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Abstract

We present an efficient, accurate computational method for a coordinate-free model of
flame front propagation of Frankel and Sivashinsky. This model allows for overturned
flames fronts, in contrast to weakly nonlinear models such as the Kuramoto—Sivashinsky
equation. The numerical procedure adapts the method of Hou, Lowengrub and Shelley,
derived for vortex sheets, to this model. The result is a nonstiff, highly accurate solver
which can handle fully nonlinear, overturned interfaces, with similar computational
expense to methods for weakly nonlinear models. We apply this solver both to simulate
overturned flame fronts and to compare the accuracy of Kuramoto—Sivashinsky and
coordinate-free models in the appropriate limit.
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1. Introduction

We study a model for one-dimensional flame fronts moving in two spatial dimensions,
developed by Frankel and Sivashinsky [7]. Such models specify the velocity by which
the front moves, in terms of intrinsic geometric information, namely curvature and
arclength. While these models allow for general geometries, flame fronts are more
commonly studied with weakly nonlinear models such as the Kuramoto—Sivashinsky
(KS) equation, which places constraints on the geometry, for instance, that the height
of the front is a single-valued function of horizontal position. Recently, Goto et al.
directly simulated a model without assuming weak nonlinearity [9]. The numerical
method of Goto et al. [9] used finite difference discretization in space and the
fourth-order Runge—Kutta method for timestepping, and thus is subject to a classic
explicit timestep restriction. In this contribution, we demonstrate that fully nonlinear,

lDepartment of Mathematics and Statistics, Air Force Institute of Technology, WPAFB, OH 45433,
USA; e-mail: benjamin.akers @afit.edu.

2Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA;

e-mail: dma68 @drexel.edu.

© Australian Mathematical Society 2021

58

Downloaded from https://www.cambridge.org/core. IP address: 73.187.247.212, on 11 Aug 2021 at 18:38:32, subject to the Cambridge Core terms
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/51446181121000079 @ CrossMark


http://dx.doi.org/10.1017/S1446181121000079
https://orcid.org/0000-0003-4753-0319
mailto:benjamin.akers@afit.edu
mailto:dma68@drexel.edu
https://crossmark.crossref.org/dialog?doi=10.1017/S1446181121000079&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1446181121000079
https://www.cambridge.org/core

2] Coordinate-free models of flame fronts 59

coordinate-free models may be efficiently simulated. In particular, we introduce a
nonstiff method for the initial value problem, which is pseudo-spectral with respect
to spatial variables and which uses implicit-explicit (IMEX) timestepping, avoiding
the timestep restriction present in [9].

The method is based on the work of Hou, Lowengrub and Shelley (HLS) for
interfacial fluid flows with surface tension [10, 11]. The HLS method is based on
evolving geometric quantities naturally related to the curvature; specifically, these
are the tangent angle the interface forms with the horizontal, and the arclength
element. Since curvature and arclength are fundamental to the models of Frankel and
Sivashinsky [7], we find that the HLS formulation applies. This formulation, when
combined with IMEX timestepping, yields a nonstiff method for the propagation of
flame fronts.

Coordinate-free models specify the normal velocity of the flame front; denoting the
normal velocity by U and the curvature of the front by «, one model presented in [7] is

a’2 0.’3
U=1+(a-Dk+ (1 + 7),8 + (2a + 502 - ?)K3 + @+ 3k, (L1)

With « near unity, and neglecting small terms, another model was derived from (1.1)
in [7]:

—U=1+(a- Dk +dk,,. (1.2)

The term «, is the second derivative of curvature with respect to arclength. The
parameter « allows the lower-order term « to be destabilizing at low wavenumbers/long
wavelengths if @ > 1. For interfaces which are functions of the spatial coordinate,
with @ ~ 1 and small, slowly varying data, these models are approximated by the KS
equation

Yo+ (@ = Dyee + 4y + %(yx)z =0. (1.3)

Frankel and Sivashinsky [7] introduced the coordinate-free models that we study
in the case of two spatial dimensions. Other related work includes the extension
to three spatial dimensions [8] and the introduction of temperature effects [6]. The
numerical simulations conducted in these studies are fully explicit and use finite
differences. Of course, fully explicit methods for fourth-order equations have severe
stiffness constraints; as mentioned above, we introduce here a pseudo-spectral method
using semi-implicit timestepping. Our method is therefore highly accurate without
significant timestep constraints. We develop and validate the numerical method in
Section 3.

Along with the development of the coordinate-free models in [7], the KS equation
is derived as a weakly nonlinear model starting from these coordinate-free models.
One may naturally ask, then, as to the validity of the approximations involved in such
a derivation. In Section 4, we implement our numerical method to demonstrate the
asymptotic validity of the KS equation as an approximation to the coordinate-free
models in the appropriate regime. The second author, along with Hadadifard and
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60 B. F. Akers and D. M. Ambrose [3]

Wright, has also demonstrated this validity fully rigorously [3]. A related work is [5],
in which solutions of two different weakly nonlinear models related to coordinate-free
models of flame fronts are shown to remain close over time; one of these weakly
nonlinear models is the KS equation. It is explicitly stated in [5] that the weakly
nonlinear models are to be preferred because of the ease of numerical simulation; we
demonstrate here that by our method, the full coordinate-free model may be simulated
at essentially the same cost.

Another advantage of using the fully nonlinear coordinate-free models which we
simulate is that there is no assumption that the interface is a graph with respect to
one variable; weakly nonlinear models such as the KS equation inherently have this
restriction to graphs. In Section 4, we present an example of a simulated interface with
multi-valued height, which is thus beyond the reach of the weakly nonlinear models.

The KS equation has a quite elaborate phase space, including travelling waves,
time-periodic waves and chaotic solutions [12]. The chaotic solutions occur for
large @ or large domain size (or both). In Section 4, we present simulations of the
coordinate-free models in the chaotic regime. In one such simulation we observe
chaotic trajectories in all three models; in another KS is chaotic, the weakly-nonlinear
coordinate-free model evolves to a self-intersecting trajectory, and the fully-nonlinear
coordinate-free model has neither chaos nor overturning.

2. Problem formulation

Let a curve (x(c, 1), y(o, 1)) be evolving in R?; then, we define the arclength element
s, and the tangent angle the curve forms with the horizontal, 6, as

So = X2 +y2,  0=tan" (vy/x,p).

In terms of these quantities, the curvature of the interface is
K= —. 2.1)

We denote a frame of normal and tangent vectors at each point of the curve as

f = (_Ycr,xo')’ = (xa"Y(r).

So Sor

We let U denote the normal velocity of the interface and V the tangential velocity:
(x,y), = U + VA.

In terms of U and V, we may infer evolution equations for s, and 6, which are

U, + V86
Sor = Vo —0,U, 6,=-"2"—""". (2.2)
So
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[4] Coordinate-free models of flame fronts 61

We take x and y to be spatially periodic in the following sense:
x(o+2m,t) =M + x(o,t), y(o+2nr,t)=y(0,1),

for a fixed M > 0. Then 6 is also 2r-periodic: 8(c + 2r,t) = 6(o, ¢) for all o and .

While U is specified by (1.1) or (1.2), the tangential velocity, V, may be chosen
to enforce a preferred parameterization of the front. We take a normalized arclength
parameterization. Letting L(¢) be the length of one period of the curve, we require s,
to satisfy s, = L/2m. We see then, using the s,, equation in (2.2) together with the
requirement that s, be independent of o, that

21
L, = —f 6,Udo. (2.3)
0

With this normalized arclength parameterization, formula (2.1) becomes
216,

==

We may then write the second derivative of curvature with respect to arclength as

2.4)

K

KSS = =
2 3 3
Ser So L

(2.5)

We introduce the projection P, which removes the mean of a periodic function:
27

1
Pf=f—g | flo)do.

The normalized arclength parameterization requires s,; = L,/2m, but we also have the
equation for s, in (2.2). This gives us the tangential velocity

V =8;'P(6,U),

where 8! is the operator on mean-zero periodic functions which returns an antideriva-
tive with mean zero. In the numerical section that follows, we evolve (2.3) and

2
6, = fﬂ(Ug + 6,0, B(6,U)) (2.6)

with U defined as either the fully nonlinear (1.1) or the weakly nonlinear (1.2).
In Section 4, we compare the asymptotics of evolution for small-amplitude, slowly
varying data with these two models with those for the same data with the KS equation
(1.3), essentially testing the effectiveness of KS as an approximate model. We also
simulate initial data outside the regime where the models approximate one another for
comparison purposes.

3. Numerical method

3.1. Specification of the method In this section we discuss the numerical method
and simulations of the coupled system of (2.3) and (2.6) (using either closure (1.1) or
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62 B. F. Akers and D. M. Ambrose [5]

(1.2), coupled with curvature formulas (2.4) and (2.5)). This system is numerically
approximated using Fourier collocation for spatial derivatives (as well as for the
integral in equation (2.3)). To approximate the time evolution of the discretized
system we follow HLS, and implement the fourth-order IMEX scheme of Ascher et
al. [4]. This timestepper is designed for an ordinary differential equation of the form
u; = f(u) + g(u) (typically one chooses f(u) to be linear and g(u) as the nonlinearity).
It updates as

1 (25 n-3 n+1 n n—1

== W) = £ + Aty - 6™

+ 4" — g(u"3). (3.1)

4 1
n+1 n n—1 n—-2
—4 +3 R + —
u u u 3M

This scheme is not self starting, and one needs to use another scheme for the first
three steps. We compare three potential initializations: direct implementation of a
fourth-order Runge—Kutta (RK4), an RK4 scheme supplemented with integrating
factors (as in [13, 14]), and a third-order Richardson extrapolation of the following
first-order IMEX scheme:

un+1 o n

u n+l n

A W)+ g (3.2)
All three initializations result in a fourth-order accurate scheme, whose stability
restriction is dictated by that of (3.1) in the limit of a small timestep. In practice, the
stability restrictions of the initialization manifest when one is far outside their stability
region, causing the numerical trajectories to overflow their storage type in the early
steps. We present these phenomena in Figures 1 and 2. The linear stability region of
RK4 is well known, and we observe that integrating factors do little to ameliorate
this stability restriction in this problem. Linear stability analysis on the scheme (3.2),
applied to the test problem f = uyeor and g = au,, gives a scheme which is stable
for At < O(1/a®) (independent of the number of points in space). This is precisely
the behaviour we observe numerically when using the Richardson extrapolation of
equation (3.2) as an initialization method for (3.1); the resulting scheme’s stability

properties appear to be independent of spatial resolution.

3.2. Stability of the method As shown in Figure 1, we evaluated the convergence
and stability of each initialization method. In the left panel of Figure 1, we fix the
number of points in space as N, = 16 and observe that each initialization gives the
promised fourth-order accuracy. In the right panel of this figure, we observe that when
N, = 32, there is a maximum timestep for which one can use the RK4-based initializa-
tions (marked with vertical dashed lines in this panel). The Richardson-extrapolated
IMEX1 initialization had no observed timestep restriction when creating these plots.
All three methods are ultimately fourth order and stable for a sufficiently small
timestep.

In Figure 2, we estimate the Courant-Friedrichs-Lewy (CFL) condition for these
schemes by running each scheme at a sampling of N, and tracking the largest timestep
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FIGURE 1. Convergence rate of the IMEX4 method (3.1). The markers denote three choices of initializa-
tion method. Direct RK4 initialization is marked with stars; RK4 with integrating factors is marked with
circles; Richardson-extrapolated IMEX1 is marked with triangles. A solid line at fourth-order accuracy
is also shown for comparison purposes. The left panel has N, = 16 spatial points; the right panel has
N, = 32 spatial points. The stiffness of this system manifests as a maximum timestep (marked with
dashed vertical lines), at which the schemes with RK4 initialization give finite output (the schemes
give infinite output to the right of this dashed line). We did not observe any timestep restriction for
the Richardson-extrapolated IMEX1 initialization.

10-6 L

FIGURE 2. Stability of the different initializations of the IMEX4 method. The left panel shows the
observed timestep restriction as a function of total spatial points (N,-) As in Figure 1, the stars correspond
to direct RK4 initialization and the circles are the integrating factor RK4 initialization. We did not observe
any timestep restriction when initializing with the Richardson-extrapolated IMEX1 scheme (thus, there
are no triangles marking its maximum timestep in the left panel). We ran simulations with number
of spatial points, N,,, of up to 2'® = 65536 and observed stable computations with Az = 0.1 with this
initialization over long times; this simulation is shown in the right panel. The same initial data were used
for the simulations shown in the left panel, but with # < 1/4.

for which the scheme is stable. For the purposes of this simulation, we call the scheme
unstable if it has a solution with ||6]|c > 10 before ¢ = 1/4; the resolved solution we
tested on had ||0]|. < /2. We observe that both RK4-based initializations have a
CFL condition which scales like At < C(Ac)* (the solid line in the left panel). The
Richardson-extrapolated IMEX1 initialization had no observable timestep restriction;
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successful simulations were conducted with the scheme with N, = 2!® = 65536 and
At = 0.1; see the right panel of Figure 2.

4. Results

4.1. Asymptotic comparison of the models As an application of the numerical
method, we compare the evolution of initial data

y(x) = esin(Vex), a=1+e¢, “4.1)

with the KS equation, as well as with the coordinate-free models of Frankel and
Sivashinsky which use the normal velocities given in (1.1) and (1.2). To initialize the
coordinate-free models, we construct the tangent angle and curve length using

0 = tan"' (y,), L:f 1 +y2dx.

As the weakly nonlinear coordinate-free model, using (1.2), and the KS equation are
approximations of the fully nonlinear coordinate-free model, using (1.1), we consider
the fully nonlinear model as the truth and compare the other two models against it.
The differences in the evolutions of the initial data (4.1) for the three model equations
appear in Figure 3, in which the weakly nonlinear models are denoted as yy; and the
fully nonlinear model is denoted as y.

The derivation of the KS equation from coordinate-free models in [7] considers data
scaled as in (4.1) and keeps terms of size O(e®) or smaller. The natural expectation
would be for the errors created in this approximation to be asymptotically small
compared with O(e?) for an O(1) time interval. We observe the infinity-norm-based
error for a fixed time interval, which scales as O(e*). The asymptotics of the infinity
norm and the two-norm of the difference yr — yy, at both fixed and asymptotically
long times are reported in the four panels of Figure 3. These rates match those in [3],
suggesting that their rigorous bound has an exponent which is sharp.

4.2. Evolution of an overturned interface The coordinate-free solver discussed
here has the same asymptotic cost as the KS equation (all of the equations can be
evolved in O(N,-logN,-) flops per timestep, owing to the Fourier collocation-based
spatial discretization). The coordinate-free models have the advantage of being able
to evolve initial data for which the interface displacement is not a function of the
horizontal coordinate but rather a general parameterized curve. In Figure 4 we present
such simulations. For the simulations in Figure 4 we use initial data

0(c) =Asin(o), a =0.1. 4.2)

For fixed 6, the curve length, L, and spatial period, M, are related as

M = L(zl—ﬂ jjﬂ cos(0) do-)
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FIGURE 3. Differences in the evolutions of the approximate models, KS (1.3) and the coordinate-free
system with weakly nonlinear closure (1.2), and the full coordinate-free model, where the normal velocity
closure is (1.1) with initial data (4.1). The top row compares solutions at fixed time; in the bottom row the
time is scaled as O(e2).

or

L= M(% fcos(@)da')_l.

We chose to initialize the spatial period, using the latter formula to initialize L.

That the coordinate-free formulation allows for evolution of overturned interfaces
means there is a larger simulation space, including allowing for the evolution of
self-intersecting interfaces. Self-intersecting interfaces are non-physical, but they do
not create a singularity in the parametrically described equation (unlike in some other
coordinate-free models such as vortex sheets [1, 2]). An example of the evolution of a
multiply self-intersecting interface is shown in the right panel of Figure 4.

4.3. Chaotic solutions It is well known that for large domains (or large @) the KS
equation exhibits chaotic trajectories [15, 16]. These chaotic trajectories arise from a
range of unstable wavenumbers in the linearization of the KS equation about y = 0,
which cause small solutions to first become large and then evolve chaotically. The
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FIGURE 4. The evolution of overturned initial data (4.2) with A = —11/17x, L ~ 48.7, M = 10 is shown in
the left (time evolution) and centre panels (profile near intersection at t = 2). The evolution of an example
of self-intersecting initial data, with A = =77/10, L ~ 56.6, M = 2nr, is shown in the right panel.

phase space of KS is quite elaborate (including travelling waves, periodic solutions
and chaos [12]); we do not seek to classify the phase space of coordinate-free models
presented here. However, two examples of the chaotic regime are included.

As a first example of a simulation in the chaotic regime, we choose @ = 1.3 and
L = 250. This value of « is not so far from one, and the initial data for this simulation
are small and slowly varying:

2r 4r
y(x,0) = 0.1 cos (ﬁx) + 0.1 cos (ﬁx),

thus, one should expect reasonable agreement among the three models. In this
simulation, all three models (KS, weakly nonlinear coordinate-free and fully nonlinear
coordinate-free) exhibit chaotic trajectories. This regime is depicted in Figure 5. The
long-time, chaotic solutions are no longer small, nor do they satisfy the scaling
required for the asymptotic equivalence of KS to the fully nonlinear problem. That
they are even qualitatively similar could be seen as a victory for KS as an approximate
model.

As a second example, we chose @ =9, L =50, far from the regime where KS
approximates the fully nonlinear problem. Here, the KS equation is still chaotic. The
weakly nonlinear coordinate-free model exhibits overturning, which leads to pinch-off
in finite time. The solution to the full model has neither chaos nor pinch-off but

Downloaded from https://www.cambridge.org/core. IP address: 73.187.247.212, on 11 Aug 2021 at 18:38:32, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51446181121000079


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1446181121000079
https://www.cambridge.org/core

[10] Coordinate-free models of flame fronts 67

6000
5000 |
4000
+ 3000
2000

1000

-100 -50 0 50 100 -100 -50 0 50 100

-100 -50 0 50 100

FIGURE 5. Top left: a chaotic trajectory of the KS equation with L =250, @ = 1.3, depicted in space
time. Top right: a chaotic solution of the fully nonlinear coordinate-free model with L = 250, = 1.3,
depicted in space time. Bottom: the solutions at = 6000 from all three models are compared (the red
dotted line indicates KS, dashed blue indicates fully nonlinear coordinate-free, and solid black indicates
weakly nonlinear coordinate-free). (Colour available online.)

smoothly decays. These solutions are depicted in Figure 6 and have initial data

27 4
y(x,0) = 0.1 cos (%X) + 0.1 cos (%x)

5. Conclusion

In this work, we present a numerical method for the simulation of coordinate-free
models for flame fronts. A coordinate-free model can be simulated at similar expense
to the weakly nonlinear KS equation but without the restrictions of small initial data.
We use this solver to simulate both weakly and fully nonlinear models, comparing the
solutions in a regime where they approximate one another. We also provide simulations
outside this regime, where coordinate-free models allow for overturned solutions and
pinch-off. The KS equation is well known to have parameter regimes that exhibit
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X

FIGURE 6. Left: a chaotic trajectory of the KS equation with L = 50, @ = 9. Right: the solutions to KS
(red dotted curve), the weakly nonlinear coordinate-free model (1.2) (black solid curve) and the fully
nonlinear model (1.1) (blue dashed curve) at ¢ = 4.75, just before the weakly nonlinear coordinate-free
solution (solid black curve) self-intersects. (Colour available online.)

travelling waves, periodic solutions and chaotic trajectories; future applications of this
method include characterizing these parameter regimes for coordinate-free models.
This methodology could also be applied to the higher (2D+1)-dimensional problem
[8], which has not been extensively studied.
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