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ABSTRACT

This paper studies the problem of learning message propagation
strategies for graph neural networks (GNNs). One of the challenges
for graph neural networks is that of defining the propagation strat-
egy. For instance, the choices of propagation steps are often special-
ized to a single graph and are not personalized to different nodes.
To compensate for this, in this paper, we present learning to propa-
gate, a general learning framework that not only learns the GNN
parameters for prediction but more importantly, can explicitly learn
the interpretable and personalized propagate strategies for different
nodes and various types of graphs. We introduce the optimal propa-
gation steps as latent variables to help find the maximum-likelihood
estimation of the GNN parameters in a variational Expectation-
Maximization (VEM) framework. Extensive experiments on various
types of graph benchmarks demonstrate that our proposed frame-
work can significantly achieve better performance compared with
the state-of-the-art methods, and can effectively learn personalized
and interpretable propagate strategies of messages in GNNs.
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1 INTRODUCTION

Graphs are ubiquitous in the real world, such as social networks,
knowledge graphs, and molecular structures. Recently, Graph Neu-
ral Networks (GNNs) have achieved state-of-the-art performance
across various tasks on graphs, such as semi-supervised node clas-
sification [25, 39, 48] and link prediction [18]. Typically, GNNs
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Figure 1: An illustration of the needlng for personalized
propagation. Color (green, gray, and ) denotes the
class of the node. White nodes denote the unlabeled nodes.

exploit message propagation strategies to learn expressive node rep-
resentations by propagating and aggregating the messages between
neighboring nodes. Various message propagation layers have been
proposed, including graph convolutional layers (GCN) [25], graph
attention layers (GAT) [39], and many others [7, 11, 18, 26, 40, 45].
Recent studies [5, 25, 28] show that GNNs suffer from the over-
smoothing issue (the representations of nodes are inclined to con-
verge to a certain value, making the model performance degrade
significantly by stacking too many propagation layers).

To tackle the over-smoothing issue, many efforts have been
taken [6, 25, 27, 45, 47]. For example, several works [25, 27, 45] try
to add residual or dense connections in the message propagation
layer to preserve the locality. Although the convergence speed of
over-smoothing is retarded, most of these methods do not really
outperform 2-layer models such as GCN or GAT. A crucial question
remains to be addressed in order to make GNN a success: Do we
really need a very deep GNN? Furthermore, can we automatically
choose propagation steps to specific nodes and graphs?

In this paper, we provide answers to both questions. Our key
insight is that different nodes and various types of graphs may
need different propagation steps to accurately predict node labels.
As suggested by [7, 38, 45], low-degree nodes only have a small
number of neighbors, which receive very limited information from
neighborhoods and deep GNNs may perform well on those nodes.
In contrast, nodes with higher degrees are more likely to suffer from
over-smoothing. Figure 1 illustrates the key motivation of this paper.
Intuitively, the propagation step smoothes the features locally along
the edges of the graph and ultimately encourages similar predictions
among locally connected nodes. We can obviously observe that the
optimal propagation step for the test green and yellow class nodes
is two, however, the optimal step for the black class node is one
since more steps will bring the noise to the representation of it.
Thus, it is a natural idea that different propagation patterns tend
to work better for different nodes. For different types of graphs,
the number of propagation steps is also different. For example, for
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those heterophily graphs [34] (where connected nodes may have
different class labels and dissimilar features), message propagation
steps may hurt the node similarity, and stacking deep layers cannot
achieve better performance compared with homophily graphs [7,
22]. Since there is no strategy to learn how to propagate the message,
existing GNNs need a hand-crafted layer number depending on
different types of nodes and graphs. This requires expert domain
knowledge and careful parameter tuning and will be sub-optimal.
However, whether it is possible to learn personalized strategies
while optimizing GNNs remains an open problem.

Motivated by the discussion above, in this paper, we investi-
gate whether one can automatically learn personalized propagation
strategies to help GNNs learn interpretable prediction and improve
generalization. In essence, we are faced with several challenges: (i)
The graph data is very complex, thus building hand-crafted and
heuristic rules for propagation steps for each node tends to be
infeasible when we know little knowledge underlying graph or
the node distributions are too complicated. (ii) In practice, there
is no way to directly access the optimal strategy of propagation.
The lack of supervision about how to propagate obstructs models
from modeling the distribution of propagation for each node. (iii)
GNNss are also prone to be over-fitting [37], where the GNNs fit
the training data very well but generalizes poorly to the testing
data. It will suffer from the over-fitting issue more severely when
we utilize an addition parameterized model for each node to learn
how to propagate given limited labeled data in the real world.

To address the challenges mentioned above, we propose a sim-
ple yet effective framework called learning to propagate (L2P) to
simultaneously learn the optimal propagation strategy and GNN
parameters to achieve personalized and adaptive propagation. Our
framework requires no heuristics and is generalizable to various
types of nodes and graphs. Since there is no supervision, we adopt
the principle of the probabilistic generative model and introduce
the optimal propagation steps as latent variables to help find the
maximum-likelihood estimation of GNN parameters in a variational
Expectation-Maximization (VEM) framework. To further alleviate
the over-fitting, we introduce an efficient bi-level optimization al-
gorithm. The bi-level optimization closely matches the definition of
generalization since validation data can provide accurate estimation
of the generalization. The main contributions of this work are:

o We study a new problem of learning propagation strategies for
GNN . To address this problem, we propose a general L2P frame-
work which can learn personalized and interpretable propagation
strategies, and achieve better performance simultaneously.

e We propose an effective stochastic algorithm based on variational
inference and bi-level optimization for the L2P framework, which
enables simultaneously learning the optimal propagation strategies
and GNN parameters, and avoiding the over-fitting issue.

o We conduct experiments on homophily and heterophily graphs
and the results demonstrate the effectiveness of our framework.

2 RELATED WORK
2.1 Graph Neural Networks

GNNs have achieved great success in modeling graph-structured
data. Generally, GNNs can be categorized into two categories, i.e.,
spectral-based and spatial-based. Spectral-based GNNs define graph
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convolution based on spectral graph theory [4, 12, 40]. GCN [25] fur-
ther simplifies graph convolutions by stacking layers of first-order
Chebyshev polynomial filters together with some approximations.
Spatial-based methods directly define updating rules in the spatial
space. For instance, GAT [39] introduces the self-attention strategy
into aggregation to assign different importance scores of neigh-
borhoods. We refer interested readers to the recent survey [41] for
more variants of GNN architectures. Despite the success of variants
GNNs, the majority of existing GNNs aggregate neighbors’ infor-
mation for representation learning, which are shown to suffer from
the over-smoothing [28, 35] issue when many propagation layers
are stacked, the representations of all nodes become the same.

To tackle the over-smoothing issue, some works [25, 27] try to
add residual or dense connections [45] in propagation steps for pre-
serving the locality of the node representations. Other works [6, 37]
augment the graph by randomly removing a certain number of
edges or nodes to prevent the over-smoothing issue. Recently, GC-
NII [7] introduces initial residual and identity mapping techniques
for GCN and achieves promising performance. Since the feature
propagation and transformation steps are commonly coupled with
each other in standard GNNs, several works [26, 30] separate this
into two steps to reduce the risk of over-smoothing. We differ from
these methods as (1) instead of focus on alleviating over-smoothing,
we argue that different nodes and graphs may need a different
number of propagation layers, and propose a framework of learn-
ing propagation strategies that generalizable to various types of
graphs and backbones, and (2) we propose the bilevel optimization
to utilize validation error to guide learning propagation strategy
for improving the generalization ability of graph neural networks.

2.2 The Bi-level Optimization

Bi-level optimization [31], which performs upper-level learning
subject to the optimality of lower-level learning, has been applied
to different tasks such as few-shot learning [8, 9, 14], searching
architectures [29], and reinforcement learning [49]. For the graph
domain, Franceschi et al. propose a bi-level optimization objective
to learn the structures of graphs. Some works [17, 51] optimize a
bi-level objective via reinforcement learning to search the archi-
tectures of GNNs. Moreover, Meta-attack [53] adopts the principle
of meta-learning to conduct the poisoning attack on the graphs
by optimizing a bi-level objective. Recently, Hwang et al. propose
SELAR [20] which learns the weighting function for self-supervised
tasks to help the primary task on the graph with a bi-level objective.
To conduct the few-shot learning in graphs, the work [30], inspired
by MAML [14], try to obtain a parameter initialization that can
adapt to unseen tasks quickly, using gradients information from
the bi-level optimization. By contrast, in this paper, our main con-
cern is the generalization, and we propose a bilevel programming
with variational inference to develop a framework for learning
propagation strategies, while avoiding the over-fitting issues.

3 PRELIMINARIES

3.1 Notations and Problem Definition

Let G = (‘V, &) denote a graph, where V is a set of |'V| = N nodes
and & C€ V xV isaset of |E| edges between nodes. A € {0, 1N
is the adjacency matrix of G. The (i, j)-th element A;; = 1 if there
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exists an edge between node v; and v}, otherwise A;; = 0. Further-
more, we use X = [X1,X2,...,XN] € RN*d {5 denote the features
of nodes, where x, is the d-dimensional feature vector of node
vp. Following the common semi-supervised node classification set-
ting [25, 39], only a small portion of nodes V, = {v1,v2,...,00}
are associated with observed labels Y° = {y1,ya, ..., Yo}, where
yn denotes the label of v,. V,, = V\V, is the set of unlabeled
nodes. Given the adjacency matrix A, features X and the observed
labels Y/ ©, the task of node classification is to learn a function fy
which can accurately predict the labels Y* of unlabeled nodes V.

3.2 Message Propagation

Generally, GNNs adopt the message propagation process, which
iteratively aggregates the neighborhood information. Formally, the
propagation process of the k-th layer in GNN is two steps:

my., = AGGREGATE ({h,ﬂyu ‘ue N(n)}) )

Bk, = UPDATE by, .. my . By, ) @

where N, is the set of neighbors of node v,,, AGGREGATE is a per-
mutation invariant function. After K message-passing layers, the
final node embeddings Hg are used to perform a given task. In gen-
eral, most state-of-the-art GNN backbones [7, 25, 26, 39] follow this
message propagation form with different AGGREGATE functions,
UPDATE function, or initial feature ho,n' For instance, APPNP [26]
and GCNII [7] add the initial feature ho, , = MLP(x,;0) to each
layer in the UPDATE function. In general, GNN consists of several
message propagation layers. We abstract the message propagation
with K layers as one parameterized function GNN(X, A, K).

4 LEARNING TO PROPAGATE

In this section, we introduce the Learning to Propagate (L2P) frame-
work, which can perform personalized message propagation for
better node representation learning and a more interpretable predic-
tion process. The key idea is to introduce a discrete latent variable
tp for each node vy, which denotes the personalized optimal prop-
agation step of v,,. How to learn t, is challenging given no explicit
supervision on the optimal propagation step of vy,. To address the
challenge, we propose a generative model for modeling the joint
distribution of node labels and propagation steps conditioned on
node attributes and graphs, i.e., p(yn, tn|X, A), and formulate the
Learning to Propagate framework as a variational objective, where
the goal is to find the parameters of GNNs and the optimal propa-
gation distribution, by iteratively approximating and maximizing
the log-likelihood function. To alleviate the over-fitting issue, we
further frame the variational process as a bi-level optimization
problem, and optimize the variational parameters of learning the
propagation strategies in an outer loop to maximize generalization
performance of GNNs trained based on the learned strategies.

4.1 The Generative Process

Generally, we can consider the designing process of graph neural
networks as follows: we first choose the number of propagation
layers K for all nodes and the type of the aggregation function
parameterized by 6. Then for each training label y, of node n, we
typically conduct the Maximum Likelihood Estimation (MLE) of
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the marginal log-likelihood over the observed labels as:
max L(0:A.X, ¥ =), logpo (4n|GNN (A K), ()

where py (yn|GNN(X, A, K)) = p (yn|Hg) is the predicted proba-
bility of node v, having label y, using Hx ,. Hx , is the node
representation of v, after stacking K propagation steps (see § 3.2).
Generally, a softmax is applied on Hg ,, for predicting label yj,.
Although the message propagation strategy above has achieved
promising performance, it has two drawbacks: (i) The above strat-
egy treats each node equally, i.e., each node stacks K-layers; while in
practice, different nodes may need different propagation steps/layers.
Simply using a one-for-all strategy could potentially lead to sub-
optimal decision boundaries and is less interpretable, and (ii) Dif-
ferent datasets/graphs may also have different optimal propagation
steps. Existing GNNs require a hand-crafted number of propagation
steps, which requires expert domain knowledge, careful parameter
tuning, and is time-consuming. Thus, it would be desirable if we
could learn the personalized and adaptive propagation strategy
which is applicable to various types of graphs and GNN backbones.
Based on the motivation above, we propose to learn a personal-
ized propagate distribution from the given labeled nodes and utilize
the learned propagate distribution at test time, such that each test
node would automatically find the optimal propagate step to explic-
itly improve the performance. A natural idea of learning optimal
propagate distribution is supervised learning. However, there is no
direct supervision of the optimal propagate strategy for each node.
To solve this challenge, we treat the optimal propagation layer of
each node as a discrete latent variable and adopt the principle of
the probabilistic generative model, which has shown to be effective
in estimating the underlying data distribution [10, 33, 42, 44].
Specifically, for each node v,, we introduce a latent discrete
variable t;, € {0,1,2,---,K} to denote its optimal propagation step,
where K is the predefined maximum step. Note that ¢, can be 0,
which corresponds to use non-aggregated features for prediction.
We allow ¢, to be 0, because for some nodes in heterophily graphs,
the neighborhood information is noisy, aggregating the neighbor-
hood information may result in worse performance [22, 36]. t, is
node-wise because the optimal propagation step for each node may
vary largely from one node to another. With the latent variable
{tn}, -, we propose the following generative model with modeling
the joint distribution of each observed label y, and latent ¢,:
Po(Yn: tn|X, A) = po(yn IGNN(X, A, tn))p(tn), (4)
where p(ty,) is the prior of propagation variable and 0 is the pa-
rameter shared by all nodes. pg(yn|GNN(X, A, t;,)) represents the
label prediction probability using vy, ’s representation from the t,-th
layer, i.e., Hy,  ». Since we do not have any prior of how to propa-
gate, p(ty) = ﬁ is defined as uniform distribution on all layers
of all nodes in this paper. We can also use an alternative prior with
lower probability on the deeper layers, if we want to encourage
shallower GNNs. Given the generative model in Eq. (4) and from
the Bayesian perspective, what we are interested in are two folds:
(1) Learning the parameter 6 of the GNN by maximizing the follow
likelihood which helps make label prediction in the testing phase:

K
log po(yn|X. A) =log 3. _ po(yn|GNN(X, A, tn))p(tn).  (5)
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(2) Inferring the following posterior p(t,|X, A, yn) of the latent
variable t, which is related to the optimal propagation distribution.

Po(yn|GNN(X, A, k)
2R o Po(Yn|GNN(X, A, k')

Intuitively, this posterior can be understood as we choose the prop-
agation step ¢, of node v, according to the largest likelihood (i.e.,
the smallest loss) in the defined propagation steps.

However, there are several challenges to solve these two prob-
lems. For learning, we cannot directly learn the parameter 0, since
it involves marginalizing the latent variable, which is generally
time-consuming and intractable [24]. In terms of the inference,
since we do not have labels for test nodes, i.e, y, for v, € V,, the
non-parametric true posterior in Eq. (6), which involves evaluating
the likelihood py(yn|GNN(X, A, k)) of test nodes, is not applicable.
To solve the challenges in the learning and inference, we adopt
the variational inference principle [24, 43], and instead consider
the following lower bound of the marginal log-likelihood in Eq. (5)
which gives rise to our following formal variational objective:

L(6, q) = Eg(z,,) [log po (yn X, A, 10)] = KL(q(2n)|p(n)),  (7)

where the derivations are given in Appendix A.1 and q(t,,) is the
introduced variational distribution. Maximizing the ELBO £(6, q)
is equivalent to (i) maximize Eq. (5) and to (ii) make the variational
distributions ¢q(t,) of each node be close to its intractable true
posteriors p(t,|X, A, y,). Note that the ELBO holds for any type of
variational distribution q(t,). We defer discussion of the learning
and inference process until the next section. Here, we first introduce
two ways to show how to exactly parameterize the variational
distribution q(ty), resulting in two instances of our L2P framework.

p(tn = k|X, A, yn) = (6)

4.2 Learning to Select

In the variational inference principle, we can introduce a variational
distribution g (tz|vn) parameterized by vy, € RK. However, we
cannot fit each g4 (tz|vn) individually by solving N - K parame-
ters, which increases the over-fitting risk given the limited labels
in the graphs. Thus, we consider the amortization inference [24]
which avoids the optimization of the parameter v, for each local
variational distribution g (tn|vn). Instead, it fits a shared neural
network to calculate each local parameter vy. Since the latent vari-
able t, is a discrete multinomial variable, the simplest and most
naive way to represent categorical variable is the softmax function.
Thus, we pass the features of nodes through a softmax function to
parameterize the categorical propagation distribution as:

exp(w; Hy, )

Qg(tn = kX, A) = —— K 0
K exp(WlHy )

®
where wy represents the trainable linear transformation for the
k-th layer. Hy , is the representation of node n at the k-th layer
and ¢ represents the set of parameters. The main insight behind
this amortization is to reuse the propagation representation of each
layer, leveraging the accumulated knowledge of representation
to quickly infer propagation distribution. With amortization, we
reduce the number of parameters to (K + 1) - D, where K is the
predefined maximum propagation step and D is the dimension of
the representation of nodes. Since this formulation directly models
the selection probability overall propagation steps of each node, we
refer to this method as Learning to Select (L2S). Figure 2(b) gives an
illustration of L2S. We adopt the node representation of v, in each
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Figure 2: Illustrations of our L2P framework. (a) The vanilla
GNN architecture. (b) L2S predicts the selection probability
over all propagation steps for each node. (c) L2Q forces each
node to personally quit its propagation process.

layer to calculate g4 (¢, = k|X, A), which makes it able to personally
and adaptively decide which propagation layer is best for vy,. It also
allows each graph to learn its own form of propagation with its
own decay form from the validation signal (see § 5.1 for details).

4.3 Learning to Quit

Instead of directly modeling the selection probability over every
propagation step, we can model the probability of exiting the prop-
agation process and transform the modeling of multinomial proba-
bility parameters into the modeling of the logits of binomial proba-
bility parameters. More specifically, we consider modeling the quit
probability at each propagation layer for each node n as follows:

! ©)

A p=—""- """,
kn =% exp(-w  Hg )

where ay, ,, denotes the probability that node v, quits propagating
at the k-th layer. The challenge is how to transfer the logits oy ,
to the multinomial variational distribution (s |X, A). In this pa-
per, we consider the stick breaking (a non-parametric Bayesian)
process [23] to address this challenge. Specifically, the probability
of the first step (no propagation), i.e., q(t, = 0) is modeled as a
break of proportion ag,, (quit at the first-step), while the length of
the remainder of the propagation is left for the next break. Each
probability of propagation step can be deterministically computed
by the quit probability q(t, = k) = ak , Hllz;lo (1 - ay, ) until
K — 1, and the probability of last propagation step is q(t, = K) =
]_[f,;é(l — aps ). Assume the maximum propagation step K = 2,
then the propagation probability is generated by 2 breaks where
ptn = 0) = ao,p, p(tn = 1) = 1,1 (1 — a0,n) and the last prop-
agation step p(t, = 2) = (1 — a1,n) (1 - aoyn) (not quit until the
end). Hence, for different values of K, this non-parametric breaking
process always satisfies Zf:o q(tn = k) = 1. We call this method
Learning to Quit (L2Q). Compared with L2S, L2Q models the quit
probability of each node at each propagation step via the stick-
breaking process which naturally induces the sparsity property of
the modeling propagation step for each node. The deeper layers are
less likely to be sampled. Figure 2(c) shows the architecture of L2Q.

4.4 Learning and Inference

Maximizing the ELBO in Eq. (7) is challenging. The lack of labels
for test data further exacerbates the difficulty. Thus, in this paper,
we propose two algorithms: the alternate expectation maximization
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and iterative variational inference algorithms to maximize it.
Alternate expectation maximization. Minimization of the neg-
ative ELBO in Eq. (7) can be solved by the expectation maximization
(EM) algorithm, which iteratively infers q(t,) at E-step and learns
0 at M-step. More specifically, at each iteration i, given the current
status parameters 01 the E-step that maximizes L0, q)wrtq
has a closed-form solution the same as Eq. (6):

Pg(i)(yn |X» A, tn)

(i+1) _ B
GV (tn) = q(tn|X, A, yn) = '
Zﬁ:o Poy(UnlX, A, tn)

(10)

However, we can not utilize this non-parametric posterior since the
label yn, is not available for the test nodes. We need to let the training
and testing pipeline be consistent. Thus, we consider projecting
the non-parametric posterior to a parametric posterior q4(tn|X, A)
(i.e., L2S or L2Q). We adopt an approximation, which has also been
used in the classical wake-sleep algorithm [19] by minimizing the
forward KL divergence KL(q(i+1)(tn)| |q4(tn X, A)). Then we can
get the following pseudo maximizing likelihood objective:

¢(”1) = argmq’;lx [Eq(in)(,n) [108 9¢(tnlX, A)] : (an

Given the parametric posterior g+ (tn|X, A), the M-step opti-
mizes £L(6, q¢(i+1)(tn |X, A)) w.r.t 6. Since there is no analytical so-

lution for deep neural networks, we update the model parameters
0 with respect to the ELBO by one step of gradient descent.

Iterative variational inference. Although the alternate expec-
tation maximization algorithm is effective to infer the optimal
propagation variable, the alternate EM steps are time-consuming
and we need calculating the loss at every layer for each training
node, ie., the O(N * (K + 1)) complexity. Thus, we propose an
end-to-end iterative algorithm to minimize negative ELBO. Specif-
ically, we introduce the parameterized posterior q4(tn|X, A) (ie.,
L2S or L2Q) into Eq. (7) and directly optimize ELBO using re-
parameterization trick [24]. We infer the optimal propagation dis-
tribution q4(tx|X, A) and learn GNN weights 6 jointly through
standard back-propagation from the ELBO in Eq. (7). However, the
optimal propagation steps ¢ is discrete and non-differentiable which
makes direct optimization difficult. Therefore, we adopt Gumbel-
Softmax Sampling [21, 32], which is a simple yet effective way to
substitutes the original non-differentiable sample from a discrete
distribution with a differentiable sample from a corresponding
Gumbel-Softmax distribution. Specifically, we minimize the follow-
ing negative ELBO in Eq. (7) with the reparameterization trick [24]:

L(0, ¢) = ~logpg(yIGNN(X, A, 1)) + KL(gg(tn IX, A)lIp(tn)), (12)

where { is drawn from a categorical distribution with the discrete
variational distribution q(tn|X, A) parameterized by ¢

o exp((loa(gy(t X, Allax) + g0/ o)
KT K expl(log(qy(ta X, Alar D) + gx)/vg)

(13)

where {g;/ }kK':o are i.i.d. samples drawn from the Gumbel (0, 1) dis-
tribution, yg is the softmax temperature, iy, is the k-th value of sam-
ple i and q¢(tnlX, A)[ax] indicates the ag-th index of g4 (t|X, A),
i.e., the logit corresponding the (a; — 1)-th layer. Clearly, when
7 > 0, the Gumbel-Softmax distribution is smooth so ¢ can be
optimized by standard back-propagation. The KL term in Eq. (12) is
respect to two categorical distributions, thus it has a closed form.
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5 BI-LEVEL VARIATIONAL INFERENCE

So far, we have proposed the L2P framework and shown how to
solve it via variational inference. However, as suggested by previous
work [13, 37], GNNs suffer from over-fitting due to the scarce label
information in the graph domain. In this section, we propose the
bilevel variational inference to alleviate the over-fitting issue.

5.1 The Bi-level Objective

For our L2P framework, the introduced inference network for joint
learning optimal propagation steps in L2S and L2Q also increases
the risk of over-fitting as shown in experiments (§ 6.4). To solve
the over-fitting issue, we draw inspiration from gradient-based
meta-learning (learning to learn) [15, 31]. Briefly, the objective of
¢ is to maximize the ultimate measure of the performance of GNN
model pg(y|GNN(X, A, t)), which is the model performance on a
held-out validation set. Formally, this goal can be formulated as the
following bi-level optimization problem:

m;n Lo (07(9), §) s.t.0%(9) = arg mein Lirain(0, 9), (14)
where L, (0%(¢), ¢) and Liain(0, ¢) are called upper-level and
lower-level objectives on validation and training sets, respectively.
For our L2P framework, the objective is the negative ELBO L(6, ¢)
in Eq. (7). This bi-level update is to optimize the propagation strate-
gies of each node so that the GNN model performs best on the
validation set. Instead of using fixed propagation steps, it learns
to assign adaptive steps while regularizing the training of a GNN
model to improve the generalization. Generally, the bi-level opti-
mization problem has to solve each level to reach a local minimum.
However, calculating the optimal ¢ requires two nested loops of
optimization, i.e., we need to compute the optimal parameter 6*(¢)
for each ¢. Thus, in order to control the computational complexity,
we propose an approximate alternating optimization method by
updating 0 and ¢ iteratively in the next section.

5.2 Bi-level Training Algorithm

Indeed, in general, there is no closed-form expression of 0, so it is
not possible to directly optimize the upper-level objective function
in Eq. (14). To tackle this challenge, we propose an alternating
approximation algorithm to speed up computation in this section.
Updating lower level 0. Instead of solving the lower level problem
completely per outer iteration, we fix ¢ and only take the following

gradient steps over mode parameter 6 at the i-th iteration:
09 = 0 — g Vo Luain(0, 1), (15)

where g is the learning rate for 6.

Updating upper level ¢. After receiving the parameter 69 (a
reasonable approximation of 9(*)(45)), we can calculate the upper
level objective, and update ¢ through:

¢ = g0~y Vg La (07, 070,

Note that 69 is a function of ¢ due to Eq. (15), we can directly back-
propagate the gradient through 0 to ¢. the V¢£Val(6(i), ¢(i’1))
can be approximated as (see Appendix A.2 for detailed derivations):

Vg Loat(0D, ) = Vs L,(0D, 407) a7
L i— i i-1) (i-
=10~ (Vg Lusain(0"™V + €0, 607) = Vs Lurain (077, 4171)),

(16)
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where v = Vg.Cval(G(i), (ﬁ(i_l)), and 6 and (ﬁ(i_l) means stopping
the gradient. This can be easily implemented by maintaining a
shadow version of 81 at last step, catching the training loss
Lirain(007D), ¢(i’1)) and computing the new loss Lirain (007D +
€v, ¢(i’1)). When ng is set to 0 in Eq. (17), the second-order de-
rivative will disappear, resulting in a first-order approximate. In
experiments in § 6.4, we study the effect of bi-level optimization,
and the first- and second-order approximates.

Given the above derivations of gradients, we have the com-
plete L2P algorithm by alternating the update rules in Egs. (15)
and (16). The time complexity mainly depends on the bi-level op-
timization. For the first-order approximate, the complexity is the
same as vanilla GNN methods. L2P needs approximately 3 X train-
ing time for the second-order approximate since it needs extra
forward and backward passes of the weight to compute the bilevel
gradient. However, as the experiments in § 6.4 show, the first-order
approximate is sufficient to achieve the best performance.

6 EXPERIMENT

In this section, we conduct experiments to evaluate the effectiveness
of the proposed frameworks with comparison to state-of-the-art
GNN:ss. Specifically, we aim to answer the following questions:

(RQ 1) How effective is the proposed L2P framework for the node
classification task on both heterophily and homophily graphs?

(RQ 2) Could the proposed L2P alleviate over-smoothing?

(RQ 3) How do the proposed learning algorithms work? Could the
bi-level optimization alleviate the over-fitting issue?

(RQ 4) Could the proposed framework adaptively learn propagation
strategies for better understanding the graph structure?

(RQ 5) Could the proposed L2P framework effectively the personal-
ized and interpretable propagation strategies for each node?

6.1 Experimental Settings

Datasets. We conduct experiments on both homophily and het-
erophily graphs. For homophily graphs, we adopts three standard
citation networks for semi-supervised node classification, i.e., Cora,
CiteSeer, and PubMed [46]. Recent studies [7, 22, 36] show that the
performance of GNNs can significantly drop on heterophily graphs,
we also include heterophily benchmark in our experiments, includ-
ing Actor, Cornell, Texas, and Wisconsin [7, 36]. The descriptions
and statistics of these datasets are provided in Appendix A.3.

Baselines. To evaluate the effectiveness of the proposed frame-
work, we consider the following representative and state-of-the-
art GNN models on the semi-supervised node classification task.
GCN [25], GAT [39], JK-Net [45], APPNP [26], DAGNN [50], In-
cepGCN [37], and GCNII* [7]. We also compare our proposed meth-
ods with GCN(DropEdge), ResGCN(DropEdge), JKNet(DropEdge)
and IncepGCN(DropEdge) by utilizing the drop-edge trick [37]. The
details and implementations of baselines are given in Appendix A.4.
Setup. For our L2P framework, we consider APPNP as our back-
bone unless otherwise stated, but note that our framework is broadly
applicable to more complex GNN backbones [7, 25, 39]. We ran-
domly initialize the model parameters. We utilize the first-order
approximate for our methods due to its efficiency and study the ef-
fect of second-order approximate separately in § 6.4. For each search
of hyper-parameter configuration, we run the experiments with 20

1899

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Table 1: Summary of results on homophily graphs. Note our
results can be easily improved by using a more complex
backbone. For example, by using GCNII* as our backbone,
L2S can achieve 85.6 + 0.2 on Cora and 80.9 + 0.3 on PubMed.

Method Cora CiteSeer PubMed
GCN 81.3 +0.8 71.1 £ 0.7 78.8 = 0.6
GAT 83.0 £ 0.7 72.5 + 0.7 79.0 £ 0.3
APPNP 833+05 71.8+05 79.7+0.3
JKNet 80.6 + 0.5 69.6 + 0.2 77.8 +£0.3
]KNet(Drop) 83.0 £ 0.3 72.2 £ 0.7 789 + 04
Incep(Drop) 83.0+0.5 723+04 79.3+03
DAGNN 84.2 +0.5 73.3+06 80.3+04
GCNITI* 853+02 732+08 803+04
L2S 849+03 742+05 80.2+05
L2Q 852405 74.6+0.4 80.4+0.4

Table 2: Node classification accuracy on heterophily graphs.

Method Actor Cornell Texas Wisconsin
GCN 26.86 52.71 52.16 45.88
GAT 28.45 54.32 58.38 49.41
Geom-GCN-I 29.09 56.76 57.58 58.24
Geom-GCN-P  31.63 60.81 67.57 64.12
Geom-GCN-S  30.30 55.68 59.73 56.67
APPNP 32.41 73.51 65.41 69.02
JKNet 27.41 57.30 56.49 48.82
JKNet(Drop) 2921  61.08  57.30 50.59
Incep(Drop) 30.13 61.62 57.84 50.20
GCNII* 35.18 76.49 77.84 81.57
L2S 36.58 80.54 84.12 84.31
L2Q 36.97 81.08 84.56 84.70

random seeds and select the best configuration of hyper-parameters
based on average accuracy on the validation set. Hyper-parameter
settings and the splitting of datasets are given in Appendix A.5.

6.2 ROQ1. Performance Comparison

To answer RQ1, we conduct experiments on both homophily and
heterophily graphs with comparison to state-of-the-art methods.
Performance on homophily graphs. Table 1 reports the mean
classification accuracy with the standard deviation on the test nodes
after 10 runs. From Table 1, we have the following findings: (1) Our
L2S and L2Q improve the performance of the APPAP backbone con-
sistently and significantly in all settings. This is because that our
framework has the advantage of adaptively learning personalized
strategies via bi-level training. This observation demonstrates our
motivation and the effectiveness of our framework. (2) Our L2S
and L2Q can achieve comparable performance with state-of-the-art
methods such as DAGNN and GCNII* on Cora and PubMed, and
outperform them on CiteSeer. This once again demonstrates the
effectiveness of our L2P framework on the node classification task.
(3) In terms of our methods, the L2Q performs better than L2S,
indicting that the simple softmax is not the best parameterization
for the variational distribution of the latent propagation variable.

Performance on heterophily graphs. Besides the previously
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Table 3: Semi-supervised classification accuracy (%) on dif-
ferent connections using GCN as the backbone.

Dataset GCN Res JK Incep L2S L2Q
Cora 813 788 811 817 82.6 815
CiteSeer 711 705 69.8 70.2 713 719
PubMed 788 78.6 78.1 77.9 794 79.6
Actor 303 313 342 324 350 35.1
Cornell 57.0 602 646 665 702 70.5
Texas 59.5 657 66.5 75.6 80.3 80.5
Wisconsin ~ 59.9 71.2 743 75.1 80.0 80.1

mentioned baselines, we also compare our methods with three vari-
ants of Geom-GCN [36]: Geom-GCN-I, Geom-GCN-P, and Geom-
GCN-S. Table 2 reports the results. (1) We can observe that L2S
and L2Q outperform the APPNP backbone on four heterophily
graphs, which indicates our framework can still work well on the
heterophily graphs. (2) L2S and L2Q consistently improve GCNII*
by a large margin and achieve new state-of-the-art results on four
heterophily graphs. (3) We can find that the improvement on het-
erophily graphs is usually larger than that on homophily graphs
(Table 1). This is because the neighborhood information is noisy,
aggregating the neighborhood information may result in worse per-
formance for GCNII*. In contrast, our L2S and L2Q adaptively learn
the process of propagation which can avoid utilizing the structure
information which maybe not helpful for heterophily graphs.

0.86 Cora 0.90 Cornell
> >0.85
So.a )
5 5 0.80
S 0.2 S
<" <o7s5

0.80 0.70

W N e NS LIPS e AP\
ORI ARV SN C AN W0 99 I \,'LOQI N

Figure 4: Comparison of different learning algorithms.

Performance with the other backbone. To further show the ef-
fectiveness of our framework, we use the GCN as the backbone and
compare our methods with the following connection designs which
toward alleviate the over-smoothing or capture higher-order infor-
mation: Residual (Res) [25, 27, 37], Jumping knowledge (JK) [45],
and Inception (Incep) [37] connections. Table 3 shows the per-
formance of different connections on homophily and heterophily
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Table 4: Classification accuracy (%) results with different pre-
defined propagation steps on Cora.

Propagation Steps

Method 2 4 8 16 32 64

GCN 81.1 804 695 649 603 287
GCN(Drop) 82.8 820 758 757 625 495
JKNet - 80.2 80.7 80.2 81.1 715
JKNet(Drop) - 83.3 826 830 825 832
Incep - 77.6 765 81.7 81.7 80.0
Incep(Drop) - 829 825 831 831 835
GCNII* 80.2 823 828 835 849 853
L2S 82.2 828 849 846 84.6 84.6
L2Q 82.2 832 848 848 852 852

graphs. From Table 3, we have the following findings: (1) Our L2S
and L2Q outperform the baselines, especially in heterophily with
GCN backbone, which suggests that our framework is agnostic to
backbones and graphs. (3) Although the advanced connections such
as Res and JK can alleviate the over-smoothing, they still do not
outperform 2-layer GCN on homophily graphs. Our L2S and L2Q
are the only two methods that perform better than GCN across
all the datasets. These findings show that our L2P framework can
effectively adapt to both heterophily and homophily graphs.

L2S L2Q
Cora Cora I

CiteSeer 0.070 CiteSeer 04
PubMed PubMed 0.3

Wisconsin -0.065  wisconsin
Cornell Cornell I [0-2
Actor -0.060 Actor -0.1

Texas Texas

02 46 810121416 0246 810121416

Figure 5: The propagation distributions on different graphs.

6.3 RQ2. Over-smoothing

To answer RQ2, we study how the proposed methods perform as
the number of layers increases compared to state-of-the-art (deep)
GNNs. We vary the number of layers as {2, 4, 8, 16, 32, 64}. We only
report the performance on Cora as we have similar observations on
other datasets. Table 4 summaries the semi-supervised results for
the deep models with various propagation steps. We observe that
the performance of proposed methods consistently improves as
increasing the number of layers, which indicates the effectiveness
of our L2P framework. For all cases, the proposed methods achieve
the best accuracy under a depth beyond 2, which again verifies the

L2S L2Q

1.0 1.000

Cora -- Cora
CiteSeer CiteSeer 0.975
PubMed PubMed
Wisconsin -0.8  Wisconsin -0.950
Cornell Cornell
Actor Actor -0.925
Texas -06 Texas

SN & @ L0 SN & o
@ &P S F @ L NS &
S 2P @ & ¥ S P @& e
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Figure 6: Graph correlation obtained from our learned prop-
agation distributions. Similar graphs are more correlated,
such as Cora is closer to CiteSeer than Texas.
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Figure 7: Case studies of the personalized propagation on two homophily datasets. The bigger node in each sub-graph is the
test node. The propagation distributions learned by L2Q of the test nodes are visualized with heatmaps (bottom).
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Figure 8: Case studies of the personalized propagation on two heterophily datasets. The bigger node in each sub-graph is the
test node. The propagation distributions learned by L2Q of the test nodes are visualized with heatmaps (bottom).

impact of L2P on formulating graph neural networks. Notably, our
methods achieve the best performance as we increase the network
depth to 64 and the results of our methods remain stable with
stacking many layers. On the other hand, the performance of GCN
with DropEdge and JKNet drops rapidly as the number of layers
exceeds 32, which represents that they suffer from over-smoothing.
This phenomenon suggests that with an adaptive and personalized
message propagation strategy, L2P can effectively resolve the over-
smoothing problem and achieve better performance.

6.4 RQ3. The Effect of Learning Algorithms

To answer RQ3, We first compare the performance of alternate
expectation maximization (EM) and iterative variational inference
(VI). From Figure 4, we can find that our methods with two learning
algorithms both achieve better performance compared to the best
results of APPNP, which verifies the effectiveness of our learning
algorithm. In general, the iterative VI achieves better performance
than the EM algorithm. We then analyze the model loss of sto-
chastic bi-level variational inference with training (we optimize ¢
simultaneously with 6 on training data without validation), first-
order and second-order approximates. Figures 3 show the learning
curves of training loss and validation loss on the Texas and PubMed
datasets of L2Q. We can observe that the training gets stuck in the
overfitting issue attaining low training loss but high validation loss.
The gap between training and validation losses is much smaller for
first-order and second-order. This demonstrates that the bilevel op-
timization can significantly improve generalization capability and
the first-order approximate is sufficient to prevent the overfitting.

6.5 RQ4. Adaptive Propagation Strategies.

One of the most important properties of our framework is that the
learned propagation strategy is interpretable and is different for
different types of graphs and nodes. Thus, in this subsection, we in-
vestigate if the proposed framework can learn adaptive propagation
strategies, which aims to answer RQ4. We visualize the average
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propagation distribution (via averaging propagation distributions
of all nodes) for seven graphs learned by L2S and L2Q with K=16 in
Figure 5. The darkness of a step represents the probability that the
step is selected for propagation. From Figure 5, we can find that (1)
different types of graphs exhibit different propagation distributions
although the pre-defined step is 16 for all of them. For instance, the
0-th step probability in heterophily graphs is much larger than that
of homophily graphs. This is because that the feature information
in those heterophily graphs is much more important than the struc-
ture information. (2) The propagation distribution learned by L2Q is
much sparse, and the layers on the tail are less likely to be sampled.
In Figure 6, we also provide the correlation, i.e. the cosine similarity
of learned propagation distributions of different graphs. We clearly
observe the correlations between the same types of graphs are large
while the correlation between homophily and heterophily graphs
is small, which meets our expectation that similar types of graphs
should generally have similar propagation strategies.

6.6 RQ5. Personalized Propagation Strategies

To evaluate if L2P can learn good personalized and interpretable
propagation for RQ5, we study the propagation strategy for indi-
vidual nodes. Figures 7 and 8 show the case studies of personalized
propagation on homophily and heterophily graphs. In Figures 7
and 8, we plot the 3-hop neighborhood of each test node and use
different colors to indicate different labels. We find that a test node
with more same class neighbors tends to propagate few steps. In
contrast, a test node with fewer same class nodes will probably have
more propagation steps to predict truly its label. This observation
matches our intuition that different nodes need different propaga-
tion strategies, and the prediction of a node will be confused if it has
too many propagation steps and thus can not benefit much from
message propagation. Additionally, we can find that our framework
successfully identifies the propagation steps that are important for
predicting the class of nodes on both homophily and heterophily
graphs and has a more interpretable prediction process.
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7 CONCLUSION

In this paper, we study the problem of learning the propagation
strategy in GNNs. We propose learning to propagate (L2P), a gen-
eral framework to address this problem. Specifically, we introduce
the optimal propagation steps as latent variables to help find the
maximum-likelihood estimation of the GNN parameters and infer
the optimal propagation step for each node via the VEM. Further-
more, we propose L2S and L2Q, two instances to parameterize the
variational propagation distribution and frame the variational in-
ference process as a bi-level optimization problem to alleviate the
over-fitting problem. Extensive experiments demonstrate that our
L2P can achieve state-of-the-art performance on seven benchmark
datasets and adaptively capture the personalized and interpretable
propagation strategies of different nodes and various graphs.
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A APPENDIX

A.1 Derivations of the Evidence Lower Bound

logpo (v X A) =1og ), _ p0 (7| GNN(X, A, ta) pltn)

= Eq(r,) [log po (yn IGNN(X, A, t2))] = KL(q(tn)||p(2n))

+KL(q(#n)l|p(£n X, A, yn))

> L(0, g) = Eg(z,) [log po (yn1X, A, tn)] = KL(q(tn)l|p(tn))-
The inequality holds since the KL (q(tn)|[p(tn|X, A, yn)) is always
no less than zero. The ELBO itself is a lower bound on the log

evidence (the log-likelihood), whilst the variational distribution
q(tn) serves as an approximation of the posterior p(t,|X, A, yn) [3].

(18)

A.2 Derivations of the Bi-level Gradient

6 is a function of ¢ due to Eq. (15), we can directly back-propagate
the gradient through 6() to ¢. Based on the chain rule, the gradient
V¢£Val(9(i), qﬁ(i_l)) can be approximated as follows:

Vo Loa(6, ¢7Y)

= Vo Leat(0D, 1170) + Vg Lo (0D, $170)

=V La(0, 6570) + V) L0, 37V 01(9)

= Vg Lya(07, 67 V)+

Vo Lua (0, §17) V5017 — 119 Vg Lirain(6877), $171)) =

(19

Vo Lya(09, ¢07D) = gV La(09), )V Vg Lirain(007, D).

In the last line, we make a Markov assumption that V¢9i_1 ~ 0, as-
suming that at iteration step i, given 6;_1 we do not care about how
the values of ¢ from previous steps led to 8;_1. This assumption can
decrease the computation cost, and it has already shown empirical
success in prior works on the bi-level optimization [1, 2]. For the
second-order term ngjval(e(i), (;5(i_l))V(’,;Vthmin(@(i_l), ¢(i_l)),
we further propose an efficient approximation of it by utilizing the
first-order Taylor expansion of VgV 4 Lirain (041, ¢(i=1)y specifi-

cally, for any vector v € R ‘9|, with small € > 0, we have:

0T - VgV g Lirain(007, 071 (20)

1 iy - o
~ (Vg Larain(@ ™ + €0, 607) = Vg Lirain(607, 417D)).
Given this, V5 L1 (0), $71) in Eq. (19) can be approximated as:

V¢‘£Val(9—(i)’ ¢(i_l)) - UQVG‘-Lval(Q(i), ¢(i_1))-

Vs Vo Lirain(0, 07 = vy £,(01, g171) (21)

1 - i i i
=10~ (Vg Larain(0 ™ + €0, 607) = Vg Lirain(607, §17D)),
where v = Vi L(09), D).

A.3 Datasets Description and Statistics

In our experiments, we use the following real-world datasets. The
statistics of datasets are given in Table 5.

Cora, PubMed and CiteSeer are citation and homophily graphs,
which are among the most widely used benchmarks for semi-
supervised node classification [25, 39, 46]. In these citation datasets,
nodes are documents, and edges are citations. Each node is assigned
a class label based on the research field. These datasets use a bag of
words representation as the feature vector for each node.
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Table 5: The statistics of datasets.

Dataset Classes Nodes Edges Features
Cora 7 2,708 5,429 1,433
Citeseer 6 3,327 4,732 3,703
PubMed 3 19,717 44,338 500
Actor 5 7,600 26,659 932
Texas 5 183 309 1,703
Cornell 5 183 295 1,703
Wisconsin 5 251 499 1,703

Actor is a heterophily graph representing actor co-occurrence in
Wiki pages [36] based on the film-director-actor-writer network.

Texas, Wisconsin and Cornell are heterophily graphs represent-
ing links between web pages of the corresponding universities,
originally collected by the CMU WebKB project. We use the pre-
processed datasets in [36]. These datasets are web networks, where
nodes and edges represent web pages and hyperlinks, respectively.

A.4 Baselines and Implementations

GCN: GCN [25] is a widely used graph convolutional model.
GAT: GAT [39] utilizes the attention mechanism and assigns dif-
ferent weights to different neighborhoods in the propagation step.
JK-Net: JK-Net [45] utilizes dense connections to leverage different
neighbor ranges for better representations of nodes.

APPNP: APPNP [26] adds the original node feature to the repre-
sentation learned by each layer, which can well preserve the per-
sonalized information of nodes so as to alleviate over-smoothing.
DAGNN: DAGNN [50] proposes adaptive weighting to integrate
representations from different aggregation steps into the last layer.
IncepGCN:IncepGCN [37] utilizes inception backbones with graph
convolution layers to capture the information from different hops.
GCNII: GCNII [7] improves GCN by adding residual connection
and identity mapping. We compare our methods with GCNII* which
is a variant of GCNII employing two weight matrices, since it can
generally achieve better performance than GCNII as shown in [7].
Implementations. For all baselines, we used the official imple-
mentation publicly released by the authors on Github.

Hardware. We ran our experiments on GeForce RTX 2080 Ti (11G).

A.5 Experimental setup

Dataset splitting. For homophily graphs (Cora, PubMed, and Cite-
Seer), we follow the widely used semi-supervised setting in [25, 39,
46] and apply the standard fixed training/validation/testing split
with 20 nodes per class for training, 500 nodes for validation and
1,000 nodes for testing. For heterophily graphs, we use the feature
vectors, class labels, and 10 random splits (48%/32%/20% of nodes
per class for train/validation/test) from [36, 52].

Parameter setting. We randomly initialize the parameters. For
our methods, the hyper-parameter search spaces are as follows:
dropout (0.2, 0.4, 0.6), learning rate (0.001, 0.005, 0.01), hidden layer
size (64, 128), L2 weight-decay (5e-4, le-4, 5e-6, 1le-6). For all meth-
ods. the propagation steps K is tuned from (2,4, ..., 32, 64). For
each search of hyper-parameter configuration, we run the experi-
ments with 20 random seeds and select the best configuration of
hyper-parameters based on average accuracy on the validation set.
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