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ABSTRACT
In this paper, we address the personalized node ranking (PNR) prob-

lem for signed networks, which aims to rank nodes in an order most

relevant to a given seed node in a signed network. The recently-

proposed PNR methods introduce the concept of the signed random
surfer, denoted as SRSurfer, that performs the score propagation

between nodes using the balance theory. However, in real settings

of signed networks, edge relationships often do not strictly follow the
rules of the balance theory. Therefore, SRSurfer-based PNR methods

frequently perform incorrect score propagation to nodes, thereby de-

grading the accuracy of PNR. To address this limitation, we propose

a novel random-walk based PNR approach with sign verification,
named as OBOE (lOok Before yOu lEap). Specifically, OBOE care-

fully verifies the score propagation of SRSurfer by using the topo-

logical features of nodes. Then, OBOE corrects all incorrect score
propagation cases by exploiting the statistics of a given network.

The experiments on 3 real-world signed networks show that OBOE
consistently and significantly outperforms 5 competing methods

with improvement up to 13%, 95%, and 249% in top-𝑘 PNR, bottom-𝑘

PNR, and troll identification tasks, respectively. AllOBOE codes and
datasets are available at: http://github.com/wonchang24/OBOE.

CCS CONCEPTS
• Information systems→ Retrieval models and ranking.
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1 INTRODUCTION
Given a seed node in a network, the personalized node ranking (PNR)
problem is to rank the remaining nodes in an order most relevant to

the seed node by considering both the structure of the network and

the connectivity with the seed node. Unlike the traditional node

ranking problem [16, 23, 29], the PNR problem ranks nodes from the

view point of a given seed node. In this sense, solutions [9, 15, 35, 40]

to the PNR problem can be utilized in a variety of applications that

need personalization such as friend recommendation and targeted

marketing. Popular PNR methods include random-walk with restart
(RWR) [34] and personalized SALSA (PSALSA) [1].

Recently, there has been a surge of interest on signed networks
with both positive and negative edges between nodes [25, 38]. For

example, sites such as Slashdot (a technology news site) or Epin-

ions (a now-defunct consumer review site) allow users to decide

whether users trust (i.e., positive edges) or distrust (i.e., negative
edges) each other. In such a setting, the edge signs provide rich

semantics between nodes [6, 10, 18, 20]. However, the aforemen-

tioned PNR methods were designed for (unsigned) networks with

only positive edges between nodes. For this reason, many prior

works have extended such PNR methods for signed networks–e.g.,
FriendTNS [33], OPT+GAUC [31], SRWR [13, 14], and SSRW [27].

In particular, two recently-proposed and also best-performing

PNRmethods, i.e., SRWR [13, 14] and SSRW [27], extend the existing

RWRmodels by introducing the concept of the signed random surfer,
denoted by SRSurfer in this paper. Basically, SRSurfer traverses the

edges starting from a seed node 𝑛𝑥 in a signed network while

propagating the positive/negative scores of 𝑛𝑥 to the visited nodes

𝑛𝑦 using the balance theory [2], a well-known theory in psychology.

This theory states that social relationships follow four rules: (R1) a

friend of my friend is my friend; (R2) a friend of my enemy is my

enemy; (R3) an enemy of my friend is my enemy; (R4) an enemy of

my enemy is my friend.

Specifically, SRSurfer predicts an edge sign between two nodes

𝑛𝑥 ,𝑛𝑦 by analyzing the combination of edge signs along the random-

walk path from 𝑛𝑥 to 𝑛𝑦 based on the balance theory. Then, if the

predicted sign is positive (resp. negative), SRSurfer propagates the

Session 1D: Social Aspects  SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

143

http://github.com/wonchang24/OBOE
https://doi.org/10.1145/3404835.3462923
https://doi.org/10.1145/3404835.3462923


Figure 1: A signed network:
dotted lines indicate the
edges walked by SRSurfer.
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Figure 2: Prediction
accuracy of SRSurfer

per path length.

positive (resp. negative) score of 𝑛𝑥 to 𝑛𝑦 . As shown in Figure 1,

when SRSurfer walks on two negative edges from 𝑛𝑥 to 𝑛𝑦 , it propa-

gates a positive score of 𝑛𝑥 to 𝑛𝑦 based on R4 of the balance theory.

Here, we note that this type of score propagation is performed

under the assumption that the decades-old balance theory always

holds in real settings. However, in real settings of signed networks,

edge relationships often do not strictly follow the rules of the balance
theory [7]; this observation will be elaborated in Section 3.

In this sense, the edge signs predicted by SRSurfer may be in-
accurate. For instance, in the above example, 𝑛𝑥 and 𝑛𝑦 may not

be a friend because the enemies of my enemy are not always my

friends in the real world. Furthermore, as the length of the path

between two nodes increases (i.e., the path between 𝑛𝑥 and 𝑛𝑧 in

Figure 1), the number of edge signs used for prediction also in-

creases, rendering the accurate sign predictions more challenging.

As a demonstration, Figure 2 shows that the prediction accuracy of

SRSurfer using the Wikipedia dataset decreases rapidly as the path

lengths increase. This result clearly indicates that SRSurfer fails

to predict edge relationships accurately. In other words, SRSurfer-

based PNR methods frequently perform incorrect score propagation
to nodes, thereby degrading the accuracy of node rankings.

To address this limitation, in this paper, we aim to carefully verify
the score propagation of SRSurfer and then correct incorrect score
predictions. Toward this end, we propose a novel random-walk

based PNR approach with sign verification, named as OBOE (lOok

Before yOu lEap). Existing SRSurfer-based PNR methods perform

the score propagation based on the balance theory as follows: if

𝑛𝑦 and 𝑛𝑧 are connected by a positive edge (resp. a negative edge),

the methods propagate 𝑛𝑦 ’s positive/negative scores to 𝑛𝑧 ’s posi-

tive/negative (resp. negative/positive) scores, respectively. On the

other hand, OBOE carefully validates whether such score propaga-

tion is trustworthy or not “before" propagating 𝑛𝑦 ’s scores to 𝑛𝑧 . To
this end, OBOE first predicts a sign between the seed node 𝑛𝑥 and

𝑛𝑧 based on their 23 topological features such as degree distribution

and triad types [24, 26].
1
Then, if the sign prediction turns out to

be trustworthy, OBOE degenerates to a regular SRSurfer model

and propagates scores based on the balance theory. Otherwise,

OBOE uses a novel score propagation strategy that exploits the

statistics related to the edge signs of all triangles in a given signed

network. By iteratively performing the aforementioned process

(i.e., verification and score propagation), OBOE propagates the pos-

itive/negative scores of the seed node 𝑛𝑥 to all other nodes. Finally,

after convergence, OBOE ranks all nodes except for 𝑛𝑥 based on

their positive and negative scores.

In designing, implementing, and validating these ideas, in this

paper, our contributions are summarized as follows:

1
Note that here we consider 𝑛𝑧 ’s relationship with the seed node 𝑛𝑥 (not 𝑛𝑦 ), as

OBOE is propagating the scores of 𝑛𝑦 received from 𝑛𝑥 to 𝑛𝑧 .

• We demonstrate the limitation of SRSurfer-based PNR methods

in propagating scores of nodes based on the balance theory.

• We propose a novel random-walk based PNR approach with a

sign verification, named as OBOE.
– We design a strategy to validate the score propagation based

on the balance theory by exploiting topological features of

nodes.

– We design a strategy to leverage the statistics of a given net-

work to replace the untrustworthy score propagation.

• We validate the effectiveness of OBOE via extensive experiments

using three real-world datasets.

– Specifically, OBOE dramatically improves the accuracy of top-

𝑘 PNR/bottom-𝑘 PNR/troll identification tasks up to 13%/95%/

249%, respectively, over the best performer among five com-

peting methods.

The rest of this paper is organized as follows: Section 2 reviews

existing PNR methods. Section 3 demonstrates the limitation of

SRSurfer-based PNR methods and Section 4 presents our proposed

approach in detail. Section 5 validates the effectiveness of the pro-

posed approach through extensive experiments. Finally, Section 6

summarizes and concludes the paper.

2 RELATED WORK
In this section, we briefly review two families of existing PNR meth-

ods: one for unsigned networks and the other for signed networks.

PNR for Unsigned Networks. First, RWR [34], PSALSA [1], and

MPR [8] analyze the structure of a given network by designing

their own random-walk models. They traverse the edges starting

from a seed node in the network while propagating the scores of

the seed node to other nodes. Finally, they rank nodes, except for

the seed node, based on their scores. Next, PALE [28] and RDL [36]

represent the nodes in a given network as low-dimensional vectors

by employing low-rank models. Then, they rank nodes, except for

a seed node, based on a distance function that exploits the vector of

the seed node and that of each remaining node. However, none of

these methods took edge signs into consideration in their designs.

PNR for Signed Networks. To address this limitation, various

PNR methods for signed networks have been proposed. In the

early days of research, FriendTNS [33] and Zhu et al. [42] designed

heuristic measures that calculate relevance scores between nodes

in consideration of edge signs. Then, both methods rank the nodes

based on the relevance scores between the seed node and remaining

nodes. Next, Opt-GAUC [31] proposed a matrix factorization model

that learns existent positive/negative edges between nodes and

further learns non-existent edges as no-relation edges.

Recently, several studies such as ModifiedRWR [30], SRWR [13,

14], and SSRW [27] have extended the existing RWR models. First,

ModifiedRWR [30] computes positive/negative RWR scores of nodes

by performing RWR on the positive/negative subgraph, respectively,

and then ranks nodes by subtracting negative RWR scores from

positive ones. Next, SRWR [13, 14] and SSRW [27] compute pos-

itive/negative scores of nodes based on SRSurfer and then rank

nodes in the same way as in ModifiedRWR. Specifically, SRWR

introduced the balance attenuation factors 𝛽 , 𝛾 into SRSurfer to

consider the uncertainty for two rules (i.e., R2 and R4) of the bal-

ance theory. However, the factors (1) apply to all (trustworthy and
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Figure 3: Examples of balanced/unbalanced triangles.

untrustworthy) score propagation for R2 and R4, and (2) do not

cover the remaining two rules (i.e., R1 and R3) of the balance theory.
On the other hand, SSRW incorporated the social strengths into

SRSurfer, which captures a node’s different preferences towards

different neighbors. Note that SSRW does not employ the balance

attenuation factors. In summary, both SRSurfer-based PNRmethods

frequently perform incorrect score propagation to nodes, thereby

adversely affecting the accuracy of PNR.

Lastly, we can perform PNR based on the network embedding

methods for signed networks, denoted as signed NE [5, 21, 37, 39,

41]. Specifically, the signed NE methods represent the nodes of a

given signed network by vectors in a low-dimensional embedding

space so that the vectors preserve structural and semantic properties

in the network. That is, they attempt to represent the nodes with

positive edges to be close and those with the negative edges to be

distant in the embedding space. Literature [5, 21, 37, 39, 41] has

shown that the low-dimensional vectors can be used as effective

features of nodes in solving various downstream tasks including

node ranking and recommendation [3, 4, 19]. For instance, in terms

of PNR, we rank the nodes using the vectors of the seed node and

those of the remaining nodes.

3 MOTIVATION
In this section, we present SRSurfer [13, 14] in detail and demon-

strate its limitation via experiments over real-world datasets.

SRSurfer predicts positive scores 𝑟+𝑦 and negative scores 𝑟−𝑦 of

all nodes 𝑛𝑦 from the perspective of a seed node 𝑛𝑥 . If 𝑥 = 𝑦, the

initial values of 𝑟+𝑦 and 𝑟−𝑦 are set to 1 and 0, respectively. Other-

wise, both are set to 0. Then, SRSurfer propagates 𝑟+𝑥 /𝑟
−
𝑥 of 𝑛𝑥 to

all other nodes. Suppose that SRSurfer walks to a node 𝑛𝑧 in the

neighborhood of a node 𝑛𝑦 with a probability of (1 − 𝑐). In this

case, SRSurfer propagates 𝑟+𝑦 /𝑟
−
𝑦 of 𝑛𝑦 to 𝑛𝑧 based on the balance

theory as follows: if 𝑛𝑦 and 𝑛𝑧 are connected by a positive edge

(resp. a negative edge), it propagates 𝑟+𝑦 /𝑟
−
𝑦 of 𝑛𝑦 to 𝑟+𝑧 /𝑟

−
𝑧 (resp.

𝑟−𝑧 /𝑟
+
𝑧 ) of 𝑛𝑧 , respectively. In addition, SRSurfer restarts at 𝑛𝑥 with

a probability 𝑐 for personalization w.r.t 𝑛𝑥 . This probability 𝑐 is

empirically determined.

Given a seed node 𝑛𝑥 , the aforementioned score propagation can

be formulated as follows [13, 14]:

r+ = (1 − 𝑐) {(Ã+)⊤r+ + (Ã−)⊤r− } + 𝑐q,

r− = (1 − 𝑐) {(Ã−)⊤r+ + (Ã+)⊤r− },
(1)

where r+/r− represent positive/negative score vectors w.r.t. 𝑛𝑥

whose 𝑦-th elements are 𝑟+𝑦 /𝑟
−
𝑦 of 𝑛𝑦 , respectively. Ã+/Ã− indi-

cate positive/negative semi-row normalized matrices that contain

all positive/negative values in the adjacency matrix A of a given

signed network, respectively. q is an unit vector whose 𝑥-th element

(i.e., seed node 𝑛𝑥 ) is 1 and all other elements are 0. Finally, 𝑐 is a

restart probability. Then, SRSurfer iteratively updates r+ and r−

Table 1: Ratios of balanced/unbalanced triangles per type

Triangles Prior (+, +) (+,−) (−, +) (−,−)
Posterior + − + − + − + −

Dataset
Wikipedia 92% 8% 72% 28% 62% 38% 50% 50%

Slahsdot 98% 2% 34% 66% 58% 42% 54% 46%

Epinions 99% 1% 38% 62% 53% 47% 41% 59%

Balanced? ⃝ × × ⃝ × ⃝ ⃝ ×

via (Eq. 1) until r+ and r− converge. Finally, SRSurfer computes the

ranking score vector r𝑑 of 𝑛𝑥 as follows:

r𝑑 = r+ − r−, (2)

where 𝑟𝑑𝑦 indicates a final ranking score for 𝑛𝑦 w.r.t 𝑛𝑥 .

Note that the score propagation of SRSurfer totally depends on

the predicted signs by the balance theory. As alluded in Section 1,

however, edge relationships often do not strictly follow the rules of

the balance theory. To show the evidence of this claim in real-world

signed networks (i.e.,Wikipedia, Slashdot, and Epinions), we first

sample all the triangles (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧) where the edge directions be-
tween three nodes satisfy the transitivity. For instance, if 𝑛𝑥 points

to 𝑛𝑦 , 𝑛𝑦 points to 𝑛𝑧 , and 𝑛𝑥 points to 𝑛𝑧 , the triangle (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧)
satisfies the transitivity. Then, we examine how much the triangles

follow the rules of the balance theory. That is, given two signs (i.e.,
prior signs) in a triangle, we check whether the remaining sign

(i.e., posterior sign) matches the rules of the balance theory (e.g., a
balanced triangle in Figure 3-(a)) or not (e.g., a unbalanced triangle
in Figure 3-(b)).

Table 1 shows the ratios of balanced and unbalanced triangles

among all triangles in three signed networks, according to four

types of prior signs – i.e., (+, +), (+,−), (−, +), (−,−). We observe

that (+, +) type follows the rules of the balance theory consider-

ably, whereas other types often do not follow the rules strictly. For

instance, for (+,−) type in Wikipedia or for (−,−) type in Epin-

ions networks, 72% and 59% of triangles do not follow the balance

theory (i.e., unbalanced triangles), respectively. This result clearly

demonstrates that the balance theory does not always hold in real

settings. Therefore, score propagation models that strictly follows

the balance theory (e.g., SRSurfer-based PNR methods) are likely to

contain substantial amount of incorrect score propagation.

Next, further, we test how much one can improve the sign pre-
diction accuracy by not strictly following the balance theory. To this

end, we regard 80% of the edges in a signed network as a train-

ing set, and the remaining 20% as a test set. Then, we sample all

unbalanced triangles (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧) from the training set. Next, we

perform sign prediction on the test set using SRSurfer. Here, we

made two variants, denoted as Original SRSurfer and Modified

SRSurfer, of predicting the signs of posterior edges (𝑛𝑥 , 𝑛𝑧) when
SRSurfer walks on two prior edges (𝑛𝑥 , 𝑛𝑦), (𝑛𝑦, 𝑛𝑧) of a sampled
unbalanced triangle (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧) in turn. Specifically, whenever two

variants encounter two prior edges of the sampled unbalanced tri-

angles during the random-walk process, the sign of each posterior

edge is predicted differently as follows:
2

• Original SRSurfer incorrectly predicts the sign of a posterior

edge by blindly following the balance theory. For instance, in

Figure 3-(b), it predicts the sign of (𝑛𝑥 , 𝑛𝑧) as negative. However,
2
Such predictions are difficult to implement in terms of matrix-vector multiplication

as shown in (Eq. 1). Thus, we performed both original/modified SRSurfer in a random-

walk manner.
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Figure 4: Accuracies of sign prediction by original and
modified SRSurfer.

Table 2: Notations used in this paper

Notation Description

G signed network

N set of nodes

E+ set of positive edges

E− set of negative edges

𝑛𝑥 seed node

𝑐 restart probability

𝑟𝑑𝑦 final ranking score of 𝑛𝑦 w.r.t 𝑛𝑥

𝑟+𝑦/𝑟−𝑦 positive/negative scores of 𝑛𝑦 w.r.t 𝑛𝑥

𝑠𝑖𝑔𝑛 (𝑛𝑥 , 𝑛𝑦 ) real edge sign between 𝑛𝑥 and 𝑛𝑦

𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑦 ) predicted edge sign between 𝑛𝑥 and 𝑛𝑦

𝐶 (𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑦 )) confidence score for the predicted sign

in the case of Wikipedia data, for instance, 72% of triangles does

not follow this pattern, causing substantial errors in prediction.

• Modified SRSurfer correctly predicts the sign of a posterior

edge by not following the balance theory. For instance, in Figure 3-
(b), it predicts the sign of (𝑛𝑥 , 𝑛𝑧) as positive, which happens to

be in agreement with 72% of triangles in Wikipedia, for instance.

Figure 4 shows the prediction accuracies of the original and mod-

ified SRSurfer models for the edge signs on a test set. We confirm that

the modified SRSurfer significantly outperforms the original SR-

Surfer. More specifically, forWikipedia/Slashdot/Epinions, the mod-

ified SRSurfer dramatically improves the accuracies of the original

SRSurfer by 47.4%/64.0%/198.0%, respectively. The result indicates

that the accuracy of sign predictions can be significantly improved

by correcting the incorrect sign predictions by the balance theory.
Therefore, we here conclude that (1) edge relationships often do not

strictly follow the rules of the balance theory (as shown in Table 1)

and (2) the balance theory results in incorrect sign prediction of

SRSurfer (as shown in Figure 4).

4 THE PROPOSED APPROACH: OBOE

To address the limitation of SRSurfer-based PNR methods, we pro-

pose a new random-walk based PNR approach with a sign verifica-

tion, named as OBOE. In Section 4.1, we first formulate the PNR

problem for signed networks and present the overall procedure of

our OBOE. In Section 4.2, we describe two key ideas, i.e., sign verifi-

cation and score propagation, of OBOE in detail. In Section 4.3, we

formulate the iteration of OBOE as a matrix-vector multiplication

form and show its iterative algorithm. Lastly, in Section 4.4, we

discuss the convergence of OBOE.

4.1 Overall Procedure
The PNR problem for signed networks is formulated as follows:

let G = (N , E+, E−) be a given signed network, where N =

{𝑛1, 𝑛2, · · · , 𝑛𝑚} represents a set of𝑚 nodes and E+ and E− rep-

resent the sets of positive and negative edges, respectively. Note

Figure 5: The procedure of score propagation of OBOE.

that E+ ∩ E− = ∅, a node pair cannot have both positive and neg-

ative edges simultaneously. Given a seed node 𝑛𝑥 , PNR methods

for signed networks aim to output ranking of the nodes except

for 𝑛𝑥 by analyzing both the structure of the network and their

connectivity with 𝑛𝑥 . Table 2 summarizes a list of notations used

in this paper.

We present the overall procedure of OBOE. Given a seed node

𝑛𝑥 , OBOE sets the positive/negative scores 𝑟+𝑦 /𝑟
−
𝑦 of all nodes 𝑛𝑦

from the perspective of 𝑛𝑥 . 𝑟
+
𝑦 and 𝑟−𝑦 represents the likelihood

(measured by OBOE) to which the edge relationship between 𝑛𝑥
and 𝑛𝑦 has a positive sign (i.e., friend) and a negative sign (i.e.,
enemy), respectively. If 𝑥 = 𝑦, the initial values of 𝑟+𝑦 and 𝑟−𝑦 are set

to 1 and 0, respectively. Otherwise, both are set to 0. Then, OBOE
propagates 𝑟+𝑥 /𝑟

−
𝑥 of 𝑛𝑥 to all other nodes. Toward this end, the

random surfers of OBOE start from 𝑛𝑥 and then walk along the

outgoing edges with a probability of (1 − 𝑐), while going back to

𝑛𝑥 with a probability of 𝑐 .

Now, we describe the process of the score propagation of OBOE
with Figure 5. As shown in Figure 5-(a), suppose that a random

surfer is currently at a node 𝑛𝑦 and 𝑛𝑦 has already received the

scores from the previously-visited node 𝑛 𝑗 by OBOE’s score propa-
gation strategy (to be explained later). When the surfer walks to a

node 𝑛𝑧 in the neighborhood of 𝑛𝑦 with (1 − 𝑐), OBOE propagates

both 𝑟+𝑦 ( 1○ in Figure 5-(a)) and 𝑟−𝑦 ( 2○ in Figure 5-(a)) of 𝑛𝑦 to

𝑛𝑧 . We here explain the propagations of 𝑟+𝑦 since both propaga-

tion of 𝑟+𝑦 and 𝑟−𝑦 are similar. Basically, if an edge sign, 𝑠𝑖𝑔𝑛(𝑛𝑦, 𝑛𝑧)
( 3○ in Figure 5-(a)), between 𝑛𝑦 and 𝑛𝑧 is positive (resp. negative),

OBOE propagates 𝑟+𝑦 to 𝑟+𝑧 (resp. 𝑟−𝑧 ) in the same way as SRSurfer.

As demonstrated in Section 3, however, score propagation models

based on SRSurfer are likely to contain a substantial amount of

incorrect score propagation (Table 1).

To validate the score propagation from 𝑛𝑦 to 𝑛𝑧 based on the

balance theory, OBOE predicts an edge sign, 𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧) ∈
{+1,−1}( 4○ in Figure 5-(b)), between 𝑛𝑥 and 𝑛𝑧 with additional in-

formation. Toward this end, OBOE exploits 23 topological features

of𝑛𝑥 and𝑛𝑧 . Then,OBOE examineswhether both 𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧)
and the sign of 𝑛𝑧 ’s score, to which 𝑟+𝑦 is propagated by SRSurfer,
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(e.g., 𝑟+𝑧 in the case of Figure 5) are consistent or not (Figure 5-(c)): if

it is consistent,OBOE regards the score propagation as trustworthy

and thus performs that propagation (the upper case in Figure 5-(d)).

Otherwise,OBOE regards it as untrustworthy and uses a novel score
propagation (the lower case in Figure 5-(d)). Specifically, OBOE
propagates 𝑟+𝑦 to both scores 𝑟+𝑧 and 𝑟−𝑧 , not a score determined by
SRSurfer. The intuition behind this idea is that the edge relationship

between 𝑛𝑥 and 𝑛𝑧 are uncertain. Therefore, OBOE should set the

ratios at which 𝑟+𝑦 is propagated to 𝑟+𝑧 and 𝑟−𝑧 . In this paper, we

utilize the ratios of the prior and posterior signs of triangles in a

given signed network, to be elaborated in Section 4.2. OBOE also

performs the same process as above for the propagation of 𝑟−𝑦 .
So far, we have presented a situation in which OBOE propagates

𝑟+𝑦 /𝑟
−
𝑦 of a node 𝑛𝑦 to 𝑟+𝑧 /𝑟

−
𝑧 of another node 𝑛𝑧 . In OBOE at every

iteration, each node propagates its own scores to its outgoing edges

and receives the propagation from its incoming edges. OBOE itera-

tively performs this score propagation until the scores of all nodes

converge. Finally, after convergence, OBOE ranks nodes except for

𝑛𝑥 by subtracting their negative scores from their positive ones.

4.2 Sign Verification and Score Propagation
We describe the key ideas of OBOE in detail. Given a seed node 𝑛𝑥 ,

a currently-visiting node 𝑛𝑦 , and a next-visiting node 𝑛𝑧 , OBOE
performs the following two steps: (STEP 1) sign verification and

(STEP 2) score propagation. OBOE first verifies the score propaga-
tion from 𝑛𝑦 to 𝑛𝑧 by directly exploiting the relationship between
𝑛𝑥 and 𝑛𝑧 and then classifies it into trustworthy or untrustworthy
one. Next, OBOE performs the trustworthy one as it is, while it cor-
rects the untrustworthy one by performing a safe score propagation
exploiting the statistics of a given network.

STEP 1: SignVerification. In this step,OBOE predicts a 𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒
(𝑛𝑥 , 𝑛𝑧) between 𝑛𝑥 and 𝑛𝑧 based on their topological features and

validates whether the score propagation from 𝑛𝑦 to 𝑛𝑧 is trustwor-

thy or not by using 𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧).
For sign prediction, we employ a well-known feature-based

method, FExtra [24, 26]. For all node pairs (𝑛𝑥 , 𝑛𝑦) in a network,

we first construct a vector f𝑥,𝑦 = {𝑓1, · · · , 𝑓23} consisting of values

for 23 topological features for each of the pairs. Specifically, we

first exploit 7 features related to nodes’ degrees: (1) the number of

outgoing positive edges of 𝑛𝑥 , (2) the number of outgoing negative

edges of 𝑛𝑥 , (3) the number of incoming positive edges of 𝑛𝑦 , (4)

the number of incoming negative edges of 𝑛𝑦 , (5) the total number

of common neighbors of 𝑛𝑥 and 𝑛𝑦 , (6) the total out-degree of 𝑛𝑥 ,

and (7) the total in-degree of 𝑛𝑦 . In addition, we exploit features

related to 16 distinct types of triads containing 𝑛𝑥 , 𝑛𝑦 , and their

common neighbors 𝑛𝑧 in the network: the edge between 𝑛𝑥 and 𝑛𝑧
can be in either direction and of either sign, and the edge between

𝑛𝑦 and 𝑛𝑧 can also be in either direction and of either sign; this

leads to 2 · 2 · 2 · 2 = 16 possibilities. Thus, we set the number of

triads of each type to the value of the corresponding feature.

Next, we train a logistic regression classifier model based on the

f𝑥,𝑦 for node pairs (𝑛𝑥 , 𝑛𝑦) with real edge signs in the network. Us-

ing the learned classifier, we finally predict the 𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧)
for all node pairs (𝑛𝑥 , 𝑛𝑧) without real edge signs in the network.

During the prediction process, FExtra also computes the confi-
dence score 𝐶 (𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧)) ∈ [0, 1] for the predicted sign

𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧). For instance, if 𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧) = +1 and

Figure 6: Score propagation based on the balance theory.

𝐶 (𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧)) = 0.95, it indicates FExtra predicted the sign

between 𝑛𝑥 and 𝑛𝑧 as positive and is quite confident for that predic-

tion. Note that, before OBOE performs the random-walk process, it

predicts 𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧) for all node pairs (𝑛𝑥 , 𝑛𝑧) without real
edge signs in advance as a preprocessing task.

Now, OBOE verifies the score propagation from 𝑛𝑦 to 𝑛𝑧 using

the 𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧) and the 𝐶 (𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧)). Note that
we exploit the relationship between the seed node 𝑛𝑥 (not 𝑛𝑦 ) and

𝑛𝑧 , as OBOE is propagating the scores of 𝑛𝑦 received from 𝑛𝑥 to 𝑛𝑧 .

Here, there are four possible score propagations (SP) from 𝑛𝑦 to 𝑛𝑧
as follows (Figure 6):

• If 𝑠𝑖𝑔𝑛(𝑛𝑦, 𝑛𝑧) = +1, 𝑟+𝑦 is propagated to 𝑟+𝑧 (SP 1 in Figure 6-(a))

and 𝑟−𝑦 is propagated to 𝑟−𝑧 (SP 2 in Figure 6-(b)).

• If 𝑠𝑖𝑔𝑛(𝑛𝑦, 𝑛𝑧) = −1, 𝑟+𝑦 is propagated to 𝑟−𝑧 (SP 3 in Figure 6-(c))

and 𝑟−𝑦 is propagated to 𝑟+𝑧 (SP 4 in Figure 6-(d)).

To validate the above score propagations, OBOE checks the fol-

lowing two conditions: (1) does the 𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧) and the sign
of 𝑛𝑧 ’s score, to which 𝑛𝑦 ’s score is propagated, consistent? and (2)

does the𝐶 (𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧)) exceed a predefined threshold? For
(1), OBOE considers the score propagation in which the two signs

are consistent as trustworthy. For instance, if 𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧) =
+1, OBOE considers the SP 1/4 (resp. the SP 2/3) where 𝑛𝑦 ’s scores

are propagated to 𝑟+𝑧 (resp. 𝑟−𝑧 ) as trustworthy (resp. untrustworthy),
respectively.

3
For (2),OBOE finally uses only the score propagation

considered trustworthy by the confident 𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧). In the

above example, if 𝐶 (𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧) = +1) is lower than the

predefined threshold, OBOE does not regard the SP 1/4 as trustwor-

thy. In this paper, we introduce a threshold 𝛽+ for 𝐶 (𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒
(𝑛𝑥 , 𝑛𝑧) = +1) and another threshold 𝛽− for𝐶 (𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧)
= −1) separately. We will analyze the sensitivity of OBOE to 𝛽+
and 𝛽− in Section 5.2.

Here, there remains a question onwhether the 𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧)
is more reliable than the sign predicted by SRSurfer. To address this

concern, we confirmed that FExtra consistently and significantly

improves the accuracy of sign prediction based on SRSurfer in our

preliminary experiments. Thanks to (STEP 1) of OBOE, we can

detect untrustworthy score propagation. In Section 5.2, we confirm

that such untrustworthy score propagation occurs considerably but

is detected via our OBOE.

STEP 2: Score Propagation. In this step, OBOE performs differ-

ent score propagation from 𝑛𝑦 to 𝑛𝑧 , according to trustworthy or

untrustworthy one. OBOE first normalizes the 𝑟+𝑦 /𝑟
−
𝑦 of 𝑛𝑦 to the

number of 𝑛𝑦 ’s outgoing edges |O𝑦 | as follows:

𝑟+𝑦 =
𝑟+𝑦
|O𝑦 |

, 𝑟−𝑦 =
𝑟−𝑦
|O𝑦 |

. (3)

3
We can handle the case of (𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑛𝑥 , 𝑛𝑧 ) = −1) as well in the same way.
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Figure 7: Score propagation strategy of OBOE (Wikipedia).

Again, note that 𝑟+𝑦 and 𝑟−𝑦 represents the degree to which the edge

relationship between 𝑛𝑥 and 𝑛𝑦 has a positive sign and a negative

sign, respectively. Then, OBOE propagates 𝑛𝑦 ’s 𝑟
+
𝑦 /𝑟
−
𝑦 to 𝑛𝑧 by

considering the following eight cases: (1) CASE 1/5 regard SP 1 as

trustworthy/untrustworthy, respectively; (2) CASE 2/6 regard SP
2 as trustworthy/untrustworthy, respectively; (3) CASE 3/7 regard

SP 3 as trustworthy/untrustworthy, respectively; (4) CASE 4/8
regard SP 4 as trustworthy/untrustworthy, respectively.

For CASE 1/2/3/4 (i.e., trustworthy score propagation), OBOE
performs each score propagation as it is. On the other hand, for

CASE 5/6/7/8 (i.e., untrustworthy score propagation), we assume

that the edge relationship between 𝑛𝑥 and 𝑛𝑧 are uncertain. There-

fore, OBOE uses a different score propagation strategy, instead

of each (untrustworthy) score propagation. For CASE 5/7 (i.e., for
propagating 𝑟+𝑦 to 𝑟𝑧 ),OBOE propagates 𝑟+𝑦 to both 𝑟+𝑧 and 𝑟−𝑧 while,

for CASE 6/8 (i.e., for propagating 𝑟−𝑦 to 𝑟𝑧 ), OBOE propagates 𝑟−𝑦
to both 𝑟+𝑧 and 𝑟−𝑧 .

For determining ratios of the propagation, as a heuristic policy,

OBOE utilizes the ratios (i.e., Table 1 in Section 3) of the prior and

posterior signs of the (real) triangles in a given signed network.

Specifically, OBOE regards (1) the sign of 𝑛𝑦 ’s score (i.e., positive
and negative one for CASE 5/7 and CASE 6/8, respectively) and

(2) 𝑠𝑖𝑔𝑛(𝑛𝑦, 𝑛𝑧) (i.e., positive and negative one for CASE 5/6 and

CASE 7/8, respectively) as two prior signs. Also, OBOE regards

the signs of 𝑛𝑧 ’s score received from 𝑛𝑦 as the posterior signs.

Given two prior signs in an input network, OBOE then checks the

ratios at which the posterior signs are positive and negative. Finally,

OBOE propagates 𝑛𝑦 ’s scores to both 𝑟
+
𝑧 /𝑟
−
𝑧 in accordance with the

observed ratio of positive/negative signs, respectively.

Figure 7 depicts the cases in which 𝑛𝑦 ’s scores are propagated to

𝑛𝑧 in the Wikipedia dataset. Each case is divided into two sub-cases

according to the posterior signs. Suppose that both prior signs are

given as positive as shown in Figures 7-(a) and 7-(b). In this case,

from Table 1, OBOE checks that the ratios of posterior signs to

positive (i.e., +) and negative (i.e., −) are 92% and 8% in a Wikipedia

dataset, respectively. Then,OBOE propagates 92%/8% of 𝑟+𝑦 to 𝑟+𝑧 /𝑟
−
𝑧 ,

respectively. Similar to the sign predictions in (STEP 1), in general,

OBOE pre-computes the statistics for a given signed network as

part of the pre-processing task.

Thanks to (STEP 2) of OBOE, we can now correct the incorrect

score propagation by referring to the statistics of a given network.

Algorithm 1 Iterative process of OBOE

Input: a seed node 𝑛𝑥 , semi-row normalized adjacency matrices Ã+ and
Ã−, restart probability 𝑐 , and error tolerance 𝜖

Output: a ranking vector r𝑑

1: set the sub-matrices Ã++𝑡 , Ã−+𝑡 , Ã+−𝑡 , Ã−−𝑡 , Ã+++𝑢 , Ã++−𝑢 , Ã−++𝑢 , Ã−+−𝑢 ,

Ã+−+𝑢 , Ã+−−𝑢 , Ã−−+𝑢 , and Ã−−−𝑢

2: set q from 𝑛𝑥

3: set r+ = q, r− = 0, and h′ = [r+; r− ]⊤
4: repeat
5: compute r+ and r− using (Eq. 4)
6: concatenate r+ and r− into h = [r+; r− ]⊤
7: compute 𝛿 between h and h′

8: update h′← h
9: until 𝛿 < 𝜖

10: compute r𝑑 = r+ − r−
11: return r𝑑

By employing this heuristic policy, we can consider the structural

property per given signed network. In Section 5.2, we show that our

score propagation strategy with this policy to replace the untrust-

worthy score propagation is more effective than other strategies

(e.g., uniform propagation).

4.3 Formulation for OBOE

We formulate the iteration of OBOE as a matrix-vector multiplica-
tion form. Toward this end, we extend (Eq. 1) of SRSurfer as follows:

r+ = (1 − 𝑐) [ {(Ã++𝑡 )⊤r+ + (Ã−−𝑡 )⊤r− }+
{(Ã+++𝑢 )⊤r+ + (Ã+−+𝑢 )⊤r+ + (Ã−−+𝑢 )⊤r− + (Ã−++𝑢 )⊤r− }] + 𝑐q,

r− = (1 − 𝑐) [ {(Ã+−𝑡 )⊤r+ + (Ã−+𝑡 )⊤r− }+
{(Ã+−−𝑢 )⊤r+ + (Ã++−𝑢 )⊤r+ + (Ã−+−𝑢 )⊤r− + (Ã−−−𝑢 )⊤r− }],

(4)

where r+/r− represent positive/negative score vectors w.r.t. 𝑛𝑥 . q is

an unit vector whose 𝑥-th element (i.e., seed node 𝑛𝑥 ) is 1 and all

other elements are 0. Also, Ã∗𝑡 and Ã∗𝑢 indicate adjacency matrices

for trustworthy and untrustworthy score propagations, respectively.

Note that the matrices of Ã∗𝑡 (e.g., Ã
+−
𝑡 ) have two signs, while the

matrices of Ã∗𝑢 (e.g., Ã+−+𝑢 ) have three signs. Specifically, in each of

Ã∗𝑡 , both signs represent two prior signs. For instance, Ã+−𝑡 repre-

sents a situation in which 𝑟+𝑦 (i.e., the first prior sign) of each node

𝑛𝑦 is propagated to each node 𝑛𝑧 whose 𝑠𝑖𝑔𝑛(𝑛𝑦, 𝑛𝑧) = −1 (i.e., the
second prior sign) among the neighborhood of 𝑛𝑦 (i.e., CASE 3).

Next, in each of Ã∗𝑢 , the first two signs are the same as those of Ã∗𝑡
and the last sign is a posterior sign. For instance, Ã+−+𝑢 represents a

situation where part of 𝑟+𝑦 (i.e., the first prior sign) of each node 𝑛𝑦

is propagated to 𝑟+𝑧 (i.e., the posterior sign) of each node 𝑛𝑧 whose

𝑠𝑖𝑔𝑛(𝑛𝑦, 𝑛𝑧) = −1 (i.e., the second prior sign) among the neighbor-

hood of 𝑛𝑦 (i.e., CASE 7-1). To build 12 adjacency matrices in (Eq. 4),

we use the positive and negative semi-row normalized matrices

Ã+/Ã−. Specifically, we first construct 6 (sub) adjacency matrices

based on Ã+: Ã++𝑡 (CASE 1), Ã−+𝑡 (CASE 2), Ã+++𝑢 (CASE 5-1), Ã++−𝑢

(CASE 5-2), Ã−++𝑢 (CASE 6-1), and Ã−+−𝑢 (CASE 6-2). In addition,

we construct 6 remaining (sub) adjacency matrices based on Ã−:
Ã+−𝑡 (CASE 3), Ã−−𝑡 (CASE 4), Ã+−+𝑢 (CASE 7-1), Ã+−−𝑢 (CASE 7-2),

Ã−−+𝑢 (CASE 8-1), and Ã−−−𝑢 (CASE 8-2).

Finally, Algorithm 1 sketches the iterative process of OBOE.
Given a seed node 𝑛𝑥 , OBOE constructs 12 (sub) adjacency matri-

ces using Ã+ and Ã− (line 1). Then, OBOE sets q to 𝑥-th unit vector
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(line 2). OBOE initializes r+ and r− and then sets h′ by concatenat-

ing them (line 3). Next, OBOE updates r+ and r− via (Eq. 4) and

concatenates them into h (lines 5-6). Then, OBOE computes the

error 𝛿 between h at the current iteration and h′ at the previous
iteration (line 7). OBOE updates h into h′ for the next iteration
(line 8). It performs the iterations until the error 𝛿 becomes less

than the threshold 𝜖 (line 9). Finally, OBOE builds a vector r𝑑 and

uses it as the final ranking vector w.r.t 𝑛𝑥 (line 10).

4.4 Convergence Analysis
We show that the iteration in Algorithm 1 converges to the solution

of a linear system as follows:

Theorem 1. Suppose that h = [r+; r−]⊤ and q𝑥 = [q; 0]⊤. Then,
the iteration for h in Algorithm 1 converges to the following solution:

h = 𝑐 (I − (1 − 𝑐)B̃⊤)−1q𝑥 ,

where B̃⊤ =

[
Ã++

⊤
𝑡 + Ã+++⊤𝑢 + Ã+−+⊤𝑢 Ã−−

⊤
𝑡 + Ã−−+⊤𝑢 + Ã−++⊤𝑢

Ã+−
⊤

𝑡 + Ã+−−⊤𝑢 + Ã++−⊤𝑢 Ã−+
⊤

𝑡 + Ã−+−⊤𝑢 + Ã−−−⊤𝑢

]
.

Proof. (Eq. 4) is represented as follows:[
r+
r−

]
=(1 − 𝑐)

[
Ã++

⊤
𝑡 + Ã+++⊤𝑢 + Ã+−+⊤𝑢 Ã−−

⊤
𝑡 + Ã−−+⊤𝑢 + Ã−++⊤𝑢

Ã+−
⊤

𝑡 + Ã+−−⊤𝑢 + Ã++−⊤𝑢 Ã−+
⊤

𝑡 + Ã−+−⊤𝑢 + Ã−−−⊤𝑢

] [
r+
r−

]
+ 𝑐

[
q
0

]
⇔ h = (1 − 𝑐)B̃⊤h + 𝑐q𝑥 .

Therefore, the iteration in Algorithm 1 is written as follows:

h(𝑘 ) = (1 − 𝑐)B̃⊤h(𝑘−1) + 𝑐q𝑥
= ( (1 − 𝑐)B̃⊤)2h(𝑘−2) + 𝑐 ( (1 − 𝑐)B̃⊤ + I)q𝑥 = · · ·

= ( (1 − 𝑐)B̃⊤)𝑘h(0) + 𝑐
𝑘−1∑︁
𝑑=0

( (1 − 𝑐)B̃⊤)𝑑 )q𝑥 .

The spectral radius 𝜌 ((1−𝑐)B̃⊤) = (1−𝑐) < 1when 0 < 𝑐 < 1 since

B̃⊤ is a column stochastic matrix and its largest eigenvalue is 1 [32].

Therefore, lim𝑘→∞ ((1 − 𝑐)B̃⊤)𝑘h(0) = 0 [32] and lim𝑘→∞ h(𝑘)

converges as:

lim

𝑘→∞
h(𝑘 ) = c

∞∑︁
𝑑=0

( (1 − 𝑐)B̃⊤)𝑑q𝑥 = 𝑐 (I − (1 − 𝑐)B̃⊤)−1q𝑥 ,

where

∑∞
𝑑=0
((1 − 𝑐)B̃⊤)𝑑 ) is a geometric series of the matrix (1 −

𝑐)B̃⊤, and it converges to (I− (1−𝑐)B̃⊤)−1 since the spectral radius
of (1 − 𝑐)B̃⊤ is less than 1 [32]. Note that the inverse matrix is a

non-negative matrix whose entries are positive or zero because the

matrix is the sum of non-negative matrices (i.e.,
∑∞
𝑑=0
((1−𝑐)B̃⊤)𝑑 ).

Therefore, each entry of h is non-negative (i.e., h𝑦 ≥ 0 for any node

𝑛𝑦 ). That is, the iterative algorithm of OBOE converges to a unique

solution h = 𝑐 (I − (1 − 𝑐)B̃⊤)−1q𝑥 . □

5 EVALUATION
In this section, we validate the effectiveness of our approach via

extensive experiments. We designed our experiments, aiming at

answering the following key evaluation questions (EQs):

• EQ1: Does our score propagation strategy help PNR?

• EQ2: Does OBOE provide a more accurate top-𝑘 PNR than com-

peting methods?

• EQ3: Does OBOE provide a more accurate bottom-𝑘 PNR than

competing methods?

Table 3: Dataset statistics

Datasets Nodes Edges Positive
Edges

Negative
Edges Density

Wikipedia 7,118 107,080 78.4% 21.6% 0.200%

Slashdot 82,140 549,202 77.4% 22.6% 0.008%

Epinions 131,828 841,372 85.3% 14.7% 0.005%

• EQ4: Does OBOE identify trolls more accurately than competing

methods?

• EQ5: How sensitive is the accuracy of OBOE per different values

of parameters?

5.1 Experimental Settings
Datasets. Following [13, 14], we used three real-world signed net-

work datasets: Wikipedia, Slashdot, and Epinions. The datasets are

all publicly available.
4
Table 3 shows the detailed statistics of the

three datasets.

• Wikipedia is a voting network for electingmanagers inWikipedia.

This network contains users’ supporting vote (i.e., positive) and
opposing vote (i.e., negative) edges.
• Slashdot is a friendship network among users of a technology

news site. This network contains friend (i.e., positive) and enemy

(i.e., negative) edges between users.

• Epinions is a trust network among users of a product review

site. This network contains trust (i.e., positive) and distrust (i.e.,
negative) edges between users.

Competing Methods.We compareOBOEwith 5 competing meth-

ods. First, we employ three PNR methods for signed networks: two

baselines, i.e., ModifiedRWR (M-RWR, in short) [30], FriendTNS

(F-TNS, in short) [33], and a recently-proposed and best performing

PNR method, i.e., SRWR [13, 14].
5
Second, we employ the recently-

proposed two signed NE methods: BESIDE [5] and SLF [39]. For

evaluation, we used the source codes provided by the authors [5,

13, 14, 30, 33, 39]. For parameter tuning, we found the best settings

in competing methods and OBOE via grid search. Specifically, for

parameters of competing methods, we used the best settings found

via extensive grid search in the ranges suggested in their respective

papers.
6
The best settings found in OBOE are as follows: 𝑐 = 0.5

(Wikipedia, Slashdot, Epinions); 𝛽+ = 0.9 (Wikipedia, Slashdot,

Epinions); 𝛽− = 0.9 (Wikipedia and Slashdot) / 0.7 (Epinions).

Evaluation Tasks. Following [13, 14, 27], we evaluate the effec-

tiveness of OBOE and competing methods via three types of tasks:

(1) top-𝑘 PNR, (2) bottom 𝑘-PNR, and (3) troll identification. For

top-𝑘 and bottom-𝑘 PNR tasks, following [13, 14], we randomly

sample 5, 000 seed nodes in a given network. Then, we consider 20%

of positive (resp. negative) edges of the seed nodes as test edges

and also use them as the ground truth of the top-𝑘 (resp. bottom-𝑘)

PNR task. We consider all edges except for the test edges in the

network as training edges, and perform each method based on the

training edges and then output the top-𝑘 and bottom-𝑘 PNRs per

seed node. Finally, we evaluate how much each node’s top-𝑘 and

bottom-𝑘 PNRs obtained by each method contain the ground truth

4
http://snap.stanford.edu/data

5
As to SSRW, as its source code is not available and it is difficult to implement due to

many missing details in [27], we could not evaluate the accuracy of SSRW.

6
Refer to https://sites.google.com/view/oboe-sigir21/implementation for more details.
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Figure 8: Ratios of untrustworthy score propagation.
of each task. Toward this end, we use the following two metric pop-

ularly employed in other PNR research [13, 14, 27]: F1 score and

normalized discounted cumulative gain (NDCG) [11, 12]. For troll

identification task, following [13, 14], we use 96 enemies of a user,

called No-More-Trolls, in Slashdot as trolls. Specifically, the user is
an administrative account created for the purpose of collecting a

troll list [17]. Note that such a list exists only in the Slashdot. We

evaluate how much the bottom-𝑘 PNRs obtained by each method

contain the trolls by using F1 score and NDCG.

5.2 Results
Due to space limitation, we omit some experimental results in this

paper. The details for all experiments are available at http://sites.

google.com/view/oboe-sigir21.

EQ1: Effectiveness of Our Score Propagation Strategy. To ver-

ify the effectiveness of our key ideas (i.e., sign verification and score

propagation), we conduct experiments to answer the following two

sub-questions:

• EQ1-1 (Sign Verification): How much of the balance theory

based score propagation does OBOE detect as the untrustworthy

score propagation?

• EQ1-2 (Score Propagation): Is it effective to exploit the statistics
of a given network for correcting score propagation?

For EQ1-1, we examine the ratio of untrustworthy score propa-

gation detected during the random-walk process of OBOE in each

dataset. Figure 8 shows the results. The 𝑥-axis represents path

lengths and the 𝑦-axis represents the ratio of untrustworthy score

propagation per path length. Overall, we see that the ratio increases

as the path length increases. We note, as shown in Figure 2, the

prediction accuracy of SRSurfer decreases as the path length in-

creases. Thus, we can say that OBOE detects untrustworthy score

propagations more in the situation where the prediction accuracy

of SRSurfer is decreasing. Moreover, we see that, on Wikipedia

and Slashdot, our sign verification strategy considers a lot of score

propagations (based on the balance theory) to be untrustworthy

while, on Epinions, it considers relatively less score propagations to

be untrustworthy. This is likely because of the fact that on Epinions,

90% of all triangles are of the “balance” (+,+) type.
Next, for EQ1-2, we validate the new score propagation of OBOE.

Note that when OBOE encounters the untrustworthy score propa-

gation, it propagates to both scores of two signs by leveraging the

ratios of the prior and posterior signs of the triangles in a given

signed network ((STEP 2) in Section 4.2). To verify this strategy,

we first made two variants of OBOE, denoted as OBOE(Balance)
and OBOE(FExtra), which propagate only to a score of a single

sign predicted by the balance theory and FExtra, respectively. Here,

OBOE(Balance) coincides with SRWR that does not use the bal-

ance attenuation factors. Also, we made two variants of OBOE,

Table 4: Accuracies of the variants of OBOE according to
different score propagation strategies (Slashdot)

Tasks Top-𝒌 PNR Bottom-𝒌 PNR
Metrics F1@10 NDCG@10 F1@10 NDCG@10

OBOE(Balance) 0.027 0.061 0.012 0.025

OBOE(FExtra) 0.012 0.018 0.016 0.033

OBOE(Uniform) 0.028 0.052 0.023 0.039

OBOE(Reverse) 0.024 0.039 0.011 0.021

OBOE(Ours) 0.032 0.071 0.024 0.044

denoted as OBOE(Uniform) and OBOE(Reverse), which propagate

to both scores at different ratios from our strategy. Specifically,

OBOE(Uniform) uniformly propagates to scores of both signs as

the ratios of 50:50, while OBOE(Reverse) propagates to those by

using the inverse of ratios used in our strategy. For comparison, we

denote a variant using our strategy as OBOE(Ours).
Table 4 shows the accuracies of the variants of OBOE for top-𝑘

and bottom-𝑘 PNR tasks on Slashdot. First, among four variants

except forOBOE(Ours), we found thatOBOE(Uniform) showed the

best accuracy except for NDCG@10 in the top-𝑘 task. The results

represent that, for untrustworthy score propagation, propagating to

both scores helps to improve the accuracy of PNR tasks than prop-

agating to a single score. However, we observe that OBOE(Ours)
consistently outperforms all other variants in all tasks. Specifically,

OBOE(Ours) improves F1@10 of OBOE(Balance), OBOE(FExtra),
OBOE(Uniform), andOBOE(Reverse) up to 15.7%/93.8%, 165.4%/39.7%,
14.7%/3.2%, and 33.4%/113.4% for top-𝑘/bottom-𝑘 PNR tasks, respec-

tively. This indicates that, when propagating to both scores, it is

most effective to consider the inherent property of a given network.

EQ2 and EQ3: Accuracy Comparisons in Top-𝒌/Bottom-𝒌
PNRTasks.We conducted comparative experiments to show greater

accuracy of OBOE than those of the competing methods in top-𝑘

and bottom-𝑘 tasks. Table 5 illustrates the results. The values in

bold face and underlined indicate the best and 2nd best accuracies

in each row, respectively.

We summarize the results shown in Table 5 as follows. First,

surprisingly, the accuracies of signed NE methods are always quite

low in both tasks. We know that signed NE methods have mainly

been validated with the task that predicts the signs of the given

positive and negative edges [5, 21, 39]. In this work, we found that

the nodes’ vectors obtained by them are effective in the task but not

in measuring the degree of positivity or negativity for the edges in

terms of personalization [22]. Second, we confirm that SRWR has

better accuracy than the other PNR methods in most cases, which

coincides with the results in [13, 14].

However, OBOE significantly outperforms all competing meth-

ods, except for the bottom-𝑘 task in NDCG on Epinions. More

specifically, OBOE improves the F1@10 and NDCG@10 of SRWR

up to 13.4% and 13.0%/95.9% and 57.8% for top-𝑘/bottom-𝑘 PNR

tasks, respectively. The results demonstrate that our sign verifica-

tion and score propagation strategies are effective in improving the

accuracy of PNR tasks. Moreover, we highlight that OBOE shows

dramatic improvements in the bottom-𝑘 task. To more understand

such results, we once again refer to the ratios of balanced and unbal-

anced triangles per type of prior signs, demonstrated in Section 3.

Specifically, a type (i.e., (+, +)) involving only a positive sign follows
the rules of the balance theory considerably, whereas other types

(i.e., (+,−), (−, +), (−,−)) involving a negative sign often do not
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Table 5: Accuracy of 5 competing methods and OBOE in top-𝒌 and bottom-𝒌 tasks
(a) Top-𝒌 Task

Metrics Signed NE methods PNR methods
OBOE GainBESIDE SLF M-RWR F-TNS SRWR

(1) Wikipedia

F1@10 0.008 0.014 0.043 0.011 0.044 0.050 13.4%
F1@20 0.008 0.015 0.044 0.012 0.043 0.047 7.5%

NDCG@10 0.010 0.017 0.054 0.016 0.055 0.062 12.7%
NDCG@20 0.012 0.022 0.068 0.021 0.067 0.074 8.8%

(2) Slashdot

F1@10 0.009 0.019 0.029 0.007 0.028 0.032 12.8%
F1@20 0.008 0.013 0.022 0.005 0.022 0.025 10.7%

NDCG@10 0.018 0.034 0.063 0.019 0.062 0.071 13.0%
NDCG@20 0.022 0.038 0.069 0.020 0.068 0.079 13.1%

(3) Epinions

F1@10 0.002 0.007 0.063 0.014 0.074 0.075 0.8%
F1@20 0.002 0.006 0.050 0.010 0.057 0.060 3.4%

NDCG@10 0.002 0.007 0.121 0.034 0.135 0.138 2.1%
NDCG@20 0.002 0.008 0.130 0.038 0.144 0.149 3.4%

(b) Bottom-𝒌 Task

Metrics Signed NE methods PNR methods
OBOE GainBESIDE SLF M-RWR F-TNS SRWR

(1) Wikipedia

F1@10 0.005 0.006 0.009 0.007 0.014 0.020 38.6%
F1@20 0.005 0.005 0.009 0.006 0.015 0.019 30.4%

NDCG@10 0.012 0.012 0.014 0.011 0.027 0.034 27.3%
NDCG@20 0.014 0.014 0.018 0.014 0.036 0.045 23.9%

(2) Slashdot

F1@10 0.004 0.001 0.008 0.001 0.012 0.024 95.9%
F1@20 0.003 0.002 0.006 0.001 0.010 0.017 63.7%

NDCG@10 0.005 0.003 0.014 0.003 0.026 0.044 68.7%
NDCG@20 0.007 0.004 0.016 0.004 0.031 0.049 57.8%

(3) Epinions

F1@10 0.003 0.001 0.005 0.002 0.026 0.028 10.5%
F1@20 0.005 0.001 0.005 0.002 0.022 0.024 5.9%

NDCG@10 0.004 0.001 0.009 0.003 0.049 0.047 -4.5%

NDCG@20 0.008 0.001 0.010 0.004 0.054 0.051 -5.9%

Table 6: Accuracy of 5 competing methods and OBOE in troll
identification task (Slashdot)

Metrics Signed NE methods PNR methods
OBOE Gain (%)BESIDE SLF M-RWR F-TNS SRWR

F1@100 0.0009 0.0014 0.0003 0.0172 0.0481 0.1632 239.0%
F1@200 0.0011 0.0031 0.0004 0.0191 0.0553 0.1729 212.5%

NDCG@100 0.0009 0.0011 0.0003 0.0197 0.0520 0.1814 249.2%
NDCG@200 0.0013 0.0033 0.0005 0.0275 0.0757 0.2471 226.4%

follow the rules strictly. In this sense, SRSurfer-based PNR methods

frequently perform inaccurate predictions for negative relation-

ships, while OBOE effectively corrects such predictions, thereby

improving the accuracy of bottom-𝑘 PNR considerably. Lastly, note

theOBOE is relatively less effective on Epinions than other datasets.
As mentioned in EQ1, on Epinions, 90% of all triangles are of the

“balanced" (+, +) type, thus leaving little room for OBOE to exploit

new ideas (so only small gain (%) compared to the results of SRWR).

EQ4. Accuracy Comparison in Troll Identification Task. We

verify that OBOE outperforms the competing methods in a troll

identification task. Note that the bottom-𝑘 task aims to evaluate how

much accurately each method finds the real negative edges of each

seed node (i.e., personalized ranking), while the troll identification

task aims to evaluate how much accurately each method finds

the trolls regardless of a specific seed node (i.e., global ranking).
Table 6 shows the results. We observe that OBOE consistently and

remarkably outperforms all competing methods. More specifically,

OBOE dramatically improves the F1@100 and NDCG @100 of

SRWR, the best performer among the competing methods, up to

239.0% and 249.2%, respectively. The results indicate that correcting

incorrect score propagation contributes to accurately measuring

not only PNR of each node but also global ranking as well.

EQ5. Parameter Analysis for OBOE.We carefully analyze the

sensitivity of accuracy according to different values for parameters,

𝛽+ (i.e., 𝐶 (𝑠𝑖𝑔𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 = +1)) and 𝛽− (i.e., 𝐶 (𝑠𝑖𝑔𝑛 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 = −1)).
Figure 9 shows the accuracy changes of OBOE for Slashdot with

varying 𝛽+ and 𝛽− in the bottom-𝑘 PNR task. The 𝑥-axis and 𝑦-axis

represent the values of 𝛽− and those of 𝛽+, respectively, and the

𝑧-axis represents the accuarcies in terms of NDCG@10. In general,

as 𝛽+ and 𝛽− increase, the accuracies of OBOE increase as well.

Figure 9: Accuracy changes according to 𝜷+ and 𝜷−.

Also, the result shows that the accuracy is the highest when 𝛽+
and 𝛽− are 0.9 and 0.9, respectively. This indicates that we should

carefully use the FExtra-based predictions for the sign verification

task, only when the predictions by FExtra are sufficiently confident.

6 CONCLUSIONS
In this paper, we investigated the limitation of SRSurfer-based PNR

methods based on the balance theory: (1) edge relationships often

do not strictly follow the rules of the balance theory and (2) the

balance theory results in incorrect sign predictions of SRSurfer. To

address this limitation, we proposed a novel random-walk based

PNR approach, named as OBOE. OBOE is composed of (1) a sign
verification based on nodes’ topological features and a score propa-
gation based on the statistics of a given signed network. In addition,

we formulated the iteration of OBOE as a matrix-vector multiplica-
tion form. Furthermore, we analyzed that the iterative algorithm

of OBOE converges to a unique solution. Through comprehensive

experiments using three real-world datasets, we demonstrated that

(1) our sign verification and score propagation strategies are effec-
tive and (2) OBOE consistently and significantly outperforms all

competing methods in three types of tasks, i.e., top-𝑘 PNR, bottom-𝑘

PNR, and troll identification, with three real-world datasets.
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