this sparsification step.
Table 3 shows the running times for the sparsified WEMD. Note that the
running times are different for the noiseless and noisy data, since the noisy
data is less sparse. However, in both cases, there are significant gains to the
running times, with few visually-noticeable changes to the embedding results.
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Fig. 7 Sparsified results. Wavelet-EMD-based Laplacian eigenmaps of the clean and noisy
ATP synthase data sets, after applying hard-thresholding to obtain sparse coefficient vectors.
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6 Conclusion

In this paper, we placed Laplacian-based manifold learning methods that use
non-Euclidean norms on a firmer theoretical footing. We proved the pointwise
convergence of graph Laplacians computed using general norms to elliptic
second-order differential operators. In particular, our proof involved a novel
second-order interaction between the manifold M and the unit ball B, en-
coded by the function tilt o5 5. We showed that some properties of the usual
Laplace-Beltrami operator are lost in the general case. The limiting operator
A s changes with the embedding of M. Further, the limit Axq g carries a
first-order term that can exhibit discontinuities at certain points of M.

In addition, this paper demonstrated practical advantages for using non-
FEuclidean norms in manifold learning. We considered the task of learning
molecular shape spaces. Here data points are conformations represented by
3D arrays, and we want to capture the range of motion. A simulation found
that using Laplacian eigenmaps with the wavelet Earthmover’s distance (a
weighted-¢; norm in wavelet coefficients) resulted in a qualitative improve-
ment of sample complexity compared to the Euclidean norm. Thresholding the
wavelet coefficients before computing norms reduced the computational cost.

This work suggests several directions worthy of future study:

— Convergence rates. With what rate does the convergence in Theorem 6
occur? How does this depend on the choice of norm || - ||5?

— Eigenfunctions. What can be said about the eigenfunctions of Ay g?
How do the discontinuities of the first-order term in Aaq g impact them?
Due to space limitations, we only gave numerical examples in Appendix F.

— Spectral convergence. For general norms, do the eigenvectors of the
graph Laplacian converge to the eigenfunctions of the operator Ap g?

— Concentration. The operator A depends on d- and 2-dimensional
linear sections of the convex body B C RP. When D >> d, is there a sense in
which these slices look “increasingly Euclidean”? Does Axq, 5 concentrate?

— Data-dependent norms. If the norm chosen is some fixed function of
the data set, does a well-defined limit of the graph Laplacians still exist?

— Applications. Are some applied domains better-suited for non-Euclidean
norms than others? How should a practitioner decide which norm to use?
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Appendices

A Proof of Lemma 3

Step 1: LHS C RHS. By the identity (13) for tangent cones of convex sets, we have

TCy(B) = R>0(B—y).
By definition of 9 and of tangent cones (13), the LHS of Eq. (14) is

9(TCy(B)) =R>0(B-y) \ (R>0(B—y))°. (94)

Let d € 0(TCy(B)). By Eq. (94), d = limy_, o Bx (¥, — y) for some B € Rso and
¥ € B. Without loss of generality, we assume y, € 0B for each k. We break into cases.

— Case A: y=y.
Either d = 0 € Ty (9B), or 7 := 1/Br — oo as k — oo. If the latter, the sequences
(F)52, € OB and (1x)52; € Rso witness d € TCy(9B).

— Case B: y# y.
Here, limg_, o0 B =: B € R>q exists, and d = B(¥ —y). If 3 =0, then d = 0 € Ty (9B).
Suppose 8 # 0. Let the line segment joining y and y be

conv{y,y} = {ay + (1 —a)y € R :a € [0,1]}.
So, conv{y,y} C B. We claim conv{y,y} C 9B. Assume not. That is,
Ja € (0,1) such that z:=ay + (1 — a)y € B°.
But then,
d=p8F-y) = (B/a)(z—y) € Roo(B° —y) € (R>o(B-y))°.

This contradicts d € 9 (TCy(B)) (see Eq. (94)). So, indeed conv{y,y} C 9B. Now,
define

1 1 1
Y= E§+(1_ g)yeaB and T = 5 € R>o.

Then, % =d for each k, and (¥;)72; and (73)52, witness d € TCy(9B).

In all cases, we have verified d € TCy (08). This gives LHS C RHS in (14).

Step 2: LHS D RHS. Let d € T'Cy(0B). By the definition of tangent cones (12), d =

limg s o0 Tk_l (¥ — y) for some 7, € Ry and y;, € OB with 7, — 0 and y;,, = y as k — oo.
By (94), we need to show d ¢ (R>o(B —y))°.
First, we will prove conv{d +y,y} N B° = (). Assume not, i.e.,

Ja €(0,1) such that z:=a(d+y)+ (1 —a)y =ad+y € B°.
Let 7, = 71/ € R>0, so that
ad= lim 77 3 - y). (95)
Since B° is open, there exists § > 0 with

N :={weRP:|w-zl <8 CB°.
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By Eq. (95), there exists K such that for all k > K,
T —Y) Y EN.
On the other hand, it is easy to see for each w € B°,
(v +Roo(w—y)) NB = conviy, w') (96)
for some w’ € 9B, using convexity and compactness of B. In addition,
(¥ + Reo(w —y)) N 0B = {y,w'}, (97)
using w € conv{y,w’}, |[w||z < 1, and the triangle inequality for || - ||5. Clearly,
[w' —yll2 > lw = yll2. (98)

Now, let € := minyear ||[w — y||2. Note € > 0. For each k < K, we apply (96), (97) to
w =7, —y) +y € N. Then, w' = 3. By (98),

195 — yll2 > w—yll2 > ¢ forall k > K. (99)

But (99) contradicts ¥, — y as k — oco. Therefore, conv{d +y,y} N B° = 0.
Translating by —y, conv{d,0} N (B —y)° = 0. By this and convexity, it follows there
exists a properly separating hyperplane:

Jv € RP\ {0},37 € R such that Vu; € conv{d,0},Yuz € B—y
(v,u1) > v, (v,uz) <~ and Juz € B—y such that (v,d2) < ~.
In particular,
Rso(B—y) C {ueRP: (v,u) <~}.
Also, for any open neighborhood D C R with d € D,
3d € D such that (v,d) > (v,d) > .

We conclude d ¢ (Rs>o(B —y))°, as desired. This gives d € 9 (T'Cy(B)), and LHS D RHS
in Eq. (14), completing the proof of the lemma. O

B Proof of Proposition 5

For item 1, we first note that grad || - ||g(2) is nonzero, since the directional derivative of the
norm function at a in the direction of @ is nonzero. Indeed the function R — R; A — ||a+)a||z
has derivative ||a]|g = 1 at A = 0, using homogeneity of || - ||z under positive scaling. Item 1
now follows immediately from [53, Thm. 3.15] and the preceding paragraph in that reference
that metric regularity is implied by the linear independence of the gradients.

For item 2, we note that due to homogeneity of the norm, since || - ||z is C! around
Lp(8), it is also O around Lp(8)/||Lp(8)||5 and it holds

grad [ - [[5(Lp(8)/[Lp(8)ll5) = (1/[|Lp(8)ll5) grad || - [[5(Lp(8))-

Thus, item 1 applies and implies the tangent cone in right-hand side of Eq. (15) is the hy-
perplane normal to Ly (8). Now we finish by equating the inner product of grad || - ||3(Lp(8))
and the LHS of Eq. (15) with 0, and solving for 7. m|
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C Proof of Lemma 8

Given M and B, we need to show that there exists a positive constant C' (independent of
P, &) such that for all p € M and all vectors £ € Tp M we have

<5§T,; / ssTds> > Cel2. (100)
{s€TpM:||Lp(s)||z<1}

To this end, use linearity of the integral to rewrite the left-hand side of (100) as

1

1
2 /{seTpM:\ILp(S)\Iszl}

T,ss')ds = 7/ (£,8)2 ds. (101)
2 J{seTpM:| Lp(s)5<1}

By the equivalence of norms on RP, there exists a positive constant ¢ such that for all
v € RP we have that ||v|2 < ¢ implies ||v||z < 1. In particular, the domain of integration
in Eq. (101) is inner-approximated by

{s€TpM:|Lp(s)ll2 < c} € {s € TpM:|Lp(s)llz < 1}
Since the integrand in (101) is non-negative, it follows

1

i €s)%ds > [ (€,5)2 ds.
2 J{seTpM:||Lp(s)ll5<1} 2 J{seTpM:||Lp(s)|2<c}

Since Lp is an isometry, the right-hand side is

1

/ (6,52 ds.
2 J{seTpM:|sl|l2<c}

Using rotational symmetry of Euclidean balls, this equals

1
( / 52 ds> I3, (102)
2 J{seTpM:|is|2<c}

where s; denotes the first coordinate of s with respect to the fixed orthonormal basis on
Tp M (Section 3.1). Now note the parenthesized quantity in (102) is a positive constant C
depending only on ¢ and the manifold dimension d. By what we have said, it satisfies the
bound (100) as desired. m]

D Proof of Proposition 9

1. Denote the function (37) by F': M — Sym?(TM). Let (p;)3, € M be a sequence
converging to p € M. To move to one fixed space we identify tangent spaces using the
Levi-Civita connection on M. After choosing a smooth path v : [0,1] — M such that
'y(%) = py, for each k > 1 and v(0) = 1, the Levi-Civita connection gives isometries
7% : TpM — Tp, M. Furthermore, 7, converges to the identity map on Tp M as elements
of (TM)* @ TM as k — oo.

We want to show F(py,) — F(p) in Sym?(TM). It suffices to show (T,;1®T,;1)(F(pk)) —
F(p) in Sym?(TpM) (last sentence of the previous paragraph). Changing variables
S Tk_l(S) and using that 7 is an isometry, we have

(il @) (F(py)) = =

/ ss ' ds.
2 JseTp M:|| L, (ri () 5<1
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Write this as
[ AL (u@)ls < 1)ssTds € Sym?(TpM),
s€Tp
Compare this to

F(p) = / 1(|Lp()lls < 1)s € Sym(TpM).s " ds
s€Tp M

Since Lp, — Lp, 75 — Id1, M and Il - |5 is continuous on RP, for each s € TpM there
is the pointwise convergence:

1(||Lpy, (ri(s))ll5 < )ss" — 1(||Lp(s)lls < 1)ss”

Also, letting ¢ € Rso be a constant such that |ul|2 < c||lu||s for all u € RP, we have
the uniform bound:

12(|Lp, (Te(s))|ls < 1)ss™ ||z < ¢® foralls € TpM and k > 1,

since Lp and 7, are both isometries. Hence, the bounded convergence theorem is appli-
cable, and implies (1, ® 71)(F(pg)) — F(p).

2. Denote the function (38) by G : M — Sym(T'M). Let p be a point satisfying the stated
assumption. There exists an open neighborhood U of p in M such that for each p, € U
the norm || - || is C! in some neighborhood of Ly, (Tp, M) N SP~1. Let (pj)$2, CU
be a sequence converging to p. Identifying tangent spaces as above, it suffices to show
7 [(F(py)) = F(p).

By the local C! assumption, Proposition 5, item 2 applies and gives

_ 3 5 —d—2 <grad ” . IIB(LP(g))v %Qp(§)> a5
Fp) = /gETpMznguFl e @™ e [ 15 Lo @), Lp@)

Likewise, by a change of variables using that 7, 1 preserves unit spheres:

% H(E(py)) =

/ S|y ( k(g))H,d,2<grad\\ NB(Lpy, (11(9))), 3Qp, (T (8)))
A Py \T) B

) k ds.
SETpM:[8]2=1 (grad || - [[5(Lpy (7% (8))), Lp, (1(8)))

Boundedness and pointwise convergence hold since grad || - ||z is locally continuous. So
the bounded convergence theorem implies the first sentence in the statement. The second
sentence follows from the example in Section 3.7. 0O

E Tail bounds and absolute moments of the Gaussian

2,2
We recall some basic properties of the Gaussian. As in Section 4.2, ko (s) := %675 /o7,

— For each even k > 0 and § > 0, by substitution and then integration by parts k/2 times,

o0
/ P ko (s)ds
s=6

k k_ 4 2\ -2
ko020 [(S2\E L k(N2 k(R \(9%)2 kY,
e (a2 +2 o2 +2 2 o? ot 2)"

= e~/ poly(a, ). (103)
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— For each odd k > 0 and § > 0, using s/§ > 1 for s € [§, 00| and Eq. (103),

oo o0 2, 2

/ sP ko (s)ds < (1/5)/ kg (s)ds = e =% /77 (1/6) poly(a, ). (104)
s s=48

— For each k > 0, from [67, Equation 18],

/00 Pk (s)ds = o* I (%) . (105)

=0

F Numerical estimation of one-dimensional eigenfunctions

The eigenfunctions of the limiting operator are of key interest for manifold learning methods
in general. For the case of the circle example (Section 3.7), these are the functions ¢ :
[0,27] — R that solve the following generalized Helmholtz boundary value problem:

Apmse+Ap =0, (106)

where Apq 3 is the limiting Laplacian-like differential operator in Eq. (42), subject to the
periodic boundary conditions:

(0 +27) = p(0),
¢ (0+2m) = ¢ (6).

Figure 8 shows numerically computed solutions of Eq. (106) for different choices of w1, wa.
Notice the eigenfunctions are oscillatory, as dictated by Sturm-Liouville theory [2].

We describe the numerical computation of these limiting eigenfunctions. We used a
standard finite-difference scheme where the first derivative was replaced by a symmetrized
difference

&, J0+A0) — (60— 20)

107
do 2460 ’ (107)

and the second derivative by

Pf 0+ 26) — 2f(6) + £(6 - A6)

¥l — (402 (108)

In this equation, f is taken to be a cyclic function defined over the discrete range

{021 27r(n71)}
7n»"'7 n .

To compute the solutions we formed a sparse n X m matrix L that corresponds to the
finite-difference operator formed by substituting (107) and (108) into the first and second
derivative terms in Eq. (106). The eigenvalues and eigenvectors of L were found using the
function scipy.sparse.linalg.eigs() from the SciPy package [65]. It is a wrapper of the
ARPACK library for large-scale eigenvalue problems [34]. Recall that in our problem, all
eigenvalues are non-positive. To obtain the smallest (in magnitude) eigenvalues and their
corresponding eigenvectors, we used the eigs() function in shift-invert mode with o = 1.
The particular choice of o did not seem to matter much when o > 0, however choosing o = 0
resulted in instabilities and convergence errors. This is due to the fact that shift-invert mode
attempts to find solutions to (L — oI)~!x = Ax, and since zero is an eigenvalue of L, the
choice o = 0 results in the inversion of an ill-conditioned matrix. The use of sparse matrices
allows one to take large values of n, since applying the finite-difference operator defined
above costs only O(n).
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Fig. 8 Eigenfunctions. The five eigenfunctions with eigenvalues smallest in magnitude for
the weighted ¢; Laplacian on the unit circle (42). These were computed numerically. In these
plots, wo = 1. All the choices w1 € {1, 2,4, 8} are displayed from top to bottom.
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