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Abstract

Integration of information on road transverse geometric features
such as cross slope and superelevation in digital maps can widen
the scope of its applications, which is primarily navigation, by en-
abling driving safety and efficiency applications such as Advanced
Driver Assistance Systems (ADAS). The huge scale and dynamic
nature of road networks make sensing such road geometric fea-
tures a challenging task. Traditional methods oftentimes suffer from
high cost, limited scalability and update frequency, as well as poor
sensing accuracy. To overcome these problems, we propose a cost-
effective and scalable road transverse slope estimation framework
using sensor data from smartphones. Based on error character-
istics of smartphone sensors, we intelligently combine data from
accelerometer, gyroscope and GPS to estimate road transverse slope
profile of a road segment. To improve accuracy and robustness of
the system, the estimations of road transverse slope from multiple
sources/vehicles are crowd-sourced to compensate for the effects
of varying quality of sensor data from different sources. Extensive
experimental evaluation on a test route of 9km demonstrates the
superior performance of our proposed method, achieving 350%
improvement on road transverse slope estimation accuracy over
existing methods, with 90% of errors below 0.5°.
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1 Introduction

The transverse geometric features of road surface, namely cross
slope and superelevation, play a crucial role in ensuring road safety.
Cross slope is defined as the transverse slope angle of the road
with respect to the horizon. Cross slope provides a drainage gra-
dient so that water can run off the surface to a drainage system
such as a street gutter or ditch [25] (Fig. 1). In horizontal curves,
the cross slope is gradually banked into superelevation angle to
reduce steering effort and lateral force required to go around the
curve [25] (Fig. 1). Rich information on transverse road geome-
try features such as cross slope and superelevation plays a crucial
role in risk assessment and engineering design of road segments.
For e.g. adequate superelevation is highly important to allow the
vehicles to safely negotiate horizontal curves. If not properly de-
signed, inadequate superelevation can potentially lead to serious
roadway departure crashes. Similarly, improper cross slope can
cause a vehicle to drift and skid laterally while braking [4]. More-
over, information on transverse road slope assist in tasks such as
accident reconstruction and investigation [2]. Such information is
crucial for transportation agencies to take adequate measures (for
e.g. road surface treatment, road geometry improvement, etc.) to
reduce the crash risk associated with a road segment [16].
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Figure 1: Cross slope and superelevation design.

As the automobile sector is gradually moving towards complete
autonomy, there is an ever-increasing requirement for scalable
and cost efficient solutions to collect rich and accurate data about
road networks. Especially, gathering and estimating accurate road
transverse geometric features can play a crucial role in enabling
Advanced Driving Assistance Systems (ADAS) [27], which helps in
improving driving safety and efficiency. For e.g., a “Curve Speed
Warning System” [22] assesses threat levels for a driver approach-
ing a curve too quickly using information on transverse road ge-
ometry features. Other applications of information on transverse
road geometry features include terrain based localization [3], op-
timal control in autonomous vehicle [18], scalable creation of HD
Maps [10], etc.

The task of estimating road geometry features is challenging
due to the sheer scale of the road networks, as well as their dy-
namic nature stemmed from the construction of new roads and
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maintenance of the existing ones. According to US Department of
Transportation (USDOT), between 2000 and 2016, the U.S. built an
average of 30,427 lane miles of roadway per year [23]. In addition
to new roads, existing roads are maintained/modified for accident
vulnerability prevention, traffic flow enhancement, etc. These main-
tenance tasks often result in change in road geometry features [16].
Typically, estimation of road transverse slope is done by extensive
surveys conducted by instrumented vehicles [5, 17]. However, high
deployment cost due to expensive equipment/sensors and dedicated
labor, renders these approaches difficult to scale. An ideal sensing
framework for the task of road geometry features estimation should
be scalable, cost-efficient, and capable of providing frequent data
updates. Also, the system should be accurate enough to enable
the aforementioned applications such as ADAS and Autonomous
driving.

Due to their ubiquity and rich array of onboard sensors (IMU,
GPS and Magnetometer), smartphones provide a unique opportu-
nity for developing a cost-efficient and scalable crowd sourcing
solution for road transverse slope estimation. Assuming that a
smartphone is stationary inside a moving vehicle, the 3D orienta-
tion estimates of pitch, yaw and roll of the smartphone can yield
information about geometry of the road the vehicle is traveling
on. However, use of smartphones for the task of road transverse
slope estimation introduces the following challenges : a) Noisy
smartphone data: Commodity smartphones’ MEMS sensors are
prone to biases and drifts, making smartphone data noisy and error-
prone. Furthermore, in a driving environment, the drifts can be
dynamic in nature and thus change over time due to factors such
as linear acceleration, road conditions, temperature, etc. [8, 30]. b)
Arbitrary smartphone placement and orientation: Designing
a practical and easily deploy-able crowd sourced system imposes
the requirement of keeping user/participant involvement to the
minimum. Therefore, we work with the assumption that the smart-
phone can be placed in any arbitrary orientation and position inside
the vehicle. However, as discussed in the paper, imperfections in
coordinate alignment between vehicle’s and smartphone’s frame of
reference can cause biased estimation of transverse slope profile. c)
Varying Qol of data from different sources/vehicles: Hetero-
geneity introduced due to factors such as varying quality of sensors
in different smartphones, variable physical properties of vehicles
(e.g. suspension properties), variable quality of phone-holders, etc.
can result in varying Qol (Quality of Information) from different
sources/vehicles, which might influence the estimations of trans-
verse road slope. The above mentioned factors can cause significant
errors in estimation w.r.t the application of road transverse slope
estimation, where the margins of error are less (typically, values of
cross slope/superelevation are < 6°).

In this paper, we propose a novel and easily deployable solution
to estimate transverse slope profile of a road segment using crowd-
sourced data from smartphones. The proposed solution leverages
acceleration and angular velocity data from accelerometer and gyro-
scope of the smartphone and vehicle speed data from GPS. To handle
the challenge of noisy smartphone data, we propose a novel strategy
to fuse estimations from gyroscope and accelerometer guided by
our understanding of error characteristics of smartphone’s sensors.
In particular, the gyroscope is precise in capturing the shape of the
road, but suffers from error accumulation/drift for estimation over
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long periods of time. Also, the drift is unpredictable in nature and
can change over the course of a driving trip. On the other hand,
accelerometer is not prone to drift, but is susceptible to large errors
and biases which are typically correlated to the dynamics of the
vehicle and errors in coordinate alignment process. Based on this
observation, we propose to use gyroscope as the primary sensor
for road transverse slope profile estimation. Accelerometer, on the
other hand, is used to opportunistically provide chosen “anchor
snapshots”, which are used to correct drift of gyroscope. Further-
more, to handle the challenge of bias in estimations introduced due
to inaccuracies in coordinate alignment, we design a novel strategy
that fuses observations of superelevation from vehicle kinematics
model and road design principles. Finally, we aggregate data from
multiple sources/vehicles to improve accuracy and robustness of
the system by handling varied quality of sensor data from differ-
ent sources. Extensive evaluation of our proposed method on a ~
9km route, using natural driving traces from smartphones shows
the possibility of achieving accuracy comparable to that of high-
cost specialized instrumented vehicles. The system achieves 90%
error less than 0.5° in estimating road transverse slope profile and
outperforms existing approaches by a considerable margin.

2 Related Work

Traditionally, accurate road geometry features acquisition is typ-
ically done using survey vehicles instrumented with high-quality
sensors such as lidars, laser scanners, cameras and high-end IMU’s,
etc. [5, 17, 21]. In some cases, remotely sensed data from satellite
or aerial imagery (e.g. aircraft mounted with Lidar) is used to esti-
mate road geometry features [19]. Remote sensing approaches are
capable of providing large scale estimations but, suffer from low
resolution and accuracy. Furthermore, due to high deployment and
collection cost, all the above mentioned approaches are limited in
their ability to scale and provide frequent data updates.

To alleviate high cost, some recent methods proposed to use
smartphone as a sensing platform to estimate transverse road slope
profiles [20, 28]. [28] uses vehicle kinematics model to compute
point estimates of superelevation on horizontal curves. The above
method however, is limited as it does not generate continuous trans-
verse slope profile of a road segment, which is crucial to enable
applications such as localization [3], autonomous driving [18], etc.
Moreover as discussed and evaluated in the paper, superelevation
estimation using vehicle kinematics model can be prone to errors
due to factors such as noisy GPS data, driving maneuvers, etc. [20]
uses a complimentary filter to add/fuse estimate from accelerometer
and gyroscope to estimate tilt of vehicle w.r.t road surface, which is
added to superelevation estimated using vehicle kinematics model
to derive transverse slope profile of a road segment. However, it has
been shown that directly adopting traditional sensor fusion tech-
niques such as complimentary and kalman filter on smartphones
results in poor performance [8, 30]. As we explore in the evaluation
section, [20] produces sub-optimal results predominately because
of its inability to counter errors induced by unpredictable nature
of gyroscope drift and the high accelerometer noise in a dynamic
driving conditions.

In addition to challenges introduced due to noisy smartphone
data, inaccuracies in coordinate alignment of IMU’s can result in
erroneous estimation of orientation [17]. As we discuss later in
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paper, biases in estimations due to inaccurate coordinate alignment
between smartphone’s and vehicle’s frame of references can result
in significant errors in estimation of road transverse slope profile.
Previous methods solve this issue by manually placing the phone
in a known orientation inside the vehicle [20, 28]. However, such
manual involvement is not desirable for a crowd-sourced system, as
it might discourage the participants from performing the actual task.
Finally, the existing methods do not account for varying Quality
of Information (Qol) from heterogeneous sources. Varying Qol
might arise from factors such as varying quality of sensors on
different smartphones, varying physical properties of vehicles (for
e.g. suspension properties), varying quality of phone-holders, etc.,
which might influence the estimation of transverse slope profile of
road.

3 Road Transverse Slope Profile Estimation
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Figure 2: System Architecture.

The IMU sensors on a smartphone fixed inside a moving vehi-
cle will be able to capture the dynamics of the vehicle, which is
typically a result of the forces induced by driver control (acceler-
ation/braking done to achieve desired speed and steering control
for lane changes on a straight road), as well as the road’s horizon-
tal (steering control while negotiating a turn) and vertical (while
going up-hill or down-hill a road/while travelling on a road with
super-elevation) geometry. Therefore, if the contribution of driver
control is removed from the smartphone signal, we will be left with
a signal encapsulating road geometry information. The proposed
approach for road transverse slope estimation from a smartphone
is based on the above intuition.

Fig. 2 illustrates the architecture of our proposed system for road
transverse slope profile estimation. The raw data from the smart-
phone is pre-processed in the “Data Processing” module (Sec. 3.1).
Initial estimates of transverse slope are computed using processed
data from gyroscope and accelerometer in “Roll Estimation Us-
ing Gyroscope” and “Roll Estimation Using Accelerometer” mod-
ules (Sec. 3.2), respectively. The “Anchor Snapshots” module op-
portunistically filters out roll estimations during stable driving
phases, to handle accelerometer noise due to unstable vehicle dy-
namics (Sec. 3.3.1). The anchor snapshots are fused with the roll es-
timations from gyroscope in the “Drift Correction” module, to com-
pensate for the drift associated with gyroscope estimations (Sec. 3.3.2).
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“Superelevation Estimation” module leverages vehicle kinemat-
ics model to compute superelevation of horizontal curves on the
route using sensor data from smartphone. These estimates of su-
perelevation are used to correct the bias/offset associated with
anchor snapshots in the “Offset Correction” module (Sec. 3.4). Fi-
nally, the “Aggregation Framework” fuses estimations from dif-
ferent sources/vehicles to handle the problem of varying Qol of
data (Sec. 3.5). Next, we will present the integrated components of
our design.

3.1 Data Processing

3.1.1  Preprocessing Due to their relatively low quality, smartphone
sensors tend to output data prone to noise, which is further ampli-
fied by vibrations of the vehicle. Therefore, we smooth the signal
from accelerometer and gyroscope by passing it through a second-
order Butterworth low-pass filter. The accelerometer and gyroscope
are sampled at 200Hz, whereas the velocity data from GPS arrives
at a much lower rate of 1Hz. To perform trace alignment, we thus
interpolate velocity data to get 200 samples/sec. We also employ
trace synchronization [24] to prevent data from the IMU and GPS
of the Smartphone to go out of sync. Finally, we segregate data for
different road segments on the test route (Fig. 12). We divide the
test route into road segments based on presence of an intersection
or a stop sign.

3.1.2  Coordinate Alignment To sense meaningful dynamics of the
vehicle using a smartphone, it is necessary to align the phone’s
coordinate system with the vehicle’s. We will work with the coordi-
nate system shown in Fig. 3 in this paper. We leverage an existing
technique to perform the alignment [24], which resultsina 3 x 3
rotation matrix Rpc for transforming the smartphone’s data to the
vehicle’s frame of reference. The first, second and third columns of
Rpc are unit vectors xy, 4, and z;, pointing in the direction +X¢,
+Yc and +Z¢, respectively, as also illustrated in Fig. 3. z;, is esti-
mated when the vehicle is stationary (e.g. in a parking lot before
the start of a trip, while waiting at a signalized intersection, etc.)
and thus, the acceleration reported by the accelerometer constitutes
gravity due to earth. y;,, which points in the moving direction of
the vehicle, is estimated when the vehicle undergoes acceleration
on a straight road segment (e.g., when the vehicle starts from zero
velocity after stopping at an intersection). Finally, x;, is the cross
product of gy, and z;,. Coordinate alignment is done once, for a trip,
using a valid stationary and acceleration profile extracted from the
smartphone sensor trace. We also use pitch, yaw, and roll, to denote
the vehicle’s rotations about the lateral axis X, perpendicular axis
Zc, and longitudinal axis Yc, respectively.

3.2 Vehicle Roll Estimation Using Gyroscope

and Accelerometer

Varying 3D road geometry results in rotation of vehicle in the
vertical Yo-Z¢ and Xc-Z¢ planes (Fig. 3). The smartphone fixed
in the vehicle also undergoes changes in orientation accordingly.
Specifically, varying road transverse slope will result in rotation of
the vehicle about the Y axis, thus contributing to the change in the
vehicle’s roll. We discuss our multimodal estimation methodologies
as follows.
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3.2.1 Roll Estimation Using Gyroscope A smartphone’s gyroscope
reports the real-time angular velocities WX, ts WYyt and WZ,.t
around the Xj, Y, and Z, axis of the smartphone, respectively.
Assuming that gyroscope data has been aligned with vehicles coor-
dinate frame, the roll at time instant t, (¢gym, +) can be estimated by
integrating the angular velocity of the vehicle about Yc axis (wy, ;)
using Eq. 1.

¢gyro,t = ¢gyr0,t71 + wy, . At (1)

3.2.2  Roll Estimation Using Accelerometer The acceleration cap-
tured by a smartphone’s accelerometer contains both the vehicle’s
longitudinal/lateral accelerations and the gravity. When a vehicle
is stationary, the measured acceleration of the smartphone is only
due to gravity. When the vehicle is moving, road transverse slope
will result in rotation of vehicle around Y;, contributing to roll of
the vehicle. This will result in rotation of the gravity vector sensed
by the smartphone. Therefore, roll of the vehicle can be estimated
by tracking gravity vector’s rotation in the plane determined by
Xc and Z¢.

However, when the vehicle is moving, accelerometer captures
longitudinal (braking and accelerating of the vehicle) and lateral
acceleration (when the vehicle is negotiating a turn/lane change),
along with gravity. Therefore, to estimate gravity, contribution
of longitudinal and lateral acceleration has to be removed from
accelerometer readings. We leverage speed information of a vehicle
from the GPS device on the smartphone to estimate longitudinal
and lateral acceleration of the vehicle. Longitudinal acceleration
magnitude (A;) of the vehicle is estimated by differentiating the
speed and projecting it on Y using Eq. 2. Lateral acceleration of the
vehicle is estimated using velocity V; and angular velocity about
Zc (wz,;) using Eq. 3.

Ay,r = Ard @)

Axor = (07,4 Ve) Fu 3)

When the vehicle is moving, the gravity vector G; can be esti-
mated using Eq. 4 where, Ay is the acceleration vector reported by
the smartphone, A;C,t and A);C,t are the estimated longitudinal and
lateral acceleration of the vehicle.

Gr=Ar —Ay,r —Ax,+ (4)

Finally, roll estimation using accelerometer (@g¢c,¢) is done by
tracking rotation of gravity vector in the plane determined by X¢
and Z¢ using Eq.5, where x;, is the unit vector pointing in the
direction of X¢.

Pacet = L(Gr, %) ©)

3.2.3  Error Characteristics of Gyroscope and Accelerometer Fig. 4
illustrates the estimated transverse slope profile of a road segment
using gyroscope (labeled “Cross-Gyro”) and accelerometer (labeled
“Cross-Acc”). We draw the following observations on the error
characteristics of estimations using gyroscope and accelerometer.

e Gyroscope : Estimations from gyroscope capture the shape
of the road profile accurately. However, the estimations suffer
from drift (Fig. 4). Moreover, as explored in [8], the drifts can
be dynamic in nature and can vary both in magnitude and
direction over time and across different road segments.
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e Accelerometer : On the other hand, estimation using ac-
celerometer is not prone to drift. However, the signal exhibit
large errors with high variance. These errors are majorly at-
tributed to pollution of the accelerometer signal by forces in-
duced due to driver control events [8]. For e.g. lane changing
events at ~ 300 meters in Fig. 4 result in large disturbances in
the estimation using accelerometer. Moreover, the estimation
from accelerometer is characterized by a bias/offset which is
primarily attributed to errors in the coordinate alignment.

Deriving insights from the aforementioned observations on the
error characteristics of gyroscope and accelerometer, we design a
sensor fusion strategy that exploits the complimentary nature of
the two sensors to estimate road transverse slope profile.

3.3 Opportunistic Transverse Slope Profile

Estimation

As explored in the previous section, gyroscope and accelerom-
eter have complimentary properties w.r.t the task of road trans-
verse slope estimation. Traditional sensor fusion techniques such
as kalman and complimentary filters can exploit sensor redundancy
to improve accuracy. However, direct adoption of such sensor fu-
sion techniques result in sub-optimal performance when applied
on smartphone data, predominantly due to unpredictable nature
of smartphone sensor’s error characteristics in dynamic environ-
ments [8, 30]. Based on our understanding of error characteristics
of accelerometer and gyroscope in different conditions, we pro-
pose an opportunistic fusion framework for road transverse slope
estimation. The underlying intuition is as follows :

e We treat gyroscope as the “primary” sensor. This is based on
the observation that estimation using gyroscope is precise in
capturing the 3D shape of the road segment accurately. Also,
the estimation is not prone to errors induced by varying
vehicle dynamics.

e To compensate for the drift-induced errors in estimation
from gyroscope, we leverage estimation from accelerometer
as an anchor for correcting the drift. Specifically, we oppor-
tunistically select “anchor snapshots” during “stable” driving
phases to correct drift of the signal from gyroscope.

e To counter unpredictable response of smartphone’s gyro-
scope, drift correction is done “on the go”. Specifically, we
perform drift correction in windows of given distances.

Next we present our proposed framework in more detail.

3.3.1 Capturing Anchor Snapshots As previously discussed, road
transverse slope estimation using accelerometer is error prone due
to forces induced by vehicle dynamics. Constant or frequent accel-
eration/braking and turning/lane changes are the cause of these
forces. Even if we remove the contribution of vehicle dynamics,
as described in Sec. 3.2.2, the method is still not capable of fully
compensating for the contribution of vehicle dynamics mainly be-
cause of the noise in GPS velocity data, thus resulting in inaccurate
estimation of longitudinal and lateral acceleration of the vehicle.
Because of the above, the error of transverse slope estimation us-
ing accelerometer is magnified when the dynamics of vehicle are
not stable, especially during rapid lateral acceleration/deceleration
phases.
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dinate System.

Keeping the above in mind, we opportunistically filter out the
transverse slope estimations during stable driving phases based on
the following three metrics :

e Longitudinal Acceleration: We reject the estimations dur-
ing “high” acceleration/deceleration phases. These phases
are filtered out based on longAcc;pyesh-

¢ Longitudinal and Lateral Jerk : We also reject the estima-
tions when the longitudinal/lateral dynamics of the vehicle
are unstable (e.g., rapid acceleration/deceleration phases,
lane changing events, etc.). This is achieved by rejecting es-
timations based on longJerk;p,¢sp, and latJerk;p,esp, Wwhere
jerk is the rate of change of acceleration.

The transverse slope estimations during stable driving phases
are segregated into bins of length 2m. Finally, observations in each
bin are averaged to estimate the anchor snapshots. Fig. 5 illus-
trates the estimated anchor snapshots using the approach described
above. The optimal value of longAccipresh, longJerk;presn, and
lat Jerk;pyesp are empirically driven and set to 1.5m/sec?, 0.3m/sec?
and 0.2m/sec?, respectively.

3.3.2  On the Go Drift Correction The anchor snapshots estimated
in the previous section are used to estimate the gyroscope drift (Fig. 2,
middle). We use the least-squares [29] method to fit a line to the
difference between the transverse slope estimation from gyroscope
and the anchor snapshots. To account for the dynamic nature of
gyroscope drift, the correction is done in windows of distances of
size windgy;f;, as shown in Eq. 6, where Ry, is the length of the
profiled road segment and D}, is the list of distances between
consecutive anchor points on the road segment.

Winddrift = max((Rr/3), max(Dgpcp)) (6)
Fig. 5 illustrates the result of on the go drift correction mecha-
nism. It can be seen from the figure that the proposed mechanism
takes care of gyroscope drift. However, due to the bias/offset present
in estimation from accelerometer, the corrected road transverse
slope profile (labeled “Corrected-Cross”) also exhibits an offset.
In the next section, we describe our methodology to mitigate the
problem of the offsets.

3.4 Offset Correction

The coordinate alignment methodology described in Sec. 3.1.2
computes transformation matrix between smartphone’s and vehi-
cle’s frame of references. The method assumes a level surface to
estimate the vertical (z;,) and lateral (x},) axis of the vehicle. Due to
the alignment of vertical axis (Z;) of vehicle with the direction of
gravity (vertical axis in earth’s frame of reference) on a level surface,
vehicle roll estimated using Eq. 5 would estimate the transverse
slope of the road surface correctly. However, estimation of z;, on

Gyroscope and Accelerometer.

profile estimation.

a level surface might not always be possible. While calculating z;,
when the vehicle is stationary, the road surface more often than
not will have some inclination due to grade or cross slope or both.
Hence, estimation of 7, on a non-level surface will incorporate tilt
of the surface of the road w.r.t earth.

A solution to mitigate the offset problem can be to perform
manual coordinate alignment of the smartphone i.e., fixing the
smartphone in a known orientation w.r.t the vehicle. For e.g. as
done in [20], the smartphone is fixed such that its vertical plane
is aligned with the vehicle’s vertical plane. However, such manual
involvement of participants is not desirable in a crowd-sourced
system.

With the aim of designing a crowd-sourced system transparent
to participants, we leverage superelevation observations on hori-
zontal curves made using vehicle kinematics model as “fixes” for
correcting the bias/offset associated with the estimated transverse
slope profile. The key insight is that the estimations made using
vehicle kinematics model can provide a reasonable observation on
the“true” superelevation of a horizontal curve. However, superel-
evation estimations from vehicle kinematics model can be error
prone due to factors such as noisy GPS data, driving maneuvers, etc.
as discussed in more detail in the next section. To handle these noisy
superelevation observations, we incorporate hints from road design
principles as auxiliary information to improve the robustness of
bias/offset estimation. Next, we present the proposed methodology
to estimate the offsets.

3.4.1 Identification of Horizontal Curves To identify horizontal
curves on a route, we filter out sensor traces based on yaw rate of
vehicle (wz, ;). Specifically, we use turn;p,sp and keep the road
sections where yaw rate > turn;p,.s. To avoid false positives due
to turns (for e.g. at intersections) and lane changing events, we
keep road sections with length > 100 m. We represent the identified
horizontal curves on a route by set H. Moreover, we filter out the
straight sections of a road segment. We select sections of length
>50 m, where yaw rate < turn;pyes,. Empirically driven value of
0.01rad/sec is used as turnp,esp-

3.4.2  Vehicle Kinematics Model Fig. 6 illustrates the kinematics of
a vehicle negotiating a circular curve with radius R and supereleva-
tion e. Balancing out forces along X, and solving for e, we get Eq. 7
where, V is velocity of the vehicle and g is the acceleration due to
gravity (9.81 m/sec?). We assume 6 to be 0 (tilt of the vehicle w.r.t
the surface of the road), which is a reasonable assumption to make
for modern vehicles characterized by firmer suspension systems
as compared to their older counterparts. Information needed to
estimate superelevation i.e. the radius of the curve, lateral accelera-
tion and velocity can be sensed by an on-board smartphone. The
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velocity of the vehicle and radius of the curve are acquired using
GPS sensor of the smartphone. Next, we describe the proposed
methodology to estimate radius profile of a curve.
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3.4.3 Radius Estimation GPS traces corresponding to identified
horizontal curves in set H are first map matched to the centerline
of a road segment using Google’s Map Matching API [6]. Map
matching filters out noisy estimations of vehicle’s position from
smartphone’s GPS. We convert the GPS latitude and longitude
to earth-centered, earth-fixed (ECEF) cartesian coordinates [26].
The cartesian coordinates are interpolated using distance based
interpolation, to get equally spaced points along the curve [12].
The curvature profile is estimated using [1], where radius at a point
Pk is approximated by the radius of a circle passing through it
and its neighboring points Pg_; and Pgy;. Fig. 7 illustrates the

estimated points and radius profile along a horizontal curve using
our proposed approach along with the ground truth.

™

€ = arccos

3.4.4 Superelevation Estimation As described in Sec. 3.4.2, Eq. 7
holds for circular curves. Therefore, there is a requirement to filter
out sensor traces on the circular portions of horizontal curves to
estimate superelevation using the model. We leverage insights on
horizontal curve design principles to extract the corresponding
sensor traces on the circular portion.

To ensure driver comfort and safety, horizontal curve design is
typically done using two transition curves and a circular arc. To
avoid sudden changes in lateral acceleration, transition curves are
used between the straight sections and the circular arc, allowing
smooth variations of the lateral forces on the vehicle. The horizontal
curve design is illustrated in Fig. 8, where the straight sections AB
and EF of the road are transitioned to the circular arc CD using two
transition curves, BC and DE. Moreover, the transverse slope an-
gle (or cross slope) on the straight road section is gradually changed
to the superelevation angle in the circular arc section (Fig. 1).

The manifestation of the above design principles can be seen in
Fig. 9, where the relationship between ground truth radius profile
of a sample horizontal curve with the sensed transverse slope,
lateral acceleration and yaw rate from smartphone is shown. The
corresponding straight, transition and circular sections from Fig. 8
are marked for reference. The radius profile shows the transition
sections “BC” and “DE”, where the curvature is gradually changed
to the constant curvature (or radius) in the circular section “CD”.
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Figure 8: Horizontal curve design.

The transverse slope profile also increases and decreases gradually
in “BC” and “DE”, respectively. The superelevation angle is attained
the circular portion of the horizontal curve “CD”.

We leverage the transverse slope profile (derived using method
described in Sec. 3.3) to filter out circular sections from the horizon-
tal curves in set H. Since, transverse slope attains maximum/minimum
value (the superelevation) in the circular section of a horizontal
curve, we extract the global maxima or minima (supmqax) of the
transverse slope profile and search for the largest set of contiguous
points S = {sx1, Sx2, Sx3, - - - » Sxn }, Whose values are in the range
[supmax — 0.5 < supmax < Supmax + 0.5]. To account for noisy
data from smartphones, we sample points every 10 meters from the
transverse slope profile to get S. This extracted region is denoted by
[XstreXenal, where xszrr and x,,,4 are positions of the start sy1 and
the end syp, of the circular section, respectively. Mean of the radius,
lateral acceleration and velocity profiles in the circular section are
used as the input to Eq. 7 to estimate superelevation of a particular
horizontal curve.

Fig. 10 compares the estimation of radius and superelevation of
horizontal curves on the test route estimated using methodology
described above with the ground-truth (“RID”). Mean of supereleva-
tions derived from 15 trips is shown in the figure. The estimations
derived from the vehicle dynamics model can be unreliable (e.g.,
Curve ID 3 and 5 in Fig. 10). In particular, we identify the follow-
ing causes for unreliable estimation of superelevation using the
vehicle dynamics model : a) GPS noise : Velocity data from GPS
can be noisy, especially in urban environments, where occlusions
due to surrounding buildings, foliage, etc. result in weak signal
strength [7]. Furthermore, errors in superelevation estimation can
arise from inaccurate estimation of radius due to low resolution
data from digital map data [15]. b) Susceptibility to driving ma-
neuvers : Lateral lane keeping maneuvers performed by the driver
while negotiating a curve will result in deviation of the vehicle from
following a perfectly circular trajectory. These maneuvers result
in significant variations in the lateral acceleration sensed by the
smartphone and thus influence superelevation estimation. ¢) Sim-
ple Model : The kinematics model used is fairly simple (assumes
vehicle to be a point mass) and fails to capture detailed dynam-
ics of the vehicle for more accurate estimation of superelevation.
Approaches using complex vehicle dynamics models [9] that take
into account vehicle properties such as chassis dimensions, suspen-
sion properties, etc. are not suitable for our application scenario,
that solely relies on smartphone data for road transverse profile
estimation.

Due to the aforementioned factors, estimations of superelevation
from vehicle kinematics model are noisy and can be unreliable
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Figure 9: Response of smartphone sen- Figure 10: Superelevation estimation. Figure 11: Illustration of the offset esti-

sors while negotiating a curve.

“fixes” to correct the offset. To handle this, we frame an optimization
problem that accounts for noisy superelevation estimations from
vehicle kinematics model by incorporating information from road
design principles. We describe the proposed method in the next
section.

3.4.5 Offset Estimation As described in the previous section, solely
relying on superelevation estimation from vehicle kinematics model
to estimate the offsets can be unreliable. To solve the above prob-
lem, we design an optimization framework to estimate the offsets
associated with transverse slope profile estimation. The framework
takes hints from road design principles and incorporates uncer-
tainty in estimation of superelevation. The design of the proposed
framework is based on the following observations : a) Although
error prone, observations of superelevation derived from the model
can provide a reasonable hypotheses on the “true” superelevation
of a curve. b) Generally, the cross slope ranges between 1.5% -
2% (0.86° - 1.12°) as prescribed by the road design principles [4].
The role of the cross slope in road design is to facilitate drainage
of rainwater. Cross slopes that are too steep can cause vehicles to
drift and skid laterally when braking. Therefore, both the minimum
and the maximum values of cross slope are important criteria for
optimal road design.

Using the above observations as constraints, we formulate a
linear program to estimate the offsets. For each i, j € {1,---,h},
where i and j are indices of a pair of horizontal curves from set H
containing h horizontal curves on the route, we have the following
formulation :

minimize |o; — 0j|

subjectto 0.5 <c¢;j+0; <1.5 (a)
0.5<cj+0j <15 (b)
s0; — 0.5 < s;+0; <s0;+0.5 (c)

50j —0.5<sj+0;j <s0j+0.5 (d)

Fig. 11 illustrates the decision variables and parameters used in
the optimisation model. The decision variables are 0; and 0; which
are the offsets. Following are the parameters of the model. s; and s;
are the observations of superelevation from the biased estimation
of transverse slope profile for if h and j** curve, respectively. ¢; and
c;j are the observation of cross slopes from the biased estimation of
transverse slopes profile of i h and jth curves, respectively. so; and
so; are the observations of superelevation made from the vehicle
kinematics model for i and j'# curves, respectively. Mean esti-
mations of superelevation from all the trips are used as so; and so;.
si, S, ¢; and c; are estimated using the mean of the observations
from the transverse slope profile (from an individual trip) in the

mation methodology.

circular and straight sections of a road segment. The straight and
circular sections are extracted using the methodology described in
Sec. 3.4.1.

The proposed framework searches for an optimal alignment (or
offsets) of the biased transverse slope profile in a space constrained
by a) superelevation observations from vehicle kinematics model b)
cross slope design criteria. As explained in Sec. 3.4, the offsets arise
from the errors in the coordinate alignment procedure. Therefore,
the offsets should be same through the course of a trip as long
as the smartphone’s orientation w.r.t vehicle does not change. We
achieve this by minimising the objective function defined as the
absolute difference between offsets on a pair of horizontal curves.
In constraints (a) — (b), we incorporate the road design criteria for
cross slope (0.5° - 1.5°). Furthermore, as observed in Sec. 3.4.4, the
estimations of superelevation using vehicle kinematics model can
be unreliable. Therefore, we incorporate an error tolerance of 1°
on the estimations of superelevation in constraints (c) — (d).

The above mathematical program is used to model all the pairs
of horizontal curves in the set H to generate a set of offset pairs
(04,05),foralli, j € {1,..., h}. The mean of a 0;-0; pair is considered
as the offset estimation for that particular pair of curves. Finally, the
mean of offsets of all the pairs of curves from the set H is used to
correct the offset/bias associated with anchor snapshots estimation
from an individual trip (Fig. 2, left).

3.5 Aggregation Framework

Due to its ubiquity and low-cost, smartphone as a sensing plat-
form is an attractive option to develop crowd-sourced frameworks,
to perform large scale sensing tasks. In our application, we can take
advantage of observations of road transverse slope from multiple
sources to increase accuracy and robustness of our system. In a
typical crowd-sourced system, sources can provide conflicting ob-
servations on an object due to varying Qol (Quality of Information)
from multiple sources. Specific to our application, varying Qol of
sources arises from factors such as varying a) quality of sensors
in smartphones, b) suspension properties of different vehicles, c)
inherent vibration of different vehicles, d) quality of phone holders
used to mount the smartphone, etc. As an example, accelerometer
and gyroscope estimations from a phone “loosely” mounted in the
vehicle will experience more noise than that of a firmly mounted
phone, especially on roads in poor condition.

To handle the problem of varying Qol of sources, truth discovery
methods [13, 14] are proposed, which take into account source reli-
ability into data aggregation. Sources are assigned weights based on
their Qol i.e. reliable sources with high Qol are given more weight
and vice-versa. We leverage CRH [13] to perform aggregation of
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observations from different sources. CRH formulates the observa-
tion conflicts from different sources as an optimization problem to
minimize the overall weighted distance between the input and the
estimated truths.

The aggregation of estimations from various trips is done in two
steps a) Aggregation of Anchor Snapshots, and b) Profile Aggregation.

3.5.1 Aggregation of Anchor Snapshots As described in Sec. 3.3.1,
we opportunistically filter out “anchor snapshots” from estimates
of vehicle’s roll using accelerometer when the vehicle dynamics are
stable. Due to this the estimations of anchor snapshots can be sparse.
The “density” and location of anchor snapshots on road segment is
dependent on occurrence of stable driving events, thus is influenced
by factors such as driving behavior of the user, traffic conditions,
etc. To handle the sparsity, we first aggregate estimations of anchor
snapshots (after offset/bias correction) from various trips on a given
road segment (Fig. 2, top-left). The intuition is to handle the sparse
estimations of anchor snapshots described above by increasing
the density of anchor snapshots on a given road segment, using
data from different trips. Furthermore, aggregation will compensate
the effects of varying Qol from different sources. We divide the
road segment into bins of length bing, (set to 2m) and sample the
observations from different trips in these bins. Observations in each
bin are then aggregated using CRH to produce the final output.

3.5.2  Profile Aggregation We apply the drift correction method de-
scribed in Sec. 3.3.2 on roll estimations from gyroscope of different
trips using the aggregated anchor snapshots on a given road seg-
ment (Fig. 2, top). As done in Sec. 3.5.1, we divide the road segment
into bins of length bincorr—gyr. Compared to bingec, bincorr—gyr is
smaller (set to 20cm) due to presence of continuous observations
from gyroscope. The corrected gyroscope estimations thus derived
are finally aggregated into a single profile of road transverse slope
on a given road segment.

4 Evaluation
4.1 Experimental Setup

Data. Data collection was done on a test route shown in Fig.
12 using 3 different smartphones: Nexus 5, Nexus5x and Google
Pixel XL. We leverage VehSense, an android application, that was
developed for data collection. Smartphones were fixed in arbitrary
orientation in the vehicle using phone-holders at various locations
such as wind-shield, air-conditioning vents, etc. Specifically we
collect the following time-series samples: a) 3-axis angular veloc-
ity data from the gyroscope, b) 3-axis acceleration data from the
accelerometer, and c) GPS data including latitude, longitude, speed
and bearing.

Data collection was done over the course of one month in May
2019 in diverse traffic scenarios, ranging from high traffic during
peak hours (= 9am-10am and ~ 5pm-6pm) to low traffic (~ 3pm-
4pm and = 10pm - 11pm). The collected data is comprised of 15
trips distributed over 5 participants each having a different vehicle.
For coordinate alignment, each participant was asked to keep the
vehicle stationary for ~ 30 seconds in the parking lot, before starting
the trip at Point A on the map (Fig. 12) to make sure we get at
least one valid stationary profile for coordinate alignment. The
participants were asked to drive naturally on the route, which is ~
9 km.

Gupta, et al.

Figure 12: Test Route.

Comparison. We evaluate the performance of our proposed
method by comparing it to [20] (labeled “Baseline” in rest of the
paper), which uses a mobile device to estimate road transverse slope
profile. It uses a complimentary filter to fuse data from gyroscope
and accelerometer to estimate vehicle roll, which is added to su-
perelevation estimations derived using vehicle kinematics model.
The key idea of a complimentary filter is to combine precise short
term estimations from gyroscope with the long term accumulated
estimations from accelerometer.

Groundtruth. For groundtruth, we use data from the Road In-
ventory Database [11], which includes information on road geome-
try features (curvature, grade, cross slope and superelevation) of
~25,000 directional miles of roadway in six sites in USA. The data
is collected using ARAN (Automatic Road Analyzer)[5], a special-
ized instrumented vehicle with high-grade IMU’s, laser scanners,
high-precision GPS, and camera.

Evaluation Measure: We use the following to compare the
performance of our system with the baselines:

e Absolute Error (AE): It is the absolute value of difference
between our estimation and the ground-truth at a point on
the road.

e Gradient Error (GE): It is the absolute value of difference
of change of road transverse slope per unit distance between
our estimation and the ground-truth. This metric will indi-
cate the performance of various methodologies in capturing
the shape of the road profile.

4.2 Overall Performance

In this section, we analyze the overall performance of our system
and compare it with the baseline. Fig. 13, 14, and 15 show the
comparison of road transverse slope profiles estimated using our
approach and the baseline on different road segments. The figures
demonstrate the effectiveness of our proposed approach (labeled
“Agg-Prof-Final”) to capture the transverse slope profile of road
segments. On the other hand transverse slope profiles generated
by the baseline are error prone with high variance.

Fig. 16 shows the statistical comparison of absolute error (AE)
of different approaches on the entire test route. Our proposed ap-
proach outperforms the baseline. The 50% and 90% absolute error
(AE) of road transverse slope profile estimated using the baseline are
0.73° and 1.7°, respectively. In comparison, our approach without
aggregation (labeled “Indiv-Prof") has 50% and 90% AE of 0.27° and
0.8°, respectively. “Indiv-Prof" is generated using estimations of
corrected anchor snapshots from individual trips (i.e. after applying
offsets using method described in Sec. 3.4) and applying drift correc-
tion on corresponding roll estimations from gyroscope (Sec. 3.3.2).

Gains in accuracy of “Indiv-Prof" over transverse slope estima-
tion using the baseline is also observed in Fig. 17, which illustrates
gradient error (GE) of different approaches on the entire test route.
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The baseline’s 50% and 90% GE are 0.4° and 1.1°, respectively. In
comparison, “Indiv-Prof" has 50% and 90% GE of 0.26° and 0.79°,
respectively.

Our approach without applying data aggregation, i.e. “Indiv-
Prof", outperforms the baseline in both Absolute Error and Gradient
Error, demonstrating the impact of intelligently combining the esti-
mations from accelerometer and gyroscope based on understanding
of their error characteristics in a dynamic driving environment. In
particular, the baseline suffers in accuracy mainly due to suscep-
tibility to vehicle dynamics. To exploit the complimentary nature
of sensors, the baseline adds/fuses the low-frequency component
of accelerometer estimation with high-frequency component of
gyroscope’s estimate to estimate the tilt of the vehicle w.r.t the
ground. The estimated tilt is added to the superelevation derived
from the vehicle dynamics model. However, optimal parameter set-
ting (e.g., cut-off frequency for the complimentary filter) is difficult
to achieve because of varying road types and dynamic noise profiles
of smartphone’s sensors. This makes the baseline susceptible to
both absolute and gradient errors, especially due to pollution of
estimation from accelerometer during periods when the dynamics
of vehicle are not stable. For e.g. in Fig. 13, the peak at ~ 710meters
is due to lateral lane-keeping maneuver performed by the driver.
Similarly, in Fig. 14 the peaks at ~ 250 — 300meters are due to lane
changing events performed by the driver. Our approach, on the
other hand, relies primarily on estimation from gyroscope which is
not prone to errors induced by vehicle dynamics.

Next we analyse the impact of data aggregation. Gains in accu-
racy due to aggregation of estimations from various trips is evident

from the results as shown in Fig .16 and 17. The 50% and 90% AE of
aggregated road transverse slope estimations (labeled “Agg-Prof-
Final”) are 0.17° and 0.53°, respectively. The 50% and 90% GE are
0.18° and 0.56°, respectively. The results indicate the power of data
aggregation, which essentially “averages out” errors in estimation
due to varied data quality of smartphone sensors.

4.3 Impact of Offset Correction

Fig. 18 illustrates the impact of offset correction methodology.
Offset correction in general result in accuracy gains. The 50% and
90% gains in accuracy of “Indiv-Prof” over “Indiv-Prof-UnOff” (es-
timations from individual trips using biased anchor snapshots,
i.e. without applying offset correction methodology described in
Sec. 3.4) are 0.5° and 1.9°, respectively. The 50% and 90% gains in
accuracy of “Agg-Prof-Final” over “Agg-Prof-UnOff” (aggregated
estimations using biased estimations of anchor snapshots) are 0.6°
and 0.68°, respectively.

A marginal improvement of “Indiv-Prof” over “Indiv-Prof-Naive”
illustrates the increase in robustness of the system due to incorpora-
tion of information on cross slope design principles in the method-
ology described in Sec 3.4.5. The offsets for “Indiv-Prof-Naive” were
estimated by simply using o; = so; —s;, where i=1 ..., c. Mean of
“0;”’s was used as final offset to estimate “Indiv-Prof-Naive”.

4.4 Data Aggregation

Fig. 19 illustrates the impact of aggregation framework in es-
timation of transverse slope. In general, aggregated estimations
result in accuracy gains. The 50% and 90% gain in accuracy of ag-
gregated anchor snapshots (labeled “Agg-Anch-CRH”) over “Indiv-
Anch” (anchor snapshot estimations from individual trips) is 0.1°
and 0.15°, respectively. Furthermore, the performance of aggregated
estimation computed using CRH is better than simply averaging
the anchor snapshots (labeled “Agg-Anch-AVG”).

Better performance of “CRH” over “Average” can also be seen for
aggregated transverse slope profiles (“Agg-Prof-Final-CRH” over
“Agg-Prof-Final-AVG”). CRH consistently performs better than av-
erage as it takes into account source reliability by assigning more
weight to reliable sources. The reason for better performance of
aggregated estimations is two-fold. Firstly, aggregation of estima-
tions compensates the varied quality of data from different sources.
Secondly, aggregation results in an increased density of anchor
snapshots, which results in more information for “On-the-go-drift
correction” (Sec. 3.3.2) module to work with.

4.5 Superelevation Estimation

Fig. 20 illustrates the performance comparison of superelevation
estimations using vehicle kinematics model described in Sec. 3.4.2
and using our method (labeled “Ours”). Mean of estimation from
15 trips was used to derive the final superelevation of a horizontal
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Figure 18: Impact of offset correction. Figure 19: Impact of aggregation frame-Figure 20: Superelevation estimation compar-

work.

curve (labeled “Kinematics Model”). “Ours” is estimated by averag-
ing the estimations from “Agg-Prof-Final” in the circular section
of the horizontal curve (Sec. 3.4.4). The average absolute error for
11 curves using the kinematics model and our method are 0.56°
and 0.22°, respectively. The variance of errors in estimations of
superelevation using the model and our approach are 0.14 and 0.01,
respectively. This illustrates the efficacy of our proposed system to
estimate superelevation of horizontal curves both accurately and
reliably.

5 Conclusion

This paper presents a novel, cost-efficient and easily deployable
crowd-sourcing system for road transverse slope estimation us-
ing smartphones. Deriving insights from analysis of smartphone
sensor’s error characteristics in a dynamic driving environment,
we intelligently integrate data from accelerometer, gyroscope and
observations from vehicle kinematics model to estimate road trans-
verse slope. Finally, we crowd-source observations from various
sources to improve accuracy and robustness of the system. The
experiment results demonstrate that the proposed method provides
considerable improvement over existing solutions.
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