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Abstract

The high productivity in the US Corn Belt is largely enabled by the consumption of millions of
tons of manufactured fertilizer. Excessive application of nitrogen (N) fertilizer has been pervasive
in this region, and the unrecovered N eventually escaped from croplands in forms of nitrous oxide
(N,O) emission and N leaching. Mitigating these negative impacts is hindered by a lack of practical
information on where to focus and how much mitigation potential to expect. At a large scale,
process-based crop models are the primary tools for predicting variables required by decision
making, but their applications are prohibited by expensive computational and data storage costs. To
overcome these challenges, we built a series of metamodels to learn the key mechanisms regarding
the carbon (C) and N cycle from a well-validated process-based biogeochemical model, ecosys. The
trained metamodel captures over 98% of the variability of the ecosys simulated outputs for 99
randomly selected counties in Iowa, Illinois, and Indiana. To identify hotspots with high mitigation
potential, we introduce net societal benefit (NSB) as an indicator for synthesizing the loss in yield
and social benefits through emissions and pollutants avoided. Our results show that reducing N
fertilizer by 10% leads to 9.8% less N,O emissions and 9.6% less N leaching at the cost of 4.9%
more SOC depletion and 0.6% yield reduction over the study region. The estimated total annual
NSB is $395 M (uncertainty ranges from $114 M to $1271 M), including $334 from social benefits
(uncertainty ranges from $46 M to $1076 M), $100 M from saving fertilizer (uncertainty ranges
from $13 M to $455 M), and —$40 M due to yield changes (uncertainty ranges from —$261 M to
$69 M). For the median scenario, we noted that 20% of the study area accounts for nearly 50% of
the NSB, and thus represent hotspot locations for targeted mitigation. Although the uncertainty
range suggests that developing such a high-resolution framework is not yet settled and the scenario
based estimations are not appropriate to inform the management practices for individual farmers,
our efforts shed light on the new generation of analytical tools for life cycle assessment.

1. Introduction largely in the US Midwest, also known as the Corn

Belt. This high productivity was enabled by artificially
The United States produces about 1/3 of the world’s  draining the seasonally saturated soils of the Midwest-
corn for food, feed, and biofuel (USDA-FAS 2020), ernlandscape and catalyzed by application of millions
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of tons of manufactured fertilizer (USDA 2019). It is
estimated that 40%—80% of these applied fertilizers is
lost from soils, through drainage tiles to water bodies
as reactive nitrate (Chen et al 2016, Zhao et al 2016)
and into the atmosphere as N,O (Turner et al 2015,
Zhang et al 2020). With the continued need to sat-
isfy growing global demand for agricultural products,
ensuring the sustainability of food production sys-
tems has become a major challenge in the US Mid-
western region (Foley et al 2011, Tilman et al 2011).
To address the socio-economic expectations of
different stakeholders, thorough understanding of
the relationship between agricultural inputs and out-
puts is necessary. Although previous research on this
topic is abundant, many studies rely on aggregated
data of regional and national cropping systems (John-
ston et al 2015, Marshall et al 2015, Burke and Emer-
ick 2016, Cho and McCarl 2017, Kent et al 2017).
Aggregated estimates from these studies can be easily
compared with government-published benchmarks,
but have diluted the spatial variability at a finer scale
that are more relevant to growers’ practices and sup-
ply chain management (Smith et al 2017). Mean-
while, many others have designed experiments on
individual farms or fields to investigate the input and
output flows of corn production (Kwon et al 2017,
Wienhold et al 2018, McNunn et al 2020). Assess-
ments obtained from the field approach provide valu-
able first-hand results, but generalizing these local
findings for regional decision making is question-
able (Basso and Liu 2019). Limitations of the two
approaches call for an alternative pathway that can
cover broad geographical regions while maintaining
fine granularity of farm-field information.
Process-based crop models that simulate the com-
plex interactions between soil, weather and manage-
ment practices have been widely used to inform field
management (Keating and Thorburn 2018, Morris
et al 2018). At regional scale, crop models are often
used to examine alternative management strategies
through gridded simulations (e.g. 10 km) of baselines
and proposed scenarios (Lu et al 2018, Peng et al 2020,
Mandrini et al 2021). While instrumental to inform-
ing land management decisions, these models process
each ‘location’ individually, creating, to date, unman-
ageable computational challenges for their applica-
tion across larger landscapes or complex sourcing
scenarios incorporating multiple nonadjacent loca-
tions. Even by implementing parallel or cloud com-
puting, it is unlikely that the settings could accom-
modate the millions of croplands to be processed
and the many different ways farmers might manage
their fields, not to mention interactions with soil and
weather conditions (Shahhosseini et al 2019).
Metamodeling, or making a ‘model of a
model’, is the process of generating a statistical
or machine learning model to approximate the
process-based crop model; thus, it can overcome
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the above-mentioned computational challenges
(Villa-Vialaneix et al 2012). Additionally, metamod-
els provide flexible applicability across different tem-
poral and spatial scales (Britz and Leip 2009, Nolan
et al 2018). Even though a metamodel is a simplifica-
tion of a process-based model, a trained metamodel
may even show better estimation with fine resol-
ution data than the estimation from the original
process-based model with low resolution data (Per-
Iman et al 2014). In recent years, machine learning
based metamodeling approaches have been widely
tested (Villa-Vialaneix et al 2012, Mekonnen et al
2015) and have demonstrated early success in simu-
lating corn yield and N losses across the US Midwest
(Shahhosseini et al 2019).

Estimating crop productivity and its associated
environmental performance at the field scale has
also attracted surging interest among practitioners
and civil society. Countless multi-stakeholder initiat-
ives have emerged over the past three decades, from
the organic movement to cooperative supply chain
platforms aimed at assessing agriculture’s ‘fieldprint.
In addition, many food manufacturing corporations
have committed to reducing their environmental
impacts by optimizing their supply chain. Recent
studies on subnational corn and soy mobility that
highlight the spatial variability of GHGs and water
footprints of upstream suppliers and downstream
processors illustrate the consolidation of agricul-
tural impacts within a handful of large firms (Smith
et al 2017, Brauman et al 2020) and opportunities
for more sustainable management practices through
technical support and financial assistance (Eagle et al
2020). Yet, for these initiatives to achieve their desired
effects mitigation strategies will likely require more
targeted application and more prospective model-
ing at high spatial resolution (Groffman et al 2009).
The recent finding that high-emission hotspot loca-
tions are largely unrelated to high-production areas
(Carlson et al 2017) emphasizes that interventions
will need to be characterized not only in terms of
emissions reductions but also productivity. To the
best of our knowledge, this high-resolution inform-
ation is not currently available in the US Corn Belt.

In this study, we built a series of metamodels
to learn the key mechanisms regarding the C and
N cycle from a well-calibrated process-based biogeo-
chemical model, ecosys (Grant et al 2016, Zhou et al
2021). Using these metamodels, we generated mil-
lions of scenario simulations and investigated two
fundamental questions to the US Midwest sustainab-
ility: where are the mitigation hotspots? How much
mitigation can we expect under different manage-
ment scenarios? We synthesized four simulated indic-
ators of agroecosystem sustainability (i.e. yield, N,O
emissions, N leaching, and changes in SOC (ASOCQ))
into net societal benefits as the basis for identifying
hotspots and infeasible land for mitigation for every
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corn field across the study area. Given the inevitable
uncertainty in the analysis due to data limitations,
our results are not intended to inform the manage-
ment practices for individual farmers, but instead to
provide a realistic estimate of mitigation potentials in
this corn production system.

2. Method

2.1. Build a metamodel to approximate the
process-based model

To provide the synthetic data for training metamod-
els, the process-based model employed should not
rely too much on empirical relationships that may
vary from one place to another. Ecosys is one of the
few agroecosystem models that meet this restrict-
ive criterion since it is constructed from basic prin-
ciples of physics and biochemistry using parameters
that may be determined independently of the model
itself (Grant 2001); therefore, it is widely applicable
to different soils, climates, and managements. Previ-
ous work using ecosys has fully demonstrated its cap-
abilities in simulating carbon and nitrogen cycling
(Grant 2001) and the impacts of different manage-
ment practices (Grant ef al 2006, 2016). Uniquely,
ecosys is one of the few models that has resolved the
biogeochemical coupling between different crops and
microbial population dynamics (including nitrogen
fixation, nitrification, and denitrification) and has
been evaluated extensively for soil C and N,O model-
ing in agroecosystems (Grant et al 2001, 2006, 2016,
Zhou et al 2021). Validation results showed that eco-
sys was able to reasonably estimate hourly N,O flux
at the field level (R?> = 0.46) (Metivier et al 2009) as
well as the total flux aggregated over the measured
period (relative error between 0% and 16.5%) (Grant
and Pattey 2003). Relative error in a long-term sim-
ulation of ASOC with no-fertilizer can be as low as
5.1% (Grant et al 2001). A recent model evaluation
study by Zhou et al (2021) using data from seven agri-
cultural eddy-covariance flux tower sites shows that
with moderate calibration, ecosys is able to capture the
daily time series of gross primary production (GPP),
net ecosystem exchange (NEE), ecosystem respiration
(Reco), and leaf area index (LAI) with R? equal to
0.92, 0.87, 0.87, and 0.78, respectively. For regional
scale simulations, ecosys reproduced the spatial dis-
tribution of USDA NASS county-level yield statist-
ics with R? equal 0.83 and 0.80 for corn and soy-
bean, respectively. From a mass balance perspective,
these results further justified using ecosys to simu-
late annual SOC change since ASOC can be approx-
imately estimated as GPP minus Reco and harvested
yield.

We generated synthetic data (i.e. yield, N, O emis-
sions, N leaching, and ASOC from 2001 to 2018) for
training metamodels by running ecosys (the same ver-
sion as was used in Zhou et al 2021) for 99 randomly
selected counties in Iowa, Illinois, and Indiana (figure
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S1 available online at stacks.iop.org/ERL/16/075008/
mmedia). Hourly meteorological inputs, including
net radiation, air temperature, precipitation, relat-
ive humidity, and wind speed, for ecosys are collec-
ted from the phase 2 of North American Land Data
Assimilation System (NLDAS-2) with 0.125 degree
resolution (Xia et al 2012). A total of 21 vari-
ables describing soil physics (e.g. bulk density, sand
content, silt content), hydraulics (e.g. field capacity
and wilting point), and soil biogeochemistry (e.g.
pH, SOC, organic N and P) were derived from the
SSURGO database (Soil Survey Staff 2020) for each
soil map unit and resampled into 12 layers with fixed
layer depths to set up ecosys soil inputs. Crop man-
agement in the baseline simulation was configured as
rain-fed, no-till, and with corn-soybean rotation. To
investigate the impacts of varying N fertilizer rate, the
simulation experiments were tested at 20 different N
rates (i.e. 0, 40, 80, 100, 110, 120, 130, 140, 150, 160,
170, 180, 190, 200, 210, 220, 240, 260, 280, 300 Ib
N/acre). More details about the input data of ecosys
regional simulations are summarized in table S1.

We built four separate models for yield, N,O,
N leaching, and ASOC for 0-30 cm depth. Among
many choices in machine learning models, ran-
dom forest (Breiman 2001) and XGBoost (Chen and
Guestrin 2016) have shown good performance in
metamodeling studies for agroecosystems (Perlman
et al 2014, Shahhosseini et al 2019). During the
model selection stage, we noticed XGBoost outper-
formed RF in the testing set, although both meth-
ods performed well with the training set (table S3).
Therefore, we used XGBoost for generating results
for subsequent analysis. The proposed metamodels
were trained by mapping the dependent variables to
arange of variables characterizing key soil properties,
aggregated weather and fertilizer rates (table S2), all
derived from the inputs and outputs of ecosys simula-
tions. The synthetic dataset was partitioned into 70%
of the training metamodels and 30% for validation
using random sampling. We used the xgboost pack-
age (Chen and Guestrin 2016) in python 3.6.10. The
default hyperparameters were used since tuning their
values did not lead to meaningful improvement dur-
ing the preliminary analysis. The final metamodels
were applied to every SSURGO soil map unit within
all cornfields. The USDA crop data layer (CDL)
(Johnson 2013) was used to identify cornfields in each
year.

2.2. Net societal benefit from farm management
practices

The difference in societally adjusted net operating
revenue of production between the benchmark scen-
ario and various scenarios of management practices
is defined as net societal benefit (NSB) and measured
with equation (1):

NSB = Ayield x Cc + AFx Ce+SB (1)
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where NSB is the sum of farm revenue change and
social benefits from avoiding environmental cost
($ ha™!), Ayield is the change in yield (t ha=!), C¢
is the corn price ($ t7!), AF is the reduced N fer-
tilizer amount (kg N ha™!), Cr is the fertilizer cost
($ N~! kg1), and SB is the social benefit ($ ha™!).
SB is estimated with equation (2)

SB = (GHGAN20 + GHGAfert + GHGAs0C)
X Cgue + Al\jleaching X Cleaching (2)

where GHG an20, and GHGasoc is the reduced N,O
emission, reduced emission associated with fertilizer
manufacturing and transport, and reduced ASOC
converted to CO; equivalent (CO,e) greenhouse gas
(GHG) emissions (t CO,e ha™!), respectively; Coug
is social cost of GHG emissions ($/t COze), ANieaching
is reduced N leaching (kg N ha~!), and Cieaching 18
the social cost for N leaching. GHGafert is derived
from the life cycle inventory, a database that provides
the embedded GHG of a product based on resource
extraction to the factory gate (cradle-to-gate) assess-
ments GHG (PE International 2014).

The cost for different items adjusted as dollars
in 2014 is listed in table S4. With a discount rate
of 2.6%, corn and fertilizer prices are set to 150 $/t
and 1.15 $ N~ ! kg™! based on the average market
value for 2001-2018 (figure S8). Social cost consists
of two categories: GHG emission and water pollu-
tion. Cost of N,O emissions is estimated by convert-
ing into CO,e based on the fact that N, O is 265times
more powerful than CO, regarding global warming
potential for a 100 year time horizon (IPCC 2014).
COse of fertilizer is estimated based on the assump-
tion that farmers apply one-unit ammonium nitrate
and two units of URAN that produce emission of 9.1
and 6.1 kg CO,e kg™! N™!, respectively (PE Interna-
tional 2014). We assumed a price of $50/t for CO,,
which is the Interagency Working Group’s central
estimate (IWG 2016, Revesz et al 2017). Cost for N
leaching, largely due to eutrophication, is estimated
as 18.54 $ kg~! N~! (8.88 and 31.58 $ kg~! N~! for
lowest and highest estimates, respectively) based on
Sobota et al (2015). All metamodels output density
variables as quantity per ha. Aggregated estimations
for county- or state-level were obtained by multiply-
ing corn production acres from the USDA census data
in 2017 (USDA NASS 2019).

2.3. Hotspots and mitigation potentials

We calculated profit changes under various N reduc-
tion scenarios to determine where cornfields can
break even or make more expected profits through
avoiding social cost. Since no data is available at the
field scale to provide the current N application rate,
we used the maximum return to nitrogen (MRTN)
calculator (Sawyer et al 2006) to derive the baseline
scenario of N management. MRTN is a well-known
method to estimate the economically optimal N rate
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based on state-specific yield to N response curves
that are derived from multiple years and sites (Saw-
yer et al 2006). The MRTN calculator is widely used
by University Extension specialists, farm consultants
and fertilizer vendors to provide the recommended
N fertilizer rate (Morris et al 2018), therefore is a
reasonable approximation to farmers’ practices. More
details to derive MRTN rate for each map unit are
provided in Jin et al (2019). The N mitigation scen-
arios were configured as 10% and 20% N application
reductions from the optimal applied N rate over the
study region. For each map unit from 2001 to 2018,
the annual NSB was calculated by comparing mul-
tiple scenario simulations by the metamodel to the
benchmark. Based on these simulations, we identi-
fied map units with NSB ($ ha™!) greater than 0 as
feasible spots for GHG mitigation, and those with
NSB greater than $40 ha~! in more than 75% of the
years during 2001-2018 as hotspots (figure S2). Here,
the threshold of $40 ha=! was selected because it is
roughly at the 75 percentiles of the attainable NSB.

2.4. Uncertainty analysis

Similar to other model-based studies, uncertainty is a
necessary component in our estimates. While quan-
tifying the uncertainty from all sources is beyond the
scope of this study, here we particularly focused on
three major categories, including baseline N rate, pri-
cing for corn yield and environmental benefits, and
management practices. Since our baseline N rate was
derived from the MRTN calculator (which by itself
carries some uncertainty), we tested the impacts of
varying the recommended MRTN rate by +10% on
the estimated regional NSB. To account for uncer-
tainty caused by pricing, we examined the extent to
which mitigation potentials can vary by different cost
combinations at the benchmark N rate. Detailed pri-
cing combinations for changes in yield, N, O, N leach-
ingand ASOC are listed in table S6. We also evaluated
the impacts of adopting different management prac-
tices compared with the baseline scenario of corn-
soybean rotation and no-till for every cornfield. Mod-
ifiers to simulated yield, N,O emission, N leaching
under continuous corn and conventional tillage are
extracted from several recent meta-analysis studies
and review papers (see table S7). For example, Eagle
etal (2020) suggested N, O emission from continuous
corn fields is on average 43% more than corn-soybean
rotation field based on a sample of more than 600 site-
year observations, therefore a modifier of 1.43 will be
multiplied to the baseline N,O estimation.

3. Results

3.1. Metamodel performance

The metamodels based on the XGBoost method can
fully capture the variability of ecosys simulations, with
testing R? for all four variables (i.e. yield, ASOC, N,O
and N leaching) greater than 0.98 and relative RMSE
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smaller than 5% (table S3 and figure S2). The scat-
ter plots of metamodel versus ecosys simulations for
testing dataset are clustered closely around the 1:1
ratio line (figure S2), suggesting metamodels were
able to provide unbiased approximations of ecosys
for the variables of interest. We did not further val-
idate metamodel’s performance on representing the
spatial pattern in ASOC, N20O and N leaching due
to lack of field measurements. At the regional scale,
the USDA NASS county-level yield statistics is the
only available dataset for validation, thus it was used
to evaluate our metamodels. We detrend survey data
using linear regression to eliminate the effects asso-
ciated with technology improvements, which is not
considered by the metamodel. Results showed that the
metamodel could capture about 30% of the variabil-
ity in detrended yields when all counties are evaluated
(R? 0f 0.304 and RMSE of 1.96 t ha™!), as well as the
magnitude and interannual variability of detrended
yields in most states (figure S3). Errors were larger in
2012, suggesting the metamodel did not adequately
capture some extreme climatic events such as a severe
drought.

Analysis on feature importance suggested that
yield is largely determined by temperature, especially
max temperature in July (tmax07) and minimum
temperature in June (tmin06); the N,O emission is
determined by tmax07, fertilized N rate (N_rate) and
precipitation in June (prec06); N leaching is primar-
ily controlled by cation exchange capacity (cec7_r);
and ASOC is mainly determined by total organic
C (om_r), minimum temperature in July (tmin07),
maximum temperature in July (tmax07) (figure $4).
These findings were in line with the key predictive
variables identified by a few recent studies focusing on
yield (Peng et al 2018, Shahhosseini et al 2019), N,O
(Perlman et al 2014) and N leaching (Villa-Vialaneix
etal 2012).

3.2. Baseline simulation

The baseline simulations for corn yield, N,O emis-
sion, N leaching and annual ASOC are illustrated in
figure 1. For corn yield, the 18 year averaged map
showed a similar spatial pattern to a recent satellite-
based estimation for the same region (Lobell et al
2020), except in Ohio. Low yielding areas in the
north are coincident with high N leaching, low N,0O
emissions and high ASOC (figure 1). The estim-
ated mean annual N,O emission is 2.59 kg N ha™!
over the study region, which falls in the range of
1.0-5.3 kg N ha™! (table S5) as reported by several
other meta-analysis studies for this region (Ingra-
ham and Salas 2019, Pelton 2019, Chatterjee 2020,
Eagle et al 2020). Estimated N, O emissions are higher
in the southern Corn Belt than in northern areas
(figure 1(b)). Similar spatial patterns, although with
slightly lower emission intensity, have been reported
by a multi-model ensemble study (Tian et al 2019),
by the EPAs GHG emissions report (EPA 2020),
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as well as by an inventory-based emission estima-
tion (Janssens-Maenhout et al 2019). The estimated
regional average N leaching is 23.8 kg N ha™!, which
is in line with the estimates of 5.8-58.4 kg N ha~!
(table S5) by other modeling and meta-analysis stud-
ies (Ingraham and Salas 2019, Jin et al 2019, Jungers
et al 2019, Wang et al 2019, Chatterjee 2020, Eagle
et al 2020). The high N leaching in the North can
be explained by the often-saturated soil and hence
higher drainage water flow in these areas. Estimated
ASOC shows more loss in the south (figure 1(d)),
likely due to the warmer climate and hence faster
SOC decomposition. The estimated regional average
ASOCis0.18 t Cha~! yr~!, which is within the range
of —0.16-1.27 t Cha™! yr~! (table S5) by other mod-
eling and meta-analysis studies (Poffenbarger et al
2017, Zomer et al 2017, Horwath and Kuzyakov 2018,
Xu et al 2019).

3.3. Hotspots for mitigating GHG emission and
leaching
Two mitigation scenarios, 10% and 20% reductions
of N-fertilizer application, were compared with the
baseline simulation to quantify the mitigation poten-
tial. For the 10% reduction scenario, despite a slight
decrease in crop yield (—0.61%) and in ASOC
(—4.91%), the Corn Belt could benefit from sig-
nificantly reduced N,O emission (—9.78%) and N
leaching (—9.62%) (table 1). Changes in yield and
GHG emissions varied among states (tables 1 and 2).
Among those, Michigan showed the highest reduc-
tion of N,O emission (—17.43%), while Minnesota
and Illinois observed 12.89% and 10.44% less N
leaching, respectively. High yield reductions were
observed in Illinois and Missouri, indicating greater
yield to N responses in these states. When synthesiz-
ing the four components as net societal benefits, only
19.9% of the total area were identified as hotspots,
whereas mitigation through N reduction was infeas-
ible in more than 27% of the study region (figure 2).
Such a high interannual variability poses an extra
challenge to the planning of mitigation strategies.
Social benefits from these hotspots was $334 million
USD in addition to a $60 million USD increase in
farm revenue, which collectively account for 50% of
the total NSB over the study area (figure 3(a)).
Mitigation hotspots were largely identified in
Illinois, Indiana, Iowa, Michigan, and Minnesota
(table 2, figure 3). The contribution of each com-
ponent to the NSB was different across the region
(figure S5). Annual NSB showed high-interannual
variability in many places except for northern Min-
nesota (figure S6), suggesting the dominant com-
ponent of GHG emissions were more sensitive to
changes in weather conditions. Due to the high
pricing for water pollution by reactive N, fields
with the highest mitigation potential were mostly
found in northern Minnesota, northern Indiana,
and southern Michigan, where N leaching reduced
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Figure 1. Baseline estimation of yields (a), N,O emissions (b), N leaching (c), and annual changes of SOC (ASOC) (d) during
2001-2018 using the metamodels. N application rates are based on the state-level MRTN estimation.
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Table 1. State-specific average changes in yields, N, O emissions, annual changes of soil organic carbon (ASOC), and N leaching across
hotspot areas under 10% N fertilizer reduction during 20012018, compared with the baseline simulation.

Changes in environmental release (%)

Hotspot areas

(% of state

State Yield changes (%) N,O ASOC? N leaching Acreage (10° ha) corn acreage)
Illinois —1.24 —8.94 —6.20 —10.44 1.65 36.9
Indiana —0.78 —7.85 —4.95 —10.03 0.64 29.2
Towa —0.83 —12.77 —4.85 —6.67 0.56 10.6
Michigan 1.40 —17.43 —9.38 —8.16 0.44 51.3
Minnesota 0.49 —7.58 —2.21 —12.89 0.51 16.2
Missouri —1.29 —9.80 —0.90 —10.31 0.21 15.3
Ohio —0.55 —10.85 —5.80 —6.89 0.10 7.4
South Dakota —0.56 —6.67 5.17 —6.18 0.02 0.8
Wisconsin 0.55 —2.16 —1.39 —6.82 0.24 19.9
Corn Belt —0.61 —9.78 —4.91 —9.62 4.36 19.9

2 Positive number of ASOC means SOC accumulation and negative number means SOC depletion.

significantly in response to 10% N reduction. Mit-
igation of N,O emission and fertilizer embedded
GHG were the dominant contributors to NSB in Iowa
and Illinois (table 2). Overall reduced N,O emis-
sion contributed less to the NSB than reduced N
leaching, managing N, O fluxes has greater potential
in reducing N loss in Illinois, Iowa, and Michigan
(table 2).

Admittedly, not all of the four components are of
interest to stakeholders who care about sustainability.
For example, a water quality scientist may only care
about N leaching, and would prefer to know priority
locations with a particular focus on mitigating N loss
to water bodies. We thus masked figure 3(a) to reflect
priority regions for reducing N,O emission, and N

leaching independently (see figure S7 for thresholds
for masking). Figure 3(c) showed that by masking
areas currently with high N,O emissions, an NSB of
$141 million USD can be expected from reducing
10% N fertilizer. Similarly, the expected social bene-
fits are $305 million USD if the targets are N leaching
(figure 3(e)).

Mitigation potential varied among soil types
(table 3). Sandy soil, including loam sand, sand, sandy
clay loam, and sandy loam, is the most sensitive
soil type in response to N reduction, with over 80%
of the sandy soil fields belonging to hotspots. This
can be explained by the fact that high N leaching
was observed among the sandy soil profiles. Yield
increased in sandy soils while decreased in other soil
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types, likely because sandy soils have a lower fertility
in general. Mean NSB for hotspots is 90.5 $ ha™!,
with sandy soil areas having NSB above the aver-
age. Although the clay soil area has the largest yield
increase and NSB ha™!, only very small portions of
the area are hotspots. In the corn belt, the most com-
mon soil type is silt loam, silt clay loam, and loam,
covering together over 80% of cornfields. The expec-
ted NSB from areas with those soil types are 71.5, 48.3,
89.8 $ ha™!, respectively.

3.4. Uncertainty in estimates

We repeated the NSB estimates under three altern-
ative management scenarios compared with the
baseline scenario, i.e. adopt continuous corn instead
of corn-soybean rotation, adopt conventional tillage
or conservation tillage instead of no-till. We noted
that the distribution of our baseline and alternat-
ive scenario simulations for all four indicators were
comparable to literature reported values (figure 4),
although high uncertainty was observed in both
empirical and simulated estimates. Results show that
10% N-fertilizer reduction will avoid more GHG
emissions and N leaching, although at a cost of more
yield loss, under continuous corn or conventional
tillage practices (table 4), but estimates only change
slightly under conservation tillage practice. Due to a

lack of spatial information, we were not able to estim-
ate the NSB as the area weighted sum of each possible
practice. The wide range of uncertainty in estimating
NSB (from $392 to $562 million USD) highlighted
the importance of mapping crop rotation and tillage
intensity.

Estimated NSB is also sensitive to assumptions of
corn and fertilizer price as well as the pricing for social
benefits. We thus assessed 27 combinations of pricing
scenarios based on table S4, with full analysis results
given in table S6. Briefly, the most beneficial scen-
ario is ‘LHH’ (low corn price, high fertilizer cost, and
high social benefit), which yields $1271 M of NSB;
Low fertilizer cost and low social benefit scenarios
(LLL, MLL, HLL) yield similar lowest NSBs ($115 M,
$114 M, $128 M). Assuming the same pricing for
social benefits, increasing fertilizer price significantly
increased the extent of hotspots as well as the total
NSB, especially in the lower states (table S6 and figure
S9). Varying the MRTN rate also changed the NSB,
and the impacts were in general larger with lower-
than-optimal rates in a few states (figure S10).

A 20% N-fertilizer reduction scenario was also
evaluated to assess potential benefits under this
stricter N policy. Overall, NSB under the 20% reduc-
tion scenario is higher than that under the 10% reduc-
tion scenario. The density curves of mitigation effects




Environ. Res. Lett. 16 (2021) 075008

T Kim et al

-10% N

Area: 19.9%
Revenue: $60M
Benefit: $334M

(a) + N,O
Area: 7.1%
Revenue: $21M
Benefit: $120M

(a) *+ leaching
Area: 12.4%
Revenue: $38M
Benefit: $267M

200
©
180 <
&
160
©
140 c
38
120 Z
O]
©
20% N 100 S
Area: 22.1% 80 8
Revenue: $31M -
Benefit: $572M 60 g
40
200
©
180 <
&L
160
©
140 c
3
120 Z
L]
o
(b) +N;0 100 S
Area: 19.7% 80 8
Revenue: $11M -
Benefit: $477M 60 %
40
200
(4]
180 <
&£
160 =
15
140
3
120 —
4]
o
(b) + leaching 100.3
Area: 16.9% 80 8
Revenue: $4M a
Benefit: $512M 60 %
40

Figure 3. Mitigation potential at hotspot locations under (a) 10% N fertilizer reduction and (b) 20% N fertilizer reduction
scenarios. The following analysis demonstrates the hotspots where contributing over 50% of total N,O emissions ((c), (d)), N
leaching ((e), (f)), respectively. ‘Area’ shows the percentage of hotspots in the Corn Belt region. ‘Revenue’ shows the farmers’
direct revenue changes from related hotspots in each scenario. ‘Benefit’ shows the social benefit from related hotspots in each
scenario. NSB equal to the sum of ‘Benefit’ and ‘Revenue’. Hotspots are defined as areas where NSB is greater than $40 ha=! in
more than 75% of the years during 2001-2018 are feasible (NSB > 0).

under the 20% reduction scenario were flattened
compared to that under the 10% reduction scenario
(figure S11), which suggested hotspots could deliver
more benefits through N mitigation whereas infeas-
ible areas became even more challenging to mitigate.

4. Discussion

In this study, we demonstrated the feasibility
of upscaling ecosys with machine learning based
metamodels and its applications to identifying nitro-
gen loss hotspots and GHG mitigation potential
in the US Corn Belt. Although environmental life
cycle assessment has been applied widely to evalu-
ate the environmental burdens associated with food

production, existing studies often estimate impacts
based on highly aggregated data that fall short of pre-
dictive capability (Smith et al 2017). These challenges
are particularly amplified for systems that are subject
to heterogeneous inputs and/or outputs across sup-
ply landscapes and time, further complicated by the
interactions between soil, weather, cropping history
and management practices (McNunn et al 2020). The
fine-granular estimation of societal costs and bene-
fits by this study, as well as the proposed pipeline to
derive so, thus can inform decision-makers on the
implications of alternative policies and interventions.

Compared to the original ecosys model, our
metamodels drastically reduced the computational
time and memory requirement. To generate a 20 year




10P Publishing Environ. Res. Lett. 16 (2021) 075008 T Kim et al

Table 3. Changes in yields, GHG emissions, N leaching for different soil textures in hotspot areas across nine Corn Belt states under 10%
N fertilizer reduction from 2001-2018, compared with the baseline simulation.

Components changes (%) Hotspot areas Net societal benefit
Soil texture Yield GHGs" N leaching (%) Acreage (10° ha) ($ha™ 1) ($ millions)
Clay 5.88 —10.62 —3.26 2.56 2.0 132.4 0.3
Clay loam —1.41 —9.77 —9.75 3.69 76.4 54.7 4.2
Loam —0.21 —15.52 —9.79 16.47 663.2 89.8 59.6
Loam sand 1.25 —14.34 —7.60 84.87 347.3 124.8 43.3
Sand 0.87 —10.47 —6.58 79.77 47.6 108.1 5.1
Sandy clay loam 3.00 —12.78 —3.91 81.31 4.2 96.9 0.4
Sandy loam 1.75 —14.71 —8.33 71.34 938.6 136.8 128.4
Silt clay —0.35 —9.36 —7.12 5.23 20.1 61.1 1.2
Silt clay loam —1.15 —9.10 —8.57 8.52 401.6 48.3 19.4
Silt loam —1.76 —11.30 —11.81 21.06 1,858.5 71.5 132.8
All —0.61 —12.12 —9.62 19.92 4,359.5 90.5 394.7

* Greenhouse gases (GHGs) is aggregated N, O emission, fertilizer embedded GHG, and SOC depletion converted to GHG.
b 9% of corn acreage in each soil texture.
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simulation for one site, ecosys required almost 1 h,
including approximately 2 min for simulating each
year and a spin-up period of 20 min to allow the com-
plex process-based model to reach an equilibrium
status. Thus, it took us about 2400 CPU hours (Intel
Haswell E5-2680v3) to simply generate the synthetic
training data for building the metamodels (i.e. 99 sites
over 18 years and 20 different N fertilizer rates in
this study). In contrast, once trained, the metamodel
can finish 3.2 million simulations (i.e. combinations
of about 45000 unique soil map units, 18 years of
weather conditions, and four indicators to calculate
the social benefits) within 10 s. More importantly,
our metamodels showed high performance in repro-
ducing the aggregated annual C and N fluxes simu-
lated by ecosys. This capability provides an excellent
opportunity for scenario-based assessments in which
millions or even billions of combinations need to be
simulated (Banger et al 2017, McNunn et al 2020).

However, this is not to say metamodel can replace
any process-based models, especially when the goal
is to understand physiological responses to the chan-
ging climate. In fact, the task of emulating annual
fluxes from cropland is relatively easy compared
to simulating daily fluxes. For example, CO, and
N, O fluxes within a field are characterized as ‘hot-
moments’ over the growing season (Waldo et al 2019),
making it extremely challenging to model with simple
machine learning based metamodeling methods. To
capture those temporal patterns, more advanced deep
learning methods that can handle pulses in time series
data such as attention-based hierarchical recurrent
neural networks (Qin et al 2017) should be con-
sidered. Moreover, these data-driven metamodels are
not suitable for making predictions under future cli-
mate change if climate scenarios are outside the range
in training data. To make out-of-sample predictions
on yield, ASOC and N losses, more physiological
and biogeochemical mechanisms should be added to
the ‘black-box’ training of metamodels. This can be
potentially achieved by a new method called physics-
guided machine learning that fully integrates sci-
entific knowledge embodied in process-based models
as well as information from data (Read et al 2019),
which will be addressed in our future studies.

One major uncertainty source in our estim-
ates is the configuration of field-level management
practices. Our baseline and N scenario simulations
assumed every field is rainfed, adopts corn-soybean
rotation but does not apply tillage. Constrained by
data availability, uncertainty was roughly estimated
by introducing literature-based modifiers to account
for changes in rotation and tillage (table S7). Simil-
arly, due to a lack of spatially explicit information or
conclusive experimental results, we were not able to
analyze a few other management practices that also
affect yields and emissions. For example, adding cover

T Kim et al

crops has been suggested by several recent studies as a
viable mitigation solution (Kaye and Quemada 2017).
The impacts of cover crop on crop yield (Alvarez et al
2017), N leaching (Thapa et al 2018), SOC and N,O
emission (Muhammad et al 2019) vary by the type of
cover crop, management practices and soil properties.
In addition, applying manure instead of synthetic fer-
tilizers can help build soil organic matter and hence
SOC (Maillard and Angers 2014), but may increase
emissions by 40% (Decock 2014). Last but not least,
irrigation is ignored in this study because only 3.8%
of cornfields use irrigation in the Corn Belt (Perl-
man et al 2014), but will be an important factor to
consider if expanding the analysis to the entire US.
Estimating these management practices at field scale
over the Corn Belt thus can help reduce the uncer-
tainty in evaluating mitigation strategies. Some recent
preliminary success in mapping field-level informa-
tion on tillage, cover crop and irrigation using high-
resolution satellite imagery has shed light on this dir-
ection (Peng et al 2020). Future integration of these
practices may yield new insights.

To achieve sustainable management in the food
system, communication among researchers, stake-
holders, farmers, and policymakers is important
(Reimer et al 2017, Zhang et al 2020). Through link-
ing food retailers and manufacturers to farmers and
suppliers in food supply chains, companies’ sustain-
ability efforts can be quantified (Smith et al 2017),
and initiatives can be designed for farmers to reduce
N losses (Eagle et al 2020). Our metamodels, by
providing key indicators related to these activities, can
serve as a useful and usable tool for practitioners.
For example, these metamodels could be integrated
into FoodS® (Smith et al 2017), which would enable
companies to quantify the emissions during upstream
productions and distinguish mitigation options for
setting their sustainability goals. To promote mitig-
ation strategies, policymakers and stakeholders need
to encourage farmers’ incentives via social and eco-
nomic actions, such as subsidies or carbon offset pro-
grams (Sykes et al 2020). However, planning the right
mitigation strategy is challenging since the ability for
multiple proposed practices to sequester additional
carbon or avoid emissions varies substantially over
the landscape. In this case, the proposed metamodel
can support decision making for individual farmers
by providing evaluations of N mitigation cost with
small computational resources; meanwhile, it could
be an effective tool to assist policymakers to bal-
ance tradeoffs between social benefits and potential
impacts on farm productivity.
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