2020 IEEE International Conference on Data Mining (ICDM)

Learning from Incomplete Labeled Data
via Adversarial Data Generation

Wentao Wang*, Tyler Derrf, Yao Ma*, Suhang Wangi, Hui Liu*, Zitao Liu® and Jiliang Tang*
*Michigan State University, Vanderbilt University, j;Pennsylvanial State University, STAL Education Group
{wangw116, mayao4, liuhui7, tangjili} @msu.edu, tyler.derr@vanderbilt.edu, szw494@psu.edu, liuzitao@tal.com

Abstract—Positive and unlabeled (PU) learning aims to obtain
a well-performed classifier via an incomplete binary training set,
in which only a part of labels of one category is known while the
rest are unknown. However, in many real-world applications such
as image recognition, the collected data samples often involve
more than two categories. Moreover, only a small portion of
the collected samples might have associated labels due to some
practical reasons, and these labeled samples cannot always cover
all the categories. We refer to this type of data as incomplete
labeled data. In this paper, we first formally define the incomplete
labeled data learning problem and then aim to tackle it via
adversarial data generation. Specifically, we propose a novel
generative framework LILA, which can produce synthetic labeled
samples for both partially labeled categories and unlabeled
categories. To enforce that the generated samples for unlabeled
categories can associate with correct labels, we integrate two
active learning processes into the LILA framework for selecting
unlabeled samples in the collected sample set to query their labels
effectively. After LILA has been well trained, a classifier can be
trained on the balanced augmented data set consisting of both
generated and original labeled samples. Extensive experiments on
real image data demonstrate the effectiveness of our proposed
framework. We release the implementation of the proposed
framework via https://github.com/wentao-repo/LILA.

Index Terms—incomplete labeled data, generative model, ac-
tive learning

I. INTRODUCTION

We have recently witnessed the success of deep learning
techniques in tackling many real-world tasks, such as im-
age recognition [1] and machine translation [2]. These great
achievements are in part contributed by the existence of large-
scale labeled data sets since modern deep learning models
require sufficient supervised information to learn their tens
of thousands of parameters as well as complicated network
architectures for benefiting downstream tasks. However, this
requirement cannot always be satisfied in many real-world
applications, as annotating labels for collected data samples
is usually an expensive and time-consuming process [3]. In
reality, we are likely to have only a small amount of the
collected data samples with associated labels where these
labeled samples cannot cover all categories in the collected
data set. We refer to such data as incomplete labeled data.

In this paper, we focus on the problem of learning from
incomplete labeled data. Positive and unlabeled (PU) learn-
ing [4], [5] can be treated as a special case of the incomplete
labeled data learning problem, which aims to obtain a well-
performed classifier via binary incomplete labeled data where

only a part of labels of one category is annotated while the rest
are unknown. As existing PU learning methods only focus on
tackling incomplete data with binary categories, they cannot
be directly extended to the incomplete labeled data learning
problem. Moreover, due to limited governable resources like
budget and time cost, in practice, only a small portion of
collected samples being annotated with corresponding labels
cannot guarantee that all categories of interest are covered
by the labeled portion of the collected data set. Thus, tradi-
tional semi-supervised learning methods cannot handle such
incomplete labeled data where multiple categories are totally
unlabeled. In addition, the incomplete labeled data learning
problem can also be regarded as one extreme case of the
multi-class imbalanced learning problem [6], [7], in which
all minority classes are unlabeled. To learn from incomplete
labeled data, we are faced with two main challenges: 1) how
to train a classifier when only given small amounts of labeled
data; and 2) without any prior knowledge, how to build correct
mappings between data samples of totally unlabeled categories
and their corresponding labels.

Recently, generative adversarial learning models, such as
Generative Adversarial Nets (GANs) [8] and its variants [9],
[10], have shown their great power on generating various kinds
of synthetic data samples, which paves us one possible way to
tackle the aforementioned challenges. Specifically, we propose
a GAN-based generative model that trains on the incomplete
labeled data to produce high-quality synthetic labeled samples
for both partial labeled categories and unlabeled categories.
A complete and balanced augmented data set can be ob-
tained by merging generated synthetic labeled samples with
original labeled samples. Then, a classifier can be trained
on this augmented data set, which correspondingly addresses
the first challenge. In addition, since the incomplete labeled
data cannot provide any guidance about the label information
for the unlabeled categories, we introduce active learning
techniques [11], [12] to assist the synthetic sample generation
process, especially for samples of the unlabeled categories.
In particular, we design novel selection strategies to choose
unlabeled samples for querying their labels. With the help of
active learning, the generated samples can have correct labels
for all categories, which can address the second challenge. The
key contributions of this work are summarized below.

o« We formalize the problem of incomplete labeled data
learning, which can be applied to many real applications;
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o We propose an adversarial data generation solution for
learning from incomplete labeled data; and

« We conduct extensive experiments on real image data sets
to verify the effectiveness of our proposed framework.

II. RELATED WORK
A. Active Learning

Active learning techniques are proposed to help select the
valuable unlabeled data to annotate, as labeled data is often
expensive to obtain, whereas unlabeled data is copious in many
real-world applications [13]. Generally, they can be roughly
classified into three different learning scenarios: stream-based
selective sampling, membership query synthesis and pool-
based sampling [14]. In the stream-based selective sampling
setting, all unlabeled data samples are picked up one by
one, and the learner decides whether or not they should be
labeled [15]. In the membership query synthesis setting, the
learner can generate synthetic samples from the entire space
and make quires for these not pre-existing data [16]. The
majority of existing active learning techniques belong to the
pool-based sampling setting, where the learner maintains an
unlabeled sample pool and selects from the pool based on
some selection criteria [17]. More details about active learning
can be found in a related survey [14].

B. Generative Adversarial Nets

The Generative Adversarial Nets (GANs) was first presented
in [8], which consists of a generator G and a discriminator
D. The generator G takes a random noise sampled from
some probability distribution as input and generates a synthetic
sample to fool the discriminator D, while the discriminator
aims to differentiate if the input sample is from the generator
or the real training set. These two components fight against
each other and improve themselves gradually [18]. GANs
have achieved impressive performance on the synthetic data
generation task, and a large number of its variants have been
proposed for handling various applications. For example, by
concatenating label information with both real input data and
random noises to feed the discriminator and the generator sep-
arately, Conditional GAN [9] can produce synthetic samples
conditioned on class labels. More content about generative
adversarial nets can be found in a related survey [19].

III. THE PROPOSED FRAMEWORK
A. Problem Formulation

Definition 1 (Incomplete Labeled Data): Incomplete la-
beled data is defined as a set of data samples D coming from &
different categories where only a small portion of the samples
in D have been labeled to p categories with (2 < p < k —2),
and the rest of the samples are unlabeled.

Definition 2 (Incomplete Labeled Data Learning): Given
incomplete labeled data D as Definition 1, the goal is to learn
a multi-class classifier that can accurately predict the labels of
data samples in the test set from all k categories.

Without loss of generality, the p categories with partially
labeled samples are denoted as positive classes, and the other
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Fig. 1. An overview of our proposed framework LILA. The black solid lines
indicate the direction of the generated data flow while the black dash lines
denote the direction of the real data flow. The solid blue lines represent the
supervision signals flow during framework training.

k — p categories are referred to as negative classes. We,
therefore, call the labels of positive classes as positive labels
and others as negative labels. In this work, we target on
an adversarial data generation solution that can synthetically
produce a set of high-quality labeled data samples D* covering
all k categories. In this way, a multi-class classifier can be
trained on the constructed balanced augmentation labeled data
set D¢ = D?® U D, where D? contains the labeled samples
of positive classes from the incomplete data set D.

B. An Overview

Inspired by the impressive performance of GANs and its
variants on numerous data generation tasks, we present a novel
generative model, i.e., Learning from Incomplete Labeled dAta
(LILA), to produce realistic synthetic data samples for all &
categories involved in the incomplete data set D. Figure 1
demonstrates an overview of our LILA framework. Next, we
will introduce each component in LILA and the details of two
active learning processes will be later discussed in Section I'V.

C. Generator

In order to generate realistic synthetic labeled data samples
for all k categories in D, the generator G adopted in LILA
takes both random noises z and one-hot embeddings of labels
y as input and aims to produce synthetic samples with ex-
pected labels. The one-hot embedding of any label y; controls
the category of the generated synthetic samples as y; and the
random noises z follow some prior distribution that allows
generated samples within the same category to be diverse.

As shown in Figure 1, to make sure the generator can
generate realistic labeled data samples, especially for negative
categories, we designed three discriminators and two classi-
fiers to guide the generator training phase: (1) the discriminator
D, is designed to guarantee that the synthetic data samples
generated by G can satisfy the real data distribution of the
unlabeled data set; (2) the discriminator D,, and D,, are used
for making sure that the synthetic data samples can follow the
data distribution of the real positive labeled data set and real
negative labeled data set, respectively; and (3) the classifiers
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C)p and C), are targeted on guiding the generator G to produce
labeled positive and negative samples with expected labels,
separately.

D. Discriminators

In order to generate synthetic labeled data for all k cate-
gories, we need prior knowledge about mappings between data
samples and categorical labels. However, in the incomplete
labeled data learning problem, we only have a small amount
of positive labeled data while the data samples for the negative
classes are totally unlabeled. Moreover, as we mentioned
before, the annotation process in practice is often expensive
and time-consuming; and typically we cannot select as many
unlabeled real samples as we want from the incomplete data
set D and query their associated labels. Hence, as shown
in Figure 1, before training our LILA framework, we first
perform an active learning process on the incomplete data set
D to obtain several labeled real data samples for negative
classes. After this active learning process, we obtain three
types of real data that can be used to train LILA, i.e., a set
of real positive labeled data DP, a set of real negative labeled
data D™ and an unlabeled real data set D*.

The discriminator D,, is trained on unlabeled real data D“
and all synthetic data samples generated by the generator G.
It is used for differentiating whether input samples are real
or fake. If a sample comes from the real unlabeled sample set
D*, the discriminator D,, regards it as a real sample; otherwise
it will be considered as a fake sample. The loss function for
training both the discriminator D, and the generator G can
be written as

- ﬁ > (Dulxi) - 1)

x; €D

+ i 22 (P

h;eH

L(c,p.)

(€]
(hi)) - 0)*,

where h; denotes that the random noise z; is conditioned on
the label y;, H is a set of random noise that is conditioned
on labels of any categories.

The discriminator D), is trained on real positive labeled data
DP and generated synthetic data samples controlled by positive
labels. The discriminator D,, is to identify each input sample
from the set D? or generated by the generator G under the
control of positive labels. The loss function for training both
the discriminator D), and the generator G is formulated as

Dp| Z (Dp(xi)

x; €DP

i 2 (Dy(Gh)) =0

h;eHP

Lc.p,) =
)

where HP indicates a set of random noise that is conditioned
on different positive labels.

Similarly, the real negative labeled data set D™ obtained
by the active learning process can be utilized to train the
discriminator D,,. However, the number of labeled negative
data samples in set D™ may not be sufficient for training a
good D,, when given the limited budget for querying labels.

Therefore, instead of only performing active learning process
on the real unlabeled data samples, we design another active
learning process on the synthetic generated data for selecting
generated negative data samples D™¢ that could help train
an even better discriminator D,, and then adding them into
the real negative data set D". Using H" to denote a set
of random noise that are conditioned on different negative
labels and D" to represent the enlarged real negative data
set D" after appending new selected negative data samples,
ie., D" =D"uU D", the loss function for training both the
discriminator D,, and the generator GG can be defined as

1
LG,p,) = 7|ﬁn‘ Z (Dn(xi) — 1)°
x; D"

w2 (Dn(@

h;eH"™

(3
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E. Classifiers

To ensure that the generated data samples have expected
labels for all the k£ categories, we integrate two classifiers C),
and C), into our LILA framework for providing useful super-
vision information to guide the generator training process.

C) is a p-class classifier trained on the real positive labeled
data set D? and used for predicting labels for generated data
samples controlled by positive labels. The loss function to train
C)p can be written as

1
S 2 1Cs(xi) = T, I13, “

where I'y, is the one-hot embedding of the true label of real
sample x; from one of the positive classes.

Similarly, the (k — p)-classes classifier C,, is trained on the
enlarged real negative data set D" to facilitate the training
process. The loss function for training C), is given as

1
Lo = g D 10n0e) = Tl )

x;€D"

The classifiers C), and C), are designed for guiding the
generator G to produce labeled positive and negative samples
with expected labels, respectively. Let I'y,, denote one input
label fed to the generator G. The loss functions for training
the generator G with respect to these two classifiers can be
defined as

1 2
Li,0p) = 7|Hp|h§w I, (G (b)) =T, 3, ©)
and
Lioon = 3 ICu(Gh) ~Tu 3 @
y~n |H‘IL| i i

E. Objective Function of Training LILA
With the components introduced above, the objective func-

tion of training our LILA framework is given as

min max
0G,9cp,.9c, 9D, 9Dy 9Dy,

Lc,p,) + ML@G,p,) + r2La,p,)

+ AsLa,c,) + MLa,cn) ®
+ XsLe, + XeéLc,,

1318

Authorized licensed use limited to: Penn State University. Downloaded on September 12,2021 at 02:58:19 UTC from IEEE Xplore. Restrictions apply.



where 6, 0c,, 0c,, Up,, 0p, and Op, are parameters to con-
trol the generator G, classifiers C, and C,,, and discriminators
D, Dy, and D,,, respectively. A1,..., A¢ are hyperparameters
to control the contribution of each component.

After LILA is well trained, the generator GG is able to
produce realistic labeled data samples for all the k categories.

IV. ACTIVE LEARNING STRATEGIES

Since more than two categories are unlabeled in the in-
complete data set D, we need to build correct mappings
between negative labels and unlabeled data samples belonging
to negative classes. As active learning techniques have been
successfully applied in annotating unlabeled data, we introduce
active learning techniques to select and query labels for data
samples of negative classes.

A. Active Learning on Real Data

The first active learning process in LILA is to gather labeled
data samples for negative classes. Moreover, the generated
synthetic labeled data from LILA should be diverse; thus,
the diversity among these selected query candidates from
D should also be considered. Our designed adaptive active
learning method is consisting of two phases. In the first phase,
we use a small budget to randomly sample unlabeled data from
D and query their labels. The first phase can be regarded as
an initialization phase since we aim to ensure that all the &
categories have labeled data samples after random sampling.

The second phase is illustrated in Figure 2. We first train
the classifier C),, based on the real negative labeled samples
obtained from the first phase. Although the number of negative
labeled data may be insufficient for training a good classifier
at this time, the classifier C), can be roughly trained and has an
initial capacity to distinguish different negative data samples.
With the classifier C,, we use all unlabeled samples in the set
D to feed the classifier C,, and form a query candidate sample
set based on the outputs of the classifier C,. Specifically,
for each sample, the classifier C,, will produce a (k — p)-
dimensional output, where the value in each dimension denotes
the likelihood of that sample belonging to the ¢-th category in
the k — p negative categories. Here we name the likelihood
as the certainty score. Then within each category, we sort the
certainty scores in descending order and the resulted sequence
is called the categorical certainty sequence S. Thus, for each
category, the unlabeled sample corresponding to the largest
certainty score has the largest likelihood of belonging to this
category. Next, we select unlabeled samples from the front
part of the categorical certainty sequence of each category as
our selected query candidate samples and query their labels.
Then, we utilize all available real negative labeled data to
again train the classifier C), and in an iterative cycle, we again
select another set of candidate samples to query the labels
before again training C,,. In this way, each category can have
the same number of query candidate samples and each query
candidate sample has a larger likelihood to that category.

In terms of the sample diversity, we adaptively change the
position of each categorical certainty sequence S we used for
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Fig. 2. An illustration of the second phase of our proposed adaptive active
learning method on the real unlabeled data.

selecting query candidates. For example, in the beginning, we
choose the unlabeled samples from the first position of S.
This is because the classifier C), at this stage only has the
limited capacity to calculate certainty scores. However, as C,,
is trained better and better, we can move to latter positions of
S to select query candidate samples. The reason we do not
always choose the first position is that C,, is likely to give
larger certainty scores for unlabeled samples which are closer
to existing negative labeled data samples used to train C),. Via
the above active learning process, we can obtain three real data
sets, i.e., a real positive labeled data set DP, a real negative
labeled data set D™ and an unlabeled real data set D“.

B. Active Learning on Generated Data

The classifier C,, may not be well trained based solely on
D". Moreover, our ultimate goal is to train a good generator
G to produce realistic synthetic data samples for all the k
categories as compared to just obtaining a good classifier C,,
for prediction. Thus, the classifier C,, should assist the training
process of the generator G. In order to gather more negative
labeled data to train the classifier C),, and make the training of
the generator G to be more effective, we introduce another
active learning process into LILA to obtain the generated
negative labeled data set D"s.

Specifically, similar to the second phase of the first active
learning process, during the training process of the classifier
Cy,, we feed C,, with generated data samples controlled by
negative labels and form categorical certainty sequences for
each k—p category of negative classes based on the outputs of
C',. Then, for each categorical certainty sequence S, we select
the generated data sample that is located in the ¢-th position
of § and query its associated label. If the queried label is the
same as the original label used for feeding the generator G to
produce this sample, all the generated data samples that are
located before the i-th position of S, i.e., these samples have
a larger likelihood to this negative category, will be added into
D"s. In experiments, we note that this process even further
improves the efficiency of LILA to obtain samples for the
negative categories, which is important due to the limited label
querying budget. Following this way, the generated negative
labeled data D™¢ can be constructed of considerable size by
using only a small amount of query budgets. Finally, the
enlarged negative labeled data set D" is a combination of
both real negative labeled data set D™ and generated negative

labeled data set D", ie, D" = D" UD"s.
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TABLE I
STATISTICAL INFORMATION OF DATA SETS.

S Data set
Statistic index } MNIST-In | CIFARTO-Tn

# features 784 3,072

# total categories 10 10

# positive classes 5 5
# training positive labeled data 250 2,500
# training unlabeled data 49,750 47,500
# total budgets for querying 250 2,500
# test data 10,000 10,000

V. EXPERIMENTS
A. Experiment Settings

1) Data Sets: Our experiments are based on two real image
data sets, including MNIST [20] and CIFAR10 [21]. Since
both MNIST and CIFAR10 are fully labeled data sets and
cannot be directly used in the incomplete labeled data learning
problem, based on these two data sets, we construct two in-
complete data sets MNIST-In and CIFAR10-In for evaluation.
We will take the MNIST as an example to introduce how
to construct its corresponding incomplete data set MNIST-
In. First, among the total ten categories, we randomly choose
five of them as positive classes and the other five categories
as negative classes. Second, for data samples belonging to
negative classes, we remove their corresponding labels and
regard them as unlabeled data; and for data samples belonging
to positive classes, we randomly select a very small number of
them as labeled data. Specifically, we choose 1% labeled data
in each positive class as partial labeled positive samples while
treating all remaining data as unlabeled data. Third, we set the
total available budgets for querying labels in the active learning
process equal to the total number of positive labeled samples
in the incomplete data set. The key statistics of MNIST-In and
CIFAR10-In are summarized in Table I.

2) Evaluation Metrics: Due to the fact that our goal is
to solve the incomplete labeled data learning problem via
generating synthetic labeled data, we adopt a classification
task to evaluate the quality of the generated samples. We
exploit two popular classifiers LeNet-5 [20] and Pre-activation
ResNet [22], abbreviated as PreActResNet, to verify whether
our LILA framework can generate high-qualify synthetic la-
beled data to better train the classifiers LeNet-5 and PreAc-
tResNet on the MNIST-In and CIFAR10-In, respectively.

B. Data Classification Performance

For evaluating the effectiveness of LILA on generating
high-quality labeled samples, we explore whether the syn-
thetic labeled samples generated by LILA can improve the
classification performance. Obviously, classifiers LeNet-5 and
PreActResNet cannot be trained on MNIST-In and CIFAR10-
In directly as negative classes are totally unlabeled in these two
incomplete data sets. A simple solution is that we can apply
a random sampling process on unlabeled data (for their re-
spective data sets) to obtain query candidate samples and then
query labels for them. After that, all categories involved in the
incomplete data sets are most likely to have labeled samples;
hence, classifiers LeNet-5 and PreActResNet can be trained

as normal. We denote this simple solution as Original + RS.
However, because of the limited budget for querying labels,
the number of labeled data samples after a random sampling
process for training classifiers may be insufficient. Therefore,
we utilize our LILA framework to produce sufficient synthetic
labeled data for all categories and train the classifiers LeNet-
5 and PreActResNet on the balanced augmented data sets
which consist of synthetic generated samples and original
positive labeled samples. Similarly, we do the same for several
representative generative baseline methods: 1) CGAN [9],
which produces synthetic samples with expected labels by
concatenating data and label information in the model learning
process; 2) ACGAN [10], which can produce more clear and
diverse synthetic images conditioned on different labels via
introducing an auxiliary classifier into GANs; 3) SSGAN [23],
which is a semi-supervised version of CGAN that is able to
utilize all available data samples during the training process; 4)
CVAE [24], which can generate synthetic samples controlled
by labels using a Variational Autoencoder (VAE) based frame-
work; 5) SSVAE [25], which is a semi-supervised generative
model that improves the performance of VAE framework on
the semi-supervised scenario.

Table II shows the classification accuracy of two classifiers
trained on their corresponding data sets formed by baseline
methods and our LILA framework. The total budget on
MNIST-In data set is 250 and on CIFARI10-In data set is
2,500. We repeat experiments 5 times and report the average
accuracy results and associated standard deviation. Since all
baselines cannot work on the incomplete data sets MNIST-
In and CIFAR10-In directly, we first perform a random sam-
pling process on incomplete data sets to obtain labeled data
samples for negative classes and then train baseline methods
separately on the new data sets which contain both positive
and negative labeled data samples. As shown in Table II,
all generative models can produce effective synthetic labeled
data to help train classifiers LeNet-5 and PreActResNet better,
as compared to only performing random sampling on the
incomplete data sets and then training classifiers directly on
the original data paired with the randomly sampled, queried,
and labeled data. Among them, the classifier trained on the
synthetic labeled data generated by semi-supervised generative
models SSGAN and SSVAE that exploiting unlabeled data
in the model training process can achieve relatively better
performance than these trained on other baseline methods
that only utilize labeled data samples. Most importantly, the
synthetic labeled samples generated by our LILA framework
on two data sets help classifiers LeNet-5 and PreActResNet
achieve the best classification performance, separately. The
main reason is that our designed two active learning processes
is able to select more representative unlabeled real data and
generated data for negative classes to query labels separately,
and these selected data samples can help train the discriminator
D,, and the classifier C,, greatly, and thus make contributions
to the training process of the generator GG in LILA. In addition,
our LILA framework utilizes all available real data including
unlabeled data. Thus, LILA has a much larger capacity to
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TABLE II
CLASSIFICATION ACCURACY OF CLASSIFIERS LENET-5 AND
PREACTRESNET TRAINING ON DIFFERENT DATA SETS.

Accuracy
Methods } MNISTIn | _ CIFARIO-In
Original + RS_| 0.8476 = 0.0072 | 0.7366 % 0.0110
RS + CGAN | 0.8642 £ 0.0216 | 0.7519 % 0.0086
RS + ACGAN | 0.8582 = 0.0046 | 0.7527 % 0.0092
RS + SSGAN | 0.8895 = 0.0061 | 0.7532 = 0.0085
RS + CVAE | 0.8749 = 0.0044 | 0.7559 % 0.0040
RS + SSVAE | 0.8935 = 0.0027 | 0.7537 % 0.0120
LILA 0.9100 £ 0.0025 | 0.7566 £ 0.0080

learn the real data distribution of the incomplete data set and
enforces the generated samples to be more realistic that will
be shown in the next subsection.

C. Case Studies

For checking whether our LILA framework can generate
realistic synthetic labeled data, we visualize the synthetic
labeled samples generated from the MNIST-In data set. As
a comparison, we also visualize the synthetic labeled samples
generated by one baseline method RS + SSVAE, since it helps
the classifier LeNet-5 achieve the best classification accuracy
among all baseline methods as shown in Table II. For both
figures contained in Figure 3, the first five rows show generated
digits for five positive classes and the remaining five rows are
generated digits of negative classes. As shown in Figure 3,
comparing with the baseline method, our LILA framework can
produce more realistic and diverse synthetic data samples for
all ten classes with expected labels, which effectively verifies
the generation capacity of our LILA framework.
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Fig. 3. Synthetic image samples generated by one baseline method and our
LILA framework from the MNIST-In data set.

VI. CONCLUSIONS

In this paper, we present a challenging real-world problem
of learning from incomplete labeled data. We propose a novel
framework LILA to deal with the incomplete labeled data
learning problem via generating high-quality synthetic labeled
data. Experimental results demonstrate the effectiveness of our
LILA framework on generating synthetic labeled data for all
categories contained in the given incomplete labeled data set.
In the future, we plan to extend our LILA framework to solve
the multi-class imbalance problem via generating synthetic
labeled data for minority classes.
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