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ABSTRACT attention [1, 9, 15, 38]. Generally, GNNs adopt the message-passing

Graph Neural Networks (GNNs) have achieved promising results
for semi-supervised learning tasks on graphs. Despite the great
success of GNNs, real-world graphs are often sparsely and noisily
labeled, which can significantly degrade the performance of GNNs,
as the noisy information can propagate to unlabeled nodes via
graph structure. Thus, it is crucial to develop a label noise-resistant
GNN for node classification. Though extensive studies have been
conducted to deal with noisy labels, they mostly focus on indepen-
dent and identically distributed data and assume a large number
of noisy labels are available, which are not applicable for GNNs.
Thus, we investigate a novel problem of learning a robust GNN with
noisy and limited labels. To alleviate the negative effects of label
noise, we propose to link the unlabeled nodes with labeled nodes
of high feature similarity to bring more clean label information.
Furthermore, accurate pseudo labels could be obtained by this strat-
egy to provide more supervision and further reduce the effects of
label noise. Our theoretical analysis and extensive experiments on
real-world datasets verify the effectiveness of our proposed method.
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1 INTRODUCTION

Graph structured data is very pervasive in real-world, such as social
networks [9], financial transaction networks [37] and traffic net-
works [40]. Graph Neural Networks (GNNs) have shown great abil-
ity in modeling graph structured data and are attracting increasing
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process to update node representations by aggregating the informa-
tion from their neighbors [15, 36]. One of the most important and
popular tasks that benefits from this message-passing mechanism
is node classification in a semi-supervised manner. With this mech-
anism, labeled nodes can propagate their information to unlabeled
nodes [9, 35], thus resulting in superior performance of GNNS.

Despite the great performance of GNNs for semi-supervised node
classification, the majority of existing methods assume the training
labels are clean; while for many real-world graphs and applications,
the collected labels could be noisy and limited. For instance, for the
geo-location prediction in social networks, only a small portion of
users will fill in the geo-location; and the provided locations can be
noisy because users randomly fill in wrong locations to protect their
privacy or users have moved to new locations but forget to update
them in social networks [21]. Similarly, for bot detection in social
media, the labeling process can be tedious, costly, and error-prone,
which can end up with limited noisily labeled nodes [17].

The graph with noisy and limited labels could significantly de-
grade the performance of GNNs for semi-supervised node classi-
fication. First, recent work has shown that neural networks will
overfit to the noisy labels and results in poor generalization perfor-
mance [31, 42]. As a generalization of neural networks for graphs,
GNN:ss are also likely to have poor performance trained on noisy
labels. Second, for graphs, the noisy information can propagate
through the network topology. Falsely labeled nodes will nega-
tively affect their unlabeled neighbors. Since the graph is sparsely
labeled, neighbors of falsely labeled nodes are unlikely to accept
the information from nodes with true labels to correct the repre-
sentations. In addition, many unlabeled nodes will only be able
to aggregate information from unlabeled nodes when the labels
are limited. Thus, the performance of GNNs trained on noisily and
sparsely labeled graph would be poor.

Though extensive approaches have been proposed for learning
with noisy labels such as loss correction [7, 31] and sample selec-
tion [10, 13, 19, 23, 41], they are not directly applicable for learning
GNNs with limited noisy labels. First, generally, these methods as-
sume a large amount of noisy labels are available for learning noise
distribution or for sampling correct labels. They are challenged
by the small label size. Second, the majority of existing work for
noisy labels [10, 19, 23, 31] focus on independent and identically
distributed (i.i.d) data such as images, which cannot handle the
information propagation of noisy labels on graphs. The work on
learning a robust GNN with noisy and limited labels is rather lim-
ited [8, 43]. Therefore, it is important to develop a robust GNN that
could deal with noisy and limited labels.

Since the labeled nodes can propagate its information to the un-
labeled nodes, it is promising to correct the predictions of unlabeled
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nodes affected by falsely labeled nodes by linking them with nodes
of clean labels. However, in practice, we do not know which labels
are clean. Alternatively, for an unlabeled node v;, we propose to
link v; with labeled nodes of high feature similarity with v; to make
it robust to label noise and facilitate the message passing of GNNs.
The basic idea is if two nodes have high feature similarity, they
are more likely to have the same label. Thus, if the probability that
labeled nodes having correct labels is higher than that of having
incorrect labels, by connecting v; with more labeled nodes of high
feature similarity with v;, we can potentially bring more correct
label information to v;. Our theoretical and empirical analysis in
Sec 3.4 verify the effectiveness of linking unlabeled nodes with
noisily labeled nodes under mild conditions. In addition, with this
strategy, we can first train a classifier to obtain accurate pseudo
labels to ease the problem of learning with noisy and limited labels.
By extending the label set with pseudo labels, more supervision
could be utilized to make predictions for unlabeled nodes. Link-
ing unlabeled nodes with similar nodes of accurate pseudo labels
could further reduce the issue of label noise, which is verified in
Sec 3.5. Though promising, there are no existing work exploring
these strategies for learning GNNs with noisy and limited labels.

Therefore, in this paper, we investigate a novel problem of learn-
ing Noise-Resistant GNNs on sparsely and noisily labeled graphs.
In essence, we are faced with two challenges: (i) How to effectively
link unlabeled nodes with labeled nodes to alleviate the effects of
label noise and benefit the prediction? (ii) Given the graph with
noisy and limited labels, how can we obtain accurate pseudo labels?
To solve these challenges, we proposed a novel framework named
noise-resistant GNN (NRGNN)!. NRGNN adopts a GNN-based edge
predictor to predict edges to benefit the classification on graphs
with noisy and limited labels. Since the existing edges in the graph
generally link nodes in similar attributes [24], these edges could
provide supervision to train a good edge predictor. The graph den-
sified by linking unlabeled nodes with similar noisily labeled nodes
is utilized to obtain accurate pseudo labels, which extends the label
set to provide more supervision for node classification. NRGNN
also adopts the edge predictor to link unlabeled with similar ex-
tended labeled nodes to further reduce the effects of label noise. In
summary, our main contributions are:

o We investigate a novel problem of learning noise-resistant GNNs
on graphs with noisy and limited labels;

e We propose a new framework which can generate accurate
pseudo labels and assign high-quality edges between unlabeled
nodes and (pseudo) labeled nodes to alleviate label noise issue;

o Theoretical and empirical analysis are conducted to verify the
effectiveness of the proposed strategies against label noise;

e Extensive experiments on real-world datasets demonstrate the
effectiveness of the proposed NRGNN in node classification on
graphs with noisy and limited labels.

2 RELATED WORK
2.1 Graph Neural Networks

Graph neural networks (GNNs) have shown great ability in model-
ing graph structured data. They have achieved remarkable success

!https://github.com/EnyanDai/NRGNN

228

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

in various applications such as social networks [3, 9], financial
transaction networks [37] and traffic networks [40, 45]. Based on
the definition of graph convolution, GNNs can be generally di-
vided into two categories, i.e., spectral-based [1, 4, 12, 15, 18] and
spatial-based [2, 9, 34, 36, 39, 46]. Bruna et al. [1] first explored
spectral-based GNNs by utilizing the spectral filter on the local
spectral space. Since then, various spectral-based methods are de-
veloped for further improvements [4, 12, 15, 18]. For instance, Kipf
and Welling [15] propose Graph Convolutional Network (GCN)
which simplifies the graph convolution. Spatial-based graph convo-
lution directly updates the node representation by aggregating its
neighborhoods’ representations [6, 9, 28, 39]. For example, graph
attention network (GAT) [36] applies the self-attention mechanism
into the aggregation of spatial graph convolution. Graph Isomor-
phism Network (GIN) [38] is proposed to learn more powerful
representations of the graph structures. Moreover, various spatial-
based methods are investigated to solve the scalability issue of
GNNss [2, 9].

However, as a generalization of neural networks on graph struc-
tured data, GNNs are also vulnerable to noisy labels [29, 44]. In
addition, due to the message passing mechanism of GNNs, the noisy
label information will pass to the unlabeled nodes, which severely
degrades the performances of GNNs. For example, [29] shows that
the performance of GNNs will drop significantly when noises are
added to the training labels. However, very few efforts are taken
to address the problem of learning GNNs on graphs with noisy la-
bels [29, 31]. D-GNN [29] applied the backward loss correction [31]
to reduce the effects of noisy labels. Zhang et al. [44] avoid the
overfitting of the noisy labels by adding a regularization which
encourages the learned representations well predict the commu-
nity labels. Our proposed framework is inherently different from
aforementioned methods. We investigate a novel framework which
could achieve robustness towards noisy labels in graphs by carefully
connecting unlabeled nodes with (pseudoly) labeled nodes.

2.2 Deep Learning with Noisy Labels

It is shown in [42] that a standard deep neural network will overfit
to the noisy labels and results in poor generalization performance.
Extensive studies have been investigated to address this problem
on iid data such as images, which can be generally categorized
into two groups: loss correction [7, 22, 31, 32] and sample selec-
tion [10, 13, 19, 23, 41]. The loss correction methods correct the loss
of training samples with noisy labels. For example, Goldberger and
Ben-Reuven [7] propose a noise adaptation layer to automatically
learn the noise transition matrix and sequentially apply it to correct
the loss in S-model. Patrini et al. [31] estimate the label corruption
matrix and propose two ways of correcting the loss, i.e., forward
and backward correction. Bootstrap [32] handles noisy labels by
augmenting the prediction objective with a notion of consistency.
The sample selection methods aim to find the clean samples during
the training process. For example, Decoupling [23] deploys two
networks to select clean samples and update the two networks
with the clean samples obtained from each other. MentorNet [13]
pre-trains a teacher network to reweight the samples during the
training process of the student network. Coteaching [10] also em-
ploys two networks and selects the small-loss samples as clean
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samples for each other. Moreover, Coteaching+[41] incorporates
additional rule of updating when disagreement to improve the per-
formance of Coteaching. Recently, methods that utilize the data
points that are not selected as clean samples by semi-supervised
learning methods are also investigated [19, 27].

However, the aforementioned approaches are dedicated to ii.d
data, which may not be directly applicable to GNNs for handing
noisy labels because the noisy information can propagate via mes-
sage passing of GNNs. Therefore, we propose a novel approach
NRGNN to handle the label corruption on the graph-structured
data. Furthermore, we address the challenge of learning with labels
that are often noisy and limited in graphs.

3 PRELIMINARIES

In this section, we firstly introduce the basic design of GNNs. Next,
two strategies of addressing the problem of learning on noisily and
sparsely labeled graphs are analyzed theoretically and empirically.

3.1 Notation

We use G = (V, E) to denote a graph, where V = {v1,...,oN} is
the set of N nodes, & € V x V is the set of edges, and A € RNXN
is the adjacency matrix of the graph G, where A;; = 1 if nodes v;
and v are connected, otherwise A;; = 0. X = {x1,...,xn} is the
set of node attributes with x; being the node attributes of node v;.
Vi = {v1, ...,v1} is a set of labeled nodes. Viy =V — Vp is a set of
unlabeled nodes. The provided labels of V}, are corrupted by noise,
which are denoted as Yy = {y7], ..., yl"}. And Yr = {yi, ylt} is
used to represent the true labels.

3.2 Preliminaries about GNN

Graph neural networks (GNN5s) utilize the node features and the
graph structures to learn presentations for prediction. Specifically,
each layer of GNNs will update the representations of the nodes
using the representations of the neighborhood nodes. Thus, the
representations after k layers’ aggregation would capture the infor-
mation of the k-hop network neighborhoods, which would benefit
the node classification. Generally, the updating process of the k-th
layer in GNN is formally stated as:

al® = AGGREGATE* D ({h* ™V . u e N(0)}), "
1
h{® = COMBINE®) (k1 a(R)),

where hl(,k) is the representation vector of the node v € V at k-th
layer and N (v) is a set of neighborhoods of v. GCN is one of the
most popular GNN structures, which could be viewed as a special
case of Eq.(1). Each layer of GCN can be written as:

HKD = g(AHPWHR), )

where H®) is the representation matrix of the output of the k-th

~ 1 1
layer; A = D72 (A +I)D™ 2 is the normalized adjacency matrix and
D is a diagonal matrix with D;; = }}; A;;. I is the identity matrix
and o is an activation function such as ReLU.

3.3 Problem Definition

Given the notation in Sec 3.1, the problem of learning a robust GNN
with noisy and limited labels is formally defined as:
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PrOBLEM 1. Given a graph G = (V,&,X) with a small set of
nodes Vy, € V provided with noisy labels Yx;, we aim to learn a
robust GNN which predicts the true labels of the unlabeled nodes, i.e.,

f(G.YN) > Wy 3)
where f is the function we aim to learn and Yy is the set of predicted
labels for unlabeled nodes.

3.4 How the Size of Noisily Labeled Neighbors
Affect the Node Classification

For a trained K-layer GNN with a set of learned parameters 6 =
{W(l), w (&K }, it makes predictions by Y = AHEO WK Since
the parameters 6 are well trained for node classification, the K-
th latent representations, i.e., S = H®WE) could be treated as
predictions of the nodes [5]. And the final predictions are obtained
by the aggregation of S, ie., Y = AS. Let’s treat s, as the predicted
probability that node v; belongs to class k. For an unlabeled v, € Vyy
belonging to class ¢, we consider three types of neighbors: (i) an
unlabeled node v, € Vys; (ii) a node vy, € Vy labeled as c; and (iii)
anode vy € Vy labeled to a class other than c. Since the GCN is
optimized to make sp. close to 1 and s, close to 0, generally we
could have E(sp.) > E(sqc) > E(sgc). To simplify the analysis, we
assume that nodes with high feature similarity belong to the same
class. Then, we can have the following theorem which indicates
that linking an unlabeled node with similar labeled nodes could
increase the robustness against label noise.

THEOREM 3.1. We consider an unlabeled node v, € Vi which
belongs to class c. It is linked with n unlabeled nodes and m labeled
nodes. The ratio of intra-class edges is h. Assume that:

(1) For labeled nodes, a node belonging to class c is more likely to
be labeled as c than a node not belonging to class c;

(2) The probability p; that a node belonging to class c is labeled

E(sac)—E(sdc)

E(spe)—E(sac) *

Then, linking v, with more similar noisily labeled nodes v; € Vy, can

on average improve its predicted probability of belonging to class c,

. 1
Le., improve yuc = - 2jeN (o) Sic-

as ¢ meets this constraint: p; >

The proof of this theorem is presented in Appendix B. When a
graph network network for multi-class classification is corrupted
with label noise, the predicted probability of an unlabeled node

v € Vy would be much smaller that the probability that a node
E(sac)—E(sdc)

labeled as c. Therefore, the assumption that p; > EGi) =BG

could be generally satisfied.

Empirical analysis: According to the Theorem 3.1, if we could link
the unlabeled nodes with more similar labeled nodes belonging to
the same class, we will have a more robust model. On the contrary,
linking unlabeled nodes may not be useful. To empirically verify
this, we utilize the cosine similarity scores of the raw features to
identify similar nodes. Then, edges could be added based on the
similarity scores. More specifically, we compare the results of the
following methods:

o Initial G: We train a GCN on the initial graph structure with
noisy labels as the baseline.



Research Track Paper

Table 1: Accuracy(%) of node classification with noisy labels.

Dataset | Noise Rate | Initial G Link Vyy Link Vi,
0.1 77.9 £0.3 77.8 £0.5 78.7 £0.4

Cora 0.2 72.8 £1.8 72.8 £1.0 74.0 £0.9
0.3 65.6 £0.8 65.8 £1.7 68.5 +1.4
0.1 68.1 £0.8 68.1 £0.6 69.0 +£1.0

Citeseer| 0.2 64.9 £1.7 65.2 £0.8 66.4 £1.5
0.3 60.4 +2.5 61.8 £1.0 62.7 £1.0

Table 2: Accuracy(%) of node classification with noisy labels.

Dataset Initial G Link V., Link Vp, (Retrain) Link V4
Cora 72.8 £1.8 74.0 £0.9 75.4 £1.0 77.1 £1.3
Citeseer 64.9 +1.7 66.4 £1.5 66.5 £1.5 68.0 +1.4

e Link V: For v, € Vy and v; € Vy, if their raw feature cosine
similarity is larger than t, we add a link between them. Then, a
GCN trained on G will make predictions with the new graph.

e Link Vy: Unlabeled nodes will be linked with other unlabeled
nodes if they have high cosine similarity of features. Similarly, a
GCN trained on G will make predictions with the new graph.

We conduct experiments on widely used benchmark Cora and Cite-
seer [33]. In both datasets, we randomly sample 5% nodes as labeled
nodes. And labels are corrupted by randomly flipping the true labels
to other class with a probability of p. More specifically, we vary the
noise rate. i.e. the probability that given labels is wrong, from 10%
to 30% with a step of 10%. The thresholds of cosine similarity are
selected based on the validation set. We report average results of 5
runs in Table 1. We could have the following observations:

e Linking the unlabeled nodes with unlabeled nodes shows no
difference from the results of training on initial graph.

e Even a simple strategy based on raw feature cosine similarity
to link unlabeled nodes with labeled nodes could benefit node
classification trained on noisy labels significantly.

o When the noise rate is raised to 0.3, linking unlabeled nodes with
similar labeled nodes still shows its effectiveness.

3.5 A Strategy On Graphs with Small Amount
of Noisy Labels

With the analysis in Sec. 3.4, we find that linking more existing
noisily labeled nodes with the unlabeled nodes could make more
robust predictions. However, the size of noisily labeled nodes are
often very small in graph-structure data. And an unlabeled node
may have small node similarity with the labeled nodes. In this
situation, the benefits from the strategy described in Sec 3.4, would
be largely limited. A strategy to address this problem is to obtain
accurate pseudo labels “Vp. As a result, we could have an extended
label set V4 = Vp U Vp. Then an unlabeled node can have more
similar nodes in V4 to have a more robust model. In addition, more
supervision from pseudo labels can be utilized. Let spc denotes the
predicted probability that node v, € Vp belongs to class ¢ based on
the K-th latent representations, i.e., S = HAWEK) The following
theorem verifies the effectiveness of this strategy when sy meets a
mild constraint.

THEOREM 3.2. We consider an unlabeled node v,, € Vi; which
belongs to class c. It is linked with n unlabeled nodes and m labeled
nodes. Let p denotes the probability that the existing linked labeled
nodes is labeled as c. For a node v, € Vp which is provided with

230

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Accurate Pseudo Label Miner f

Initial G

—————————

_________

Added Edge
Noisy -
Clean +

Accurate
Pseudo
Prediction &

Unlabeled

Figure 1: The overall framework of our method.
pseudo label, if E(spc) > max(E(sac), pPE(spe) +(1-p)E(sqc)), then,
linking v, withvp can improve its predicted probability of belonging
to class c, i.e., Yyc = i 2jeN(v) Sic-

The details of the proof is listed in Appendix C. To obtain pseudo

labels which meet the assumption to benefit the predictions under
label noise, we could utilize the strategy described in Sec 3.4 to
give better predictions. Furthermore, we can select the predictions
whose confidence scores are high.
Empirical analysis: To show the effectiveness of the strategy of
utilizing accurate pseudo labels, we conduct experiments with the
following process: 1) obtain a GNN classifier using the strategy of
linking unlabeled nodes and labeled nodes based on cosine similar-
ity; 2) select the predictions of unlabeled nodes whose confidence
scores are high as pseudo labels Vp to compose extended label set
V4 =V, UVp; 3) link Vy and V4 based on cosine similarity of
raw features, and train a GCN with the new graph with accurate
pseudo labels and noisy labels. This process is named as Link V4.
And the results of 5 runs on Cora and Citeseer with 20% uniform
noise are presented in Table 2. To make a fair comparison, we also
retrain the GCN on the graph densified by linking unlabeled nodes
with similar labeled nodes. From the Table 1, we could find that
with the strategy of utilizing accurate pseudo labels, the model
become more robust to the label noise.

4 METHODOLOGY

In this section, we present the details of the proposed framework
NRGNN. As shown in Sec 3, carefully linking unlabeled nodes with
nodes with noisy labels or accurate pseudo labels could benefit the
learning of GNNs on noisily and sparsely labeled graphs. However,
there are two main challenges: (i) How to accurately add edges
between unlabeled nodes and extended labeled nodes of the same
class to benefit the prediction? and (ii) Given the graph with limited
noisy labels, how to obtain accurate pseudo labels? To solve these
two challenges, we propose to learn a GNN-based edge predictor
using node attributes to assign high-quality edges. To obtain more
high-quality pseudo labels, we utilize the graph densified by linking
similar unlabeled nodes and noisily labeled nodes with the GNN-
based edge predictor. An illustration of the proposed framework
is shown in Fig. 1, which is composed of an edge predictor fg, a
pseudo label miner fp, and a GNN classifier f. The edge predictor
takes the initial graph G as input to predict edges. fg will first link
similar nodes between Vy; and V}, to obtain Gy, which could bene-
fit the pseudo label miner. The pseudo label miner fp adopts a GNN
classifier trained on Gy, to collect nodes with high-confident pseudo
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labels, denoted as “Vp. With the extended label set, the edge predic-
tor fg further connects unlabeled nodes Vi with similar nodes in
Vi, U Vp to form a new graph G4, which helps to propagate the
information from V;, U Vp to unlabeled nodes. The final GNN clas-
sifier fg takes G4 with the label set V; U Vp for robust prediction.
Next, we introduce each component in detail.

4.1 Edge Prediction

In many real-world networks, linked nodes generally have the same
labels or similar features [24]. For instance, papers are more likely to
cite papers belonging to the same research field, and friends tend to
share similar interests [26]. In addition, many real-world graphs are
very sparse and contains lots of missing links. For example, a social
media user may miss a lot of potential friends sharing same interests
and only follow a small number of people due to time limitation
in exploring friends online. Thus, link prediction algorithms can
learn from the attributed graph to predict the missing links, which
provides one direction for us to link nodes.

Our preliminary analysis in Sec. 3 has shown that by simply
using the node feature similarity based link prediction to connect
unlabeled nodes with labeled nodes could help to improve the per-
formance of GNNs with noisy labels. However, the simple approach
only considers node features to measure the similarity. While for
graphs, the local graph structure also provides another perspective
for measuring similarities. To better predict the missing links, we
propose to use a GNN-based edge predictor. Instead of simply rely-
ing on node features, the GNN-based edge predictor learns node
representations capturing both node features and local graph struc-
ture, and predict links based on the learned representations, which
could improve the link prediction performance. Following [16], our
edge predictor adopts the GCN to learn node representations as:

Z = GCN(A,X). 4

Let z; and z; denote the representations of node v; and v}, respec-
tively. The closer z; and z; are, the more likely v; and v; are linked.
Thus, the probability that v; and v; are linked can be calculated as

®)

where o(+) is the activation function. Because the learned weights
S would be fed into other modules and trained end-to-end, we use
ReLU as the activation function to avoid the gradient vanishing [11].

If the edge predictor could well reconstruct the adjacency ma-
trix A, then it would be good at predicting missing links. Thus,
following existing work [16], we use the adjacency matrix recon-
struction as the loss. However, the majority of the elements in A
are 0’s, which could dominate the loss function and result in edge
predictor fg simply outputting 0’s. To avoid this, we apply negative
sampling [25], i.e., for each positive sample A;; = 1, we randomly
sample K nodes which are not connected with node j as negative
samples. With the negative sampling, the loss function could be
formally written as:

K
I{OILHLE:Z Z ((Sij_1)Z+ZEUH~Pn(Ui)(Siﬂ_0)2) (6)

v;€V v;eN(v;) n=1

T
Sij = o(ziz;),

where 0F is the set of parameters of fg, N (v;) represents the neigh-
bors of node v;, and P, (v;) is the distribution of the nodes which

231

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

have no connections with node v; in the graph. With the GNN-
based edge predictor trained with Eq.(6), we could predict useful
missing edges to link unlabeled nodes and labeled nodes to benefit
the robust classification with noisy and limited labels.

4.2 Accurate Pseudo Label Prediction

According to the analysis in Sec. 3.5, more accurate pseudo labels
would better facilitate the training of GNNs with noisy and limited
labels. Thus, in this subsection, we describe how to obtain accurate
pseudo labels. Since connecting unlabeled nodes with labeled nodes
by link prediction can help improve the node classification of a GCN
on graph with noisy labels, we propose to first predict the missing
edges between Vy and Vy, with the edge predictor fg. Then, we
could obtain a densified graph Gy, to train a more accurate pseudo
label miner. Specifically, for v; € Vi and vj € V., if S;; is larger
than a threshold ¢, then v; and v; are more likely to have the same
label and we would connect them. If S;; < ¢, then the probability
that v; and v having the same label is small and we don’t want to
include such links. Thus, the process of obtaining the adjacency
matrix of G, could be formally stated as:

1 ifo; e N (vi);

Sij elseif Sjj > t,0; € Vy ando; € Vp;
0 else,

L
sk = 7)
where Sle indicates the weight of edges between node v; and v; in
G, and t is the threshold to filter out edges with small weights.
With SE, we can train a GNN classifier as pseudo label miner fp.
The pseudo labels of nodes V is predicted as:

¥ = GNN(sh, X), ®)

where GNN is flexible to various models such as GCN [15] and
GIN [38]. Its training objective function can be written as:

. _ N
ngl}l)nip— Z (@5 yi)s

v; VL

©)

where 0p is the parameters of the pseudo label miner fp, gf is the
prediction of node v; from fp, and I(-) is the cross entropy loss.
With SE, we can reduce the negative effects of label noise and have
more reliable pseudo labels for the unlabeled nodes. Intuitively, the
pseudo label whose confidence score is high should be more likely
to be correct. Let gch denotes the predicted probability that node v;
belongs to the class c. Then the accurate pseudo labels is obtained
by the following process:

Yp ={iF e YE.iF > 1), (10)

where y}lj is the set of predictions from the pseudo label miner
for unlabeled nodes, and Tp is the threshold to select the accurate

pseudo labels.

4.3 Robust Classification with Edge Predictor
and Accurate Pseudo Labels

The accurate pseudo labels Yp could facilitate the classification
with noisy and limited labels in two folds: (i) accurate pseudo labels
could provide more supervision for node classification; and (ii)
edges linking unlabeled nodes and accurate pseudo labeled nodes
could be added to reduce the effects of label noise. To fully utilize the
pseudo labels, we adopt the edge predictor fg to assign missing links
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between unlabeled nodes Vy; and extended labeled nodes V4 =
Vi, UVp, where Vp is the node set with accurate pseudo labels Yp.
Similar to the construction of S, we use the same threshold ¢ to
select links. This process is written as:

1 if vj € N (v);

Si]' elseifSij>t,v,-€(VU andij(VA;
0 else,

sj; = (11)
where S‘;} denotes the weight of edge linking node v; and v;. With
the extended label set V4 providing more label information, and
the new adjacency matrix facilitating the information propagation
from V4 to Vy, we can train a more robust GNN classifier against
the noisy for label prediction as

Y = f5(s4,X) (12)

where Y is the final label prediction. Similar to the accurate pseudo
label miner, the GNN classifier fg is flexible to various GNNs such as
GCN [15] and GIN [38]. The training of fg utilizes the supervision
from both noisy labels and accurate pseudo labels. The loss function
can be written as:

Lg= Y Wiy (13)
Z!,'E(VA
where y; denotes the noisy label or accurate pseudo label of the

node v; € V4 and §; denotes the prediction of node v; € V4.

4.4 Final Objective Function

With edge predictor adding links for facilitating the information
propagation, pseudo label miner providing more labels and the
GNN classifier predicting the labels, the overall loss function can
be written as:

argmin Lg +aLp + fLp, (14)

05.0p.,0g
where 0, Op, and 0g are the parameters of edge predictor fg,
accurate label miner fp and GNN classifier fg, respectively. a and
B are hyperparameters to balance the contributions of adjacency
matrix reconstruction loss of fg and the loss of pseudo label miner.
fg» fe and fp are jointly trained together with Eq.(14). The details
of the training algorithm is presented in Appendix A.

5 EXPERIMENTS

In this section, we conduct experiments on real-world datasets to

show the effectiveness of the proposed framework. In particular,

we aim to answer the following research questions:

o RQ11Is the proposed framework NRGNN robust to different types
and levels of label noise?

o RQ2 Is the proposed framework effective under different sizes
of noisy labels and graph sparsity?

e RQ3 Is NRGNN flexible to various GNN backbones and how do
the edge predictor and pseudo label miner contribute to NRGNN?

5.1 Experimental Settings

5.1.1 Datasets. We conduct experiments on four widely used bench-
mark datasets, i.e., Cora, Citeseer, Pubmed [33] and DBLP [30]. The
statistics of the datasets are presented in Table 4 in Appendix. The
validation and test sets are kept the same as the cited papers to keep
consistency. As for the training set, we randomly sample 5% nodes
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for Cora and Citeseer. For large datasets, i.e., Pubmed and DBLP,
we sample 1% nodes to compose the training set. All the training
set has no overlap with validation and test sets. Since the labels
of these datasets are clean, following [31, 32, 41], we corrupt the
labels of training and validation set with two types of label noises:

e Uniform Noise: The labels have a probability of p to be uni-
formly flipped to other classes.

o Pair Noise: Labelers are assumed to make mistakes only within
the most similar pair classes. More specifically, labels have a
probability of p to flip to their pair class.

5.1.2  Implementation Details. We report the average results with
standard deviations of 5 runs for all experiments. A two-layer GCN
whose hidden dimension is 16 is deployed as the backbone of the
edge predictor. Similarly, the pseudo label miner and GNN classifier
also uses two-layer GCNs as backbones, respectively. Note that
our framework is flexible to use various GNNs, which is demon-
strated by the experimental results in Sec 5.5. All hyper-parameters
are tuned based on the validation set. We vary « and  among
{0.001,0.01,0.1,1,10} and {0.001,0.01,0.1, 1, 10, 100}, respectively.
As for t and Tp, we fix them as 0.1 and 0.8 for all the datasets. And
the number of negative samples K is set as 50.

5.1.3 Baselines. We compare NRGNN with representative and
state-of-the-art GNNs and methods of learning with noisy labels:

e GCN [15]: GCN is a popular graph convolutional network based
on spectral theory.

o GIN [38]: Compared with GCN, GIN could learn more powerful
representations of graph structures by using multi-layer percep-
tion to process the information aggregated from the neighbors.

o Self-Training [20]: It first trains a GCN then picks the most
confident pseudo labels of GCN and puts it into the labeled node
set to improve the performance of GCN.

e Forward [31]: This is a loss correction method. It revises predic-
tions to obtain unbiased loss on noisy training samples.

e Coteaching+ [41]: This method maintains two networks to se-
lect clean samples for each other. More specifically, the small-loss
samples that obtain different predictions are selected for training.

e D-GNN [29]: It obtains a robust GNNs with backward loss cor-
rection [31] which estimates the unbiased loss on clean labels.

o CP [44]: Community labels obtained by clustering node embed-
dings are added to train GCN. It encourages the GCN capture
community information to avoid the overfitting to noisy labels.

We use GCN in Self-Training, D-GNN, CP and NRGNN to give
predictions. Forward, and Coteaching+ are proposed for i.i.d data.
To make a fair comparison, GCN is also adopted as backbone in
these methods.

5.2 Node Classification with Noisy Labels

To answer RQ1, we compare the proposed framework with base-
lines on graphs containing two types of label noise. In addition, we
conduct node classification on graphs corrupted by different levels
of label noise to demonstrate the effectiveness of our method.

5.2.1 Comparisons with Baselines. Two types of label noise, i.e.,
uniform and pair noise, are considered for all datasets. The noise
rate, i.e., the probability that a provided label is not correct, is set
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Table 3: Node classification performance (Accuracy (%)+Std) under various types of noise.

Dataset | Noise GCN GIN Self-Training Forward Coteaching+ D-GNN Cp Ours
Cora Uniform 72.8 £1.8 72.3 £0.9 75.6 £1.8 73.7 £0.7 73.6 £1.7 724 £1.8 74.8 £1.3 80.4 +£0.5
Pair 74.1 £0.7 74.7 £1.4 76.4 £1.4 76.0 £0.7 73.8 £1.4 73.5 £1.6 75.2 £1.4 79.5 £0.4
Citeseer Uniform 64.9 £1.7 65.7 £2.1 67.8 £1.4 65.0 £1.5 66.4 £1.3 64.9 £1.3 66.0 £1.6 70.1 +1.3
Pair 60.3 £1.0 61.6 £1.0 62.0 £1.6 61.6 +£0.4 65.1 £2.1 62.3 £1.2 62.0 £1.0 67.8 £1.3
Pubmed Uniform 77.3 £0.9 77.4 £0.5 78.2 £0.4 77.5 £0.4 78.6 £0.4 77.6 £0.3 78.6 £0.3 80.0 0.2
Pair 78.0 £0.4 78.1 £0.6 78.9 £0.8 79.6 £0.2 78.5 £0.1 79.4 £0.4 77.9 £0.3 80.0 +£0.3
DRBLP Uniform 71.0 £1.5 72.4 £0.7 74.9 £0.7 73.1 £0.3 73.5 £1.3 72.8 £1.2 74.2 £0.5 80.8 +0.4
Pair 72.5 +1.2 73.4 +2.1 76.3 +1.6 74.4 +0.5 72.7 +1.2 75.4 +0.9 73.6 +1.0 81.1+0.3
84 84 82 82
S S S S
> /6 >, /6 =76 577
5} [} %) %)
g g g o g o
—— — urs — urs
8 68 GCN 8 68 8 70 GCN 8 72 GCN
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Figure 2: Accuracy on Cora with various levels of label noise.

as 20% for both types of label noise. The size of the noisy labels is
the same as the description in Sec 5.1.1. The average results and
standard deviations of 5 runs are reported in Table 3. From this
table, we have the following observations:

e Both GCN and GIN perform poorly on graph with noisy and
limited labels; while methods utilizing pseudo labels such as
Self-Training have significantly better performance. This implies
pseudo labels are helpful to alleviate the issue of learning with
noisy and limited labels.

o Compared with Self-Training and CP which also utilize pseudo
labels, the proposed NRGNN achieve higher performance under
various scenarios, which is because NRGNN adopts edge predic-
tor to add missing links between unlabeled nodes and nodes with
noisy labels or pseudo labels to reduce the negative effects of
the label noise. Meanwhile, these added links also help to obtain
pseudo labels in higher quality .

o The loss correction or sample selection based methods such as
Coteaching+ and D-GNN bring limited improvements, which is
due to the small training set in semi-supervised learning setting.
By contrast, the proposed NRGNN outperforms these baselines
by a large margin, which is because NRGNN adopts a pseudo
label miner to extend the size of labeled nodes and mitigates the
effects of label noise by linking unlabeled nodes and extended
labeled nodes.

5.2.2  Performance under Different Levels of Label Noise. To demon-
strate the effectiveness of the proposed NRGNN under different
levels of label noise, we vary the noise rate as {0%, 10%, . .., 40%}.
The most effective baselines in Table 3 are implemented for compar-
isons. We only report the results on Cora, because we have similar
observations for other datasets. As mentioned in Sec 5.1.1, 5% nodes
are randomly sampled to compose the training set. The average
performance of 5 runs is shown in Figure 2. From the figure, we
have the following observations:
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Figure 3: Accuracy on Cora with various noisy label sizes.

o As the label noise level increases, the performance of all base-
lines drop dramatically. Though the performance of NRGNN also
drops, it is more resistant to the label noise. The performance gap
between NRGNN and the baselines increases when more noise
exists in the labels. This implies the effectiveness of handling
noisy and limited labels by extending the label set with accurate
pseudo labels and adding missing links between the unlabeled
and extended labeled node set.

e When there is little or no label noise, our proposed method still
outperforms GCN and methods utilizing pseudo labels such as
self-training. This is because adding high-quality edges between
unlabeled nodes and extended labeled nodes could facilitate the
message passing of GNNs.

5.3 Impacts of Noisy Label Size

In this subsection, we investigate how the size of noisy labels would
affect NRGNN to answer RQ2. We vary the label rate, i.e., the train-
ing size, as {2.5%, 5%, 7.5%, 10%}. The noise rates of both uniform
and pair noise are set as 0.2. We only report the results on Cora in
Figure 3 as we have similar observations on other datasets. Each
experiment is run 5 times. From Figure 3, we observe:

o Our proposed method brings the most significant performance
improvements when the label rate is as small as 2.5%. It indicates
the effectiveness of mining accurate pseudo labels to have more
supervision and benefit more from adding missing links between
the unlabeled nodes and nodes with accurate pseudo labels.

e With the increase of label size, the gap between our method
and the baselines only decrease slightly but is still large. This is
because accurate pseudo labels play a less important role when
the provided noisy labels are sufficient. Though the noisy labels
are sufficient, corrupted labels still degrade the performance of
GNN . The proposed NRGNN leverages the edge predictor to link
more unlabeled nodes and labeled nodes to alleviate the negative
effects of label noise. Thus, it can still outperform the baselines
when the size of labeled nodes are large.



Research Track Paper

80 80 /
s 75
& &70 //j
IS, IS
’5‘ 70 ’5‘ —e— Ours
&) —=— GCN © 65 —=— GCN
2 —+— CP 2 —4— Forward
65 —&— Forward 60 —>— CP
—4— Self-Training —4— Self-Training
20 40 60 80 100 20 40 60 80 100
Edge Rate (%) Edge Rate (%)
(a) Cora (b) DBLP

Figure 4: Performance on graphs with different densities.

5.4 Impacts of the Graph Sparsity

The proposed NRGNN relies on an edge predictor to predict the
missing links between the unlabeled nodes and labeled nodes to
alleviate the effects of noisy labels. And the supervision from the
adjacency matrix is utilized to have a good edge predictor. A natural
question is whether NRGNN is effective when the graph is very
sparse. Thus, to demonstrate that the edge predictor could learn
to add useful links for robust node classification with very sparse
graph, we train our model on sparse graphs obtained by randomly
selecting a subset of edges in original graphs. More specifically, we
vary the edge rate. i.e., the ratio of the selected edges, from 20% to
100% with a step of 20%. We only report the results on Cora and
DBLP corrupted by pair noise. The noise rate is set as 20%. Average
results of 5 runs are shown in Fig. 4. From the figure, we can observe
that our proposed model consistently outperforms the baselines by
a large margin on graphs of different sparse levels. This indicates
that even with a very sparse graph, the learned edge predictor still
could predict useful links between unlabeled nodes and nodes with
noisy labels or pseudo labels to benefit the accurate pseudo label
mining and alleviate the effects of label noise.

5.5 Ablation Study

To answer RQ3, we conduct ablation study to investigate the flexi-
bility of our proposed NRGNN and the contributions of the edge
predictor and the pseudo label miner. To investigate whether vari-
ous GNNs could be benefited from NRGNN, we replace the GCN
classifier with a GIN classifier. More specifically, the GIN classi-
fier is trained on the graph densified by linking similar unlabeled
nodes and extended labeled nodes with the accurate pseudo labels
produced by NRGNN. This variant is named as NRGNNgn. To
demonstrate the effectiveness of the GNN-based edge predictor, we
train a variant NRGNN\E by replacing the edge predictor with co-
sine similarity scores of raw features. To show the importance of the
pseudo label miner, we analyze it from two aspects. Firstly, to show
the contributions of pseudo labels, we train a variant NRGNN\P
which does not utilize pseudo labels. Secondly, to investigate how
the quality of pseudo labels will influence the final results, we re-
place the accurate pseudo label miner with a GCN trained on the
initial graph to obtain a variant named as NRGNN\A. All the hy-
perparameters of these variants are tuned following the process
described in Sec 5.1.2. Since we have similar observations in other
datasets, we only report the performance on Cora and DBLP. The
label rate is set the same as the description in Sec 5.1.1. The noise
rate is set as 20%. The results of 5 runs are reported in Figure 5.
From this figure, we can observe:
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NRGNNg/n achieves comparable results with NRGNN, which
indicates that NRGNN is flexible to various GNN backbones.
The performance of NRGNN\E is significantly worse than that
of NRGNN, which shows the necessity of learning a high quality
edge predictor to predict the missing links between unlabeled
nodes and extended labeled nodes.

The performance of NRGNN is better than that of NRGNN\A
and NRGNN\P, which implies that pseudo label miner is helpful
for learning a robust GNN with noisy and limited labels and high
quality pseudo labels can bring more benefits.

o NRGNN\P outperforms GCN by a large margin, which demon-
strates that linking unlabeled nodes with labeled nodes can alle-
viate the effects of label noise.

5.6 Hyperparameter Sensitivity Analysis

In this subsection, we investigate how the hyperparameters «
and f affect the performance of NRGNN. & controls how well the
edge predictor reconstructs the initial graph, and f controls the
learning of the pseudo label miner and its impact to the edge pre-
dictor. To explore the parameter sensitivity, we alter & and f as
{0.001,0.01,0.1, 1,10} and {0.001,0.01,0.1, 1, 10, 100}, respectively.
We report the results on the Cora graph corrupted by uniform and
pair noise with noise rate set as 20%. The experiments are con-
ducted 5 times and the average results are shown in Figure 6. From
the figure, we observe (i) Generally, with the increasing of «, the
performance tends to first increase and then decrease. A too small &
would lead to a weak edge predictor while a large « may dominate
the whole loss of NRGNN. The performance is relatively good and
stable when « is between 0.01 and 0.1, which eases the parameter
selection for NRGNN. (ii) Similarly, with the increment of f, the
performance tends to first increase and then decrease. When f is
between 0.1 and 10, the performance is relatively good.

6 CONCLUSION

In this paper, we investigate a novel problem of semi-supervised
node classification of GNN on sparsely and noisily labeled graphs.
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We theoretically and empirically verify the effectiveness of linking
unlabeled nodes with noisily labeled nodes under mild conditions.
We also show that pseudo labels could help to alleviate the limited
label issue. Based on the analysis, we propose a novel framework
NRGNN which utilizes an edge predictor to predict missing links
for connecting unlabeled nodes with labeled nodes, and a pseudo
label miner to expand the label set. With the new graph and the
extended label set, a more robust GNN is trained for node clas-
sification. Experimental results on real-world datasets show the
effectiveness of the proposed NRGNN on graphs with various types
and levels of noise and different label and graph sparsity. Further
experiments are conducted to understand the parameter sensitivity.
There are several interesting directions need further investigation.
First, in this paper, we mainly evaluate NRGNN under two types
of noises. In practice, an adversary might on purposely attack the
graph by flipping some labels to reduce the performance of GNN.
We will investigate the robustness of NRGNN under adversarial
label-flipping. Second, for some applications, the edges and node
attributes of the given graph can also be noisy, which might affect
the edge prediction. Thus, we will study how to extend NRGNN on
noisy graphs with noisy labels.

7
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Algorithm 1: Training Algorithm of NRGNN.

Input: G = (V,8,X),Y,K, t, T, « and f.
Output: fg, fp and fg
: Pretrain fp and fr with Eq.(6) and Eq.(9)
: repeat
Obtain the graph ST with fz by Eq.(7).
Feed S to fp to obtain pseudo labels Yp by Eq.(10)

Jointly optimize the parameters of fg, fp and fr by Eq.(14)

: until convergence

1
2
3
4
5. Generate the graph $4 for fe with fg by Eq.(11)
6
7
8 return fg, fp and fp

A TRAINING ALGORITHM

The training algorithm of NRGNN is shown in Algorithm 1. In line
1, edge predictor fr and accurate pseudo label miner fp will be
pretrained with Eq.(6) and Eq.(9). In line 2, we generate S¥ for fp
with fg. Then, the accurate pseudo labels could be obtained. In line
5, the graph $4 which linking nodes with similar extended labeled
nodes is obtained for fg to make robust predictions. Finally, fg, fg
and fp will be jointly trained with an Adam optimizer [14] with
the learning rate set as 0.001.

B PROOF OF THEOREM 3.1

Proor. The predicted probability that node v, belongs to the
class ¢ could be rewritten to the following format:

min( Z Sac + Z slc)s

0, €V, v eV,

(15)

Yuc =
where V, denotes the unlabeled neighbors of v, V;, denotes the
linked nodes with noisy labels. Let p; denotes the probability that
a node belonging to class c is assigned to label ¢, and p denotes
the probability that a node not belonging to class ¢ is assigned to
label c. Then average value of y,c would be:

n (hpe + (1 = h)pg))m
E(yuc) =———E(sac) + u
m+n m+n
. (h(1=pr) + (1= h)(1=pg))m

m+n

E(spe)
(16)

E(sqe)

where s, corresponds to the unlabeled node v, € Vy, sp. corre-
sponds to the labeled node v, € VL whose provided label is ¢, and
Sdc corresponds to the labeled node vy € Vp, whose provided label
is not c. Since p; > py, we could have p = (hp; + (1= h)py) < pr.
And Eq.(16) could be rewritten to:

nE(sqc) + pmE(spe) + (1 — p)mE(sge)
m+n ’

E(Yuc) = (17)

If we further link v, with k labeled nodes which belong to c. Then
we could obtain the corresponding predicted probability yX.. The
expectation of y{jc can be written as:

kptB(spe) + k(1= pr)E(sgc)
m+n+k

m+n
m+n+k

E(ys,) = )
Since p < p; and E(spe) > E(sac) > E(sgc), we can derive that

peE(spe) + (1= pr)E(sge) > pE(spe) + (1= p)E(sgc).  (19)

E(yuc) +
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Table 4: Statistics of datasets.

Cora Citeseer Pubmed DBLP
# of nodes 2,485 2,110 19,717 17,716
# of edges 5,068 3,668 44,338 52,867
# of features 1,433 3,703 500 1,639
# of classes 7 6 3 4

E(sac)=E(sdc)

When p; > BB’ Ve could have

PtE(Sbc) + (1 —Pt)E(Sdc) > E(sa6)~ (20)
Combining Eq.(19) and Eq.(20), we can derive

piE(spe) + (1= pr)E(sac) > E(yuc). (21)

Therefore, we could conclude E(y,’jc) > E(yyc). And with the in-
creasing of k, the predicted probability that node v, belonging to
class ¢ would increase. O

C PROOF OF THEOREM 3.2

Proor. The average value of y¢ could be written as:

E E 1- E
E(ue) = nE(sqc) + pmE(spc) + (1 - p)m (sdc)’
m+n
Since E(spc) > E(sqc) and E(spe) > pE(spe) + (1= p)E(sqc)), then
we could have E(spc) > E(yuc). Therefore, the expectation of yyc

after linking k nodes with pseudo labels would be:

(22)

m+n

ko _ -
E(yye) = m+n+kE(yuc) + m+n+kE(spC). (23)
Since E(spc) > E(yuc), we could conclude that with the increasing
of k, E(yk,.) would be higher. o





