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ABSTRACT

We present a prediction-driven optimization framework to maxi-
mize the market influence in the US domestic air passenger trans-
portation market by adjusting flight frequencies. At the lower level,
our neural networks consider a wide variety of features, such as clas-
sical air carrier performance features and transportation network
features, to predict the market influence. On top of the prediction
models, we define a budget-constrained flight frequency optimiza-
tion problem to maximize the market influence over 2,262 routes.
This problem falls into the category of the non-linear optimization
problem, which cannot be solved exactly by conventional methods.
To this end, we present a novel adaptive gradient ascent (AGA)
method. Our prediction models show two to eleven times better
accuracy in terms of the median root-mean-square error (RMSE)
over baselines. In addition, our AGA optimization method runs 690
times faster with a better optimization result (in one of our largest
scale experiments) than a greedy algorithm.
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Maximize the sum of passenger numbers transported in 2,262 routes by air carrier Cj,
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Figure 1: The architecture of the proposed prediction-driven
optimization framework to maximize the market influence
of air carrier Cy. Note that the pre-trained neural network-
based market share prediction models constitute the objec-
tive function. The gradients of the budget constraint and the
objective function can flow from the top to the bottom to op-
timize the weighted adjacency matrix because all intermedi-
ate modules are differentiable.

1 INTRODUCTION

Ever since the deregulation in 1978, there has been huge competi-
tion among US air carriers (airlines) for air passenger transporta-
tion. 771 million passengers were transported in 2018 alone and the
largest air carrier produces a revenue of more than 43 billion dol-
lars for the period between September 2017 and September 2018,
It is one of the largest domestic markets in the world and there
is a huge demand to improve their services. Consequently, many
computational methods have also been proposed to predict market
share, ticket price, demand, etc. and allocate resources (e.g., aircraft)
on those air passenger markets accordingly [3, 5, 6, 12].

The market influence is sometimes strategically more important
than profits. Typically, there are two ways to expand business:
i) a strategical merger with other strong competitors, and ii) a
strategical play to maximize the market influence [11]. Our paper
is closely related to the latter strategy.

!https://www.transtats.bts.gov
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We propose a novel way of unifying both data mining and mathe-
matical optimization methods to maximize air carrier’s influence on
the air transportation market. In this paper, we define the influence
of an air carrier as the number of passengers transported by the air
carrier which can be calculated by the total demand multiplied with
the air carrier’s market share.

Since the market influence of an air carrier in a route can be
calculated by the total demand (passenger numbers) in the route
multiplied with the market share, predicting market share is a key
step in our work. Conventional features (e.g., average ticket price,
flight frequency, and on-time performance) have been widely used
to predict the market share [5, 6, 19, 20]. For instance, air carrier’s
market share on a route will increase if ticket price is decreased and
flight frequency is increased. However, some researchers recently
paid an attention to air carrier’s transportation network connectiv-
ity that is highly likely to be connected to market share [17, 18]. As
aresponse, we design a neural network-based prediction model that
uses a wide variety of conventional and transportation network
features, such as degree centrality, PageRank, and so forth. It is
worth mentioning that we train a prediction model for each route.

On top of the market share prediction models, we build a budget-
constrained optimization module to maximize the market influence
by optimizing transportation network (more precisely, flight fre-
quency values over 2,262 routes), which is an Integer Knapsack
problem (cf. Fig. 1). Our objective function consists of the market
share prediction models in those routes and our constraint is a bud-
get limit of an air carrier. The objective is not in a simple form but
rather a complex one of inter-correlated neural networks because
changing frequency in a route will influence market shares on other
neighboring routes as well. Therefore, it is very hard to solve with
existing techniques that assume routes are independent from each
other (see discussions in Section 2.2).

We test our optimization framework with 2,262 routes. To achieve
such a high scalability, we design a method of Adaptive Gradient
Ascent (AGA). In our experiments, the proposed optimization method
solves the very large-scale optimization problem much faster than
existing algorithms. However, one main challenge in our approach
is how to consider the budget constraint in the proposed gradient-
based optimization technique — each air carrier has a limited budget
to operate flights. It is not straightforward to consider the budget
constraint with gradient-based optimization methods. However, our
proposed AGA method is able to dynamically manipulate gradients
to ensure the budget limit, i.e., dynamically impose a large penalty,
if any cost overrun, in such a way that one gradient ascent update
theoretically guarantees a decrease in the total cost. Therefore, a
series of updates can eventually address the cost overrun problem.

In our experiments, our customized prediction model shows
much better accuracy in many routes than existing methods. In
particular, our median root-mean-square error is more than two
times better than the best baseline. Our proposed AGA method is
able to maximize the market influence on all those routes 690 times
faster with a better optimized influence than a greedy algorithm.

2 RELATED WORK

We introduce a selected set of related works about air market pre-
dictions and optimizations.
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Models Algorithm Frequencies in £
Response
(a) Existing Black-box Search Methods
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Prediction y > Air Carrier Cy's
Models Frequencies in #
Adaptive Gradient Ascent Method

(b) Proposed White-box Search Method

Figure 2: The comparison with existing black-box search
methods in [5, 6] and the white-box search method proposed
in this work. Our AGA optimization algorithm enables the
white-box search concept to be used in this work.

2.1 Market Share Prediction

There have been proposed many prediction models such as [5, 6,
19, 20], to name a few. However, they share many common design
points. First, almost all of them use the multi-logit regression model.
It is a standard model to predict air transportation market shares.
We also use the same multi-logit regression (see Section 3.1 for
its details) after some extensions. Suzuki considers air carriers’
frequency, delay, and safety [19] whereas Wei et al. study about
the effect of aircraft size and seat availability on market share and
consider other variables such as price and frequency [20]. There
are some more similar works [5, 6]. In our paper, we consider
transportation network features in addition to those conventional
air carrier performance features.

2.2 Flight Frequency Optimization

One similar flight frequency optimization problem to maximize
profits was solved in [5, 6]. In their work, An et al. showed that
the frequency-market share curve is very hard to approximate
with existing approximation methods such as piece-wise linear
approximation [4]. After that, they designed one heuristic-based
algorithm, called GroupGreedy, which runs an exact algorithm in
each subset of routes (because running the exact algorithm for the
entire route set is prohibitive). Each subset consists of a few routes
and running the exact algorithm within a small subset provides a
tolerable degree of scalability in general. However, they were able to
test with at most about 30 routes for its prohibitively long execution
time even with GroupGreedy and its scalability is not satisfactory.
We test with 2,262 routes in this paper — i.e., the problem search
space size is O(n3?) in their work vs. O(n%2%2) in this work.

In addition, we found that GroupGreedy cannot be used for
our prediction model because of the network features — An et
al. did not consider network features and assumed each route is
independent [5, 6]. After adopting the assumption, they optimize for
each route separately. In reality, however, changing a frequency ina
route is likely to influence the market shares in other routes because
routes are often inter-correlated. Thus, GroupGreedy based on the
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Table 1: Comparison table between two related papers [5, 6] and this work. Since we do not assume the route independence,
our problem setting is more realistic, making many existing optimization algorithms designed based on the assumption inap-

plicable to our work.

Comparison items Existing work [5, 6] Our work
Market Share Prediction Model Standard multi-logit model Deep learning model
Conventional Air Carrier Performance Features Yes Yes
Transportation Network Features No Yes
Removal of Route Independence Assumption No Yes
Optimization Technique Classical combinatorial optimization techniques | Our proposed adaptive gradient ascent
How to integrate prediction and optimization Black-box query to prediction model White-box search

independence assumption is not applicable to our work. Our work
does not assume the independence so this work is more realistic.

In the perspective of Knapsack, after excluding the indepen-
dence assumption, it becomes much more complicated because the
value (i.e., market share) of a product (i.e., route) becomes non-
deterministic and is influenced by other products (i.e., routes). This
makes the current problem more realistic than those studied in
the previous work by An et al. However, this change prevents us
from applying many existing Knapsack algorithms that have been
invented for the simplest case where product values are fixed and
independent from each other [8].

One more significant difference is that the optimization algo-
rithm in the related work queries its prediction models whereas
both optimization and prediction are integrated on TensorFlow
in this new paper. In Table 1, we summarize the differences be-
tween the previous work and our work. In addition, Fig. 2 compares
their fundamental difference on the algorithm design philosophy.
Those existing methods are representative black-box search meth-
ods where the query-response strategy is adopted. In this new work,
however, the gradients directly flow to update frequencies so its
runtime is inherently faster than existing methods.

3 PRELIMINARIES

We introduce our dataset and the state-of-the-art market share
prediction model. Our main dataset is the air carrier origin and
destination survey (DB1B) dataset released by the US Department of
Transportation’s Bureau of Transportation Statistics (BTS) [1] and
some safety dataset by the National Transportation Safety Board
(NTSB) [2]. We refer to Appendix for detailed dataset information.

3.1 Market Share Prediction Model

In this subsection, we describe a popular existing market share
prediction model for air transportation markets. Given a route r,
the following multinomial logistic regression model is to predict
the market share of air carrier Cy in the route:

o2 Wrjfrkj exp(wy - £, 1)
oy eXiwnifris  Biexp(wr - fr i)

1)

my k

where m, ;. means the market share of air carrier Cy in route r;
fr,k,j is the j-th feature of air carrier Cy in route r; and wy. j rep-
resents the sensitivity of market share to feature f, x ; in route r
that can be learned from data.
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A set of features for air carrier Cy in route r can be represented
by a vector f,  (see Appendix C for a complete list of f, ;. in our
work). We use bold font to denote vectors.

The rationale behind the multi-logit model is that exp(w - f; x)
can be interpreted as passengers’ valuation score about air carrier
Cy and the market share can be calculated by the normalization of
those passengers’ valuation scores — this concept is not proposed
by us but widely used for the air carrier market share prediction in
Business, Operations Research, etc [5, 6, 14, 19, 20].

4 PROPOSED PREDICTION METHOD

We design a neural network-based market share prediction model
with transportation network features.

4.1 Air Carrier Transportation Network

There are more than 2,000 routes (e.g., from LAX to JFK) in the US
and this creates one large transportation network. Transportation
network G = (V, &) is a directed graph among airports (i.e., ver-
tices) in V. In particular, we are interested in an air carrier-specific
directed transportation network Gy weighted by its flight frequency
values. Thus, G represents the connectivity of air carrier Cy and
its edge weight on a certain directional edge means the flight fre-
quency of the air carrier in the route. Gy can be represented by a
weighted adjacency (or frequency) matrix Ay, where each element
is a flight frequency from one airport to another.

4.2 Network Features

In this section, we introduce the network features we added to
improve the prediction model.

4.2.1 Degree Centrality. As mentioned by earlier works, trans-
portation network connectivity is important in air transportation
markets [17, 18]. For instance, the higher the degree centrality of an
airport in Gy, the more options the passengers to fly. Thereby;, its
market share will increase at the routes departing the high degree
centrality airport. Therefore, we study how the degree centrality
of source and destination airports influences the market share.

Given Ay, the out-degree (resp. in-degree) centrality of i-th
airport is the sum of i-th row (resp. column). So this feature calcu-
lation can be very easily implemented on Tensorflow or other deep
learning platforms.

4.2.2  Ego Network Density. Ego network is very popular for social
network analysis [15]. We introduce the concept of ego network
first.
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Figure 3: Number of passengers vs. network features. The
result summarizes all the airports.

Definition 4.1. Given a vertex v, its ego network is an induced
subgraph of v and its neighbors. The vertex v is called ego vertex (i.e.,
ego airport in our case). Note that ego networks are also weighted
with flight frequency values. The density of an ego network is
defined as the sum of edge weights divided by n(n — 1) where n is
the number of vertices in the ego network.

By the definition, an airport’s ego network density is high when
the airport and its neighboring airports are well connected all to-
gether. It is natural that passengers transit in an airport whose
connections are well prepared for their final destinations.

4.2.3 PageRank. PageRank was originally proposed to derive a ver-
tex’s importance score based on the random web surfer model [16]
— ie., a web surfer performs a random walk following hyperlinks.
We think PageRank is suitable to analyze multi-stop passengers for
the following reason.

After normalizing Ay row-wise, it becomes the transition proba-
bility that a random passenger will move following the route. Thus,
PageRank is able to capture the importance of an airport.

Fig. 3 depicts the relationships between the network features
introduced above and the total number of passengers transported in
and out airports by a certain air carrier. We used the DB1B data re-
leased by the BTS for the first quarter of 2018 to draw this figure. As
shown in Fig. 3, the number of passengers in each airport is highly
correlated with the network features (i.e., in-degree, out-degree,
ego network density, and PageRank). In conjunction with other
classical air carrier performance features, these network features
can improve the prediction accuracy by a non-trivial margin.

4.3 Neural Network-based Prediction

Whereas many existing methods rely on classical machine learning
approaches, we use the following neural network to predict:

h(rlzc = cr(fr’kW(O) + b(O)), for initial layer
. @
(i+1) _

hr,k -
where o isReLU. W(® € R1d p(©) ¢ Rd w(i) e Rdxd p(i) ¢ RY
are parameters to learn. Note that we use residual connections after
the initial layer. For the final activation, we also use the multi-logit

B+ oh) W 4 b0), if > 1

regression. From Eq. (1), we replace f, ;. with hlr &> Which denotes
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the last hidden vector of our proposed neural network, to predict
m, i as follows:

exp(wy - hlr,k)
Yiexp(w, -hl )’

where w; is a trainable parameter. We use 6, to denote all the
parameters of route r in Egs. (2) and (3).

One thing to mention is that all the network features can be prop-
erly calculated on TensorFlow from Ay before being fed into the
neural network. This is the case during the frequency optimization
phase which will be described shortly. By changing a frequency in
Ap, the entire network feature can be recalculated before the neural
network processing as shown in Fig. 1. Therefore, the gradients can
directly flow from the prediction models to the frequency matrix
through the network feature calculation part. Hereinafter, we use
a function m, (Ay; 6) after partially omitting features (such as
ticket price, aircraft size, etc.) to denote the predicted market share.
Note that the omitted features and 0, are considered constant while
optimizing frequencies in the next section. We sometimes omit all
the inputs and use m, j for brevity.

®)

My k

5 PROPOSED OPTIMIZATION METHOD

Among many features, the flight frequency is an actionable feature
that we are interested in to adjust — see Appendix C for a complete
list of features we consider in this work. An actionable feature
means a feature that can be freely decided only for one’s own
purposes. May other features, such as delay time, safety, and so
on, cannot be solely decided by an air carrier. Hereinafter, we use
Jr.k,freq to denote a flight frequency value of air carrier Cy in
route r. These frequency values among airports constitute Ay.

5.1 Problem Definition

We solve the following optimization problem to maximize the mar-
ket influence of air carrier Cy. (i.e., the number of passengers trans-
ported by Ci) on those routes in R. Given its total budget budgety.,
we optimize the flight frequency values of the air carrier over mul-
tiple routes in R as follows:

max
2 fr ko freq20,T€R

Z demandy X m, i
reR

subject to Z costy k X fr.k,freq < budgety,
rerR

where m, i is the predicted market share of Cy. in route r (by our
neural network model), demand, is the number of total passengers
in route r from the DB1B dataset, and cost, k is the unit operational
cost of air carrier Cy in route r. fJ™* is the maximum flight fre-
quency in route r observed in the DB1B dataset. The adoption of
MAX s our heuristic to prevent overshooting a practically mean-
ingful frequency limit. Note that different air carriers have different
unit operational costs in a route r as their efficiency is different and
they purchase fuel in different prices — we extract this information

from the DB1B dataset.
Eq. (4) shows how we can effectively merge data mining and
mathematical optimization. The proposed problem is basically a
non-linear optimization and a special case of Integer Knapsack



Research Track Paper

and resource allocation problems which are all NP-hard [7]. The
theoretical complexity of the problem is O([],cg f;"%*), which
can be simply written as O(n%262) after assuming n = f%% in
each route for ease of discussion because |R| = 2, 262.

THEOREM 5.1. The market influence maximization is NP-hard.

5.2 Overall Architecture

In Fig. 1, the overall architecture of the proposed optimization idea
is shown. The overall workflow is as follows:

(1) Train the market share prediction model in each route, which
considers transportation network features.

(2) Fix the prediction models and update the frequency matrix
Ay using the proposed AGA optimizer. We consider other
features (such as ticket price, aircraft size, etc.) are fixed
while optimizing frequencies.

The adoption of network features makes many classical combina-
torial optimization techniques inapplicable to our work because the
route independent assumption does not hold any more. Even worse,
our objective function consists of highly non-linear neural net-
works. Therefore, our problem becomes a challenging non-linear
optimization problem. We shortly describe how to solve such a
large-scale and difficult optimization problem.

5.3 Gradient-based Optimization

We solve the problem in Eq. (4) on a deep learning platform us-
ing our AGA method in Algorithm (1). But one problem in this
approach is how to consider the budget constraint. We design two
workarounds based on i) Lagrangian function (LF) and ii) rectified
linear unit (ReLU).

In our heuristic, we covert integer frequency variables to real
variables and use the clip_by_value function of TensorFlow to
restrict the frequency in r into [0, f;%*] during the optimization
process. As the optimized frequencies by our method will be real
numbers, we round down to convert them to integers and not to
violate the budget limit at the end of the optimization process i.e.,
a continuous relaxation from integer frequencies. We now describe

how to solve the continuous-relaxed problem.

5.3.1 Lagrangian Function (LF)-based Heuristic: The method of
Lagrange multiplier is a popular method to maximize concave func-
tions (or some special non-concave functions) with constraints [9,
10]. However, we cannot apply the method to our work because our
objective function consists of highly non-linear neural networks.
Therefore, we adopt only the Lagrangian function from the method
and develop our own heuristic search method. The following La-
grangian function can be defined in our case:

L = o(Ay) = Ac(Ay), ®)
where 4 is called a Lagrange multiplier, and
o(Ay) = Z demand, x m, i,
rer )
o(Ar) = Z (COStr,k X fr,k,freq) — budgety.
rerR

Basically, the Lagrange multiplier A can be systematically de-
cided, if the objective function o(Ay) is in simple forms, and we
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can find the optimal solution of the original constrained problem.
However, this is not the case in our work due to the complicated
nature of neural networks and the objective function from them,
and our goal is to solve the optimization problem on TensorFlow
for the purpose of increasing scalability, aided by our scalable AGA
optimization technique. Thus, we propose the following regularized
problem and develop a heuristic search method:

max min L+ 812
A

frmaex Zfr. k.freq 20,reR

™)

where § > 0 is a weight for the regularization term. Note that our
definition is different from the original Lagrangian function. The
inner minimization part has been added by us to prevent that A
becomes too large. One way to solve Eq. (7) is to alternately optimize
flight frequencies (i.e., the outer maximization) and A (i.e., the inner
minimization), which implies that Eq. (7) be basically a two-player
max-min game. We further improve Eq. (7) and derive a simpler
but equivalent formulation that does not require the alternating
maximization and minimization shortly in Eq. (9).

THEOREM 5.2. Let Ay be a matrix of flight frequencies. The op-
timal solution of the max-min problem in Eq. (7) is the same as the
optimal solution of the following problem:

c(Ay)*
46

. ®)

max
2 fr ke freq20,T€R

o(A) -

For simplicity, let f = % and we can rewrite Eq. (8) as follows:

max
P2 fr ke freq20,r€R

©)

LLagrange’

where I_fLagrange = o(Ag) - ﬁC(ﬂ%k)z

Note that maximizing Eq. (9) is equivalent to solving the max-
min problem in Eq. (7) so we implement only Eq. (9) and optimize
it using the proposed AGA method that will be described in the
next subsection.

5.3.2  Rectified Linear Unit (ReLU)-based Heuristic: ReLU is used to
rectify an input value by taking its positive part for neural networks.
This property can be used to impose a penalty if the budget limit
constraint is violated as follows:

(10)

max I:ReLU,

S 2 fr ke freq20,T€R

where Lgory = o(Ax) — BR(c(Ay)) and R(+) is the rectified linear
unit.

5.4 f Selection and Adaptive Gradient Ascent

We propose the AGA method, which basically uses the gradients of
iLagmnge or Lgery w.r.t. flight frequencies to optimize them. In
both methods, the coefficient f needs to be dynamically adjusted
to ensure the budget limit rather than being fixed to a constant. For
example, one gradient ascent update will increase flight frequencies
even after a cost overrun if f is not large enough. Whenever there
is any cost overrun,  should be set to such a large enough value
that the total cost is decreased.
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Figure 4: Suppose that there is a small cost overrun with A,
which denotes a frequency matrix at i-th gradient ascent it-
eration. The norm of ¢’ is smaller than that of o’ and the
gradient ascent update cannot remove the cost overrun if
f is small (e.g., f = 1 in (a)). However, if j is large enough
(e.g., § = 5 in (b)), the gradient ascent update can reduce the
cost overrun. Note that AU+ is located behind A" w.r.t. the
blue dotted line perpendicular to ¢’ in (b), which means a re-
duced cost overrun. We dynamically adjust f§ to decrease the
cost, if any cost overrun, while sacrificing the objective as lit-
tle as possible.

For the sake of our convenience, we will use o’ and ¢’ to denote
the gradients of objective and cost overrun penalty term as follows:

o’ = Vo(Ay),

o = Vc(ﬁ%")z, if the Lagrangian function-based method
VR(c(Ay)), if the ReLU-based method.

Fig. 4 shows an illustration of why we need to adjust . As shown, if
the directions of the two gradients ¢’ and o’ — fc’, where § = 5, are
opposite, the cost overrun will decrease after one gradient ascent
update. If § is too small, the cost overrun does not decrease in the
example.

We also do not distinguish between f,Lag,ange and Lg.ry in
this section because the algorithm proposed in this section is com-
monly applicable to both the Lagrangian function and ReLU-based
methods. We denote them simply as L in this section.

The gradients of L w.r.t. A are made of two components o’ and
—pc’, where o’ increases the market influence and —fc’ reduces
the cost overrun. Typically, the market influence increases as the
frequencies Ay increase. So f needs to be properly selected such
that the frequencies are updated (by the proposed AGA method)
to reduce the cost once the total cost exceeds the budget during
the gradient-based update process. This requires that the overall
gradients o’ — fc’ suppresses an increase in ¢(Ay ). More precisely,
it requires that the directional derivative of c(Ay ) along the vector
o’ — B¢’ (or the dot product of o’ — ¢’ and ¢’) is negative — if two
vectors have different directions, their dot product is negative.

Therefore, we want ¢’ - (0 — fic’) < 0. From it, we can rewrite
the inequality w.r.t. f and we have

¢ -o

B> 7o

(11)
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Algorithm 1: Adaptive gradient ascent (AGA)

Input: y

Output: Ay
1 Initialize Ay; /* Initialize freqs */
2 0 /* Initialize B */

3 while until convergence do
4 A — A +yVL;
if ¢(Ay) > 0 then

/* Gradient ascent */

«

6 ‘ B «Eq. (13)
7 else

8 ‘ B« 0;

9 end

10 end

Note that Eq. (11) does not include the equality condition but
requires that f is strictly larger than its right-hand side. To this end,
we introduce a positive value € > 0 as follows:

’ c/

o
P=oe

(12)

+ €,

where € is a positive hyper-parameter in our method.

On the other hand, we need to ensure that f is getting closer to
zero when the algorithm is approaching an optimal solution of Ay.
To do this, we further modify it as follows:

o -c

B =

Note that ¢(Ay )e becomes a very trivial value if ¢(Ay) is very
small. This specific setting prevents the situation that an ill-chosen
large € decreases flight frequencies too much given a very small
cost overrun ¢(Ay) ~ 0.

The proposed AGA method is presented in Algorithm 1. The
optimization of frequencies occurs at line 4 and other lines are for
dynamically adjusting . We take a solution around 500 epochs
when the cost overrun is not positive. 500 epochs are enough to
reach a solution point in our experiments.

+ c(Ap)e. (13)

CI_CI

THEOREM 5.3. Algorithm 1 is able to find a feasible solution of the
original problem in Eq. (4).

6 EXPERIMENTS

In this section, we introduce experimental environments and results
for both the prediction and the optimization. We collected our data
for 10 years from the website [1]. We predict the market share and
optimize the flight frequency in the last month of the dataset after
training with all other month data.

In our dataset, there are 2,262 routes and more than 10 air carriers.
We predict and optimize for the top-4 air carriers among them
considering their influences on the US domestic air markets. We
ignore other regional/commuter level air carriers.

Our detailed software and hardware environments are as follows:
Ubuntu 18.04.1 LTS, Python ver. 3.6.6, Numpy ver. 1.14.5, Scipy ver.
1.1.0, Pandas ver. 0.23.4, Matplotlib ver.3.0.0, Tensorflow-gpu ver.
1.11.0, CUDA ver. 10.0, NVIDIA Driver ver. 417.22. Three machines
with i9 CPU and GTX1080Ti are used.
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(a) 10 routes (b) 1000 routes (c) 2262 routes
Model 1 Model 1 Model 1
3 600 4 1500
27 4004 1000
19 I 200 500 4
0 T 0- o-
0.00 0.05 0.10 0.0 0.1 02 0.0 0.1 02
Model 2 Model 2 Model 2
3 600 1500 |
2 400 1000
14 200 500 4
0- 0- o0
0.00 0.05 0.10 0.0 0.1 0.2 0.0 0.1 0.2
Model 3 Model 3 Model 3
3 600 4 1500
29 400 1 1000
19 200 4 500 1
4 04 0

0.05 0.1 0.2 0.1 0.2

Figure 5: Histogram of RMSE scores — lower values are pre-
ferred. X-axis is the RMSE score and Y-axis is the number of
routes.

6.1 Market Share Prediction

6.1.1
two baseline prediction models. Modell [19] considers air carrier’s
frequency, delay, and safety. Model2 [20] studies the effect of aircraft
size and seat availability on market share and considers all other
variables such as price and frequency. Modell and Model2 are
conventional methods based on multi-logit regression and they are
trained using numerical solvers. Model3 is a neural network-based
model created by us and uses the network features as well.

To train the market share prediction models, we use the learning
rate of le-4 which decays with a ratio of 0.96 every 100 epochs.
The number of layer in our neural network is [ = {3,4,5} and
the dimensionality of the hidden vector is d = {16, 32}. We train
1,000 epochs for each model and use the Xavier initializer [13] for
initializing weights and the Adam optimizer for updating weights.
We used the cross validation method to choose the best one, which
means given a training set with N months, we choose a random
month and validate with the selected month after training with all
other N — 1 months. We repeat this N times.

In addition, we test other standard regression algorithms as well.
In particular, we are interested in testing some robust regression
algorithms such as TheilSen, AdaBoost Regression, and Random-
Forest Regression. We also use the same cross validation method.

Baseline Methods. We compare our proposed model with

6.1.2  Experimental Results. Fig. 5 shows the histogram of RMSE
scores for Modell, 2, and 3. We experimented three scenarios (i.e.,
top-10 routes, top-1,000 routes, and top-2,262 routes in terms of
the number of passengers). Our Model3 shows a higher density in
low-RMSE regions than other models.

The median/average root-mean-square error (RMSE) and R?
scores are summarized in Table 2. Our Model3 has much better
median RMSE and R? scores than other models (especially for the
largest scale prediction with 2,262 routes). Sometimes our mean
RMSE is worse than other baselines. However, we think this is not
significant because our low median RMSE says that it is better than
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Table 2: Median/Average RMSE and R?. The up-arrow (resp.
down-arrow) means higher (resp. lower) is better. The best
results are indicated in bold font.

Median RMSE |  R?7T  Mean RMSE |
TheilSen 0.048 0.944 0.052
AdaBoost 0.029 0.970 0.027
10 routes RandomForest 0.029 0.979 0.025
Model1 [19] 0.026 0.965 0.024
Model2 [20] 0.035 0.953 0.030
Model3 (Ours) 0.023 0.899 0.026
Model3 (No Net.) 0.026 0.884 0.027
TheilSen 0.080 0.855 0.087
AdaBoost 0.021 0.964 0.033
1,000 routes RandomPForest 0.024 0.968 0.033
’ Model1 [19] 0.021 0.957 0.033
Model2 [20] 0.020 0.983 0.035
Model3 (Ours) 0.010 0.988 0.025
Model3 (No Net.) 0.019 0.978 0.030
TheilSen 0.0813 0.707 0.088
AdaBoost 0.017 0.933 0.031
2,262 routes RandomPForest 0.014 0.942 0.031
’ Model1 [19] 0.033 0.944 0.041
Model2 [20] 0.030 0.976 0.033
Model3 (Ours) 0.007 0.983 0.038
Model3 (No Net.) 0.013 0.969 0.040

others in the majority of routes. In particular, we show the median
RMSE of 0.007 for the 2,262-route predictions vs. 0.030 by Model2.
RandomForest also shows reasonable accuracy in many cases.

For the top-10 routes, most models have good performance. This
is because it is not easy for our model to have reliable network
features only with the 10 routes. However, our main goal is to
predict accurately in a larger scale prediction.

We also compare the accuracy of our proposed model without
the network features, denoted with “No Net.” in the table. When
we do not use any network features, the accuracy of market share
predictions slightly decreases. Considering the scale of the market
size, however, a few percentage errors can result in a big loss in the
optimization phase. Therefore, our proposed prediction model is
the most suitable to be used to define the objective function of our
proposed optimization problem.

6.2 Market Influence Maximization

6.2.1 Baseline Methods. Dynamic programming, branch and bound,
and GroupGreedy were used to solve a similar problem in [5, 6].
However, all these algorithms assume that routes are independent,
which is not the case in our work because we use the network
features. Therefore, their methods are not applicable to our work
(see Section 2.2).

Therefore, we describe two baseline methods: greedy and an
exhaustive algorithm. Greedy methods are effective in many opti-
mization problems. In particular, greedy provides an approximation
ratio of around 63% for submodular minimization. Unfortunately,
our optimization is not a submodular case. Due to its simplicity,
however, we compare with the following greedy method, which
iteratively chooses a route with the maximum marginal increment
of market influence and increases its flight frequency by «. In gen-
eral, the step size « is 1. For faster convergence, however, we test

various @ = {1,10}. The complexity of the greedy algorithm is

O( budgety Ny

@-avg cosi ), where Ny is the number of routes and avg_costy
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Table 3: Optimization results for the top-3 routes. Multiply-
ing by 10 will lead to the real scale of passenger numbers
because the DB1B database includes 10% random samples of
air tickets. LF and ReLU mean our Lagrangian function and
ReLU-based methods, respectively.

Carrier  Carrier  Carrier  Carrier
1 2 3 4

Ground Truth 4,960 307 1,792 3,124

" LF, Real_Init (Ours) 4,964 308 1,842 3,126
E‘o ReLU, Real_Init (Ours) 4,961 310 1,854 3,144
£ LF, Zero_Init (Ours) 4,970 308 1,891 3,139
ﬁ ReLU, Zero_Init (Ours) 4,961 310 1,891 3,144
8: Greedy, Zero_Init, & = 1 4,967 310 1,891 3,144
i Greedy, Zero_Init, & = 10 4,972 310 1,891 3,144

Brute-force, Zero_Init, « = 5 4,972 N/A N/A N/A
Brute-force, Zero_Init, &« = 10 4,972 310 1,891 3,144

Table 4: Optimized number of passengers for the top-10

routes.
Carrier  Carrier  Carrier  Carrier
1 2 3 4

” Ground Truth 16,924 4,022 20,064 29,419

b3} LF, Real_Init (Ours) 18,612 4,054 20,552 30,220

%D ReLU, Real_Init (Ours) 18,618 5,024 20,703 30,269

2 LF, Zero_Init (Ours) 18,583 4,259 20,549 30,074

& ReLU, Zero_Init (Ours) 18,643 5,024 20,323 30,269

i Greedy, Zero_Init, & = 1 17,016 5,024 20,515 29,519
Greedy, Zero_Init, & = 10 18,078 5,024 20,515 30,269

Table 5: Running time (in sec.) for the top-10 routes.

Carrier  Carrier  Carrier Carrier
1 2 3 4
LF, Real_Init (Ours) 40.77 42.52 41.86 41.70
ReLU, Real_Init (Ours) 40.75 41.48 40.67 44.30
LF, Zero_Init (Ours) 43.10 42.45 40.94 40.37
ReLU, Zero_Init (Ours) 40.98 39.90 40.49 40.31
Greedy, Zero_Init, ¢ = 1 910.12 191.12 1,074.95 1,001.04
Greedy, Zero_Init, & = 10 89.47 20.14 107.82 101.01

is the average cost for air carrier k over the routes. However, this
greedy is still a black-box method, whose efficiency is worse than
our white-box method.

We can also use a brute-force algorithm when the number of
routes is small. Given three routes {ri,r,r3}, for instance, the
possible number of solutions is f;7'4* X f;774% X f19¥ 1t is already a
very large search space because each f7%* is several hundreds for a
popular route in a month. However, we do not need to test solutions
one by one. We create a large tensor of |R| x |R| X ¢ dimensions,
where g is the number of queries, and query q solutions at the same
time. In general, GPUs can solve the large query quickly. Even with
GPUs, however, we cannot query more than a few routes because
the search space volume exponentially grows. We also use the step
size @ = {5,10}. @ = 1 is not feasible in the brute-force search
even with state-of-the-art GPUs. Thus, the complexity becomes

max fmax fmax

odiZ InZ (IR

2
a a

1
a
6.2.2 Hyperparameter Setup. For all methods, we let the flight
frequency f; i, freq of air carrier Cy in route r on or below the

maximum frequency f"** observed in the DB1B database. This is
very important to ensure feasible frequency values because too high
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frequency values may not be accepted in practice due to limited
capacity of airports. This restriction can be implemented using the
clip_by_value(-) function of Tensorflow.

In addition, we need to properly initialize frequency values in
Algorithm 1. We test two ways to initialize frequencies: i) Real_Init
initializes the flight frequency values with the ground-truth val-
ues observed in the dataset, and ii) Zero_Init initializes all the
frequencies to zeros. In all methods, we set the total budget to the
ground-truth budget.

We tested € = {1, 100, 1000} but there is no significant difference
on the achieved final optimization values. For the following experi-
ments, we choose € = 1000 to speed up the optimization process.
We use 10 for the learning rate y and run 500 epochs.

One more thing is that the DB1B database includes 10% random
samples of air tickets? so our reported passenger numbers multi-
plied by 10 will be the real scale. In this paper, we list values in the
original scale of the DB1D database for better reproducibility.

6.2.3 Experimental Results. We first compare all the aforemen-
tioned methods in a small sized problem with only 3 routes. Espe-
cially, the brute-force search is possible only for this small problem.

For the top-3 route optimization, we choose the top-3 biggest
routes and the top-4 air carriers in terms of the number of passen-
gers transported and optimize the flight frequencies in the 3 routes
for each air carrier for the last month of our dataset. In Table 3,
detailed optimized market influence values are listed for various
methods. Surprisingly, all methods mark similar values. We think
all methods are good at solving this small size problem. However,
the brute-force method is not feasible for some cases where the
maximum frequency limits £ in the routes are large — we mark
with ‘N/A’ for those whose runtime is prohibitively large.

Experimental results of the top-10 route optimization are summa-
rized in Table 4. Our method based on the ReLU activation produces
the best results for all the top-4 air carriers. Our Lagrangian func-
tion (LF)-based optimization also produces many reasonable results
better than Greedy. Greedy shows the worst performance in this ex-
periment. In Table 5, their runtimes are also reported. Our method
is 2-22 times faster than the Greedy except Carrier 2 with a = 10.

For the top-1,000 and 2,262 routes, experimental results are listed
in Tables 6 and 7. Our methods produce the best optimized value
in the least amount of time. In particular, our method is about 690
times faster than the Greedy with & = 10 at Carrier 4. Greedy is
not feasible for 2,262 routes.

Our method shows a (sub-)linear increment of runtime w.r.t.
the number of routes. It takes about 40 seconds for the top-10
routes and 400 seconds for the top-1,000 routes. When the problem
size becomes two orders of magnitude larger from 10 to 1,000, the
runtime increases only by one order of magnitude. Considering
that we solve a NP-hard problem, the sub-linear runtime increment
is an outstanding achievement. Moreover, our method consistently
shows the best optimized values in almost all cases.

Greedy is slower than our method due to its high complexity

O(%) as described in Sec. 6.2.1. When the budget limit

budget; and the number of routes N are large, it should query
the prediction models many times, which significantly delays its

2See the overview section in https://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=
125.
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Table 6: Optimized number of passengers for the top-1,000 and 2,262 routes. Greedy with a = 1 is not feasible in this scale of

experiments.
{ Carrier 1 Carrier 2 Carrier 3 Carrier 4
1000 routes 2262 routes 1000 routes 2262 routes 1000 routes 2262 routes 1000 routes 2262 routes
LF, Real_Init (Ours) 429,581 487,475 225,623 307,815 388,864 447,633 546,742 723,522
ReLU, Real_Init (Ours) 431,261 489,684 225,623 307,881 390,239 448,421 547,623 725,526
LF, Random_Init (Ours) 426,683 498,511 225,057 306,268 373,756 435,277 548,310 726,142
ReLU, Random_Init (Ours) 434,154 492,784 224,603 306,963 380,318 447,656 549,092 721,100
Greedy, Zero_Init, & = 10 428,196 N/A 225,322 N/A 385,607 N/A 516,348 N/A
Table 7: Running time (in sec.) for the top-1,000 and 2,262 routes scenarios.
{ Carrier 1 Carrier 2 Carrier 3 Carrier 4
1000 routes 2262 routes 1000 routes 2262 routes 1000 routes 2262 routes 1000 routes 2262 routes
LF, Real_Init (Ours) 440.21 875.15 450.30 964.00 451.10 951.56 439.56 940.17
ReLU, Real_Init (Ours) 439.18 908.66 452.39 947.35 453.50 937.25 438.75 950.60
LF, Random_Init (Ours) 438.06 878.73 451.15 947.35 453.39 949.80 440.17 948.20
ReLU, Random_Init (Ours) 442.12 891.05 448.85 936.29 452.47 967.23 438.49 928.13
Greedy, Zero_Init, & = 10 84,643.31 N/A 13,414.46 N/A 35,116.56 N/A 302,272.43 N/A

solution search time. Therefore, Greedy is a classical black-box
search method whose efficiency is much worse than our proposed
method. One can consider our method as a white-box search method
because the gradients flow directly to update flight frequencies.

7 CONCLUSION

We presented a prediction-driven optimization framework for maxi-
mizing air carriers’ market influence, which includes neural network-
based market share prediction models by adding transportation

network features and innovates large-scale optimization techniques

through the proposed AGA method. Our approach suggests a way

to unify data mining and mathematical optimization. Our network

feature-based prediction shows better accuracy than existing meth-
ods. Our AGA method can optimize for all the US domestic routes

in our dataset at the same time whereas state-of-the-art methods

are applicable to at most tens of routes.
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A PROOFS

THEOREM A.1. The proposed market influence maximization is
NP-hard.

Proor. We prove the theorem by showing that an arbitrary
Integer Knapsack problem instance can be reduced to a special case
of our market influence maximization problem.

In an Integer Knapsack problem, there are n product types and
each product type p has a value v), and a cost cp. In particular, there
exist an enough number of product instances for a product type so
we can choose multiple instances for a certain product type. Given
a budget B, we can choose as many instances as we want such that
the sum of the product values are maximized.

This problem instance can be reduced to a market influence max-
imization by letting a product type p be a route r, ¢, be cost, i, and
vp be a deterministic increment of market influence by increasing
the frequency by one.

Therefore, the proposed market influence maximization problem
is NP-hard. ]

THEOREM A.2. Let Ay be a matrix of flight frequencies. The pro-
posed max-min method in Eq. (7) is equivalent to

c(Ay)*

Ar) — 5

max o(
e k.freq20, reR

Proor. First we rewrite Eq. (7) as follows:

o(AR) — Ae(A) + 822, (14)

max
S 2 fr ke freq20,T€R

min
A
Let us fix Ay then Eq. (14) becomes a quadratic function (parabola)
w.r.t. A. It is already known that the optimal solution to minimize the
quadratic function given a fixed A is achieved when its derivative
w.rt. Ais zero, ie., Vyo(Ay) — Ac(Ag) + 642 = —c(Ay) + 261 = 0.
Therefore, the optimal form of A can be derived as A= %

Let us substitute A for its optimal form Ain Eq. (14) and the inner
minimization will disappear as follows:

(A )

45 (15)

max
X2 fr ko freq 20,7 ER

o(Ay) -
o

THEOREM A.3. Algorithm 1 is able to find a feasible solution of
the original problem in Eq. (4).

Proor. In Eq. (11), we choose a  configuration that meets ¢’ -
(o’ = pc’) < 0. The frequency matrix Ay is updated by the gradient
ascent rule, denoted Ay = Ay +y(o’—pc’). However, the directions
of o’ — fc’ and ¢’ are opposite to each other (because their dot-
product is negative), which means the gradient ascent update will
decrease the cost overrun term c(Ay ) as illustrated in Fig. 4.

Therefore, after applying the proposed gradient ascent multiple
times any cost overrun can be removed. Our algorithm stops at the
first solution whose cost overrun is not positive after at least 500
epochs. Therefore, Algorithm 1 is able to find a feasible solution that
meets the budget constraint and its termination is guaranteed. O
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B DATASETS

Our main dataset is the air carrier origin and destination survey
(DB1B) dataset released by the US Department of Transportation’s
Bureau of Transportation Statistics (BTS) [1]. They release 10% of
tickets sold in the US every quarter of year for research purposes,
in conjunction with much detailed air carrier information. Itemized
operational expenses of air carrier are very well summarized in
the dataset and for instance, we can know that how much each
air carrier had paid for fuel and attendants and what kinds of air
crafts were used by a certain air carrier in a certain route. Air
carrier’s performance is also one important type of information
in the dataset. We also use some safety dataset by the National
Transportation Safety Board (NTSB) [2]. We list the links to the
web pages where we downloaded our dataset.

(1) https://www.transtats.bts.gov/Tables.asp?DB_ID=125
(a) DB1B is one of the main tables in the database and contains
randomly sampled itineraries.
(2) https://www.transtats.bts.gov/Tables.asp?DB_ID=110
(a) T-100 Domestic Market contains detailed information about
markets (i.e., routes or segments).
(3) https://www.transtats.bts.gov/Tables.asp?DB_ID=120
(a) Airline On-Time Performance Data contains detailed delay
and cancel information about certain flights.
(4) https://www.transtats.bts.gov/Tables.asp?DB_ID=135
(a) Air Carrier Financial Reports data contains the operational
expense for most U.S. air carriers.
(5) https://www.ntsb.gov/_layouts/ntsb.aviation/index.aspx
(a) The NTSB aviation accident database contains all civil
aviation accident records ever since 1962.

B.1 Data Crawling

The Bureau of Transportation Statistics (BTS) collect all the do-
mestic air tickets sold in the US and some additional management
information and release the following three main tables: Coupon,
Market, and Ticket. The Coupon table, which contains 880,384,622
rows in total, provides coupon-specific information for each do-
mestic itinerary of the Origin and Destination Survey, such as the
operating carrier, origin and destination airports, number of pas-
sengers, fare class, coupon type, trip break indicator, and distance.
The Market table, which has 535,639,256 rows, contains directional
market characteristics of each domestic itinerary of the Origin and
Destination Survey, such as the reporting carrier, origin and desti-
nation airport, prorated market fare, number of market coupons,
market miles flown, and carrier change indicators, and the Ticket ta-
ble, which has 303,276,607 rows, contains summary characteristics
of each domestic itinerary on the Origin and Destination Survey,
including the reporting carrier, itinerary fare, number of passengers,
originating airport, roundtrip indicator, and miles flown. Those thee
tables share a set of common columns, i.e., primary-foreign key
relationships in a database, and thus can be merged into one large
table. Sometime airline names are changed so we use the unique
identifiers assigned by the US governments rather than their names.

C FINAL FEATURE SET IN OUR PREDICTION

The complete elements of f, . we use for our prediction are as
follows so £, x is a 19-dimensional vector:


https://www.transtats.bts.gov/Tables.asp?DB_ID=125
https://www.transtats.bts.gov/Tables.asp?DB_ID=110
https://www.transtats.bts.gov/Tables.asp?DB_ID=120
https://www.transtats.bts.gov/Tables.asp?DB_ID=135
https://www.ntsb.gov/_layouts/ntsb.aviation/index.aspx
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(1) fr k,o0: Average ticket price
(2) frk,1: Flight frequency
(3) fr k,2: Delay ratio
(4) fr K 3: Average delayed time in minutes
(5) fr.k,a: Flight cancel ratio
(6) fr k,5: Flight divert ratio
(7) fr,k,¢: Total number of fatal cases
(8) fr.k,7: Total number of serious accident cases
(9) fr k.8 Total number of minor accident cases
(10) fy k,o: Average aircraft size in terms of number of seats per
flight
(11) f; k.10: Average seat availability percentage which is not
occupied by connecting passengers
(12) f k.11: In-degree of the source airport
(13) fy k.12: In-degree of the destination airport
(14) f; k,13: Out-degree of the source airport
(15) fr k,14: Out-degree of the destination airport
(16) fy k.15: PageRank of the source airport
(17) fr k,16: PageRank of the destination airport
(18) f; k.17: Ego network density of the source airport
(19) f; k.18: Ego network density of the destination airport
In our work, we optimize f; i ; in each route to maximize the
sum of market shares.
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D EXPERIMENTAL ENVIRONMENTS

We introduce detailed environments we conducted our experiments
on. We first describe software and hardware environments and then
list detailed hyper-parameters.
Our detailed software environments are as follows:
(1) Ubuntu 18.04.1 LTS
(2) Python ver. 3.6.6
(3) Numpy ver. 1.14.5
(4) Scipy ver. 1.1.0
(5) Pandas ver. 0.23.4
(6) Matplotlib ver.3.0.0
(7) Tensorflow-gpu ver. 1.11.0
(8) CUDA ver. 10.0
(9) NVIDIA Driver ver. 417.22

Our detailed hardware environments are as follows:

(1) Three machines with i9 CPU, each of which is equipped with
2-3 GPUs (GTX 1080 Ti).

To train the three market share prediction models, Model1/2/3,
we use the mini-batch size of 2,048 and a learning rate of 1e-4 which
decays with a ratio of 0.96 every 100 epochs. We train 1,000 epochs
for each model and use the Xavier initializer for initializing weights
and the Adam optimizer for updating weights.

For market influence maximization, We have several hyper-
parameters, o, yo, A, @ and so on . All hyper-parameter config-
urations are already mentioned in the main paper.
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