
Teaching Formal Languages with Visualizations
and Auto-Graded Exercises

Mostafa Mohammed
profmdn@vt.edu
Virginia Tech
Blacksburg, VA

& Assiut University
Assiut, Egypt

Clifford A. Shaffer
shaffer@vt.edu
Virginia Tech
Blacksburg, VA

Susan H. Rodger
rodger@cs.duke.edu
Duke University
Durham, NC

ABSTRACT
The material taught in a Formal Languages and Automata (FLA)
course is mathematical in nature and requires students to practice
proofs and algorithms to understand the content. Traditional FLA
textbooks are heavy on prose, and homework typically consists of
solving many paper exercises. Instructors often make use of Finite
State Machine simulators like the JFLAP package. JFLAP allows stu-
dents to interactively build models and apply different algorithms
to these models, providing both a more interactive and a more vi-
sual approach. However, course materials have still traditionally
relied largely on prose and hand-graded exercises, limiting both the
interaction and the amount of practice. In this paper, we propose
an eTextbook with integrated tools (simulators and auto-graded
exercises) that allow for greater interactivity and levels of engage-
ment. To evaluate the pedagogical effectiveness of our approach,
we conducted performance evaluations across different offerings
of an FLA course. Results indicate that students using the inte-
grated eTextbook performed better than did a control group using
a traditional textbook approach. Students gave positive feedback
regarding the usefulness of the auto-graded exercises for practicing
different FLA concepts.

CCS CONCEPTS
• Social and professional topics → Student assessment; • Ap-
plied computing→ Interactive learning environments; • Soft-
ware and its engineering → Simulator / interpreter .

KEYWORDS
Formal Languages, Auto-graded Exercises, OpenFLAP, JFLAP, Vi-
sualizations, OpenDSA

ACM Reference Format:
Mostafa Mohammed, Clifford A. Shaffer, and Susan H. Rodger. 2021. Teach-
ing Formal Languages with Visualizations and Auto-Graded Exercises. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education (SIGCSE ’21), March 13–20, 2021, Virtual Event, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432398

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432398

1 INTRODUCTION
Formal Languages and Automata (FLA) is a core course in the Com-
puter Science theory curriculum [14]. This course typically includes
topics like finite state machines, languages, their representation by
regular expressions and grammars, Turing machines, and possibly
computability theory and complexity theory [29, 30]. FLA topics
are applied in many daily activities in the life of computing profes-
sionals, like parsing and regular expressions. However, FLA courses
face a few challenges. They are often presented as fairly abstract
and highly mathematical. This has the benefit of making students
practice useful skills like proof writing, but also may make it less
appealing to students more used to the hands-on style of the typical
CS programming course. A typical FLA class presents several mod-
els of computing (deterministic and non-deterministic finite state
machines, regular expressions, push-down automata, context-free
languages, Turing machines), with many proofs about their rela-
tionships and limitations. Understanding these limitations helps
students to understand how computers work [26]. Often, students
are asked to create machines or languages using the various models.
To support this process, many instructors have their students use
simulators, such as the popular JFLAP system [13, 24].

To help students better understand this hard topic, we imple-
mented an eTextbook for FLA. Our eTextbook combines prose,
visualizations to explain models and algorithms, simulators, and
many interactive exercises. The book is built on the OpenDSA in-
frastructure [8] and uses the JavaScript Algorithm Visualization
(JSAV) framework [15] to implement the visualizations and exer-
cises. We have also re-implemented and expanded on key parts of
JFLAP, and tightly integrated this into the eTextbook; this part of
our system is referred to as OpenFLAP.

OpenDSA has a tradition of using a rich collection of interactive
exercises to keep students engaged. The core data structures content
relies on traditional simple question types (such as multiple choice),
combined with small programming exercises [4] and proficiency
exercises, as originally popularized by TRAKLA [16, 18]. Proficiency
exercises require students to apply specific algorithm steps to a
visual presentation of a data structure, such as a tree or array. Thus,
a student might be asked to demonstrate their knowledge of a
sorting algorithm or a tree construction algorithm.

Our eTextbook extends these ideas to the FLA curriculum by
providing the equivalent of both traditional programming exercises
and OpenDSA proficiency exercises. Finite State Machine models
(including Turing Machines) are represented within OpenFLAP
as graphs, or by regular expressions and grammars. We provide a
wide range of exercises where students are required to construct

https://doi.org/10.1145/3408877.3432398
https://doi.org/10.1145/3408877.3432398

a machine or a grammar to define a language. This has the feel of
a traditional programming exercise in that we can then test the
student’s proposed machine or grammar against a collection of test
cases, similar to traditional unit testing. We include auto-graded
exercises to test the student’s ability to create specified Determin-
istic Finite Automata (DFA), Nondeterministic Finite Automata
(NFA), Push-Down Automata (PDA), or Turing Machines (TM). We
also provide a collection of proficiency exercises, where a student
demonstrates their knowledge of applying an algorithm to a given
machine by showing the appropriate steps that would be taken.
Examples include Minimizing a DFA, or converting a NFA to a DFA.

Our eTextbook helps students understand FLA content through
simulations, visualizations, and auto-assessed exercises. Therefore,
we hypothesize that we have increased students’ interaction, and
their opportunity to practice the course content beyond what was
previously possible. We conducted studies to test this hypothesis.

This paper is organized as follows. We present a review of prior
efforts to enhance FLA courses in Section 2. Section 3 presents Open-
FLAP. Section 4 gives an overview to the implemented book with
visualizations and different types of exercises. Our evaluation proto-
col and results on student satisfaction and student performance are
presented in Sections 5 and 6. We discuss possible threats to validity
in Section 7, and conclusions and future work plans in Section 8.

2 LITERATURE REVIEW
The Java Formal Languages and Automata Package (JFLAP) [24]
simulates most of the models that are used in FLA courses. It allows
students to view models, apply algorithms on these models, or
test these models with different input strings for acceptance [9].
For example, a FSA simulator can help a student to determine
which strings are accepted and which strings are rejected by the
machine. JFLAP increases student engagement and interaction with
the course content [9, 25]. JFLAP does not allow students to identify
if their solutions are correct or not. Attempts have been made to
provide such feedback [27, 28], but without assessing their impact
on students’ understanding.

Of course, JFLAP is not the only simulator for FLA as [2] summa-
rizes 50 years of automata simulation. While JFLAP is broad, cover-
ing most FLA topics, some authors have created special simulators
for specific models [3]. Examples include the FSA simulator [10],
the Interactive Pushdown Automata Animation (IPAA) [20], a PDA
simulator [5], and Turing Machine simulators [1, 11]. Most of this
functionality can be found in JFLAP.

Many have attempted to enhance the FLA course. Vijayalaskhmi
and Karibasappa [35] studied the use of activity-based learning.
They had student groups discuss problems and then present their
solution to other students. Groups were evaluated by how well they
expressed the solution. [34] presents a web-based online Intelligent
Learning System for Automata (ILSA). Each student is presented
with a series of questions to answer. The tool provides features to
help students solve those questions like a glossary, tips, simulators,
extra challenges, peer references, a leader board, badges, and a
scoreboard. Students are free to use any available feature to get
help. To test ILSA, the authors asked 36 students to try the tool for
30 minutes. Then the students completed a survey.

Algorithm analysis content in OpenDSA was originally pre-
sented using text and static images, like any traditional textbook.
By examining logging files, it was found [6] that students often
skip reading this material completely, and as a result, their under-
standing of this content is poor. The authors developed Algorithm
Analysis Visualizations (AAVs), that deliver the abstract mathemati-
cal concepts of algorithm analysis using more engaging interactive
visualizations. AAVs helped the students to engage more with the
material, and they scored higher on relevant test questions than
did the control group.

3 OPENFLAP
JFLAP is used extensively in FLA courses to help students visualize
and observe the behavior of models and associated algorithms [25].
However, JFLAP has three disadvantages from the point of view of
integrating material into an eTextbook. First, it was written in Java
and is a stand-alone application that runs on the student’s machine.
This does not allow it to easily tie to online tools like OpenDSA, or
to an LMS [21, 22]. Second, JFLAP does not have any mechanism
for auto-grading exercises. Students can use JFLAP to help solve
many typical homework problems, such as creating a machine to
recognize a given language. But they get little feedback from JFLAP
about whether their answer is correct. Instead, they must wait until
the homework is hand graded by instructional staff. In contrast,
we have reached the state where many programming assignments
can be done with immediate feedback from auto-graders, largely
based on testing the program against unit tests. Third, JFLAP is a
separate tool that is not associated with any automata book. There
is a JFLAP book [23], but the book just shows how to use JFLAP
features. It doesn’t explain FLA concepts; students must use another
textbook to learn these. We would prefer to integrate simulations
directly with the course content.

These drawbacks inspired us to develop an open-access, web-
based version of JFLAP with enhanced support for auto-graded ex-
ercises.We have largely re-implemented JFLAP functionality within
the OpenDSA framework. We refer to it as OpenFLAP. OpenFLAP
is implemented using the JSAV library. OpenFLAP provides many
visualizations to help students understand different aspects of For-
mal Languages, similar to JFLAP. OpenFLAP also allows us to create
exercises, auto-assess them, and report the result to an LMS through
OpenDSA’s standard framework. However, any re-implementation
of JFLAP is challenging and time-consuming. JFLAP supports a
large number of model types, and a rich variety of algorithms to
manipulate them. To help manage this effort, we first classified
JFLAP functionality into three groups. The first contains minimum
functionality required to create visualizations of the core material
covered in the course. These include fundamental models like DFAs,
NFAs, PDAs, and TMs, along with their core algorithms like con-
verting a NFA to a minimized DFA. The second group contains the
functions and models that are not essential to build our book. This
group has models like “Accept by empty stack” PDAs and “single
character input” PDAs. The final group has content outside our
course scope. This includes models and algorithms that are used
in compiler courses, like LL parsing and CYK parsing. For the FLA
eTextbook we implemented the functions found in the first two
groups, and left the last group as future work.

Table 1: Visualizations (V), exercises (PE, AE), and figures (F)
in our eTextbook

Topic # PE # AE # V # F
CF Languages, Grammars 17 10 6 9

Regular languages 3 24 18 23
Identifying non-regular languages 0 0 15 0

Pushdown Automata 0 8 2 7
Identifying Non-CF Languages 0 0 13 0

Turning Machines 0 9 3 10
Total 20 51 57 49

In the first priority implementationwe included the basic engines
for automatic generation of visualizations of a machine executing
on a specified input, and auto-grading by unit tests. These core
functionalities are similar, since if a machine can be executed on an
input (and accept or reject on the input decided by the machine),
then it is a simple next step to determine if the machine (as provided
by a student) matches the correct behavior on a collection of pre-
selected inputs (i.e., unit tests).

To do the necessary implementation, we enlisted a small army of
undergraduate volunteers and independent study students. All told,
over the past three years, approximately 20 students have worked
on this project.

4 AN ETEXTBOOK FOR FLA
Previous studies [6] have found that students skip reading prose
in eTextbooks, especially mathematical material that is hard to
understand. Past success in this area motivated us to create a pool
of JSAV visualizations and exercises that reduce the amount of text
needed to cover a given topic, and promote increased engagement.

Our eTextbook covers topics typically taught in a FLA course.
These include DFAs, NFAs, equivalence and conversion between
them, RegEx, regular grammars, their equivalence with NFAs, and
closure properties. Additional topics include context-Free (CF) gram-
mars and languages, conversion to special forms, PDAs, the Pump-
ing Lemma for recognizing non-CF languages, and Turing ma-
chines. We also include material that might not be in all FLA courses
about basic complexity and computability theory, including NP-
completeness, unaccountably infinite sets, and unsolvable problems.

The eTextbook currently includes 57 visualizations (V) in the
form of slideshows, 71 exercises (including proficiency exercises
(PE) and auto-graded “create and test a machine” style exercises
(AE)), and 49 additional static figures. Table 1 shows a breakdown
for the topics covered by exercises, figures, and visualizations.

4.1 Exercises
In addition to standard multiple choice or T/F style questions, we
present two types of exercises: a) auto-graded exercises (AE) and b)
proficiency exercises (PE). AE are similar to programming exercises.
Students are required to devise a machine (expressed as a graph)
that recognizes a specified language (meaning it identifies if a given
string is in the language or not), or a grammar for the language. The
student’s solution is tested by applying multiple test cases, in the
form of strings that must be correctly identified as in the language
or not. Passing all test cases, if they were selected properly, should

give strong evidence that the solution is correct. The percentage
of correct test-cases will determine the grade they earn for each
exercise. There are exercises of this type to build many types of
models: DFA, NFA, PDA, TM, RegEx, or grammar.

Figure 1 shows an example of an exercise to create a DFA. In this
example, the student has created a DFA for the problem statement
with eight states shown at the bottom of the figure, and graded
their proposed answer for the problem by clicking on the Grade
button. Since the solution is not correct, we see that some test cases
are labeled red to indicate that they have failed.

Figure 1: DFA auto-graded exercise

FLA courses require students to understand many algorithms,
such as how to convert an NFA to an equivalent DFA. So we want
to include exercises that ask students to imitate the algorithm’s
steps on a given model. This is similar in spirit to a major moti-
vation for creating OpenDSA in the first place for data structures
and algorithms courses. This exercise type is referred to as a profi-
ciency exercise (PE). Proficiency exercises ask students to apply an
algorithm and show its steps operating on a machine or grammar
to produce the correct answer. If the student is able to do all of
the steps in sequence, then the final result will be correct and the
student will earn the full credit. Getting some or all steps incorrect
will result in reduced credit.

Using OpenFLAP functionality for executing algorithms on for-
mal languages models, we were able to use the OpenDSA PE frame-
work to create the necessary exercises. The student is given the
model and an input, and must indicate how the model is changed at
each step. Since OpenFLAP can determine the correct next change
to the model for that algorithm, it is relatively easy to match the
student’s modification to the correct one. Students can then be
notified if their step is correct or not, and if necessary their view of
the model can be corrected to show the correct step. The student

is scored based on how many steps they get correct. Details on
the use of proficiency exercises in data structures and algorithms
courses can be found in [7, 16]. As an example, a student could
try to convert an NFA to DFA. Their solution might score 85% if
the student did 17 correct steps out of 20 total steps. The incorrect
steps would be displayed to the student as they progress through
the exercise, to help them identify their mistakes. They might get
messages such as "b: There are no paths on that terminal", "q5: State
label is incorrect", and "You’re not done yet".

4.2 Visualizations
We have implemented a series of visualizations to help students see
how different models and their respective algorithms work. Figure 2
shows a typical example. Each visualization is composed of a series
of slides. A slide typically has a brief text statement, supported
by visual components. The user can choose to hear text-to-speech
narration for the text.

Figure 2 shows a slide from a demonstration for how a TM
accepts or rejects strings in the language 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 > 0}.
Students are able to see how the tape changes at each step, until
the machine accepts or rejects the string. Using OpenFLAP’s ability
to execute an algorithm on a machine model, the visualizations are
auto-generated from the machine specification and the input string.
This makes it easy for a content author to generate examples, and
for the student to see behavior on their own selected input. In a
similar way, new proficiency exercises are easy to generate.

Figure 2: A Turing Machine accepting a string

4.3 Pumping Lemma Game
We created an ad hoc special activity for the purpose of explaining
the Pumping Lemma, which is typically viewed as a central result
in any FLA course, but is also difficult to understand. The central
concept is that a machine with a fixed number of states can only
correctly distinguish an infinite number of strings as being in a
language if looping through a subset of the states an arbitrary
number of times always generates a string in the language. The
Pumping Lemma can be viewed as an adversary game [17]. The
adversary game presents the Pumping Lemma in the form of a

rule-based game with two players, the student and the machine.
One player tries to prove that a language is not regular and the
other player tries to stop this. The student can play either role.
We provide thirteen languages that students can play, to prove
that these languages are not regular. Figure 3 shows partial sample
game steps to prove that a language is not regular. First the student
selects one of the thirteen languages and role. The student selected
the language {𝑎𝑛𝑏𝑛 |𝑛 ≥ 0} and selects to be the first player in the
game. Next is that he needs to select the value of𝑚. The opponent
then picks a string such that |𝑤 | ≥ 𝑚. Then the student selects
a decomposition of 𝑤 to 𝑥𝑦𝑧 that satisfies the constraints. If the
student selected a bad decomposition for𝑤 , the game will provide
a message that tells the student to retry another decomposition.
Then the student retries and selects a better decomposition of𝑤 to
𝑥𝑦𝑧 that satisfies the constraints. Next the opponent selects a value
for 𝑖 that makes 𝑥𝑦𝑖𝑧 ∉ 𝐿, so the language is not regular. In the case
that the student selects to be the second player, then all steps will
be the same but the roles will be swapped between the student and
the opponent.

Figure 3: An adversary game to prove that a language is not
regular.

5 EVALUATION PROTOCOL
In Spring 2018, one of the authors, Shaffer, taught an FLA course to
44 students at Virginia Tech, using a version of the eTextbook that
had prose written jointly by the authors Shaffer and Rodger from

prior course notes. Some of the material on Turing Machines and
computability theory included a few visualizations from prior work.
We also supplemented with a popular FLA textbook by Linz [17],
and we made use of the original, off-line, version of JFLAP. We
used thirteen weekly paper-based homework sets, and three exams,
all of which were fairly typical from prior instances of the course.
Thus, this version of the course essentially used a treatment that
is a typical presentation for the past decade. We consider this our
control group for comparison.

Our intervention groups consist of 271 students at Virginia Tech
taking the same FLA course over three different semesters, Spring
2019, Fall 2019, and Spring 2020. All intervention groups used the
OpenDSA eTextbook for FLA as the main source of instruction and
were taught by the same instructor, Mohammed. These groups did
not use the Linz book as a supplement, and JFLAP was replaced by
equivalent features available in OpenFLAP.

We sought to answer two research questions about the use of
our eTextbook.

RQ1What feedback do students give regarding their experience
with the various exercises?

RQ2Howdoes performance on exams for the intervention group
compare to performance of the control group students on the same
set of questions?

In order to evaluate the FLA eTextbook in terms of student learn-
ing, both groups were given a set of questions as part of their three
exams - two midterm exams and a final exam. Each exam tested
students on different parts of the course. Some questions are re-
lated to the areas that are affected by the FLA eTextbook (that is,
new visualizations and new interactive exercises), and other ques-
tions are on parts that are unchanged from what the control group
saw. These items form the basis of our performance comparison
between both groups. Exams were graded by the same person for
both groups, to minimize inter-rater reliability problems.

We gathered students’ opinions about the exercises through a
survey at the end of the intervention semesters. We asked students
to evaluate the exercises in terms of how useful they were in helping
them understanding the FLA concepts presented in the course. We
use non-parametric tests (Mann-Whitney) with 5% significance lev-
els to analyze data comparing the control and intervention groups
for exam grades. We chose this test to avoid the normality assump-
tion required for a parametric test, and to mitigate the effect of
unbalanced sample sizes [19], as there were collectively more stu-
dents in the intervention groups.

6 EVALUATION RESULTS
6.1 Student Satisfaction
To gauge student satisfaction, we offered student surveys at the
end of the interventions semesters. 89% of students responded to
the survey. The survey solicited students satisfaction about various
exercises in terms of whether they helped with understanding the
Formal Languages course. Students were also asked to provide
suggestions to add more exercises.

83% of the surveyed students reported that the exercises were
useful to them in understanding the course concepts. When we
asked the students if theywantedmore exercises in the book, 58% in-
dicated yes. Of these, 30% suggested adding exercises for the topics

that are tested in the final exam, 22% suggested adding more ex-
ercises on Context-Free Grammar transformations, 14% suggested
to add exercises related to the Pumping Lemma, and the remain-
ing students suggested adding more exercises for PDAs, TMs, and
Regular Languages.

6.2 Student Performance
We evaluated student performance by comparing the control versus
intervention group scores on three exams.

6.2.1 Midterm Exams. Two in-class midterm exams were given. In
both exams, we compared the control group versus the intervention
group scores on topics where we created new visualizations and
exercises. Table 2 shows the results using a Mann-Whitney test to
compare performance at the topic level. The topics are (1) Context-
Free Languages, (2) Pumping Lemma to prove that a language is not
regular, (3) Regular expressions, (4) Turing Machines, (5) Pumping
Lemma to prove that a language is not CFL, and (6) PDA. The last
column shows the effect sizes of the differences between the two
groups using Cohen’s d for different sample sizes [12]. Table 2
shows that the new materials had an impact on students grades. All
concepts where we added visualizations and auto-graded exercises
had significantly higher grades for the intervention group than for
the control group students.

To test the distinct effects of visualizations versus auto-graded
exercises on student performance, we consider the change in per-
formance of the different intervention groups on the topic of Turing
Machines. The TM chapter was implemented in two stages. During
the Spring 19 and Fall 19 semesters, the TM chapter included visu-
alizations about TMs and how they work to manipulate different
languages. In Spring 20, auto-graded exercises were added. These
allowed students to test their understanding of TMs. Table 3 shows
the results from comparing the control group versus Spring19 and
Fall19 (intervention group 1), and Spring 20 (intervention group
2). The p-value is the result of applying the Mann-Whitney test
comparing the control versus intervention group 1, and comparing
the control group versus intervention group 2. These results show
that students benefit more from seeing visualizations about TMs
than reading traditional text about them. Students gain additional
benefit when they have auto-graded exercises to practice. They
score significantly higher (p-value < 0.0001) than students who
used the visualizations only.

Table 2: Results and the effect size from comparing the
grades in the Formal Languages part of the midterm exams
from the control group (Cont., N = 44) to the grades in the
same part from the intervention group (interv., N = 271).

Concept Mean STDV p-value effect
sizeCont. Interv. Cont. Interv.

1 24.8 27.3 7.03 5.33 0.0401 0.41
2 6.2 7.69 3.18 2.5 0.0053 0.52
3 3 3.4 1.05 1.15 0.0013 0.37
4 7.2 9.05 3.5 1.85 0.0002 0.69
5 9.16 12.28 3.56 5.04 <0.0001 0.73
6 6.43 7.52 3.31 2.81 0.0393 0.36

Table 3: The result of comparing the Turing Machine grades
from the control group (N=44) to the grades in the questions
from intervention group 1 (N = 142), and intervention group
2 (N = 129)

.
Groups Mean STDV p-valueControl 7.2 3.5

Intervention 1 (Visualization) 8.5 2.26 0.0552
Intervention 2 (Visualization & AE) 9.7 0.91 <0.0001

6.2.2 Final Exam. The final exam questions focus on the last part
of the course. This part includes NP-Completeness, Countability
and Unsolvable problems. For this part, both the control and in-
tervention groups studied from the same OpenDSA materials that
included some visualizations and no exercises. Students only read
the text, saw the visualizations, and did hand-written exercises for
homework. Thus, we can compare the groups on material that used
the same treatment. Table 4 shows that there is no significance
between the control and the intervention group in the topics that
are not changed across iterations of the eTextbook. This supports
the claim that changes in student grades on the midterm exams
were due to the impact of the features being added to the eTextbook.
(Note that we do not use Spring 2020 data for this comparison, since
the Final Exam conditions were changed from prior semesters due
to COVID-19.)

7 THREATS TO VALIDITY
One threat to validity for this study could be that we did not account
for differences in students’ pre-knowledge between the control and
intervention groups. We did not adopt a traditional pre/post-test
approach for both groups. However, the populations were primarily
Junior and Senior Computer Science students in all versions of the
course, having come to the course with the same prior courses.

Another issue of concern is whether other factors caused the
differences between the groups in the performance on the exams.
One factor could be that a different instructor taught the course
in Spring 2018 (the control group) from the intervention groups
(all intervention semesters were taught by the same instructor).
However, the instructor for the intervention groups was the GTA
for the control group, and both are authors of this paper and closely
involved in the course. The contents of the course were the same,
just the presentation method differed (adding visualizations and
replacing paper homework exercises with interactive exercises for
the intervention groups).

Table 4: Comparison of final exam grades on unmodi-
fied topics: control group (𝑛 = 44) vs. intervention group
(Spring/Fall 2019, 𝑛 = 142).

Topic Mean Median p-valueCont. Interv. Cont. Interv.
NP-Comp 26.65 24.31 30 27 0.1871
Unsolvable 13.26 11.1 20 15 0.5636
Countability 13.35 12.73 15 15 0.2406

In Spring 2020, students moved to work online due to the pan-
demic. While the materials were covered pre-pandemic in the usual
way, students took the second midterm online. This means there
was a different exam environment between Spring 2020’s second
midterm and other semesters. However, we believe that since stu-
dents covered the same content with the same instructor and took
the same exam, then the exam environment was not a major factor
in student grades. We deliberately excluded the final exam from
Spring 2020 from our results.

8 CONCLUSIONS AND FUTUREWORK
Visualizations and interactive exercises were found to have a posi-
tive impact on student understanding of various Formal Languages
topics. The difference was significant for all OpenDSAmodules con-
taining visualizations and exercises. The majority of the surveyed
students (83%) mentioned positive feedback about the ability of
visualizations and exercises to help them understand the topics. A
significant proportion of students requested adding more exercises
to the existing ones, or creating exercises for other topics that do
not have any. The scores for the intervention group students were
significantly higher than the scores for the control group students,
with medium to large effect sizes. Equally important, this improve-
ment is only found on those questions addressing topics that were
presented using visualizations and exercises. There was no statisti-
cally significant difference in performance on the unchanged topics,
as would be expected. This is good evidence that visualizations and
exercises were a major contributor to this improvement.

The adversary game for the Pumping Lemma had a positive
impact on students grades on Pumping Lemma questions. A few
students (14%) suggest that we create auto-graded exercises for the
Pumping Lemma. A majority of students suggested adding more
auto-graded exercises to other sections of the book to help them
understand different topics more clearly.

In future, we will focus on sections of the course that cover topics
that do not present easy opportunities for a visual presentation, or
interactive exercises. We will develop more PE for PDAs, and TMs.

We are investigating an approach based on the Programmed
Instruction technique [31–33]. We believe that many aspects of a
FLA coursemight benefit from a presentation based on Programmed
Instruction since this can be made to be more interactive than the
current plain prose approach for those topics.

The materials described in this paper are open source and freely
available for use. For more information, including access to the
course materials, visit opendsa.org.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under
grants DUE-1139861, DUE-1431667 and IIS-1258471. The Egyptian
Ministry of Higher Education funded Mostafa Mohammed during
his PhD. We are grateful to the many, many students who have
worked on OpenDSA, OpenFLAP, and the FLA eTextbook over the
years.

opendsa.org

REFERENCES
[1] J. Barwise and J. Etchemendy. Turing’s World 3.0 for the Macintosh: An Introduction

to Computability Theory/Book and Disk (Csli Lecture Notes). Stanford University
Press, 1993.

[2] P. Chakraborty, P. C. Saxena, and C. P. Katti. Fifty years of automata simulation:
a review. ACM Inroads, 2(4):59–70, 2011.

[3] C. I. Chesñevar, M. L. Cobo, andW. Yurcik. Using theoretical computer simulators
for formal languages and automata theory. ACM SIGCSE Bulletin, 35(2):33–37,
2003.

[4] S. H. Edwards and K. P. Murali. Codeworkout: Short programming exercises with
built-in data collection. In Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE ’17, pages 188–193, New
York, NY, USA, 2017. ACM.

[5] F. Erlacher et al. Pushdown automata simulator. PhD, Institut für Informatik,
Universität Innsbruck, 2009.

[6] M. F. Farghally, K. H. Koh, H. Shahin, and C. A. Shaffer. Evaluating the effective-
ness of algorithm analysis visualizations. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education, pages 201–206, 2017.

[7] E. Fouh, D. Breakiron, S. Hamouda, M. Farghally, and C. Shaffer. Exploring
students learning behavior with an interactive etextbook in computer science
courses. Computers in Human Behavior, pages 478–485, December 2014.

[8] E. Fouh, V. Karavirta, D. A. Breakiron, S. Hamouda, S. Hall, T. L. Naps, and C. A.
Shaffer. Design and Architecture of an Interactive ETextbook–The OpenDSA
System. Science of Computer Programming, 88:22–40, 2014.

[9] E. Gramond and S. H. Rodger. Using JFLAP to Interact With Theorems in Au-
tomata Theory. In Proceedings of the Thirtieth ACM SIGCSE Technical Symposium
on Computer Science Education, pages 336–340, 1999.

[10] M. T. Grinder. Animating automata: A cross-platform program for teaching finite
automata. In Proceedings of the 33rd SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’02, page 63–67, New York, NY, USA, 2002. Association
for Computing Machinery.

[11] M. Hamada. Turing machine and automata simulators. Procedia Computer Science,
18:1466–1474, 2013.

[12] L. V. Hedges and I. Olkin. Statistical methods for meta-analysis. Academic press,
2014.

[13] JFLAP website. http://jflap.org, 2020.
[14] A. f. C. M. A. Joint Task Force on Computing Curricula and I. C. Society. Computer

Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs
in Computer Science. Association for Computing Machinery, New York, NY, USA,
2013.

[15] V. Karavirta and C. A. Shaffer. JSAV: the JavaScript Algorithm Visualization
Library. In Proceedings of the 18th ACM Conference on Innovation and Technology
in Computer Science Education, pages 159–164, 2013.

[16] A. Korhonen, L. Malmi, P. Silvasti, J. Nikander, P. Tenhunen, P. Mård, H. Salonen,
and V. Karavirta. TRAKLA2. http://www.cs.hut.fi/Research/TRAKLA2/, 2003.

[17] P. Linz. An Introduction to Formal Languages and Automata, 6th edition. Jones &
Bartlett Learning, 2017.

[18] L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, and P. Silvasti. Visual
algorithm simulation exercise system with automatic assessment: TRAKLA2.
Informatics in Education, 3(2):267–288, September 2004.

[19] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. The annals of mathematical statistics, pages
50–60, 1947.

[20] J. McDonald. Interactive pushdown automata animation. In Proceedings of the
33rd SIGCSE technical symposium on Computer science education, pages 376–380,
2002.

[21] M. Mohammed, S. Rodger, and C. A. Shaffer. Using programmed instruction to
help students engage with etextbook content. The First Workshop on Intelligent
Textbooks, 2019.

[22] M. K. O. Mohammed. Teaching formal languages through visualizations, simula-
tors, auto-graded exercises, and programmed instruction. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education, SIGCSE ’20, page
1429, New York, NY, USA, 2020. Association for Computing Machinery.

[23] S. H. Rodger and T.W. Finley. JFLAP: an interactive formal languages and automata
package. Jones & Bartlett Learning, 2006.

[24] S. H. Rodger and E. Gramond. JFLAP: An aid to studying theorems in automata
theory. Integrating Technology into Computer Science Education, 30(3):302, 1998.

[25] S. H. Rodger, E. Wiebe, K. M. Lee, C. Morgan, K. Omar, and J. Su. Increasing
engagement in automata theory with JFLAP. In Proceedings of the Fortieth ACM
SIGCSE Technical Symposium on Computer Science Education, pages 403–407,
2009.

[26] J. Sakarovitch. Elements of automata theory. Cambridge University Press, 2009.
[27] V. Shekhar, A. Prabhu, K. Puranik, L. Antin, and V. Kumar. JFLAP extensions

for instructors and students. In 2014 IEEE Sixth International Conference on
Technology for Education, pages 140–143. IEEE, 2014.

[28] V. S. Shekhar, A. Agarwalla, A. Agarwal, B. Nitish, and V. Kumar. Enhancing
JFLAP with automata construction problems and automated feedback. In 2014
Seventh International Conference on Contemporary Computing (IC3), pages 19–23.
IEEE, 2014.

[29] M. Sipser. Introduction to the theory of computation. ACM Sigact News, 27(1):27–
29, 1996.

[30] M. Sipser. Introduction to the Theory of Computation. Cengage learning, 2012.
[31] B. Skinner. Programmed Instruction Revisited. Phi Delta Kappan, 68(2):103–10,

1986.
[32] B. F. Skinner. Teaching Machines. Science, 128(3330):969–977, 1958.
[33] B. F. Skinner. The Technology of Teaching New York: Appleton-Century-Crofts.

The Behavior of the Establishment, 1968.
[34] C. A. Tecson and M. M. T. Rodrigo. Tutoring environment for automata and the

users’ achievement goal orientations. In 2018 IEEE International Conference on
Teaching, Assessment, and Learning for Engineering (TALE), pages 526–533. IEEE,
2018.

[35] M. Vijayalaskhmi and K. Karibasappa. Activity based teaching learning in formal
languages and automata theory-an experience. In 2012 IEEE International Confer-
ence on Engineering Education: Innovative Practices and Future Trends (AICERA),
pages 1–5. IEEE, 2012.

http://jflap.org
http://www.cs.hut.fi/Research/TRAKLA2/

	Abstract
	1 Introduction
	2 Literature Review
	3 OpenFLAP
	4 An eTextbook for FLA
	4.1 Exercises
	4.2 Visualizations
	4.3 Pumping Lemma Game

	5 Evaluation Protocol
	6 Evaluation Results
	6.1 Student Satisfaction
	6.2 Student Performance

	7 Threats to Validity
	8 Conclusions and Future Work
	Acknowledgments
	References

