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Abstract—Positive and unlabeled (PU) learning aims to obtain
a well-performed classifier via an incomplete binary training set,
in which only a part of labels of one category is known while the
rest are unknown. However, in many real-world applications such
as image recognition, the collected data samples often involve
more than two categories. Moreover, only a small portion of
the collected samples might have associated labels due to some
practical reasons, and these labeled samples cannot always cover
all the categories. We refer to this type of data as incomplete
labeled data. In this paper, we first formally define the incomplete
labeled data learning problem and then aim to tackle it via
adversarial data generation. Specifically, we propose a novel
generative framework LILA, which can produce synthetic labeled
samples for both partially labeled categories and unlabeled
categories. To enforce that the generated samples for unlabeled
categories can associate with correct labels, we integrate two
active learning processes into the LILA framework for selecting
unlabeled samples in the collected sample set to query their labels
effectively. After LILA has been well trained, a classifier can be
trained on the balanced augmented data set consisting of both
generated and original labeled samples. Extensive experiments on
real image data demonstrate the effectiveness of our proposed
framework. We release the implementation of the proposed
framework via https://github.com/wentao-repo/LILA.

Index Terms—incomplete labeled data, generative model, ac-
tive learning

I. INTRODUCTION

We have recently witnessed the success of deep learning

techniques in tackling many real-world tasks, such as im-

age recognition [1] and machine translation [2]. These great

achievements are in part contributed by the existence of large-

scale labeled data sets since modern deep learning models

require sufficient supervised information to learn their tens

of thousands of parameters as well as complicated network

architectures for benefiting downstream tasks. However, this

requirement cannot always be satisfied in many real-world

applications, as annotating labels for collected data samples

is usually an expensive and time-consuming process [3]. In

reality, we are likely to have only a small amount of the

collected data samples with associated labels where these

labeled samples cannot cover all categories in the collected

data set. We refer to such data as incomplete labeled data.

In this paper, we focus on the problem of learning from

incomplete labeled data. Positive and unlabeled (PU) learn-

ing [4], [5] can be treated as a special case of the incomplete

labeled data learning problem, which aims to obtain a well-

performed classifier via binary incomplete labeled data where

only a part of labels of one category is annotated while the rest

are unknown. As existing PU learning methods only focus on

tackling incomplete data with binary categories, they cannot

be directly extended to the incomplete labeled data learning

problem. Moreover, due to limited governable resources like

budget and time cost, in practice, only a small portion of

collected samples being annotated with corresponding labels

cannot guarantee that all categories of interest are covered

by the labeled portion of the collected data set. Thus, tradi-

tional semi-supervised learning methods cannot handle such

incomplete labeled data where multiple categories are totally

unlabeled. In addition, the incomplete labeled data learning

problem can also be regarded as one extreme case of the

multi-class imbalanced learning problem [6], [7], in which

all minority classes are unlabeled. To learn from incomplete

labeled data, we are faced with two main challenges: 1) how

to train a classifier when only given small amounts of labeled

data; and 2) without any prior knowledge, how to build correct

mappings between data samples of totally unlabeled categories

and their corresponding labels.

Recently, generative adversarial learning models, such as

Generative Adversarial Nets (GANs) [8] and its variants [9],

[10], have shown their great power on generating various kinds

of synthetic data samples, which paves us one possible way to

tackle the aforementioned challenges. Specifically, we propose

a GAN-based generative model that trains on the incomplete

labeled data to produce high-quality synthetic labeled samples

for both partial labeled categories and unlabeled categories.

A complete and balanced augmented data set can be ob-

tained by merging generated synthetic labeled samples with

original labeled samples. Then, a classifier can be trained

on this augmented data set, which correspondingly addresses

the first challenge. In addition, since the incomplete labeled

data cannot provide any guidance about the label information

for the unlabeled categories, we introduce active learning

techniques [11], [12] to assist the synthetic sample generation

process, especially for samples of the unlabeled categories.

In particular, we design novel selection strategies to choose

unlabeled samples for querying their labels. With the help of

active learning, the generated samples can have correct labels

for all categories, which can address the second challenge. The

key contributions of this work are summarized below.

• We formalize the problem of incomplete labeled data

learning, which can be applied to many real applications;
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• We propose an adversarial data generation solution for

learning from incomplete labeled data; and

• We conduct extensive experiments on real image data sets

to verify the effectiveness of our proposed framework.

II. RELATED WORK

A. Active Learning

Active learning techniques are proposed to help select the

valuable unlabeled data to annotate, as labeled data is often

expensive to obtain, whereas unlabeled data is copious in many

real-world applications [13]. Generally, they can be roughly

classified into three different learning scenarios: stream-based

selective sampling, membership query synthesis and pool-

based sampling [14]. In the stream-based selective sampling

setting, all unlabeled data samples are picked up one by

one, and the learner decides whether or not they should be

labeled [15]. In the membership query synthesis setting, the

learner can generate synthetic samples from the entire space

and make quires for these not pre-existing data [16]. The

majority of existing active learning techniques belong to the

pool-based sampling setting, where the learner maintains an

unlabeled sample pool and selects from the pool based on

some selection criteria [17]. More details about active learning

can be found in a related survey [14].

B. Generative Adversarial Nets

The Generative Adversarial Nets (GANs) was first presented

in [8], which consists of a generator G and a discriminator

D. The generator G takes a random noise sampled from

some probability distribution as input and generates a synthetic

sample to fool the discriminator D, while the discriminator

aims to differentiate if the input sample is from the generator

or the real training set. These two components fight against

each other and improve themselves gradually [18]. GANs

have achieved impressive performance on the synthetic data

generation task, and a large number of its variants have been

proposed for handling various applications. For example, by

concatenating label information with both real input data and

random noises to feed the discriminator and the generator sep-

arately, Conditional GAN [9] can produce synthetic samples

conditioned on class labels. More content about generative

adversarial nets can be found in a related survey [19].

III. THE PROPOSED FRAMEWORK

A. Problem Formulation

Definition 1 (Incomplete Labeled Data): Incomplete la-

beled data is defined as a set of data samples D coming from k
different categories where only a small portion of the samples

in D have been labeled to p categories with (2 ≤ p ≤ k− 2),
and the rest of the samples are unlabeled.

Definition 2 (Incomplete Labeled Data Learning): Given

incomplete labeled data D as Definition 1, the goal is to learn

a multi-class classifier that can accurately predict the labels of

data samples in the test set from all k categories.

Without loss of generality, the p categories with partially

labeled samples are denoted as positive classes, and the other

Fig. 1. An overview of our proposed framework LILA. The black solid lines
indicate the direction of the generated data flow while the black dash lines
denote the direction of the real data flow. The solid blue lines represent the
supervision signals flow during framework training.

k − p categories are referred to as negative classes. We,

therefore, call the labels of positive classes as positive labels
and others as negative labels. In this work, we target on

an adversarial data generation solution that can synthetically

produce a set of high-quality labeled data samples Ds covering

all k categories. In this way, a multi-class classifier can be

trained on the constructed balanced augmentation labeled data

set Da = Ds ∪ Do, where Do contains the labeled samples

of positive classes from the incomplete data set D.

B. An Overview

Inspired by the impressive performance of GANs and its

variants on numerous data generation tasks, we present a novel

generative model, i.e., Learning from Incomplete Labeled dAta

(LILA), to produce realistic synthetic data samples for all k
categories involved in the incomplete data set D. Figure 1

demonstrates an overview of our LILA framework. Next, we

will introduce each component in LILA and the details of two

active learning processes will be later discussed in Section IV.

C. Generator

In order to generate realistic synthetic labeled data samples

for all k categories in D, the generator G adopted in LILA

takes both random noises z and one-hot embeddings of labels

y as input and aims to produce synthetic samples with ex-

pected labels. The one-hot embedding of any label yi controls

the category of the generated synthetic samples as yi and the

random noises z follow some prior distribution that allows

generated samples within the same category to be diverse.

As shown in Figure 1, to make sure the generator can

generate realistic labeled data samples, especially for negative

categories, we designed three discriminators and two classi-

fiers to guide the generator training phase: (1) the discriminator

Du is designed to guarantee that the synthetic data samples

generated by G can satisfy the real data distribution of the

unlabeled data set; (2) the discriminator Dp and Dn are used

for making sure that the synthetic data samples can follow the

data distribution of the real positive labeled data set and real

negative labeled data set, respectively; and (3) the classifiers
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Cp and Cn are targeted on guiding the generator G to produce

labeled positive and negative samples with expected labels,

separately.

D. Discriminators

In order to generate synthetic labeled data for all k cate-

gories, we need prior knowledge about mappings between data

samples and categorical labels. However, in the incomplete

labeled data learning problem, we only have a small amount

of positive labeled data while the data samples for the negative

classes are totally unlabeled. Moreover, as we mentioned

before, the annotation process in practice is often expensive

and time-consuming; and typically we cannot select as many

unlabeled real samples as we want from the incomplete data

set D and query their associated labels. Hence, as shown

in Figure 1, before training our LILA framework, we first

perform an active learning process on the incomplete data set

D to obtain several labeled real data samples for negative

classes. After this active learning process, we obtain three

types of real data that can be used to train LILA, i.e., a set

of real positive labeled data Dp, a set of real negative labeled

data Dn and an unlabeled real data set Du.

The discriminator Du is trained on unlabeled real data Du

and all synthetic data samples generated by the generator G.

It is used for differentiating whether input samples are real

or fake. If a sample comes from the real unlabeled sample set

Du, the discriminator Du regards it as a real sample; otherwise

it will be considered as a fake sample. The loss function for

training both the discriminator Du and the generator G can

be written as

L(G,Du) =
1

|Du|
∑

xi∈Du

(Du(xi)− 1)2

+
1

|H|
∑

hi∈H

(Du(G(hi))− 0)2,
(1)

where hi denotes that the random noise zi is conditioned on

the label yi, H is a set of random noise that is conditioned

on labels of any categories.

The discriminator Dp is trained on real positive labeled data

Dp and generated synthetic data samples controlled by positive

labels. The discriminator Dp is to identify each input sample

from the set Dp or generated by the generator G under the

control of positive labels. The loss function for training both

the discriminator Dp and the generator G is formulated as

L(G,Dp) =
1

|Dp|
∑

xi∈Dp

(Dp(xi)− 1)2

+
1

|Hp|
∑

hi∈Hp

(Dp(G(hi))− 0)2,
(2)

where Hp indicates a set of random noise that is conditioned

on different positive labels.

Similarly, the real negative labeled data set Dn obtained

by the active learning process can be utilized to train the

discriminator Dn. However, the number of labeled negative

data samples in set Dn may not be sufficient for training a

good Dn when given the limited budget for querying labels.

Therefore, instead of only performing active learning process

on the real unlabeled data samples, we design another active

learning process on the synthetic generated data for selecting

generated negative data samples Dng that could help train

an even better discriminator Dn and then adding them into

the real negative data set Dn. Using Hn to denote a set

of random noise that are conditioned on different negative

labels and D
n

to represent the enlarged real negative data

set Dn after appending new selected negative data samples,

i.e., D
n
= Dn ∪Dng , the loss function for training both the

discriminator Dn and the generator G can be defined as

L(G,Dn) =
1

|Dn|
∑

xi∈D
n

(Dn(xi)− 1)2

+
1

|Hn|
∑

hi∈Hn

(Dn(G(hi))− 0)2.

(3)

E. Classifiers

To ensure that the generated data samples have expected

labels for all the k categories, we integrate two classifiers Cp

and Cn into our LILA framework for providing useful super-

vision information to guide the generator training process.

Cp is a p-class classifier trained on the real positive labeled

data set Dp and used for predicting labels for generated data

samples controlled by positive labels. The loss function to train

Cp can be written as

LCp =
1

|Dp|
∑

xi∈Dp

‖Cp(xi)− Γxi‖22, (4)

where Γxi
is the one-hot embedding of the true label of real

sample xi from one of the positive classes.

Similarly, the (k− p)-classes classifier Cn is trained on the

enlarged real negative data set D
n

to facilitate the training

process. The loss function for training Cn is given as

LCn =
1

|Dn|
∑

xi∈D
n

‖Cn(xi)− Γxi‖22. (5)

The classifiers Cp and Cn are designed for guiding the

generator G to produce labeled positive and negative samples

with expected labels, respectively. Let Γhi denote one input

label fed to the generator G. The loss functions for training

the generator G with respect to these two classifiers can be

defined as

L(G,Cp) =
1

|Hp|
∑

hi∈Hp

‖Cp(G(hi))−Γhi‖22, (6)

and

L(G,Cn) =
1

|Hn|
∑

hi∈Hn

‖Cn(G(hi))− Γhi‖22. (7)

F. Objective Function of Training LILA

With the components introduced above, the objective func-

tion of training our LILA framework is given as

min
θG,θCp ,θCn

max
θDu ,θDp ,θDn

L(G,Du) + λ1L(G,Dp) + λ2L(G,Dn)

+ λ3L(G,Cp) + λ4L(G,Cn)

+ λ5LCp + λ6LCn ,

(8)
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where θG, θCp
, θCn

, θDu
, θDp

and θDn
are parameters to con-

trol the generator G, classifiers Cp and Cn, and discriminators

Du, Dp and Dn, respectively. λ1, . . . , λ6 are hyperparameters

to control the contribution of each component.

After LILA is well trained, the generator G is able to

produce realistic labeled data samples for all the k categories.

IV. ACTIVE LEARNING STRATEGIES

Since more than two categories are unlabeled in the in-

complete data set D, we need to build correct mappings

between negative labels and unlabeled data samples belonging

to negative classes. As active learning techniques have been

successfully applied in annotating unlabeled data, we introduce

active learning techniques to select and query labels for data

samples of negative classes.

A. Active Learning on Real Data

The first active learning process in LILA is to gather labeled

data samples for negative classes. Moreover, the generated

synthetic labeled data from LILA should be diverse; thus,

the diversity among these selected query candidates from

D should also be considered. Our designed adaptive active

learning method is consisting of two phases. In the first phase,

we use a small budget to randomly sample unlabeled data from

D and query their labels. The first phase can be regarded as

an initialization phase since we aim to ensure that all the k
categories have labeled data samples after random sampling.

The second phase is illustrated in Figure 2. We first train

the classifier Cn based on the real negative labeled samples

obtained from the first phase. Although the number of negative

labeled data may be insufficient for training a good classifier

at this time, the classifier Cn can be roughly trained and has an

initial capacity to distinguish different negative data samples.

With the classifier Cn, we use all unlabeled samples in the set

D to feed the classifier Cn and form a query candidate sample

set based on the outputs of the classifier Cn. Specifically,

for each sample, the classifier Cn will produce a (k − p)-
dimensional output, where the value in each dimension denotes

the likelihood of that sample belonging to the t-th category in

the k − p negative categories. Here we name the likelihood

as the certainty score. Then within each category, we sort the

certainty scores in descending order and the resulted sequence

is called the categorical certainty sequence S . Thus, for each

category, the unlabeled sample corresponding to the largest

certainty score has the largest likelihood of belonging to this

category. Next, we select unlabeled samples from the front

part of the categorical certainty sequence of each category as

our selected query candidate samples and query their labels.

Then, we utilize all available real negative labeled data to

again train the classifier Cn and in an iterative cycle, we again

select another set of candidate samples to query the labels

before again training Cn. In this way, each category can have

the same number of query candidate samples and each query

candidate sample has a larger likelihood to that category.

In terms of the sample diversity, we adaptively change the

position of each categorical certainty sequence S we used for

Fig. 2. An illustration of the second phase of our proposed adaptive active
learning method on the real unlabeled data.

selecting query candidates. For example, in the beginning, we

choose the unlabeled samples from the first position of S.

This is because the classifier Cn at this stage only has the

limited capacity to calculate certainty scores. However, as Cn

is trained better and better, we can move to latter positions of

S to select query candidate samples. The reason we do not

always choose the first position is that Cn is likely to give

larger certainty scores for unlabeled samples which are closer

to existing negative labeled data samples used to train Cn. Via

the above active learning process, we can obtain three real data

sets, i.e., a real positive labeled data set Dp, a real negative

labeled data set Dn and an unlabeled real data set Du.

B. Active Learning on Generated Data

The classifier Cn may not be well trained based solely on

Dn. Moreover, our ultimate goal is to train a good generator

G to produce realistic synthetic data samples for all the k
categories as compared to just obtaining a good classifier Cn

for prediction. Thus, the classifier Cn should assist the training

process of the generator G. In order to gather more negative

labeled data to train the classifier Cn and make the training of

the generator G to be more effective, we introduce another

active learning process into LILA to obtain the generated

negative labeled data set Dng .

Specifically, similar to the second phase of the first active

learning process, during the training process of the classifier

Cn, we feed Cn with generated data samples controlled by

negative labels and form categorical certainty sequences for

each k−p category of negative classes based on the outputs of

Cn. Then, for each categorical certainty sequence S, we select

the generated data sample that is located in the i-th position

of S and query its associated label. If the queried label is the

same as the original label used for feeding the generator G to

produce this sample, all the generated data samples that are

located before the i-th position of S, i.e., these samples have

a larger likelihood to this negative category, will be added into

Dng . In experiments, we note that this process even further

improves the efficiency of LILA to obtain samples for the

negative categories, which is important due to the limited label

querying budget. Following this way, the generated negative

labeled data Dng can be constructed of considerable size by

using only a small amount of query budgets. Finally, the

enlarged negative labeled data set D
n

is a combination of

both real negative labeled data set Dn and generated negative

labeled data set Dng , i.e., D
n
= Dn ∪Dng .
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TABLE I
STATISTICAL INFORMATION OF DATA SETS.

Statistic index
Data set

MNIST-In CIFAR10-In

# features 784 3,072
# total categories 10 10
# positive classes 5 5

# training positive labeled data 250 2,500
# training unlabeled data 49,750 47,500

# total budgets for querying 250 2,500
# test data 10,000 10,000

V. EXPERIMENTS

A. Experiment Settings

1) Data Sets: Our experiments are based on two real image

data sets, including MNIST [20] and CIFAR10 [21]. Since

both MNIST and CIFAR10 are fully labeled data sets and

cannot be directly used in the incomplete labeled data learning

problem, based on these two data sets, we construct two in-

complete data sets MNIST-In and CIFAR10-In for evaluation.

We will take the MNIST as an example to introduce how

to construct its corresponding incomplete data set MNIST-

In. First, among the total ten categories, we randomly choose

five of them as positive classes and the other five categories

as negative classes. Second, for data samples belonging to

negative classes, we remove their corresponding labels and

regard them as unlabeled data; and for data samples belonging

to positive classes, we randomly select a very small number of

them as labeled data. Specifically, we choose 1% labeled data

in each positive class as partial labeled positive samples while

treating all remaining data as unlabeled data. Third, we set the

total available budgets for querying labels in the active learning

process equal to the total number of positive labeled samples

in the incomplete data set. The key statistics of MNIST-In and

CIFAR10-In are summarized in Table I.

2) Evaluation Metrics: Due to the fact that our goal is

to solve the incomplete labeled data learning problem via

generating synthetic labeled data, we adopt a classification

task to evaluate the quality of the generated samples. We

exploit two popular classifiers LeNet-5 [20] and Pre-activation

ResNet [22], abbreviated as PreActResNet, to verify whether

our LILA framework can generate high-qualify synthetic la-

beled data to better train the classifiers LeNet-5 and PreAc-

tResNet on the MNIST-In and CIFAR10-In, respectively.

B. Data Classification Performance

For evaluating the effectiveness of LILA on generating

high-quality labeled samples, we explore whether the syn-

thetic labeled samples generated by LILA can improve the

classification performance. Obviously, classifiers LeNet-5 and

PreActResNet cannot be trained on MNIST-In and CIFAR10-

In directly as negative classes are totally unlabeled in these two

incomplete data sets. A simple solution is that we can apply

a random sampling process on unlabeled data (for their re-

spective data sets) to obtain query candidate samples and then

query labels for them. After that, all categories involved in the

incomplete data sets are most likely to have labeled samples;

hence, classifiers LeNet-5 and PreActResNet can be trained

as normal. We denote this simple solution as Original + RS.

However, because of the limited budget for querying labels,

the number of labeled data samples after a random sampling

process for training classifiers may be insufficient. Therefore,

we utilize our LILA framework to produce sufficient synthetic

labeled data for all categories and train the classifiers LeNet-

5 and PreActResNet on the balanced augmented data sets

which consist of synthetic generated samples and original

positive labeled samples. Similarly, we do the same for several

representative generative baseline methods: 1) CGAN [9],

which produces synthetic samples with expected labels by

concatenating data and label information in the model learning

process; 2) ACGAN [10], which can produce more clear and

diverse synthetic images conditioned on different labels via

introducing an auxiliary classifier into GANs; 3) SSGAN [23],

which is a semi-supervised version of CGAN that is able to

utilize all available data samples during the training process; 4)

CVAE [24], which can generate synthetic samples controlled

by labels using a Variational Autoencoder (VAE) based frame-

work; 5) SSVAE [25], which is a semi-supervised generative

model that improves the performance of VAE framework on

the semi-supervised scenario.

Table II shows the classification accuracy of two classifiers

trained on their corresponding data sets formed by baseline

methods and our LILA framework. The total budget on

MNIST-In data set is 250 and on CIFAR10-In data set is

2,500. We repeat experiments 5 times and report the average

accuracy results and associated standard deviation. Since all

baselines cannot work on the incomplete data sets MNIST-

In and CIFAR10-In directly, we first perform a random sam-

pling process on incomplete data sets to obtain labeled data

samples for negative classes and then train baseline methods

separately on the new data sets which contain both positive

and negative labeled data samples. As shown in Table II,

all generative models can produce effective synthetic labeled

data to help train classifiers LeNet-5 and PreActResNet better,

as compared to only performing random sampling on the

incomplete data sets and then training classifiers directly on

the original data paired with the randomly sampled, queried,

and labeled data. Among them, the classifier trained on the

synthetic labeled data generated by semi-supervised generative

models SSGAN and SSVAE that exploiting unlabeled data

in the model training process can achieve relatively better

performance than these trained on other baseline methods

that only utilize labeled data samples. Most importantly, the

synthetic labeled samples generated by our LILA framework

on two data sets help classifiers LeNet-5 and PreActResNet

achieve the best classification performance, separately. The

main reason is that our designed two active learning processes

is able to select more representative unlabeled real data and

generated data for negative classes to query labels separately,

and these selected data samples can help train the discriminator

Dn and the classifier Cn greatly, and thus make contributions

to the training process of the generator G in LILA. In addition,

our LILA framework utilizes all available real data including

unlabeled data. Thus, LILA has a much larger capacity to
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TABLE II
CLASSIFICATION ACCURACY OF CLASSIFIERS LENET-5 AND

PREACTRESNET TRAINING ON DIFFERENT DATA SETS.

Methods
Accuracy

MNIST-In CIFAR10-In

Original + RS 0.8476 ± 0.0072 0.7366 ± 0.0110
RS + CGAN 0.8642 ± 0.0216 0.7519 ± 0.0086
RS + ACGAN 0.8582 ± 0.0046 0.7527 ± 0.0092
RS + SSGAN 0.8895 ± 0.0061 0.7532 ± 0.0085
RS + CVAE 0.8749 ± 0.0044 0.7559 ± 0.0040
RS + SSVAE 0.8935 ± 0.0027 0.7537 ± 0.0120

LILA 0.9100 ± 0.0025 0.7566 ± 0.0080

learn the real data distribution of the incomplete data set and

enforces the generated samples to be more realistic that will

be shown in the next subsection.

C. Case Studies
For checking whether our LILA framework can generate

realistic synthetic labeled data, we visualize the synthetic

labeled samples generated from the MNIST-In data set. As

a comparison, we also visualize the synthetic labeled samples

generated by one baseline method RS + SSVAE, since it helps

the classifier LeNet-5 achieve the best classification accuracy

among all baseline methods as shown in Table II. For both

figures contained in Figure 3, the first five rows show generated

digits for five positive classes and the remaining five rows are

generated digits of negative classes. As shown in Figure 3,

comparing with the baseline method, our LILA framework can

produce more realistic and diverse synthetic data samples for

all ten classes with expected labels, which effectively verifies

the generation capacity of our LILA framework.

(a) By RS + SSVAE (b) By LILA

Fig. 3. Synthetic image samples generated by one baseline method and our
LILA framework from the MNIST-In data set.

VI. CONCLUSIONS

In this paper, we present a challenging real-world problem

of learning from incomplete labeled data. We propose a novel

framework LILA to deal with the incomplete labeled data

learning problem via generating high-quality synthetic labeled

data. Experimental results demonstrate the effectiveness of our

LILA framework on generating synthetic labeled data for all

categories contained in the given incomplete labeled data set.

In the future, we plan to extend our LILA framework to solve

the multi-class imbalance problem via generating synthetic

labeled data for minority classes.
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