Session 1D: Social Aspects

SIGIR 21, July 11-15, 2021, Virtual Event, Canada

Look Before You Leap: Confirming Edge Signs in Random Walk
with Restart for Personalized Node Ranking in Signed Networks

Wonchang Lee*
Hanyang University
Seoul, Korea
wonchang24@hanyang.ac.kr

Dongwon Lee
The Pennsylvania State University
University Park, PA, USA
dongwon@psu.edu

ABSTRACT

In this paper, we address the personalized node ranking (PNR) prob-
lem for signed networks, which aims to rank nodes in an order most
relevant to a given seed node in a signed network. The recently-
proposed PNR methods introduce the concept of the signed random
surfer, denoted as SRSurfer, that performs the score propagation
between nodes using the balance theory. However, in real settings
of signed networks, edge relationships often do not strictly follow the
rules of the balance theory. Therefore, SRSurfer-based PNR methods
frequently perform incorrect score propagation to nodes, thereby de-
grading the accuracy of PNR. To address this limitation, we propose
a novel random-walk based PNR approach with sign verification,
named as OBOE (100ok Before yOu IEap). Specifically, OBOE care-
fully verifies the score propagation of SRSurfer by using the topo-
logical features of nodes. Then, OBOE corrects all incorrect score
propagation cases by exploiting the statistics of a given network.
The experiments on 3 real-world signed networks show that OBOE
consistently and significantly outperforms 5 competing methods
with improvement up to 13%, 95%, and 249% in top-k PNR, bottom-k
PNR, and troll identification tasks, respectively. All OBOE codes and
datasets are available at: http://github.com/wonchang24/OBOE.
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1 INTRODUCTION

Given a seed node in a network, the personalized node ranking (PNR)
problem is to rank the remaining nodes in an order most relevant to
the seed node by considering both the structure of the network and
the connectivity with the seed node. Unlike the traditional node
ranking problem [16, 23, 29], the PNR problem ranks nodes from the
view point of a given seed node. In this sense, solutions [9, 15, 35, 40]
to the PNR problem can be utilized in a variety of applications that
need personalization such as friend recommendation and targeted
marketing. Popular PNR methods include random-walk with restart
(RWR) [34] and personalized SALSA (PSALSA) [1].

Recently, there has been a surge of interest on signed networks
with both positive and negative edges between nodes [25, 38]. For
example, sites such as Slashdot (a technology news site) or Epin-
ions (a now-defunct consumer review site) allow users to decide
whether users trust (i.e., positive edges) or distrust (i.e., negative
edges) each other. In such a setting, the edge signs provide rich
semantics between nodes [6, 10, 18, 20]. However, the aforemen-
tioned PNR methods were designed for (unsigned) networks with
only positive edges between nodes. For this reason, many prior
works have extended such PNR methods for signed networks-e.g.,
FriendTNS [33], OPT+GAUC [31], SRWR [13, 14], and SSRW [27].

In particular, two recently-proposed and also best-performing
PNR methods, i.e., SRWR [13, 14] and SSRW [27], extend the existing
RWR models by introducing the concept of the signed random surfer,
denoted by SRSurfer in this paper. Basically, SRSurfer traverses the
edges starting from a seed node ny in a signed network while
propagating the positive/negative scores of ny to the visited nodes
ny using the balance theory [2], a well-known theory in psychology.
This theory states that social relationships follow four rules: (R1) a
friend of my friend is my friend; (R2) a friend of my enemy is my
enemy; (R3) an enemy of my friend is my enemy; (R4) an enemy of
my enemy is my friend.

Specifically, SRSurfer predicts an edge sign between two nodes
ny, ny by analyzing the combination of edge signs along the random-
walk path from ny to ny based on the balance theory. Then, if the
predicted sign is positive (resp. negative), SRSurfer propagates the
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Figure 1: A signed network:
dotted lines indicate the
edges walked by SRSurfer.

Figure 2: Prediction
accuracy of SRSurfer
per path length.

positive (resp. negative) score of ny to ny. As shown in Figure 1,
when SRSurfer walks on two negative edges from ny to ny, it propa-
gates a positive score of ny to ny based on R4 of the balance theory.
Here, we note that this type of score propagation is performed
under the assumption that the decades-old balance theory always
holds in real settings. However, in real settings of signed networks,
edge relationships often do not strictly follow the rules of the balance
theory [7]; this observation will be elaborated in Section 3.

In this sense, the edge signs predicted by SRSurfer may be in-
accurate. For instance, in the above example, ny and ny may not
be a friend because the enemies of my enemy are not always my
friends in the real world. Furthermore, as the length of the path

between two nodes increases (i.e., the path between ny and n; in
Figure 1), the number of edge signs used for prediction also in-
creases, rendering the accurate sign predictions more challenging.
As a demonstration, Figure 2 shows that the prediction accuracy of
SRSurfer using the Wikipedia dataset decreases rapidly as the path
lengths increase. This result clearly indicates that SRSurfer fails
to predict edge relationships accurately. In other words, SRSurfer-
based PNR methods frequently perform incorrect score propagation
to nodes, thereby degrading the accuracy of node rankings.

To address this limitation, in this paper, we aim to carefully verify
the score propagation of SRSurfer and then correct incorrect score
predictions. Toward this end, we propose a novel random-walk
based PNR approach with sign verification, named as OBOE (10ok
Before yOu IEap). Existing SRSurfer-based PNR methods perform
the score propagation based on the balance theory as follows: if
ny and n, are connected by a positive edge (resp. a negative edge),
the methods propagate ny’s positive/negative scores to n;’s posi-
tive/negative (resp. negative/positive) scores, respectively. On the
other hand, OBOE carefully validates whether such score propaga-
tion is trustworthy or not “before" propagating n’s scores to n,. To
this end, OBOE first predicts a sign between the seed node ny and
nz based on their 23 topological features such as degree distribution
and triad types [24, 26].! Then, if the sign prediction turns out to
be trustworthy, OBOE degenerates to a regular SRSurfer model
and propagates scores based on the balance theory. Otherwise,
OBOE uses a novel score propagation strategy that exploits the
statistics related to the edge signs of all triangles in a given signed
network. By iteratively performing the aforementioned process
(i.e., verification and score propagation), OBOE propagates the pos-
itive/negative scores of the seed node ny to all other nodes. Finally,
after convergence, OBOE ranks all nodes except for ny based on
their positive and negative scores.

In designing, implementing, and validating these ideas, in this
paper, our contributions are summarized as follows:

!Note that here we consider n,’s relationship with the seed node n, (not ny), as
OBOE is propagating the scores of n,, received from ny to n.

144

SIGIR 21, July 11-15, 2021, Virtual Event, Canada

e We demonstrate the limitation of SRSurfer-based PNR methods
in propagating scores of nodes based on the balance theory.

e We propose a novel random-walk based PNR approach with a
sign verification, named as OBOE.

— We design a strategy to validate the score propagation based
on the balance theory by exploiting topological features of
nodes.

— We design a strategy to leverage the statistics of a given net-
work to replace the untrustworthy score propagation.

o We validate the effectiveness of OBOE via extensive experiments
using three real-world datasets.

— Specifically, OBOE dramatically improves the accuracy of top-
k PNR/bottom-k PNR/troll identification tasks up to 13%/95%/
249%, respectively, over the best performer among five com-
peting methods.

The rest of this paper is organized as follows: Section 2 reviews
existing PNR methods. Section 3 demonstrates the limitation of
SRSurfer-based PNR methods and Section 4 presents our proposed
approach in detail. Section 5 validates the effectiveness of the pro-
posed approach through extensive experiments. Finally, Section 6
summarizes and concludes the paper.

2 RELATED WORK

In this section, we briefly review two families of existing PNR meth-
ods: one for unsigned networks and the other for signed networks.

PNR for Unsigned Networks. First, RWR [34], PSALSA [1], and
MPR [8] analyze the structure of a given network by designing
their own random-walk models. They traverse the edges starting
from a seed node in the network while propagating the scores of
the seed node to other nodes. Finally, they rank nodes, except for
the seed node, based on their scores. Next, PALE [28] and RDL [36]
represent the nodes in a given network as low-dimensional vectors
by employing low-rank models. Then, they rank nodes, except for
a seed node, based on a distance function that exploits the vector of
the seed node and that of each remaining node. However, none of
these methods took edge signs into consideration in their designs.

PNR for Signed Networks. To address this limitation, various
PNR methods for signed networks have been proposed. In the
early days of research, FriendTNS [33] and Zhu et al. [42] designed
heuristic measures that calculate relevance scores between nodes
in consideration of edge signs. Then, both methods rank the nodes
based on the relevance scores between the seed node and remaining
nodes. Next, Opt-GAUC [31] proposed a matrix factorization model
that learns existent positive/negative edges between nodes and
further learns non-existent edges as no-relation edges.

Recently, several studies such as ModifiedRWR [30], SRWR [13,
14], and SSRW [27] have extended the existing RWR models. First,
ModifiedRWR [30] computes positive/negative RWR scores of nodes
by performing RWR on the positive/negative subgraph, respectively,
and then ranks nodes by subtracting negative RWR scores from
positive ones. Next, SRWR [13, 14] and SSRW [27] compute pos-
itive/negative scores of nodes based on SRSurfer and then rank
nodes in the same way as in ModifiedRWR. Specifically, SRWR
introduced the balance attenuation factors f, y into SRSurfer to
consider the uncertainty for two rules (i.e., R2 and R4) of the bal-
ance theory. However, the factors (1) apply to all (trustworthy and
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(a) balanced triangle (b) unbalanced triangle

Figure 3: Examples of balanced/unbalanced triangles.

untrustworthy) score propagation for R2 and R4, and (2) do not
cover the remaining two rules (i.e., R1 and R3) of the balance theory.
On the other hand, SSRW incorporated the social strengths into
SRSurfer, which captures a node’s different preferences towards
different neighbors. Note that SSRW does not employ the balance
attenuation factors. In summary, both SRSurfer-based PNR methods
frequently perform incorrect score propagation to nodes, thereby
adversely affecting the accuracy of PNR.

Lastly, we can perform PNR based on the network embedding
methods for signed networks, denoted as signed NE [5, 21, 37, 39,
41]. Specifically, the signed NE methods represent the nodes of a
given signed network by vectors in a low-dimensional embedding
space so that the vectors preserve structural and semantic properties
in the network. That is, they attempt to represent the nodes with
positive edges to be close and those with the negative edges to be
distant in the embedding space. Literature [5, 21, 37, 39, 41] has
shown that the low-dimensional vectors can be used as effective
features of nodes in solving various downstream tasks including
node ranking and recommendation [3, 4, 19]. For instance, in terms
of PNR, we rank the nodes using the vectors of the seed node and
those of the remaining nodes.

3 MOTIVATION

In this section, we present SRSurfer [13, 14] in detail and demon-
strate its limitation via experiments over real-world datasets.

SRSurfer predicts positive scores rf; and negative scores ry of
all nodes ny, from the perspective of a seed node ny. If x = y, the
initial values of r; and ry are set to 1 and 0, respectively. Other-
wise, both are set to 0. Then, SRSurfer propagates ri/r; of ny to
all other nodes. Suppose that SRSurfer walks to a node n; in the
neighborhood of a node ny with a probability of (1 - ¢). In this
case, SRSurfer propagates r;/r; of ny to n; based on the balance
theory as follows: if ny and n, are connected by a positive edge
(resp. a negative edge), it propagates r;/r; of ny to ry/r; (resp.
r; /r}) of ng, respectively. In addition, SRSurfer restarts at ny with
a probability ¢ for personalization w.r.t ny. This probability c is
empirically determined.

Given a seed node ny, the aforementioned score propagation can
be formulated as follows [13, 14]:

= (1-{A)Tr* + (A)Tr } +cq,

r=(1-0{A)Tr+(AHTr ),
where r/r” represent positive/negative score vectors w.r.t. ny
whose y-th elements are r;/r; of ny, respectively. A*/A~ indi-
cate positive/negative semi-row normalized matrices that contain
all positive/negative values in the adjacency matrix A of a given
signed network, respectively. q is an unit vector whose x-th element
(i.e., seed node ny) is 1 and all other elements are 0. Finally, c is a
restart probability. Then, SRSurfer iteratively updates r* and r~

1
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Table 1: Ratios of balanced/unbalanced triangles per type

Pri ++ + - -+ - -
Triangles rior 4 ‘ ) ‘ =4 ‘ =)
Posterior + - + - + - + -
Wikipedia | 92% 8% | 72% 28% | 62% 38% | 50% 50%
Dataset Slahsdot | 98% 2% | 34% 66% | 58% 42% | 54% 46%
Epinions | 99% 1% | 38% 62% | 53% 47% | 41% 59%
Balanced? ‘ O X ‘ X O ‘ X O ‘ O X

via (Eq. 1) until r* and r~ converge. Finally, SRSurfer computes the
ranking score vector 14 of ny as follows:

r? =r" -1,

@
g indicates a final ranking score for ny w.r.t ny.

Note that the score propagation of SRSurfer totally depends on
the predicted signs by the balance theory. As alluded in Section 1,
however, edge relationships often do not strictly follow the rules of
the balance theory. To show the evidence of this claim in real-world
signed networks (i.e., Wikipedia, Slashdot, and Epinions), we first
sample all the triangles (ny, ny, n;) where the edge directions be-
tween three nodes satisfy the transitivity. For instance, if ny points
to ny, ny points to nz, and ny points to n, the triangle (ny, ny, nz)
satisfies the transitivity. Then, we examine how much the triangles
follow the rules of the balance theory. That is, given two signs (i.e.,
prior signs) in a triangle, we check whether the remaining sign
(i.e., posterior sign) matches the rules of the balance theory (e.g., a
balanced triangle in Figure 3-(a)) or not (e.g., a unbalanced triangle
in Figure 3-(b)).

Table 1 shows the ratios of balanced and unbalanced triangles
among all triangles in three signed networks, according to four
types of prior signs - ie, (++), (+,—), (=, +), (=, —). We observe
that (+, +) type follows the rules of the balance theory consider-
ably, whereas other types often do not follow the rules strictly. For
instance, for (+, —) type in Wikipedia or for (—, —) type in Epin-
ions networks, 72% and 59% of triangles do not follow the balance
theory (i.e., unbalanced triangles), respectively. This result clearly
demonstrates that the balance theory does not always hold in real
settings. Therefore, score propagation models that strictly follows
the balance theory (e.g., SRSurfer-based PNR methods) are likely to
contain substantial amount of incorrect score propagation.

Next, further, we test how much one can improve the sign pre-
diction accuracy by not strictly following the balance theory. To this
end, we regard 80% of the edges in a signed network as a train-
ing set, and the remaining 20% as a test set. Then, we sample all
unbalanced triangles (ny, ny, nz) from the training set. Next, we
perform sign prediction on the test set using SRSurfer. Here, we
made two variants, denoted as Original SRSurfer and Modified
SRSurfer, of predicting the signs of posterior edges (ny, n;) when
SRSurfer walks on two prior edges (ny, ny), (ny, nz) of a sampled
unbalanced triangle (n., ny, nz) in turn. Specifically, whenever two
variants encounter two prior edges of the sampled unbalanced tri-
angles during the random-walk process, the sign of each posterior
edge is predicted differently as follows:?

where r

e Original SRSurfer incorrectly predicts the sign of a posterior
edge by blindly following the balance theory. For instance, in
Figure 3-(b), it predicts the sign of (ny, n;) as negative. However,

2Such predictions are difficult to implement in terms of matrix-vector multiplication
as shown in (Eq. 1). Thus, we performed both original/modified SRSurfer in a random-
walk manner.
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Figure 4: Accuracies of sign prediction by original and
modified SRSurfer.

Table 2: Notations used in this paper

Notation ‘ Description

G signed network

N set of nodes

&e* set of positive edges

&~ set of negative edges

Ny seed node

c restart probability

rz final ranking score of ny w.r.t ny

r;/r; positive/negative scores of ny w.r.t ny
sign(ny, ny) real edge sign between n, and ny
signfeature (Nx, Ny) predicted edge sign between ny and ny,

C(signfearure(Nx,ny)) | confidence score for the predicted sign

in the case of Wikipedia data, for instance, 72% of triangles does
not follow this pattern, causing substantial errors in prediction.
o Modified SRSurfer correctly predicts the sign of a posterior
edge by not following the balance theory. For instance, in Figure 3-
(b), it predicts the sign of (ny, n;) as positive, which happens to
be in agreement with 72% of triangles in Wikipedia, for instance.

Figure 4 shows the prediction accuracies of the original and mod-
ified SRSurfer models for the edge signs on a test set. We confirm that
the modified SRSurfer significantly outperforms the original SR-
Surfer. More specifically, for Wikipedia/Slashdot/Epinions, the mod-
ified SRSurfer dramatically improves the accuracies of the original
SRSurfer by 47.4%/64.0%/198.0%, respectively. The result indicates
that the accuracy of sign predictions can be significantly improved
by correcting the incorrect sign predictions by the balance theory.
Therefore, we here conclude that (1) edge relationships often do not
strictly follow the rules of the balance theory (as shown in Table 1)
and (2) the balance theory results in incorrect sign prediction of
SRSurfer (as shown in Figure 4).

4 THE PROPOSED APPROACH: OBOE

To address the limitation of SRSurfer-based PNR methods, we pro-
pose a new random-walk based PNR approach with a sign verifica-
tion, named as OBOE. In Section 4.1, we first formulate the PNR
problem for signed networks and present the overall procedure of
our OBOE. In Section 4.2, we describe two key ideas, i.e., sign verifi-
cation and score propagation, of OBOE in detail. In Section 4.3, we
formulate the iteration of OBOE as a matrix-vector multiplication
form and show its iterative algorithm. Lastly, in Section 4.4, we
discuss the convergence of OBOE.

4.1 Opverall Procedure

The PNR problem for signed networks is formulated as follows:
let G = (N,E%,E7) be a given signed network, where N =
{n1,na,- - ,nm} represents a set of m nodes and &* and &~ rep-
resent the sets of positive and negative edges, respectively. Note
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@ signfeature(Nx, M7)

seed node n,,

seed node n,

@ sign(ny,n,)=+1

(a) a random walk from n, to n, (b) sign prediction of (n,,n,)
[ ]

\4

: : Trustworthy ———
n; + ny 4 . signgeature(My, ) =+1
T q— T}

: Q_ : Untrustworthy ——
n, * oom 4 um Signseature(My, 1,)=-1

7 7 @ry
Tz
(d) score propagation of r3 (c) sign verification

Figure 5: The procedure of score propagation of OBOE.

that &* N &~ = 0, a node pair cannot have both positive and neg-
ative edges simultaneously. Given a seed node ny, PNR methods
for signed networks aim to output ranking of the nodes except
for ny by analyzing both the structure of the network and their
connectivity with ny. Table 2 summarizes a list of notations used
in this paper.

We present the overall procedure of OBOE. Given a seed node
nyx, OBOE sets the positive/negative scores r*y'/r; of all nodes ny
from the perspective of ny. rz/r and ry represents the likelihood
(measured by OBOE) to which the edge relationship between ny
and ny has a positive sign (i.e, friend) and a negative sign (i.e.,
enemy), respectively. If x = y, the initial values of rz,r and r;; are set
to 1 and 0, respectively. Otherwise, both are set to 0. Then, OBOE
propagates ri/ry of ny to all other nodes. Toward this end, the
random surfers of OBOE start from ny and then walk along the
outgoing edges with a probability of (1 — ¢), while going back to
ny with a probability of c.

Now, we describe the process of the score propagation of OBOE
with Figure 5. As shown in Figure 5-(a), suppose that a random
surfer is currently at a node ny and ny has already received the
scores from the previously-visited node n; by OBOE’s score propa-
gation strategy (to be explained later). When the surfer walks to a
node n; in the neighborhood of ny with (1 - ¢), OBOE propagates
both r; (@ in Figure 5-(a)) and ry (® in Figure 5-(a)) of ny to
nz. We here explain the propagations of r; since both propaga-
tion of r3; and r}; are similar. Basically, if an edge sign, sign(ny, n;)
(® in Figure 5-(a)), between ny and n; is positive (resp. negative),
OBOE propagates rz; to r} (resp. r;) in the same way as SRSurfer.
As demonstrated in Section 3, however, score propagation models
based on SRSurfer are likely to contain a substantial amount of
incorrect score propagation (Table 1).

To validate the score propagation from ny to n, based on the
balance theory, OBOE predicts an edge sign, signfeature (x, nz) €
{+1, -1}(® in Figure 5-(b)), between n, and n, with additional in-
formation. Toward this end, OBOE exploits 23 topological features
of ny and n;. Then, OBOE examines whether both sign feqsyre (nx, n2)
and the sign of n;’s score, to which r; is propagated by SRSurfer,
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(e.g., r¥ in the case of Figure 5) are consistent or not (Figure 5-(c)): if
it is consistent, OBOE regards the score propagation as trustworthy
and thus performs that propagation (the upper case in Figure 5-(d)).
Otherwise, OBOE regards it as untrustworthy and uses a novel score
propagation (the lower case in Figure 5-(d)). Specifically, OBOE
propagates r; to both scores rf and r;, not a score determined by
SRSurfer. The intuition behind this idea is that the edge relationship
between ny and n, are uncertain. Therefore, OBOE should set the
ratios at which r‘yL is propagated to r} and r; . In this paper, we
utilize the ratios of the prior and posterior signs of triangles in a
given signed network, to be elaborated in Section 4.2. OBOE also
performs the same process as above for the propagation of r,.

So far, we have presented a situation in which OBOE propagates
ry/ry of anode ny to r7/r; of another node n;. In OBOE at every
iteration, each node propagates its own scores to its outgoing edges
and receives the propagation from its incoming edges. OBOE itera-
tively performs this score propagation until the scores of all nodes
converge. Finally, after convergence, OBOE ranks nodes except for
ny by subtracting their negative scores from their positive ones.

4.2 Sign Verification and Score Propagation

We describe the key ideas of OBOE in detail. Given a seed node n,
a currently-visiting node n,, and a next-visiting node n;, OBOE
performs the following two steps: (STEP 1) sign verification and
(STEP 2) score propagation. OBOE first verifies the score propaga-
tion from ny to n, by directly exploiting the relationship between
ny and n; and then classifies it into trustworthy or untrustworthy
one. Next, OBOE performs the trustworthy one as it is, while it cor-
rects the untrustworthy one by performing a safe score propagation
exploiting the statistics of a given network.

STEP 1:Sign Verification. In this step, OBOE predicts a sign feazure
(ny, nz) between ny and n; based on their topological features and
validates whether the score propagation from ny to n;, is trustwor-
thy or not by using sign rearure (nx, nz)-

For sign prediction, we employ a well-known feature-based
method, FExtra [24, 26]. For all node pairs (nx, ny) in a network,
we first construct a vector fy,; = {f1,-- -, f23} consisting of values
for 23 topological features for each of the pairs. Specifically, we
first exploit 7 features related to nodes’ degrees: (1) the number of
outgoing positive edges of ny, (2) the number of outgoing negative
edges of ny, (3) the number of incoming positive edges of ny, (4)
the number of incoming negative edges of ny, (5) the total number
of common neighbors of ny and ny, (6) the total out-degree of ny,
and (7) the total in-degree of ny. In addition, we exploit features
related to 16 distinct types of triads containing ny, ny, and their
common neighbors n; in the network: the edge between ny and n,
can be in either direction and of either sign, and the edge between
ny and n; can also be in either direction and of either sign; this
leads to 2 - 2 - 2 - 2 = 16 possibilities. Thus, we set the number of
triads of each type to the value of the corresponding feature.

Next, we train a logistic regression classifier model based on the
fx,y for node pairs (ny, ny) with real edge signs in the network. Us-
ing the learned classifier, we finally predict the sign feasyre (x, nz)
for all node pairs (ny, n;) without real edge signs in the network.
During the prediction process, FExtra also computes the confi-
dence score C(sign feature(nx, nz)) € [0,1] for the predicted sign
Signfeature (Mx, Nz). For instance, if sign feqryre (nx, nz) = +1 and
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e—r—0r; ;0 ——0r;
n, n, n, n,
(@) SP 1 (b) SP 2
R £
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(c)SP3 (d)SP 4

Figure 6: Score propagation based on the balance theory.

C(sign feature (nx, nz)) = 0.95, it indicates FExtra predicted the sign
between ny and n; as positive and is quite confident for that predic-
tion. Note that, before OBOE performs the random-walk process, it
predicts signfeqrure (Nx, nz) for all node pairs (nx, nz) without real
edge signs in advance as a preprocessing task.

Now, OBOE verifies the score propagation from ny to n; using
the sign feqryre (nx, nz) and the C(signgearure (nx, nz)). Note that
we exploit the relationship between the seed node ny (not ny) and
nz, as OBOE is propagating the scores of ny received from ny to n.
Here, there are four possible score propagations (SP) from ny to n,
as follows (Figure 6):

e If sign(ny, nz) = +1, rj is propagated to r7 (SP 1 in Figure 6-(a))

and r; is propagated to r; (SP 2 in Figure 6-(b)).

o If sign(ny,nz) = -1, r; is propagated to r, (SP 3 in Figure 6-(c))

and r; is propagated to r} (SP 4 in Figure 6-(d)).

To validate the above score propagations, OBOE checks the fol-
lowing two conditions: (1) does the sign feasyre (1, nz) and the sign
of n;’s score, to which ny’s score is propagated, consistent? and (2)
does the C(sign feqrure (Nx, nz)) exceed a predefined threshold? For
(1), OBOE considers the score propagation in which the two signs
are consistent as trustworthy. For instance, if sign feqryre (nx, nz) =
+1, OBOE considers the SP 1/4 (resp. the SP 2/3) where ny’s scores
are propagated to r} (resp. r;) as trustworthy (resp. untrustworthy),
respectively.? For (2), OBOE finally uses only the score propagation
considered trustworthy by the confident sign reatyre (x, nz). In the
above example, if C(sign feqryre (Nx,nz) = +1) is lower than the
predefined threshold, OBOE does not regard the SP 1/4 as trustwor-
thy. In this paper, we introduce a threshold S for C(signfearure
(nx, nz) = +1) and another threshold S for C(sign reature (nx, nz)
= —1) separately. We will analyze the sensitivity of OBOE to S,
and f_ in Section 5.2.

Here, there remains a question on whether the sign fearure (x, nz)
is more reliable than the sign predicted by SRSurfer. To address this
concern, we confirmed that FExtra consistently and significantly
improves the accuracy of sign prediction based on SRSurfer in our
preliminary experiments. Thanks to (STEP 1) of OBOE, we can
detect untrustworthy score propagation. In Section 5.2, we confirm
that such untrustworthy score propagation occurs considerably but
is detected via our OBOE.

STEP 2: Score Propagation. In this step, OBOE performs differ-
ent score propagation from ny to n., according to trustworthy or

untrustworthy one. OBOE first normalizes the r;/ ry of ny to the

number of ny’s outgoing edges |Oy| as follows:
+ Yy - _ r; .
Y10yl Yo 10yl

(©)]

3We can handle the case of (signfearure (Nx, nz) = —1) as well in the same way.
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Figure 7: Score propagation strategy of OBOE (Wikipedia).

Again, note that r; and r; represents the degree to which the edge
relationship between ny and ny has a positive sign and a negative
sign, respectively. Then, OBOE propagates ny’s r;/r;’ to n; by
considering the following eight cases: (1) CASE 1/5 regard SP 1 as
trustworthy/untrustworthy, respectively; (2) CASE 2/6 regard SP
2 as trustworthy/untrustworthy, respectively; (3) CASE 3/7 regard
SP 3 as trustworthy/untrustworthy, respectively; (4) CASE 4/8
regard SP 4 as trustworthy/untrustworthy, respectively.

For CASE 1/2/3/4 (i.e., trustworthy score propagation), OBOE
performs each score propagation as it is. On the other hand, for
CASE 5/6/7/8 (i.e., untrustworthy score propagation), we assume
that the edge relationship between ny and n; are uncertain. There-
fore, OBOE uses a different score propagation strategy, instead
of each (untrustworthy) score propagation. For CASE 5/7 (i.e., for
propagating ry; to rz), OBOE propagates ry to both r} and r; while,
for CASE 6/8 (i.e., for propagating r;, to rz), OBOE propagates r
to both r} and r;.

For determining ratios of the propagation, as a heuristic policy,
OBOE utilizes the ratios (i.e., Table 1 in Section 3) of the prior and
posterior signs of the (real) triangles in a given signed network.
Specifically, OBOE regards (1) the sign of n’s score (i.e., positive
and negative one for CASE 5/7 and CASE 6/8, respectively) and
(2) sign(ny,nz) (ie., positive and negative one for CASE 5/6 and
CASE 7/8, respectively) as two prior signs. Also, OBOE regards
the signs of n;’s score received from ny as the posterior signs.
Given two prior signs in an input network, OBOE then checks the
ratios at which the posterior signs are positive and negative. Finally,
OBOE propagates ny’s scores to both ry/r; in accordance with the
observed ratio of positive/negative signs, respectively.

Figure 7 depicts the cases in which ny’s scores are propagated to
n; in the Wikipedia dataset. Each case is divided into two sub-cases
according to the posterior signs. Suppose that both prior signs are
given as positive as shown in Figures 7-(a) and 7-(b). In this case,
from Table 1, OBOE checks that the ratios of posterior signs to
positive (i.e., +) and negative (i.e., —) are 92% and 8% in a Wikipedia
dataset, respectively. Then, OBOE propagates 92%/8% of r; torf/ry,
respectively. Similar to the sign predictions in (STEP 1), in general,
OBOE pre-computes the statistics for a given signed network as
part of the pre-processing task.

Thanks to (STEP 2) of OBOE, we can now correct the incorrect
score propagation by referring to the statistics of a given network.
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Algorithm 1 Iterative process of OBOE

Input: a seed node ny, semi-row normalized adjacency matrices A* and
A", restart probability ¢, and error tolerance e
Output: a ranking vector r¢
1: s~et the~ sub—n}atrices A;:*, A;*, ;\‘;’, A;’, A;**, A;*’, A;H, A;*’,
AT AL A and AT
: set q from ny
csetrf=q,r =0,and b’ = [r*;1r]7
: repeat
compute r* and r~ using (Eq. 4)
concatenate r* and r~ into h = [r*;r7]T
compute & between h and b’
update h’ < h
untild < e

N e AT~ S )

: compute r¢ =1t — 1~
d

—_ =
- o

: return r

By employing this heuristic policy, we can consider the structural
property per given signed network. In Section 5.2, we show that our
score propagation strategy with this policy to replace the untrust-
worthy score propagation is more effective than other strategies
(e.g., uniform propagation).

4.3 Formulation for OBOE

We formulate the iteration of OBOE as a matrix-vector multiplica-
tion form. Toward this end, we extend (Eq. 1) of SRSurfer as follows:
= (1-o)[{(Af)Tr + (A7) 1 1+
(AT T+ (AT T+ (A7) T + (A7) Tr H +eq,
1= (1= [{(A7) " + (A7) Tr 3+
(AL T + (AL Tt + (A7) T + (A7) b,

@

where r*/r” represent positive/negative score vectors w.r.t. ny. q is
an unit vector whose x-th element (i.e., seed node ny) is 1 and all
other elements are 0. Also, A;‘ and A% indicate adjacency matrices
for trustworthy and untrustworthy score propagations, respectively.
Note that the matrices of A;‘ (eg. A;'_) have two signs, while the
matrices of A%, (e.g., A+™") have three signs. Specifically, in each of
Aj both signs represent two prior signs. For instance, A;r_ repre-
sents a situation in which r‘g (i.e., the first prior sign) of each node
ny is propagated to each node n; whose sign(ny, n;) = -1 (i.e, the
second prior sign) among the neighborhood of ny (i.e., CASE 3).
Next, in each of A;, the first two signs are the same as those of A;‘
and the last sign is a posterior sign. For instance, A} represents a
situation where part of rJyr (i.e., the first prior sign) of each node n,
is propagated to r} (i.e., the posterior sign) of each node n, whose
sign(ny,nz) = —1 (i.e, the second prior sign) among the neighbor-
hood of ny (i.e,, CASE 7-1). To build 12 adjacency matrices in (Eq. 4),
we use the positive and negative semi-row normalized matrices
A*/A~. Specifically, we first construct 6 (sub) adjacency matrices
based on A*: A7* (CASE 1), A;* (CASE 2), A}** (CASE 5-1), A}*~
(CASE 5-2), A;** (CASE 6-1), and A;*~ (CASE 6-2). In addition,
we construct 6 remaining (sub) adjacency matrices based on A~
AF~ (CASE 3), A;~ (CASE 4), A} (CASE 7-1), Aj;~~ (CASE 7-2),
A7+ (CASE 8-1), and A ™~ (CASE 8-2).

Finally, Algorithm 1 sketches the iterative process of OBOE.
Given a seed node ny, OBOE constructs 12 (sub) adjacency matri-
ces using A* and A~ (line 1). Then, OBOE sets q to x-th unit vector
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(line 2). OBOE initializes r* and r~ and then sets h’ by concatenat-
ing them (line 3). Next, OBOE updates r* and r~ via (Eq. 4) and
concatenates them into h (lines 5-6). Then, OBOE computes the
error § between h at the current iteration and h’ at the previous
iteration (line 7). OBOE updates h into h’ for the next iteration
(line 8). It performs the iterations until the error § becomes less
than the threshold € (line 9). Finally, OBOE builds a vector r? and
uses it as the final ranking vector w.r.t ny (line 10).

4.4 Convergence Analysis

We show that the iteration in Algorithm 1 converges to the solution
of a linear system as follows:

TuEOREM 1. Suppose thath = [r*;17]T and qx = [q;0] . Then,
the iteration for h in Algorithm 1 converges to the following solution:

h=c(I-(1-0)B")qx,
AT g AR AT

~_ T ~ T ~ T
AT AT AT
T T 5 T T
AT+ AT AL

where BT = T
ATV + AT AT

ProOF. (Eq. 4) is represented as follows:

[;i} =(1-c¢)

g] & h=(1-¢)BTh+cqy.

~_ T o~ T o~ T
- -+ —++
A7 +A, +A,

e T o~ T~ T

++ +++ +—+
AT+ A +Aj, . . .
A—+ A—+— A———
A7t HALT +Ag

SL T T o T
+— +—— -
A LA 4AY

rr
-

Therefore, the iteration in Algorithm 1 is written as follows:
h® = (1-¢)BTh*V 4 cq,
=((1-0)BT)?h* 2 4 c(1-¢)B" +Dqy = - - -

+c

k-1
= (1= 0B +c ) ((1-)BN))qu.
d=0
The spectral radius p((1—¢)BT) = (1—c) < 1when0 < ¢ < 1 since
BT is a column stochastic matrix and its largest eigenvalue is 1 [32].
Therefore, limg_, ((1 — ¢)BT)*h(® = 0 [32] and limj_,cc h®
converges as:

Jim h%) =c;<<1 - 0B gy =c(I- (1-¢)BT) g,
where Z‘;’:O((I - c)f}T)d) is a geometric series of the matrix (1 —
¢)BT, and it converges to (I— (1—¢)BT)~! since the spectral radius
of (1 —¢)BT is less than 1 [32]. Note that the inverse matrix is a
non-negative matrix whose entries are positive or zero because the
matrix is the sum of non-negative matrices (i.e., Z;;’zo((l —c)BT)).
Therefore, each entry of h is non-negative (i.e., hy >0 for any node
ny). That is, the iterative algorithm of OBOE converges to a unique
solution h = ¢(I— (1 - ¢)BT)qy. O

5 EVALUATION

In this section, we validate the effectiveness of our approach via

extensive experiments. We designed our experiments, aiming at

answering the following key evaluation questions (EQs):

e EQ1: Does our score propagation strategy help PNR?

e EQ2: Does OBOE provide a more accurate top-k PNR than com-
peting methods?

e EQ3: Does OBOE provide a more accurate bottom-k PNR than
competing methods?
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Table 3: Dataset statistics

Positi .
Datasets Nodes Edges g;g;:e N;giz;tel:e Density

Wikipedia 7,118 107,080 78.4% 21.6% 0.200%
Slashdot 82,140 549,202 77.4% 22.6% 0.008%
Epinions 131,828 841,372 85.3% 14.7% 0.005%

e EQ4: Does OBOE identify trolls more accurately than competing
methods?

o EQ5: How sensitive is the accuracy of OBOE per different values
of parameters?

5.1 Experimental Settings

Datasets. Following [13, 14], we used three real-world signed net-
work datasets: Wikipedia, Slashdot, and Epinions. The datasets are
all publicly available. Table 3 shows the detailed statistics of the
three datasets.

o Wikipedia is a voting network for electing managers in Wikipedia.
This network contains users’ supporting vote (i.e., positive) and
opposing vote (i.e., negative) edges.

o Slashdot is a friendship network among users of a technology
news site. This network contains friend (i.e., positive) and enemy
(i.e,, negative) edges between users.

e Epinions is a trust network among users of a product review
site. This network contains trust (i.e., positive) and distrust (i.e.,
negative) edges between users.

Competing Methods. We compare OBOE with 5 competing meth-
ods. First, we employ three PNR methods for signed networks: two
baselines, i.e., ModifiedRWR (M-RWR, in short) [30], FriendTNS
(F-TNS, in short) [33], and a recently-proposed and best performing
PNR method, i.e.,, SRWR [13, 14],5 Second, we employ the recently-
proposed two signed NE methods: BESIDE [5] and SLF [39]. For
evaluation, we used the source codes provided by the authors [5,
13, 14, 30, 33, 39]. For parameter tuning, we found the best settings
in competing methods and OBOE via grid search. Specifically, for
parameters of competing methods, we used the best settings found
via extensive grid search in the ranges suggested in their respective
papers.® The best settings found in OBOE are as follows: ¢ = 0.5
(Wikipedia, Slashdot, Epinions); f+ = 0.9 (Wikipedia, Slashdot,
Epinions); f— = 0.9 (Wikipedia and Slashdot) / 0.7 (Epinions).

Evaluation Tasks. Following [13, 14, 27], we evaluate the effec-
tiveness of OBOE and competing methods via three types of tasks:
(1) top-k PNR, (2) bottom k-PNR, and (3) troll identification. For
top-k and bottom-k PNR tasks, following [13, 14], we randomly
sample 5, 000 seed nodes in a given network. Then, we consider 20%
of positive (resp. negative) edges of the seed nodes as test edges
and also use them as the ground truth of the top-k (resp. bottom-k)
PNR task. We consider all edges except for the test edges in the
network as training edges, and perform each method based on the
training edges and then output the top-k and bottom-k PNRs per
seed node. Finally, we evaluate how much each node’s top-k and
bottom-k PNRs obtained by each method contain the ground truth

“http://snap.stanford.edu/data

5 As to SSRW, as its source code is not available and it is difficult to implement due to
many missing details in [27], we could not evaluate the accuracy of SSRW.

ORefer to https://sites.google.com/view/oboe-sigir21/implementation for more details.
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Figure 8: Ratios of untrustworthy score propagation.

of each task. Toward this end, we use the following two metric pop-
ularly employed in other PNR research [13, 14, 27]: F1 score and
normalized discounted cumulative gain (NDCG) [11, 12]. For troll
identification task, following [13, 14], we use 96 enemies of a user,
called No-More-Trolls, in Slashdot as trolis. Specifically, the user is
an administrative account created for the purpose of collecting a
troll list [17]. Note that such a list exists only in the Slashdot. We
evaluate how much the bottom-k PNRs obtained by each method
contain the trolls by using F1 score and NDCG.

5.2 Results

Due to space limitation, we omit some experimental results in this
paper. The details for all experiments are available at http://sites.
google.com/view/oboe-sigir21.

EQ1: Effectiveness of Our Score Propagation Strategy. To ver-
ify the effectiveness of our key ideas (i.e., sign verification and score
propagation), we conduct experiments to answer the following two
sub-questions:

e EQ1-1 (Sign Verification): How much of the balance theory
based score propagation does OBOE detect as the untrustworthy
score propagation?

e EQ1-2 (Score Propagation): Is it effective to exploit the statistics
of a given network for correcting score propagation?

For EQ1-1, we examine the ratio of untrustworthy score propa-
gation detected during the random-walk process of OBOE in each
dataset. Figure 8 shows the results. The x-axis represents path
lengths and the y-axis represents the ratio of untrustworthy score
propagation per path length. Overall, we see that the ratio increases
as the path length increases. We note, as shown in Figure 2, the
prediction accuracy of SRSurfer decreases as the path length in-
creases. Thus, we can say that OBOE detects untrustworthy score
propagations more in the situation where the prediction accuracy
of SRSurfer is decreasing. Moreover, we see that, on Wikipedia
and Slashdot, our sign verification strategy considers a lot of score
propagations (based on the balance theory) to be untrustworthy
while, on Epinions, it considers relatively less score propagations to
be untrustworthy. This is likely because of the fact that on Epinions,
90% of all triangles are of the “balance” (+,+) type.

Next, for EQ1-2, we validate the new score propagation of OBOE.
Note that when OBOE encounters the untrustworthy score propa-
gation, it propagates to both scores of two signs by leveraging the
ratios of the prior and posterior signs of the triangles in a given
signed network ((STEP 2) in Section 4.2). To verify this strategy,
we first made two variants of OBOE, denoted as OBOE(Balance)
and OBOE(FExtra), which propagate only to a score of a single
sign predicted by the balance theory and FExtra, respectively. Here,
OBOE(Balance) coincides with SRWR that does not use the bal-
ance attenuation factors. Also, we made two variants of OBOE,
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Table 4: Accuracies of the variants of OBOE according to
different score propagation strategies (Slashdot)

Tasks Top-k PNR Bottom-k PNR
Metrics F1@10 NDCG@10 | F1@10 NDCG@10
OBOE(Balance) 0.027 0.061 0.012 0.025
OBOE(FExtra) 0.012 0.018 0.016 0.033
OBOE(Uniform) 0.028 0.052 0.023 0.039
OBOE(Reverse) 0.024 0.039 0.011 0.021
OBOE(Ours) 0.032 0.071 0.024 0.044

denoted as OBOE(Uniform) and OBOE(Reverse), which propagate
to both scores at different ratios from our strategy. Specifically,
OBOE(Uniform) uniformly propagates to scores of both signs as
the ratios of 50:50, while OBOE(Reverse) propagates to those by
using the inverse of ratios used in our strategy. For comparison, we
denote a variant using our strategy as OBOE(Ours).

Table 4 shows the accuracies of the variants of OBOE for top-k
and bottom-k PNR tasks on Slashdot. First, among four variants
except for OBOE(Ours), we found that OBOE(Uniform) showed the
best accuracy except for NDCG@10 in the top-k task. The results
represent that, for untrustworthy score propagation, propagating to
both scores helps to improve the accuracy of PNR tasks than prop-
agating to a single score. However, we observe that OBOE(Ours)
consistently outperforms all other variants in all tasks. Specifically,
OBOE(Ours) improves F1@10 of OBOE(Balance), OBOE(FExtra),
OBOE(Uniform), and OBOE(Reverse) up to 15.7%/93.8%, 165.4%/39.7%,
14.7%/3.2%, and 33.4%/113.4% for top-k/bottom-k PNR tasks, respec-
tively. This indicates that, when propagating to both scores, it is
most effective to consider the inherent property of a given network.

EQ2 and EQ3: Accuracy Comparisons in Top-k/Bottom-k
PNR Tasks. We conducted comparative experiments to show greater
accuracy of OBOE than those of the competing methods in top-k
and bottom-k tasks. Table 5 illustrates the results. The values in
bold face and underlined indicate the best and 2nd best accuracies
in each row, respectively.

We summarize the results shown in Table 5 as follows. First,
surprisingly, the accuracies of signed NE methods are always quite
low in both tasks. We know that signed NE methods have mainly
been validated with the task that predicts the signs of the given
positive and negative edges [5, 21, 39]. In this work, we found that
the nodes’ vectors obtained by them are effective in the task but not
in measuring the degree of positivity or negativity for the edges in
terms of personalization [22]. Second, we confirm that SRWR has
better accuracy than the other PNR methods in most cases, which
coincides with the results in [13, 14].

However, OBOE significantly outperforms all competing meth-
ods, except for the bottom-k task in NDCG on Epinions. More
specifically, OBOE improves the F1@10 and NDCG@10 of SRWR
up to 13.4% and 13.0%/95.9% and 57.8% for top-k/bottom-k PNR
tasks, respectively. The results demonstrate that our sign verifica-
tion and score propagation strategies are effective in improving the
accuracy of PNR tasks. Moreover, we highlight that OBOE shows
dramatic improvements in the bottom-k task. To more understand
such results, we once again refer to the ratios of balanced and unbal-
anced triangles per type of prior signs, demonstrated in Section 3.
Specifically, a type (i.e., (+, +)) involving only a positive sign follows
the rules of the balance theory considerably, whereas other types
(ie, (+,-), (= +), (=, —)) involving a negative sign often do not
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Table 5: Accuracy of 5 competing methods and OBOE in top-k and bottom-k tasks

(a) Top-k Task

(b) Bottom-k Task

. Signed NE methods PNR methods . . Signed NE methods PNR methods .
Metrics | gEGIDE  SLF | M(RWR F-INS SRWR | CPOE  Gain Metries | gEGIDE  SLF | MORWR F-INS SRwR | OPOE  Gain
(1) Wikipedia (1) Wikipedia
F1@10 0.008 0.014 0.043 0.011 0.044 0.050 13.4% Fi1@10 0.005 0.006 0.009 0.007 0.014 0.020 38.6%
F1@20 0.008 0.015 0.044 0012  0.043 | 0.047 7.5% F1@20 0.005 0.005 0.009 0.006  0.015 | 0.019 30.4%
NDCG@10 | 0.010 0.017 0.054 0016  0.055 | 0.062 12.7% NDCG@10 | 0.012 0.012 0.014 0011  0.027 | 0.034 27.3%
NDCG@20 | 0.012 0.022 0.068 0021 0067 | 0.074 8.8% NDCG@20 | 0.014 0.014 0.018 0014  0.036 | 0.045 23.9%
(2) Slashdot (2) Slashdot
F1@10 0.009 0.019 0.029 0.007 0.028 0.032 12.8% Fi@10 0.004 0.001 0.008 0.001 0.012 0.024 95.9%
F1@20 0.008 0.013 0.022 0.005  0.022 | 0.025 10.7% F1@20 0.003 0.002 0.006 0.001  0.010 | 0.017 63.7%
NDCG@10 | 0.018 0.034 0.063 0019 0062 | 0.071 13.0%2 NDCG@10 | 0.005 0.003 0.014 0.003  0.026 | 0.044 68.7%
NDCG@20 | 0.022 0.038 0.069 0020 0068 | 0.079 13.1% NDCG@20 | 0.007 0.004 0.016 0.004  0.031 | 0.049 57.8%
(3) Epinions (3) Epinions
Fi1@10 0.002 0.007 0.063 0.014 0.074 0.075 0.8% Fi1@10 0.003 0.001 0.005 0.002 0.026 0.028 10.5%
F1@20 0.002 0.006 0.050 0.010 0.057 0.060 3.4% F1@20 0.005 0.001 0.005 0.002 0.022 0.024 5.9%
NDCG@10 | 0.002 0.007 0.121 0034 0135 | 0.138 2.1% NDCG@10 | 0.004 0.001 0.009 0.003  0.049 | 0.047 -45%
NDCG@20 | 0.002 0.008 0.130 0038 0144 | 0.149 3.4% NDCG@20 | 0.008 0.001 0.010 0.004  0.054 | 0.051 -5.9%
Table 6: Accuracy of 5 competing methods and OBOE in troll 00%
identification task (Slashdot) 0.045 - o
. ‘ Signed NE methods ‘ PNR methods ‘ . S
% S
Metrics | FESIDE  SLF | M-RWR F-TNS SRWR | CDOF  Gain (%) é’ 004 0.04
F1@100 0.0009 0.0014 0.0003 00172 0.0481 | 0.1632  239.0% g
F1@200 0.0011 0.0031 0.0004  0.0191 0.0553 | 0.1729 212.5% 0.038
NDCG@100 | 0.0009 0.0011 00003 00197 0.0520 | 0.1814  249.2% -
NDCG@200 | 0.0013 0.0033 0.0005  0.0275 0.0757 | 0.2471  226.4% < e 08 ! W oo
T02 T, 04
8 00 s,

follow the rules strictly. In this sense, SRSurfer-based PNR methods
frequently perform inaccurate predictions for negative relation-
ships, while OBOE effectively corrects such predictions, thereby
improving the accuracy of bottom-k PNR considerably. Lastly, note
the OBOE is relatively less effective on Epinions than other datasets.
As mentioned in EQ1, on Epinions, 90% of all triangles are of the
“balanced" (+,+) type, thus leaving little room for OBOE to exploit
new ideas (so only small gain (%) compared to the results of SRWR).

EQ4. Accuracy Comparison in Troll Identification Task. We
verify that OBOE outperforms the competing methods in a troll
identification task. Note that the bottom-k task aims to evaluate how
much accurately each method finds the real negative edges of each
seed node (i.e., personalized ranking), while the troll identification
task aims to evaluate how much accurately each method finds
the trolls regardless of a specific seed node (i.e., global ranking).
Table 6 shows the results. We observe that OBOE consistently and
remarkably outperforms all competing methods. More specifically,
OBOE dramatically improves the F1@100 and NDCG @100 of
SRWR, the best performer among the competing methods, up to
239.0% and 249.2%, respectively. The results indicate that correcting
incorrect score propagation contributes to accurately measuring
not only PNR of each node but also global ranking as well.

EQ5. Parameter Analysis for OBOE. We carefully analyze the
sensitivity of accuracy according to different values for parameters,
B+ (ie., C(Signfeature = +1)) and f- (i.e, C(sign feature = -1)).
Figure 9 shows the accuracy changes of OBOE for Slashdot with
varying f; and f_ in the bottom-k PNR task. The x-axis and y-axis
represent the values of f_ and those of f,, respectively, and the
z-axis represents the accuarcies in terms of NDCG@10. In general,
as B+ and - increase, the accuracies of OBOE increase as well.
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Figure 9: Accuracy changes according to 8, and f_.

Also, the result shows that the accuracy is the highest when S,
and - are 0.9 and 0.9, respectively. This indicates that we should
carefully use the FExtra-based predictions for the sign verification
task, only when the predictions by FExtra are sufficiently confident.

6 CONCLUSIONS

In this paper, we investigated the limitation of SRSurfer-based PNR
methods based on the balance theory: (1) edge relationships often
do not strictly follow the rules of the balance theory and (2) the
balance theory results in incorrect sign predictions of SRSurfer. To
address this limitation, we proposed a novel random-walk based
PNR approach, named as OBOE. OBOE is composed of (1) a sign
verification based on nodes’ topological features and a score propa-
gation based on the statistics of a given signed network. In addition,
we formulated the iteration of OBOE as a matrix-vector multiplica-
tion form. Furthermore, we analyzed that the iterative algorithm
of OBOE converges to a unique solution. Through comprehensive
experiments using three real-world datasets, we demonstrated that
(1) our sign verification and score propagation strategies are effec-
tive and (2) OBOE consistently and significantly outperforms all
competing methods in three types of tasks, i.e., top-k PNR, bottom-k
PNR, and troll identification, with three real-world datasets.
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